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Abstract—In datacenter network (DCN) research, one key
challenge is to reproduce the relative performances of different
scalable DCN architectures in an unbiased and transparent
way. Adequately addressing this challenge will support the
validation of performance studies, and this is fundamentalto
building a strong research foundation and making wise datacenter
investment decisions. In addressing this challenge, this paper
presents the NTU-DSI-DCN initiative with a DCN simulation
module based on an open-source platform calledns-3, on which
the performance models of DCN topologies can be developed
and made open source to support independent reproducibility
of their performances. Advantages of the framework include
the following: (1) it is low cost, (2) it provides transparent
performance benchmarks of known DCN architectures and (3) it
enables unbiased comparative performance simulations of DCN
architectures, without the tedium of developing existing DCN
models from scratch.

In realizing this NTU-DSI-DCN initiative, the open-source
performance models of the Fat tree and the BCube architectures
have been implemented on thens-3 platform. A comparative
performance study between Fat tree and BCube is reported,
along with a performance reproducibility study of Fat tree.
The documentation and source codes for our simulation set-
ups are publicly available at http://code.google.com/p/ntu-dsi-
dcn/. In continually adding new DCN architectural models or
their variants in future work, the NTU-DSI-DCN is a promisin g
initiative that can evolve into a well-documented open-source
simulation platform supporting quality research in DCNs.

Keywords—Datacenter network architectures, open-source sim-
ulation framework, reproducible performance studies

I. I NTRODUCTION

A. Current trends in datacenter network (DCN) research

With the rise in demand for cloud computing services
such as hypertextual web search engines [1], data processing
platforms for large clusters [2] and social networking websites
[3], a scalable datacenter is required to support these services
[4]. Monetary costs become another important issue, as the
estimated cost of around $125 million is required to realizea
fully functional datacenter network of 50,000 servers [5],with
approximately 45% of the costs going into the CPU, memory
and storage systems, 25% into power distribution and cooling,
15% into electrical utility costs and another 15% into network
equipment [6]. Motivated by economic considerations, several
DCN architectures have been proposed to realize a scalable

datacenter based on low-cost commodity hardware that can be
easily purchased [7]–[14].

For a field to qualify as a science, it is imperative that
published results are reproducible by others [15], [16]. How-
ever, this does not seem to be the standard practice in DCN
research. Currently, existing performance results for various
DCN architectures do not appear to be unbiased and trans-
parent, as they seem to be produced from simulators mostly
developed in a close-source or ad-hoc manner. Although some
comparison work [17] has been made for the Fat tree [7], [18]
and the DCell [12] architectures under an open-source platform
called ns-3 [19], these simulators are not readily available to
the research community, and, in any case, are not implemented
in a common open-source simulation environment to facili-
tate reproducibility of their experimental results. Investing in
the necessary hardware to build a computer cluster just to
manually reproduce the performance results would incur high
monetary and administration costs. Moreover, to the best of
our knowledge, there is little work in the literature on com-
parative performance studies of different DCN architectures
for reference.

B. The need to reproduce performance studies of existing DCN
architectures

Presented with different architectural solutions, there
comes a need to evaluate them, either to help improve the
architectures, to introduce an entirely new architecture,or to
make wise business decisions. However, independently repro-
ducing and ascertaining the performances of these solutions
can be challenging. Reproducing the performance results of
these architectural models for analysis is practically difficult
as one would often have to develop the models from scratch,
either on a software network simulator or a hardware testbed.
An ideal approach is to have a common open-source simu-
lation framework, to which researchers can contribute their
performance models of new or existing DCN architectures,
and from where they can find and readily use the DCN per-
formance models contributed by others. A performance model
(or simulator) consists of a datacenter network topology of
interest, along with a configuration of its network devices and
protocols and a traffic flow generator to facilitate performance
evaluation.



C. Contributions

We feel that simulation studies should be done in an
unbiased, transparent and cost-effective manner. In this di-
rection, and in recognizing the fundamental importance of
the Fat tree and the BCube architectures, this paper presents
an open-source simulation module on DCN, using which a
comparative performance study of the two DCN architectures
is carried out. A performance reproducibility study of Fat
tree investigated in [7], [17] is conducted as well. By this
study, we mean to investigate the extent that the efficiency
performance (measured in terms of throughput and delay)
is consistent with (or deviant from) the results reported or
claimed in the literature. The current module contains the
Fat tree and BCube performance models developed on the
open-sourcens-3 platform [19]. The module developed has
been made publicly available athttp://code.google.com/p/ntu-
dsi-dcn/. Importantly, in a common open-source simulation
framework, we demonstrate that the experimental results can
be easily produced or reproduced by other researchers, which
can in turn better serve as unbiased performance benchmarks
against other variants or new topologies proposed in their
future work.

We believe that this NTU-DSI-DCN initiative serves as a
good starting point for researchers to reproduce the perfor-
mance studies of two important DCN architectures for further
understanding. It reduces the tedium of developing perfor-
mance models and carrying out simulation work. Researchers
can add performance models of new DCN architectures or their
variants for comparative studies, which could in turn inspire
improvements to existing work, leading to even higher quality
research and datacenter investment decisions.

D. Paper organization

The rest of the paper is organized as follows. In Section
II, we review the Fat tree and the BCube architectures. In
Section III, we present a reproducible performance study of
these two architectures. The experimental setup procedures and
the simulation results are detailed. Section IV demonstrates
and discusses the reproducibility of performance studies for
the Fat tree architecture under the module. A discussion on
related work is presented in Section V, before the paper is
concluded in Section VI.

II. FUNDAMENTAL DCN ARCHITECTURES

A. Fat tree Architecture

A fundamental class of universal routing network called
the Fat tree [18] allows for the interconnection of commodity
switches and hosts. Several decades ago, Charles Clos designed
a network topology called the Clos network, which ensures
high bandwidth for end devices using smaller commodity
switches that are interconnected together [20]. The Fat tree
architecture adopted byAl-Fares et al.[7] can be seen as an
interplay of these two fundamental concepts.

The Fat tree architecture of [7] can be seen as a hierarchical
network topology consisting of four layers: The core switch
layer, aggregation switch layer, edge switch layer and the
end-hosts layer. In ak-ary Fat tree, there are(k/2)2 k-port
switches in the core switch layer. Below the core switch layer,

there arek pods, enumerated from pod0 to podk − 1. Each
core switch has one port that is connected to each of thek
pods. Within each pod, there is an aggregation switch layer
and an edge layer, each containingk/2 switches. Eachk-
port switch in the edge layer is connected tok/2 end hosts.
The remainingk/2 ports of each edge switch is connected to
k/2 of the k ports of each aggregation switch. The number
of end hosts that the architecture can support isk3/4. The
Fat tree architecture also incorporates several improvements
to achieve better performance and fault-tolerance, such asthe
two-level table routing, flow scheduling, flow classification and
Bidirectional Forwarding Detection. An illustration is depicted
in Fig. 1, with k = 4.

Fig. 1: A Fat tree DCN architecture withk = 4

B. BCube Architecture

In recent years, modular datacenter (MDC) has become a
new approach to building datacenter [21] [22]. The BCube
architecture serves as a suitable fundamental building block
to realize a MDC design, which requires special features
such as as higher network capacity and graceful performance
degradation in the event of hardware failures.

The BCube architecture is a recursive structure in nature
[8]. For example, a BCube1 is constructed fromn BCube0
and n n-port switches. In a more general form, a BCubek

(k ≥ 1) is constructed fromn BCubek−1s andnk n-port
switches. A BCube0 containsn servers that are connected
to an n-port switch. For each server in a BCubek, it has
k + 1 ports, enumerated from level-0 to level-k. A BCubek
hasN = nk+1 servers andk+1 level of switches. Each level
containsnk n-port switches. The switches are denoted in the
form of <l, sk−1sk−2...s0 >, wherel(0 ≤ l ≤ k) is the level
of the switch and (sj ∈ [0, n− 1] , j ∈ [0, k − 1]) allows the
enumeration of a unique address for each switch. Each server
in a BCubek is enumerated using the addressing scheme as
akak−1...a0(ai ∈ [0, n−1], i ∈ [0, k]). To construct a BCubek,
we first enumerate then BCubek−1s from0 to n−1. Next, we
enumerate the servers in each BCubek−1 from 0 to nk − 1, as
the number of servers equals tonk. To connect the switches to
the servers, the level-k port of thei-th server(i ∈ [0, nk − 1])
in the j-th BCubek−1 (j ∈ [0, n− 1]) is connected to thej-th
port of thei-th level-k switch. An illustration is given in Fig.
2, with n = 4 andk = 1.

III. A R EPRODUCIBLEPERFORMANCESTUDY

A. Experimental Setup

Using a computer with Intel Core2 Duo 2.8GHz CPU and
4GB of RAM running CentOS 5.8, we have simulated the



Fig. 2: A BCube DCN architecture withn = 4 andk = 1

performance models of the Fat tree and the BCube architec-
tures onns-3 for comparison, which has been widely used
by the research community for network simulation work [23]
[24]. To the best of our knowledge, this is a new comparative
performance study. Done under the NTU-DSI-DCN initiative,
this study is reproducible and should serve as a useful bench-
mark. For a fair comparison, the size of both architectures,the
configurations of the network devices and protocols, and the
traffic flow generation have to be consistent. The only variable
that should be changed is the network topology. Table I show
the simulation settings used for the performance models of the
Fat tree and the BCube architectures.

The size for both architectures ranges from 16 to 3,456
nodes. The 1,000 Mbps ethernet switches with realistic IP
addresses and Nix-Vector routing [25] protocol are used. To
generate traffic flow in them, we randomly select communi-
cation pairs across all the nodes, with each pair consisting
of a sender and a receiver. Each pair would simultaneously
send a 1 Mbps flow of data from its sender to its receiver and
the simulation for both architectures are run for 100 seconds.
The traffic flow pattern for both architectures follows an on-
off behaviour with exponential random distribution, which
has been shown to reasonably model traffic flows in real-
world datacenters [26]. With the consistent simulation settings
decided, we proceed to construct the Fat tree and the BCube
network topology. The performance statistics are then gathered
and analyzed using the Flow Monitor module [27] inns-3.

For the performance study, we focus on two important per-
formance metrics: Average packet delay and average through-
put. The average packet delay can be calculated as follows:

Davg =
1

n

n∑

i=1

di (1)

whereDavg refers to the average packet delay,n is the total
number of packets received in the network anddi is the delay
of packeti.

The average throughput of the network can be calculated
as follows:

τ =

n∑
i=1

(pi × δi)

n∑
i=1

di

(2)

TABLE I: Simulation settings for the Fat tree and the BCube
architectures

Fat tree BCube
Number of pods(k) 4-24 -
Number of BCube levels - 3 (k = 2)
Number of nodes in BCube0 (n) - 4-15
Number of nodes 16-3,456 64-3,375
Simulation running time 100s 100s
Packet size 1024 bytes 1024 bytes
Data rate for packet sending 1 Mbps 1 Mbps
Data rate for device channel 1000 Mbps 1000 Mbps
Communication pairs selection Random selection

with uniform
probability

Random selection
with uniform
probability

Traffic flow pattern Exponential random
traffic

Exponential random
traffic

Routing protocol Nix-Vector Nix-Vector

whereτ refers to the average throughput in the network,pi ∈
[0, 1] with pi = 0 representing the loss of packeti andpi = 1
representing the reception of packeti, δi as the size of packet
i in bits, di as the delay of packeti andn is the total number
of packets received in the network.

B. Experimental Results and Analysis

Based on the average throughput results in Fig. 3, we can
observe that the BCube architecture consistently offers much
more throughput performance than the Fat tree architecture,
even as the number of nodes increases from 16 to 3,456.
There is a slight degradation in the network throughput as
the BCube architecture scales from 64 to 3,375 nodes, down
from 237 Mbps to 174 Mbps. The Fat tree architecture network
throughput remains steady within the range of 117 Mbps to 126
Mbps. For the average packet delay results in Fig. 4, we can
see that the BCube architecture has slightly lower delay than
the Fat tree architecture, with the BCube architecture having a
range from 0.036 ms to 0.048 ms and the Fat tree architecture
having a range from 0.066 ms to 0.072 ms. Both architectures
experienced a fairly gradual increase in packet delay as the
number of nodes increased from 64 to 3,456.

One of the reasons why BCube performs better in both
metrics is due to its network architecture having multiple pos-
sible paths to send a traffic flow from point A to point B. This
would bring about lesser traffic congestion and more available
bandwidth. Moreover, servers in the BCube architecture actas
relay nodes and help one another to speed up packet routing
and traffic flow, thus resulting in improved throughput and
packet delay performance over the Fat tree architecture. As
for the Fat tree architecture, the reason for the consistent
overall performance lies in the fundamental properties of Fat
tree networks, which have been theoretically proven to be very
efficient for interconnecting networks [18]. One can also argue
that to a large extent, the packet delay performance of both
architectures is independent of the size of the network. The
results here have shown that the BCube architecture performs
slightly better than the Fat tree architecture, in terms of average
throughput and packet delay.



Fig. 3: Average throughput of the Fat tree and the BCube
architectures

Fig. 4: Average packet delay of the Fat tree and the BCube
architectures

IV. TOWARDS REPRODUCIBLEPERFORMANCESTUDIES

A. Experimental Setup

We proceed to investigate the reproducibility of existing
performance models in the literature through our simulation
framework. As our simulation framework is in its infancy, we
attempt to first reproduce the performance results of Fat tree
that are available in [7], [17] for a start. In [17], the Fat tree
performance model is simulated based on thens-3 platform
and in [7], it is based on a hardware testbed. Table II shows
the simulation settings as reportedly used in [7], [17].

Due to the close-source nature of the experiments in [17].
we are unable to accurately implement the two-level table
routing protocol. Nix-Vector routing is used instead for the
replicated performance model of [17]. For the replicated per-
formance model of [7], we used 1,536 Mbps ethernet switches
to model the ideal bisection bandwidth as specified by the
authors. Various levels ofk have been simulated to illustrate
the scalability of the replicated performance models. The two-
level table routing, flow classification and flow scheduling
mechanisms have been omitted, as we could not reliably model
their implementations which are close-source. Instead, wehave
substituted the two-level table routing with the Nix-Vector
routing. For both replicated models, each host tries to send
a traffic flow of 96 Mbps to its receivers and the strategy to
select each communication pair follows a uniform random dis-
tribution. Apart from these variations, the simulation settings
for the two replicated performance models follow what has
been described by the authors.

TABLE II: Simulation settings used for the reproduction of
the Fat tree performance models described in [17] and [7]

Fat tree of [17] Fat tree of [7]
Number of pods(k) 4-72 4, 16, 24
Number of nodes 16-93,312 16-3,456
Simulation running time 10-1,000s 100s
Packet size 1024 bytes 1024 bytes
Data rate for packet sending 1 Mbps 96 Mbps
Data rate for device channel 1000 Mbps 1536 Mbps
Communication pairs selection Random selection

with uniform
probability

Random selection
with uniform
probability

Traffic flow pattern Exponential random
traffic

Exponential random
traffic

Routing protocol Nix-Vector Nix-Vector

B. Experimental Evaluation

1) On Reproducing the Results in [17]:Fig. 5 shows the
results of the replicated Fat tree performance model of up to
3,456 nodes for illustrative purposes, though it can generalize
up to 93,312 nodes. The average throughput falls steadily from
127 Mbps to 117 Mbps and the average packet delay rises
fairly from 0.066 ms to 0.071 ms, as the number of nodes
increases from 16 to 3,456. Both results follow the same
steady state trend with slight degradation as the number of
nodes increases, and they are fairly consistent with the findings
presented by the authors of [17]. There are some deviation
in terms of the absolute performance. The reported average
throughput and packet delay in [17] lie between 160 Mbps to
175 Mbps and between 0.040 ms to 0.050 ms respectively. The
results of the replicated model show an approximate 25% drop
in performance as compared to the results reported in [17]. One
of the reasons might be due to the lack of the two-level table
routing protocol in place, which has been shown empiricallyto
increase the performance of the network [7]. Another reason
could be due to the performance model differences at the
implementation level.

With contributions from researchers in the community to
extend and refine the performance models, we expect that the
performance results stated by the authors of [17] would be
reproducible to a large extent in the near term.

Fig. 5: Average throughput and packet delay of the Fat tree
architecture using the simulation settings described in [17]

2) On Reproducing the Results in [7]:Table III shows
the results of the replicated performance model as described
above. While the network devices, protocols and applications
used in the replicated model and the hardware testbed are



TABLE III: Results of the replicated Fat tree performance
model described in [7]

Number
of pods
(k)

Hosts Percentage of Ideal
Bandwidth (1536 Mbps)

Average Packet Delay
(ms)

4 16 12.4% (190 Mbps) 0.043
16 1024 11.5% (176 Mbps) 0.048
24 3456 11.2% (173 Mbps) 0.050

similar in behaviour qualitatively, fork = 4 with 16 nodes,
we are only able to achieve 12.4% of the ideal bandwidth, as
compared to 53.4% reported by the authors of [7]. The average
packet delay is 0.043 ms. It seems that the results as reported
in [7] are largely dependent on the absolute performance of
the hardware testbed. However, without much investment into
cabling and network equipment costs, we are able to gain some
insights into the behaviour and conservative performance of Fat
tree based on the simulation outcome. Without this study, one
would have no idea of how close or far the simulation results
are from the reported hardware experiments [7]. In any case,
as we scale up the number of nodes to 3,456, the percentage
value gradually drops to 11.2% of the ideal bandwidth, with
the average packet delay increased to 0.050 ms. This observed
downward trend is consistent with the findings presented in
the previous sections.

Our common simulation framework is capable of reproduc-
ing the performance results obtained from the hardware testbed
in [7] feasibly at low cost, with the caveat of a performance
gap in relation to real hardware.

V. RELATED WORK

While several suitable simulation platforms are available
[28] [29] [30] [31] [32], ns-3 [19] is best suited for build-
ing performance models for DCN architectures without re-
inventing the wheel as it is open-source, mature and actively
being developed since 1999 [33]. With a common open-source
simulation framework based onns-3, the simulation results
produced by the performance models of two fundamental
DCN architectures, namely the Fat tree [7] and the BCube
[8] architectures, can serve as important unbiased benchmarks
against the existing DCN variants [9]–[14], [17], [34], [35] and
new DCN architectures. We briefly survey these variants and
explain the reasons behind the selection of the Fat tree and the
BCube architectures as the focus of our research.

The VL2 [9] architecture extends the Fat tree topology with
Valiant Load Balancing (VLB) to reduce congestion, and a
directory-based cache routing to ensure quick route mapping
lookups. Portland [11] is a set of layer 2 routing procedures
that does efficient routing, address resolution and fault-tolerant
detection on an arbitrary datacenter topology. However, these
two solutions are not architectures by nature, as they are
dependent on a fundamental network topology such as Fat tree
in order to be fully functional.

MDCube [10] tries to interconnect BCube-based networks
into a giant datacenter, with the main purposes of reducing the
cabling requirements and costs. MDCube and Hyper-BCube
[14] are essentially an extension of the BCube architecture,
which has already been chosen as the one of the fundamental

architectures to investigate. DCell [12], [17] is rather similar to
the BCube architecture, in the sense that a higher-level DCell
network can be built by connecting many low-level DCell
networks together. The architecture of DCell seems to be more
targeted towards building traditional large scale datacenters and
the Fat tree architecture already exists as a decent fundamental
architecture to adopt.

The GreenCloud [34] architecture uses a migration man-
ager layer to dynamically allocate computing resources across
each Virtual Machine (VM), thus delivering the needed perfor-
mance and reduces power consumption. Secondnet [35] uses
an algorithm to allocate virtual machines to physical machines
in a way that guarantees the provision of CPU, memory and
disk resources, ensuring scalability and high utilizationin the
network. These virtualized solutions require the support of
non-commodity high-end grade servers which could inflate
costs.

Monsoon [13] leverages on programmable commodity
switches to introduce VLB to do layer 2 traffic load balancing
and a new directory service for layer 3 routing and address
mapping lookups. Unfortunately, this approach requires the use
of programmable switches in place of off-the-shelves normal
switches to inject the modifications into the architecture.

VI. CONCLUSION AND FUTURE WORK

This paper has presented the NTU-DSI-DCN initiative of
proposing a commonns-3 simulation module for evaluating
DCNs. We have illustrated that the reproducibility of simula-
tion results for DCN architectures can be reasonably achieved
through open-source simulation development onns-3. The
framework currently contains the performance models of two
important DCN architectures, namely, Fat tree and BCube. A
comparative performance study between Fat tree and BCube
is reported, along with a performance reproducibility study of
Fat tree. The simulation framework has been made publicly
available at http://code.google.com/p/ntu-dsi-dcn/.

Simulation will always be a low cost method that does not
displace but often precedes hardware experimentation, andns-
3 is expected to evolve into a network simulator of high fidelity
[23]. We hope this would encourage the research community
to actively contribute differentns-3based performance models
of DCN architectures to our module. On our part, future work
includes adding more DCN architectures such as VL2, DCell
and Portland into our module, as well as refining the Fat tree
and BCube performance models.
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