
1

Integrating Temporal Logic as a State-Based
Specification Language for Discrete-Event Control

Design in Finite Automata
Kiam Tian Seow

Abstract— This paper presents and analyzes a correct and
complete translation algorithm that converts a class of proposi-
tional linear time temporal logic (PTL) formulae to deterministic
finite (-trace) automata. The translation algorithm is proposed
as a specification interface for finitary control design of discrete-
event systems (DES’s). While there has been a lot of computer
science research that connects PTL formulae toω-automata,
there is relatively little prior work that translates state-based PTL
formulae, in the context of a finite-state DES model, to event-
based finite automata - the formalism on which well-established
control synthesis methods exist. The proposed translation allows
control requirements to be more easily described and understood
in temporal logic, widely recognized as a useful specification
language for its intuitively appealing operators that provide
the natural language expressiveness and readability needed to
express and explain these requirements. Adding such a transla-
tion interface could therefore effectively combine specifiability
and readability in temporal logic with prescriptiveness and
computability in finite automata. The former temporal logic
features support specification while the latter automata features
support the prescription of DES dynamics and algorithmic
computations. A practical implementation of the interface has
been developed, providing an enabling technology for writing
readable control specifications in PTL that it translates for
discrete-event control synthesis in deterministic finite automata.
Two application examples illustrate the use of the proposed
temporal logic interface. Practical implications of the complexity
of the translation algorithm are discussed.

Note to Practitioners— Current software technology for fini-
tary control design of discrete-event systems (DES’s) requires
control requirements to be specified in event-based finite (-trace)
automata [2], [3]. This paper is motivated by the fact that
specification in automata can be a non-trivial problem, since a
system designer may not always know for sure if a specification
automaton captures the intended control requirement correctly
and completely, nor can another designer readily interpret the
intended control meaning of the automaton. As propositional
linear time temporal logic (PTL) is syntactically closer to natural
language, it suggests specifying a class of control requirements
as state-based PTL formulae to render them more readable and
easily understood, and proposes a correct and complete algorithm
to convert these formulae into event-based finite automata.
NanTA, a practical implementation of the algorithm, has been
developed as an interface to enable writing control requirements
in PTL that it translates into finite automata for direct use
with TCT [3], a freely available, finite automata-based control
design software for DES’s. The interface would help reduce
design errors and costs associated with incorrect, unnecessarily

A preliminary conference version of this paper appeared in [1].
K.T. Seow is with the Division of Computing Systems, School of Com-

puter Engineering, Nanyang Technological University, Republic of Singapore
639798. Email:asktseow@ntu.edu.sg

restrictive or misinterpreted specifications. In future research, to
support larger control systems design found in many real-world
manufacturing and automation systems (e.g., [4]), we will attempt
to make NanTA computationally more efficient, and generate
more compact specification automata.

Index Terms— Discrete-Event Systems, Propositional Linear
Time Temporal Logic, Finite Automata, Automation, Supervisory
Control

I. INTRODUCTION

Supervisory control theory, initiated by Ramadge and Won-
ham [5], addresses the problem of synthesizing controllers
for discrete-event systems (DES’s) by focussing on the high-
level characterizations of different existence conditions of
controllers, as well as the associated algorithms for computing
them from formalized control requirements. The algorithmic
considerations have included the different control architectures
and/or the DES inherent mathematical structures, mitigating
the complexity of such control computations.

Although steady progress continues to be made in the study
of supervisory control (e.g., see recent proceedings [6], [7],
[8]), specifying the control requirements for a DES remains
a non-trivial problem that must be resolved ifcontroller
synthesisis to become a formal method that is widely used.
The natural prerequisites of a language for specifying control
requirements are natural language expressiveness and readabil-
ity. The former implies that it can specify complex require-
ments more readily, while the latter implies that statements
written in it can be easily understood.

Most synthesis methods for supervisory control require the
control requirements and DES dynamics to be represented
by finite (-trace) automata [9]. In DES formulation [5], a
finite automaton generates finite traces or strings of events.
The finite automata DES framework [2] has been a pervasive
formalism insupervisory control researchdue to its rudimen-
tary, prescriptive and computation-oriented features. The DES
dynamics can be prescribed explicitly in automata to show
the events and the states in which they can occur. However, a
control requirement (on a DES) is often more easily written
and readily understood -correctly - from a descriptive or
declarative rather than a prescriptive viewpoint. In general,
writing a specification in the prescriptive language of automata
might not always be straightforward. This is evident in many
earlier applications of the finite automata DES framework
(e.g., in automated manufacturing [4], [10], task-level robotics
[11], [12], intelligent service transportation [13], and computer

2

and communication networks [14]), where a system designer
is often confronted by the following specification problem:
how do we know that a specification in automata does indeed
capture the intended control requirement?

Specifications of control requirements, in our opinion, can
be correctly written down easily in temporal logic, since it
offers simple syntax and semantics for descriptively writing
formulae that areparaphrastic in natural language. In fact,
temporal logic has long been recognized as an expressive and
readable language for specifying and verifying the properties
of reactive systems [15], including DES’s (e.g., [16], [17],
[18], [19], [20]).

Nonetheless, the dominance of automata in supervisory
control theory has led to extensive development of increasingly
powerful automata-theoretic synthesis tools (e.g., TCT [3]).
These tools require both the control requirements and DES
to be modelled byfinite automata. So, to incorporate the
specification merits of temporal logic in order to better exploit
these existing tools, the idea advocated in this paper is to add
an interface that accepts temporal logic specifications of aclass
of control requirements for a given DES, and automatically
translates them into finite automata. The specifications consid-
ered are expressed in terms of state information of the DES,
hence termedstate-based. The proposed translation proceeds
in two steps: first, convert a state-based temporal logic formula
into an S-automaton, one whose transitions are associated
with propositional state formulae, and second, convert the
S-automaton into anE-automaton, a ‘conventional’ finite
automaton [5] whose transitions are associated with symbols
of events of a given DES modelled by a transition system.
A transition system is anE-automaton incorporated with state
information. The DES model,E-automaton andS-automaton
will be formally defined later in Section III. The proposed
translation iscontextualin that the finite automaton obtained
selects a sublanguage of (the marked language generated by)
the DES model, the context of interest. By this selection, the
sublanguage is also said to be marked by theS-automaton.

In contrast, most current algorithms [21] in computer sci-
ence are concerned with translating a temporal logic formula
to anω-automaton accepting an infinite language, not a finite
one. Of these, including the few prior work [22] translatinga
temporal logic formula to a finite automaton, none is like the
proposed translation framework, cast in a DES formalism that
1) distinguishes event information as model transitions from
state information, and 2) contextually connects state-based
temporal logic to (event-based)E-automata for finitary control
synthesis of a class of temporal-finitary control requirements.
Thus, finite or infinite, no related algorithm in computer
science is directly suited as an interface to existing finitary
control design tools. Importantly, in our opinion, the proposed
interface would help reduce design errors and costs associated
with incorrect, unnecessarily restrictive or misinterpreted spec-
ifications for finitary control systems design, covering many
manufacturing and automation systems in general.

Perhaps, the DES research efforts most closely related to
the proposed translation are those of Du and Wang [23], Lin
[19] and Sanchez [24]:

Du and Wang propose that a control requirement be spec-

ified directly by an automaton, with transitions defined on
state symbols instead of event symbols of a given DES;
their translation algorithm converts this automaton into an
E-automaton that marks a sublanguage of the DES model.
Their proposed specification automaton differs from anS-
automaton in two aspects. Firstly, its transitions are defined on
enumerated DES states instead of propositional state formulae
that the latter’s are associated with. Secondly, all its states are
apparently assumed to be marked unlike the latter’s, thereby
limiting the specifications to an equivalent of prefixed-closed
languages.

Lin proposes to translate or synthesize anE-automaton from
a given temporal logic formula. However, the adapted temporal
logic framework only allows a formula to be expressed over
the events, and not the state information, of a DES. This
apparently limits the use of temporal logic features, namely,
its natural language expressiveness and readability, as well as
a richer description of the DES.

Sanchez develops a design method that translates a small
class of temporal logic formulae into what he calls ana-
machine, namely, an automaton incorporated or ‘labelled’ with
state information. It is similar to the transition model used
herein, differing only in the way the state variables are defined.
However, this class is rather restrictive as its formulae are
expressed in certain predefined formats according to which
a different translation subprocedure is designed. As a result,
Sanchez’s design procedures offer a more rigid specification
interface than the generic translation algorithm proposedin
this paper.

Also related is the infinitary control synthesis research of
Barbeau et al [20], and Ziller and Schneider [25]:

With control requirements specified in metric temporal
logic, Barbeau et al propose a method which composes a use-
ful event-based automaton that realizes a controller satisfying
these requirements, but which is not necessarily maximally
permissive. Their method can be viewed as building the
translation of temporal logic to automata directly into the
control synthesis process. This differs from our approach
which treats the translation and control synthesis problems as
distinctly separate, and is concerned with finitary synthesis.
Similar to ours, the synthesis method is contextual, i.e., it is
done with respect to (the transitions of) a DES. However, it
synthesizes controllers in the context of uncontrollable events
characterized by nondeterminism. It is therefore not appropri-
ate for the supervisory control framework [5] considered in
this paper, since control problems such as controllabilitydo
not naturally arise in their setting.

Ziller and Schneider propose that a control requirement be
specified jointly in automata and temporal logic. The part in
automata specifies the usual desired marked language, while
that in temporal logic asserts a specific liveness condition,
generalizing the nonblocking condition as formulated in fini-
tary supervisory control [5]. Their method can be viewed as
translating the temporal logic liveness expression, alongwith
the system marked states, into a system ofµ-calculus equations
from which a set of states is computed in the initial part of
the control synthesis process. The process is completed by
way of restricting to these states, the cartesian product of

3

an E-automaton (specifying a desired marked language) and
a DES automaton. Our translation interface can be used to
directly produce this cartesian product, where the input tothe
translation interface is a control requirement in temporallogic
corresponding to the desired marked language.

In another related work, Jiang and Kumar [26] claim that
it is possible to first convert a propositional linear time
temporal logic formula to a nondeterministic Büchi automaton
[27], which in turn is translated into a deterministic Ra-
bin automaton [28], and finally fully synchronized with a
DES automaton to yield a deterministic Rabin automaton.
However, a procedure like that in [27] can only convert a
temporal logic formula that is expressed over the events,
and not the state information of a DES, to an event-based
Büchi automaton. In any case, this approach only supports
infinitary control synthesis. Many practical DES’s (e.g., [4],
[10], [11], [12], [13], [14]) can be conveniently modelled
by finite automata (generating marked finite languages or
finite event-based behaviours), notω-automata. So toward the
design automation and engineering of discrete-event control
systems, we believe it would be practically very useful to equip
the well-established (finite)E-automata control framework [2]
with an interface that can automatically translate a class of
readable (state-based) temporal logic formulae toE-automata.
A theoretical analysis and a practical development for this
DES-contextual interface are the main contributions of this
paper.

The rest of the paper is organized as follows. Section II
presents the preliminaries on languages and automata. Section
III covers the background onE-automata for DES modelling,
the syntax and semantics of propositional temporal logic
proposed as a control specification language, as well as on
S-automata that can furnish an intermediate representationfor
algorithmically converting a class of temporal logic formulae
to E-automata. Section IV presents the translation algorithm,
and establishes the finitary correctness and completeness of
the algorithm in generating deterministic automata. Section
V examines the implications of the algorithm as a finitary
specification interface, along with discussions to distinguish
it from similar work. Section VI presents a practical imple-
mentation of the algorithm as a specification interface for
finitary control synthesis, and illustrates the usefulnessof
the developed temporal logic interface with two application
examples. Section VII concludes the paper.

II. LANGUAGES & DETERMINISTIC AUTOMATA

Let T be a non-empty finite set of symbols. The Kleene
closureT ∗ denotes the set of all finite strings composed of
elements inT , including the empty traceε. A subsetL ⊆ T ∗

is called a language overT ; 2T∗

is the power set ofT ∗, and
denotes the set of all languages overT ∗. If s, s′, s′′ ∈ T ∗ with
s′s′′ = s, then we calls′ ∈ T ∗ a prefix ofs ∈ T ∗. The closure
L of L is the language consisting of all the prefixes of strings
in L; if L = ∅, thenL = ∅, and if L 6= ∅, thenε ∈ L. L is
closed ifL = L.

Let finite (-trace) automatonA [9] be a generator (due

primarily to [5]) given by a 5-tuple:

A
def
= (Y, T, δ, y0, Ym) (1)

whereY denotes the finite state set,T denotes the finite set
of symbols,δ : T ×Y → Y denotes the partial state transition
function, y0 ∈ Y is the initial state andYm ⊆ Y is the set
of marked states.δ is ‘partial’ in the sense that for each fixed
y ∈ Y , δ(t, y) is defined (denotedδ(t, y)!) only for some
subset ofT , denotedT (y) ⊂ T , i.e., each elementt ∈ T (y)
is defined aty.

δ can be recursively extended toδ : T ∗×Y → Y as follows.
For t ∈ T , s ∈ T ∗,

δ(ε, y) =y

δ(st, y) =δ(t, δ(s, y))
(2)

providedδ(t, y)! and δ(t, δ(s, y))!. For anys′ ∈ T ∗, y′ ∈ Y ,
δ(s′, y′)! denotes thatδ(s′, y′) is defined. Whenever we write
δ(s, y0) ∈ Y or δ(s, y0) ∈ Ym, we imply δ(s, y0)!.

Explicitly, A is a directed graph with node setY and an
edgey

t
−→ y′ labelled t for each triple(t, y, y′) such that

y′ = δ(t, y). Such an edge is called at-transition.
Definition 1: A finite automatonA is said to be determin-

istic (as induced byδ) in the sense that for any two identical
symbols t1, t2 ∈ T (i.e., t1 = t2) defined at a given state
y ∈ Y , δ(t1, y) = δ(t2, y).

In the directed graph ofA, the initial statey0 ∈ Y is
labelled with an entering arrow, while a marked stateym ∈ Ym

is labelled as a darkened node or a double-concentric circle.
The strings generated by automatonA are characterized by

two languages :L(A), the closed language generated byA,
and Lm(A), the language marked byA. More formally, we
have:

L(A) ={s ∈ T ∗ : δ(s, y0) ∈ Y }

Lm(A) ={s ∈ L(A) : δ(s, y0) ∈ Ym}
(3)

Lm(A) ⊆ L(A) is the subset of strings inL(A) which end
in any of the states inYm and is a distinguished subset that
is meant to represent the satisfaction of some property that
modelA is intended to represent.

A string s ∈ T ∗ is said to be accepted or marked by a
finite automatonA if δ(s, y0) ∈ Ym. A languageL ⊆ T ∗

is termed regular if and only if every strings ∈ L can be
marked or accepted byA [9]. A state y ∈ Y is reachable
in A if there exists a strings ∈ T ∗ such thatδ(s, y0) = y;
and coreachable inA if there exists a strings ∈ T ∗ such
that δ(s, y) ∈ Ym. GeneratorA is said to betrim if every
state inY is both reachable and coreachable.Trim (A) defines
a trim version ofA, i.e., it is automatonA but with all
statesδ(t, y) ∈ Y that are not reachable or co-reachable, and
the respective transitionst ∈ T removed. Unless otherwise
stated, an arbitrary finite automatonA referred to henceforth
is assumed to be trim.

III. BACKGROUND

A. Discrete-Event System & Finite Automaton Model

Formally, let transition system

G
def
= [Π, G] (4)

4

be a DES model such thatG
def
= (Q,Σ, δe, q0, Qm) is a finite

automaton (1), where

1) Π denotes the finite set of propositional state symbols of
G, i.e., for each (non-temporal) variableu ∈ Π, the do-
main Range(u) over which it ranges is{true, false}.

2) Q denotes the finite state set, defined to be the cartesian
product of the ranges of the variables inΠ, i.e., Q

def
=

∏

u∈Π

Range(u), such that for any stateq ∈ Q, we denote

the value ofu ∈ Π assigned byq to be q[u] over
its domain. Syntactically, the formula

∏

u∈Π

(u = q[u])

uniquely characterizes the state information inq ∈ Q.
3) Σ denotes the finite event set so that modelG can be

interpreted as an event-driven system that starts from
q0 ∈ Q and executes eventsσ ∈ Σ defined at each state
q ∈ Q, thus generating a string of events.

4) Lm(G) ⊆ L(G) is meant to represent completed ‘tasks’
(or strings of tasks) carried out by the physical process
that G is intended to model.

Remark 1:G is a DES model with both state and event
information incorporated. For notational convenience, unless
necessary, we simply use symbolG to refer to any deter-
ministic DES model, withΠ implicitly assumed. An event-
generating automaton,G is referred to as anE-automaton -
one that is said to beevent-based.

B. DES as a Synchronous Product of Automata

A complex DESG is usually modelled as a system of
several interacting component (discrete-event) processes, each
modelled by anE-automatonGi. Composing a complex DES
G from its component processesGi’s requires thesynchronous
operator‖ [2], The synchronous operator for regular languages
with state information is presented in the appendix.

C. Control Specification & Temporal Logic

The temporal logic adopted for specifying control require-
ments is propositional linear time temporal logic PTL [15].

1) Syntax: PTL formulae are constructed from a set of
propositional symbolsP; the Boolean connectives∧ (and)
and¬ (not); and the temporal operators© (next), 2 (always)
andU (until).

The formula formation rules are:

1) every propositional symbolp ∈ P is a formula;
2) if ω, ω1 andω2 are formulae, so are¬ω, ω1 ∧ω2, ©ω,

2ω andω1Uω2.

In addition, the following equivalences (≡) are used; about
which related connectives∨ (or), → (implies), and operator
3 (eventually) are defined.

ω1 ∨ ω2 ≡ ¬(¬ω1 ∧ ¬ω2),

ω1 → ω2 ≡ ¬ω1 ∨ ω2,

3ω ≡ true Uω.

The language also includes propositional constantstrue (va-
lidity) and false (inconsistency) defined respectively by the

equivalences

true ≡ ¬ω ∨ ω,

false ≡ ¬ω ∧ ω.

A PTL formula ω is satisfiableprovided it is not false.
2) Semantics:A string over an event setΣ can be viewed

as a mapping

e : {0, · · · , i, · · · , · · · } → Σ (5)

such that

e
def
= e(0)e(1) · · · e(i) · · · , e(i) ∈ Σ.

Then, in the context of DESG = [Π, G], e is an event string
generated byE-automatonG provided there exists a ‘labelling’
of the string by states

ρ : {0, · · · , i, · · · , · · · } → Q (6)

such that

ρ
def
= ρ(0)ρ(1) · · · ρ(i) · · · , ρ(i) ∈ Q,

for which

1) ρ(0) = q0 (the initial label is the initial state);
2) ρ(i + 1) = δe(e(i), ρ(i)).

Such a labellingρ is an arbitrary state trajectory ofG. The
k-suffix of ρ is

ρ(k)ρ(k + 1) · · · ρ(i) · · · , k ≥ 0,

and denoted byρ(k). Note thatρ(0) = ρ. Thek-prefix of ρ is

ρ(0)ρ(1) · · · ρ(k), k ≥ 0,

a finite state-trajectory and denoted byρk. It is said to be
marked ifρ(k) ∈ Qm.

PTL formulae expressed over a given DESG are interpreted
over models of the form(ρ, π), where

π : {0, · · · , k, · · · , · · · } × P → {true, false} (7)

is a binary function that evaluates a propositional symbolp in
k-th stateρ(k), i.e.,

π(k, p) =

{

true if p holds inρ(k),
false otherwise.

The model(ρ, π) is understood, and so we simply write|=ρ(k)

p if a propositional symbolp holds (i.e., is true) in stateρ(k).
We write |=ρ(k)

ω if the k-suffix of an arbitrary trajectoryρ
makes true or satisfies formulaω. It should be clear that the
evaluations of a propositional symbolp over ak-suffix ρ(k)

and ink-th stateρ(k) are logically equivalent, i.e.,|=ρ(k)

p ≡
|=ρ(k) p.

In addition to the standard rules for Boolean connectives,
PTL uses the following rules for temporal operators that
establish the satisfaction of a suffix trajectory over a PTL
formula: For a state indexk, k ≥ 0, a propositional symbol
p, formulaeω, ω1 andω2,

• |=ρ(k)

p iff π(k, p) = true;
• |=ρ(k)

©ω iff |=ρ(k+1)

ω;

5

• |=ρ(k)

2ω iff for all j ≥ k, |=ρ(j)

ω;
• |=ρ(k)

3ω iff there exists aj ≥ k such that|=I(j)

ω;
• |=ρ(k)

ω1Uω2 iff there is aj, j ≥ k, such that|=ρ(j)

ω2

and for all i, k ≤ i < j, |=ρ(i)

ω1.

The rules above fork = 0 define the semantics of PTL over
infinite state-trajectories. As mentioned in [29], the semantics
of PTL can be restricted to finite state-trajectories as follows:
|=ρn ω iff |=ρ′

ω, whereρ′ is an infinite extension ofρn by an
empty traceε at stateρ(n) ∈ Q, such thatδe(ε, ρ(n)) = ρ(n).

3) Expansion Rules:PTL uses the following rules to ex-
pand temporal formulae accordingly (see right-hand side of
these rules).

2ω ≡ ω ∧©2ω;

3ω ≡ ω ∨ (¬ω ∧©3ω) ;

ω1Uω2 ≡ ω2 ∨ (¬ω2 ∧ ω1 ∧©(ω1Uω2)) ;

¬2ω ≡ ¬ω ∨ ω ∧©(¬2ω);

¬3ω ≡ ¬ω ∧©(¬3ω);

¬(ω1Uω2) ≡ (¬ω1 ∧ ¬ω2) ∨ (ω1 ∧ ¬ω2 ∧©¬(ω1Uω2)) .

It is based on these expansion rules that one could construct
anS-automaton from a PTL formula, as will be presented in
Section IV-A.

4) Finitary Control Requirements & Normal Form:Marked
sublanguages are clearly thespecification of interestin finitary
nonblocking control [2]. For such control, our intention of
writing a control requirement in PTL is to ‘select’ a desired
marked sublanguage of a DES modelG (4). Essentially, this
means we need to specify a PTL formulaω that ‘selects’
marked finite state-trajectoriesρm for which |=ρm ω (read:
ρm satisfiesω). However,|=ρm ω must bemarked semantics
consistentwith the infinitary semantics of PTL. To elaborate,
let Q∗Qm denote the set of finite state-strings ending in a
marked state (i.e., marked finite state-trajectories of DESG),
and (Q∗Qm)∞, the set of infinite state-trajectories said to
be in the limit (of Q∗Qm). Then to be consistent, all finite
trajectoriesρm ∈ Q∗Qm, with |=ρm ω, need to be the
infinitely many prefixes of some state trajectoriesρ in the
limit for which |=ρ ω. This is found to be so providedω is a
responseformula [15]. It means a finitary control requirement
that we specify in PTL is necessarily a response formula.

A PTL formula is said to be in disjunctive form if it is
expressed by a disjunction of a finite number of subformulae.
Then the PTL formula on the left-hand side of each expansion
rule above is said to be in (finitary)normal form, if every
constituent formula (i.e.,ω, ω1 or ω2 within the scope of an
outermost temporal operator), when expressed in disjunctive
form, does not contain apersistence modality. This modality
is 32 for the first three expansion rules, and23 for the last
three. Additionally, if the outermost operator is2 or ¬3, the
PTL formula is said to be ininvariancenormal form.

The normal form is a conveniently recognizable structure of
a response PTL formula. At this juncture, the reader may skip
ahead to Section VI-A.1 for a glance at a useful class (14) in
this form.

With no essential loss of practical expressiveness1, we
consider a class of PTL formulae representing (finitary) control
requirements inconjunctive normal form(CNF). A CNF is
defined as a conjunction ofk subformulae,k ≥ 1, where
each subformula is innormal form. The class of response
formulae is closed under conjunction [15]; thus a CNF is
(still) a response PTL formula. A CNF can be said to be in
invariance normal form if all its subformulae are in invariance
normal form, since for two arbitrary PTL formulaeω1 andω2,
2(ω1 ∧ ω2) ≡ (2ω1) ∧ (2ω2) [15].

D. Control Specification &S-Automaton

Control requirements can also be specified by automata
with their transitions defined on state formulae (i.e., formulae
without containing any temporal operators). Such state-based
specification models can represent subsets of the state trajec-
tories of DESG.

Formally, let
C

def
= [C,F] (8)

be a state-based specification model such thatC
def
=

(X,V, δs, x0,Xm) is a finite automaton (1), whereV denotes
a finite set of transition symbols labelled by a finite setS of
satisfiablestate formulae under a mapF , i.e., F : V → S;
and has the following property:

Property 1: For an arbitraryx ∈ X and two non-identical
v1, v2 ∈ V , δs(v1, x)! andδs(v2, x)! impliesF (v1)∧F (v2) ≡
false.

Remark 2:For notational convenience, henceforth, unless
necessary, we will simply use automatonC to refer to a
state-based specification model with the mapF implicitly
assumed. A state-generating automaton,C is referred to as
anS-automaton.

IV. G-BASED TRANSLATION & ANALYSIS

For a PTL formulaω on a DESG, the translation operator

⊗
def
= ×G ◦ ⊗Π (9)

converts the PTL formulaω to anE-automaton, with operation
⊗Π translating this formulaω (expressed in terms of variables
in Π) to an S-automaton, and operation×G translating the
S-automaton to anE-automaton (in the event language space
of G). This is depicted as a commutative diagram in Fig. 1.

ω CG ×
⊗

G×
C

Π⊗

ω CG ×
⊗

G×
C

Π⊗

Fig. 1. Commutative diagram illustratingG-based translation via operations
⊗Π and×G

The following two sections present algorithmic procedures
that implement⊗Π and×G.

1This is in the sense that following the usual approach [15, p.295], require-
ment specification is written as a conjunction of several PTL subformulae;
and in practice, each response subformula that one could think of in natural
language for a finitary requirement is often expressible in normal form.

6

A. Translating PTL Formula toS-Automaton

1) The Procedure:The procedureS-XLAT implements the
operation⊗Π. Intuitively, using the expansion rules (and logic
arithmetic), the procedure expands an initial formulaω into
subformulae that are either atomic (i.e., without temporal
operators) or havenext© as their outermost operator, where
the atomic subformulae aretransitional conditions while the
rest within each© arenext stateconditions. In turn, it expands
the latter next state subformulae similarly if they are new (i.e.,
not identical to those already formed). Thus, by repeatedly
applying expansion rules, it performs construction state by
state, until all next state subformulae are not new, yielding an
S-automaton. The procedure’s termination condition - when
all next state subformulae are not new - will eventually hold
since the length (in terms of the number of propositional
symbols or their negation) of the initial formulaω is finite
[30].

Formally, given a PTL formulaω, the procedure constructs
an S-automatonC from it as in the following. The states
of the S-automaton created are labelled, under a mapF , by
a finite set ofsatisfiablePTL formulae S generated under
formula expansion. The mapF : X → S has the property
that F (x1) = F (x2) iff x1 = x2. For a formulaω that labels
a statex, we write ω/{x}.

Proc S-XLAT: Input is ω, Output isC (8)

1) Create and label initial statex0 asω, i.e., F (x0) = ω.
2) Let X = {x0}, Enew = {ω} andEold = ∅.
3) If F (x0) is in invariance normal form, then addx0 to Xm.
4) While Enew 6= ∅, do the following.

a) For each formulaω/{x} in Enew,
i) expand it using the expansion rules (see Section III-

C.3);
ii) do logic arithmetic on expanded formula to reduce

it to a sum of a finite number of©-product terms.
Each term is of the formf j ∧ ©ωj , wheref j is a
satisfiable state formula with the conjunction of any
two such state formulae beingfalse, and ωj is a
differentsatisfiable PTL formula.

b) Empty allω’s from Enew into Eold.
c) For each product termf j∧©ωj (generated in Step (4a)),

do the following.
i) Create a new symbolvj for f j , for which F (vj) =

f j , and add it toV .
ii) If ωj 6∈ Eold, then

A) create a new statexj for which F (xj) = ωj , and
add it toX;

B) addωj to Enew;
C) defineδs(v

j , x) = xj ;
D) if F (xj) is in invariance normal form (including

2(true)), then addxj to Xm.
iii) Else

A) get the old statexj in X for which F (xj) = ωj ;
B) defineδs(v

j , x) = xj .

Remark 3:That procedureS-XLAT can construct a deter-
ministic state-based automaton (i.e.,S-automatonC) is facili-
tated by logic arithmetic (including using appropriate validity
assertions) and expansion rules rewritten under equivalence
for temporal operators3 and U (see Section III-C.3). The

resulting automaton constructed would have transitions atthe
same state labelled by different satisfiable state formulae, and
hence can be associated with different transition symbols for
which F is deterministic and Property 1 holds (see Section
III-D).

Remark 4: If an initial PTL formula ω has a satisfiable
subformula containing apersistence modality, ω is not a
response PTL formula.S-XLAT, upon expanding such a
formula, removes nondeterminism by essentially recombining
(using disjunction) the next state subformulae©ωj ’s of all
f ′ ∧ ©ωj ’s generated, oneωj of which is the subformula
containing the persistence modality, into one next state which
it does not mark. In the ensuing logic arithmetic process, an
empty marked state setXm will result when the procedure
terminates. Thus, in constructing ‘determinism’, and marking
only those states labelled by PTL formulae in invariance
normal form, the (trim) outputC can exist (i.e., itsXm 6= ∅)
underS-XLAT only for an initial response PTL formulaω. In
other words, although procedureS-XLAT accepts any state-
based PTL formulaω, it can return anS-automatonC only
if ω is a response PTL formula. ThisS-XLAT translation is
therefore sufficient for our purpose, since a finitary control
requirement in PTL, the focus of this paper, is necessarily a
response formula which we assume is a CNF (see Section
III-C.4).

2) Translation Examples:To illustrate the translation using
ProcS-XLAT, consider the following two examples.

Example 1:PTL formula2[f1 → f2Uf3], wheref1, f2 and
f3 are state formulae.

Let ω/{x0} ≡ 2[f1 → f2Uf3]. Clearly,x0 ∈ Xm.
Let φ ≡ (f2Uf3). Then, applying expansion rules and logic

arithmetic, we have

ω ≡2[f1 → f2Uf3]

≡[¬f1 ∨ f1 ∧ (f2Uf3)] ∧©(ω)

≡[¬f1 ∧©(ω) ∨ f1 ∧ (f2Uf3) ∧©(ω)]

≡[¬f1 ∧©(ω) ∨ f1 ∧ [f3 ∨ (f2 ∧ ¬f3) ∧©(φ)] ∧©(ω)]

≡[(¬f1 ∨ f3) ∧©(ω) ∨ (f1 ∧ f2 ∧ ¬f3) ∧©
(

(ω ∧ φ)/{x1}
)

].

Createv0, v1 such that

F (v0) =(¬f1 ∨ f3),

F (v1) =(f1 ∧ f2 ∧ ¬f3).

Define

δs(v
0, x0) =x0,

δs(v
1, x0) =x1 6∈ Xm.

Next, expanding similarly, we have

ω ∧ φ ≡2[f1 → f2Uf3] ∧ [f2Uf3]

≡[(¬f1 ∨ f3) ∧©(ω) ∨ (f1 ∧ f2 ∧ ¬f3)

∧©(ω ∧ φ)] ∧ [f3 ∨ (f2 ∧ ¬f3) ∧©(φ)]

≡[f3 ∧©(ω) ∨ (f2 ∧ ¬f3) ∧©(ω ∧ φ)].

Createv2, v3 such that

F (v2) =(f2 ∧ ¬f3),

F (v3) =f3.

7

Define

δs(v
2, x1) =x1,

δs(v
3, x1) =x0.

Hence theS-automaton graphically depicted in Fig. 2.

0v

1x
0x

1v

2v

3v

0v

1x
0x

1v

2v

3v

Fig. 2. S-automaton for2[f1 → f2Uf3]

Example 2: PTL formula ω1 ∧ ω2, with ω1 ≡ 2[f1 →
f2Uf3] and ω2 ≡ 2[g1 → g2Ug3], where f1, f2, f3 and
g1, g2, g3 are all state formulae.

Let ω/{x0} ≡ ω1 ∧ ω2 ≡ 2[(f1 → f2Uf3) ∧ (g1 →
g2Ug3)]. Clearly,x0 ∈ Xm.

Let φ1 ≡ (f2Uf3), φ2 ≡ (g2Ug3) andφ ≡ φ1 ∧ φ2. Then,
following from Example 1,

ω1 ≡2[f1 → f2Uf3]

≡[(¬f1 ∨ f3) ∧©(ω1) ∨ (f1 ∧ f2 ∧ ¬f3) ∧©(ω1 ∧ φ1)],

and
ω2 ≡2[g1 → g2Ug3]

≡[(¬g1 ∨ g3) ∧©(ω2) ∨ g1 ∧ g2 ∧ ¬g3 ∧©(ω2 ∧ φ2)].

Thus expanding, it can be shown that

ω ≡ω1 ∧ ω2

≡(¬f1 ∨ f3) ∧ (¬g1 ∨ g3) ∧©(ω)

∨ (f1 ∧ f2 ∧ ¬f3) ∧ (¬g1 ∨ g3) ∧©
(

(ω ∧ φ1)/{x
1}

)

∨ (¬f1 ∨ f3) ∧ (g1 ∧ g2 ∧ ¬g3) ∧©
(

(ω ∧ φ2)/{x
2}

)

∨ (f1 ∧ f2 ∧ ¬f3) ∧ (g1 ∧ g2 ∧ ¬g3) ∧©
(

(ω ∧ φ)/{x3}
)

.

Createv00, v01, v02, v03 such that

F (v00) =(¬f1 ∨ f3) ∧ (¬g1 ∨ g3),

F (v01) =(f1 ∧ f2 ∧ ¬f3) ∧ (¬g1 ∨ g3),

F (v02) =(¬f1 ∨ f3) ∧ (g1 ∧ g2 ∧ ¬g3),

F (v03) =(f1 ∧ f2 ∧ ¬f3) ∧ (g1 ∧ g2 ∧ ¬g3).

Define

δs(v
00, x0) =x0,

δs(v
01, x0) =x1 6∈ Xm,

δs(v
02, x0) =x2 6∈ Xm,

δs(v
03, x0) =x1 6∈ Xm.

Next, expanding, it can be shown that

ω ∧ φ1 ≡ω1 ∧ φ1 ∧ ω2

≡f3 ∧ (¬g1 ∨ g3) ∧©(ω)

∨ (f2 ∧ ¬f3) ∧ (¬g1 ∨ g3) ∧©(ω ∧ φ1)

∨ f3 ∧ (g1 ∧ g2 ∧ ¬g3) ∧©(ω ∧ φ2)

∨ (f2 ∧ ¬f3) ∧ (g1 ∧ g2 ∧ ¬g3) ∧©(ω ∧ φ).

ω ∧ φ2 ≡ω1 ∧ ω2 ∧ φ2

∨ (g2 ∧ ¬g3) ∧ (f1 ∧ f2 ∧ ¬f3) ∧©(ω ∧ φ).

ω ∧ φ ≡(ω1 ∧ φ1) ∧ (ω2 ∧ φ2)

≡f3 ∧ (¬g1 ∨ g3) ∧ g3 ∧ (¬f1 ∨ f3) ∧©(ω)

∨ (f2 ∧ ¬f3) ∧ (¬g1 ∨ g3) ∧ g3 ∧ (¬f1 ∨ f2 ∨ f3)

∧©(ω ∧ φ1) ∨ f3 ∧ (g2 ∧ ¬g3) ∧ (¬f1 ∨ f3)

∧©(ω ∧ φ2) ∨ (f2 ∧ ¬f3) ∧ (g2 ∧ ¬g3)

∧ (¬f1 ∨ f2 ∨ f3) ∧©(ω ∧ φ).

Createv10, v11, v12, v13 such that

F (v10) =f3 ∧ (¬g1 ∨ g3),

F (v11) =(f2 ∧ ¬f3) ∧ (¬g1 ∨ g3),

F (v12) =f3 ∧ (g1 ∧ g2 ∧ ¬g3),

F (v13) =(f2 ∧ ¬f3) ∧ (g1 ∧ g2 ∧ ¬g3).

Define

δs(v
10, x1) =x0,

δs(v
11, x1) =x1,

δs(v
12, x1) =x2,

δs(v
13, x1) =x3.

Createv20, v21, v22, v23 such that

F (v20) =g3 ∧ (¬f1 ∨ f3),

F (v21) =g3 ∧ (f1 ∧ f2 ∧ ¬f3),

F (v22) =(g2 ∧ ¬g3) ∧ (¬f1 ∨ f3),

F (v23) =(g2 ∧ ¬g3) ∧ (f1 ∧ f2 ∧ ¬f3).

Define

δs(v
20, x2) =x0,

δs(v
21, x2) =x1,

δs(v
22, x2) =x2,

δs(v
23, x2) =x3.

Createv30, v31, v32, v33 such that

F (v30) =f3 ∧ (¬g1 ∨ g3) ∧ g3 ∧ (¬f1 ∨ f3),

F (v31) =(f2 ∧ ¬f3) ∧ (¬g1 ∨ g3) ∧ g3 ∧ (¬f1 ∨ f2 ∨ f3),

F (v32) =f3 ∧ (g2 ∧ ¬g3) ∧ (¬f1 ∨ f3),

F (v33) =(f2 ∧ ¬f3) ∧ (g2 ∧ ¬g3) ∧ (¬f1 ∨ f2 ∨ f3).

Define

δs(v
30, x3) =x0,

δs(v
31, x3) =x1,

δs(v
32, x3) =x2,

δs(v
33, x3) =x3.

Hence theS-automaton graphically depicted in Fig. 3.
3) Dealing with Conjunction of Formulae:As Exam-

ple 2 might have revealed, using ProcS-XLAT to di-
rectly translate a conjunctive formulaω could be tedious.
However, by observation of the process in ProcS-XLAT,
one can define a binary operator⇑ to combine the indi-
vidual S-automataCi for ωi to yield an S-automatonC

for ω, ω =
∧

all i

ωi. For ω = ω1 ∧ ω2, where C
def
=

[(X,V, δs, x0,Xm), F], C1
def
= [(X1, V1, δ

1
s , x1

0,Xm1), F1] and

8

00v

01v

02v

03v

0x

1x

2x

3x

10v

11v

12v

13v

20v

21v

22v

23v

31v

30v

32v

33v

00v

01v

02v

03v

0x0x

1x1x

2x2x

3x3x

10v

11v

12v

13v

20v

21v

22v

23v

31v

30v

32v

33v

Fig. 3. S-automaton for2[f1 → f2Uf3] ∧ 2[g1 → g2Ug3]

C2
def
= [(X2, V2, δ

2
s , x2

0,Xm2), F2] are theS-automata forω,
ω1 andω2 respectively,

C = C1 ⇑ C2 (10)

where

1) X = X1 × X2, Xm = Xm1 × Xm2,
2) x0 = (x1

0, x
2
0),

3) V = V1 × V2, such that forv = v1 ◦ v2 ∈ V , F (v) =
F1(v

1) ∧ F2(v
2), and

4) δs = δ1
s × δ2

s is defined, forv = v1 ◦ v2 ∈ V , by

δs(v, (x1, x2)) =



















if δ1
s(v1, x1)!∧

(δ1
s(v1, x1), δ2

s(v2, x2)) δs(v
2, x2)!, and

F1(v
1) ∧ F2(v

2)
is satisfiable,

undefined otherwise
(11)

Trim(C) is called aproper translation of PTL formulaω.
4) A Note on Computer Implementation:In procedure

S-XLAT: Step 4(a)ii, performing logic arithmetic by hand
may appear to require the ingenuity of the designer for an
initial formula ω in CNF. However, to handle this translation
process in a computer implementation, practically, we can
apply a modular approach, namely, translate the individual
subformulae ofω into S-automata, and then combine them
using operator⇑. Since each subformula is in normal form,
an instance of which is in Example 1 of Section IV-A.2,
the expansion and logic arithmetic process of grouping into
sums of©-product terms follows a well-defined recursive
pattern that can be handled by adapting the parsing technique
implemented in Fujita et al [31], [32].

5) Procedural Complexity & Practical Implications:It is
well known that the worst-case complexity of constructing
automata from PTL formulae is exponential in the number
of propositional symbols contained in the formulae; formally,
the complexity is PSPACE-complete [30], and procedureS-
XLAT’s is no exception. However, such complexities often
occur only when the expressive power of PTL is exploited
in a way too unnatural to occur in many control requirements
for DES’s. A PTL formula as a control requirement is almost
always very short. In substantiating this claim, the work
surveyed by Wolper [21] shows that in the very large majority

of cases, it is possible to build a Büchi automaton (the
parallel of which is theS-automaton) of a very reasonable
size for any PTL formula that the system designer could
think of for a program property, or in the DES context, for a
control requirement. In other words, the inherently exponential
nature of PTL translation toS-automata is of little practical
significance [21]. As Section VI will show, the significance
diminishes further in our implementation approach, where
we useS-automatontemplatesrepresenting PTL formulae
of practically useful forms. TheseS-automaton templates are
instantiated accordingly and further translated intoE-automata
using the procedure presented in Section IV-B.

B. TranslatingS-Automaton toE-Automaton

In further translating to anE-automaton, effectively, we are
selectinga set of marked strings generated by a (trim) DESG,
whose corresponding state trajectories satisfy a PTL formula
ω represented by anS-automatonC.

Given a DES G = [Π, G] with E-automaton

G
def
= (Q,Σ, δe, Qm, q0), and an S-automaton

C
def
= (X,V, δs, x0,Xm) converted from a PTL formula

ω expressed in terms of the propositional variables inΠ,
the procedureE-XLAT that implements×G to yield the
translation, a cross product ofG × C, is as follows.

Proc E-XLAT: Input is (G, C), Output isTrim(G × C)

1) Determine the initial state:
(q0, δs(v0, x0)) ∈ Q × X is the initial state iff ∃v0 ∈
V, δs(v0, x0)! :|=q0 F (v0).

2) Define the state transition functionδ : Σ×Q×X → Q×X:

δ(σ, (q, x)) =







(δe(σ, q), δs(v, x)) if δe(σ, q)! ∧ δs(v, x)!

and |=δe(σ,q) F (v),
undefined otherwise

(12)

3) SetQm × Xm as the set of marked states.
4) Trim G × C.

Following state initialization (Step 1), the pairing of states
in G×C product synthesis (Step 2) is graphically depicted in
Fig. 4.

0q

1x
1v

1q 2q 3q

2x 3x 4x3v2v
:C

:G
2σ1σ0σ

0q

1x
1v

1q 2q 3q

2x 3x 4x3v2v
:C

:G
2σ1σ0σ

Fig. 4. G × C synthesis: fori > 0, (qi, xi+1) ∈ Q × X if |=qi F (vi)

A resulting stringu = v0v1v2 · · · vm ∈ V ∗ is accepted by
the S-automatonC if δs(u, x0) ∈ Xm, i.e., in a standard
fashion [9] for finite strings. Due essentially to the expansion
rules (see Section III-C.3) used inProc S-XLAT to produce
C, it follows that if C exists (i.e., itsXm 6= ∅) for a PTL

9

formula ω, the (finitary) satisfaction or correctness relation of
trajectoryρm over the formulaω can be written as

|=ρm ω iff
there existsv0v1v2 · · · vm ∈ Lm(C)
such that for alli, 0 ≤ i ≤ m,
|=qi F (vi)

(13)

As discussed in Section III-C.4, marked semantics consistency
of |=ρm ω holds (and thusC can exist)only for a response
PTL formulaω.

Trim(G × C), an E-automaton, is called aproper transla-
tion of C in the contextof G. The construction of product
G × C is a translation algorithm of worst-case complexity
O(|Q||X||Σ||V |).

C. Determinism of Translation

Theorem 1:Trim(G × C) is a deterministicE-automaton.
Proof: By Property 1 ofS-automatonC, for an arbitrary

x ∈ X, two non-identicalv′, v′′ ∈ V (x) and δe(σ, q) ∈ Q,
|=δe(σ,q) F (v′) implies¬ |=δe(σ,q) F (v′′). Hence, there exists
at most onev ∈ V (x) for which |=δe(σ,q) F (v). Thus from
function δ (12), δ(σ, (q, x))! for at most onev ∈ V (x). Since
both C and G are deterministic in the sense of Definition 1,
it follows from function δ that Trim(G × C) is deterministic.

D. Correctness and Completeness of Translation

Naturally, two important properties of a translation are its
correctnessandcompleteness, defined as follows.

Definition 2: Let ρm = ρ(0)ρ(1) · · · ρ(i) · · · ρ(m) be a
marked finite state-trajectory, whereρ(i) ∈ Q × X for all
i, 0 ≤ i ≤ m, for which there exists a corresponding
string em−1 = e(0)e(1) · · · e(m − 1) ∈ Lm(G × C) such
that ρ(i + 1) = δ(e(i), ρ(i)) and qi+1 = δe(e(i), qi). Then
Trim(G × C) is said to be correct with respect toC if

1) |=q0 F (v0) and (q0, δs(v0, x0)) ∈ Q × X is the initial
state ofG × C;

2) for every em−1 ∈ Lm(G × C), there exists a
v0v1v2 · · · vm ∈ Lm(C) such that|=qi F (vi) for all
i, 0 < i ≤ m.

The second condition of Definition 2 asserts that every (finite)
state trajectory on a (marked) string ofLm(G×C) must satisfy
some PTL formula translated asC.

Definition 3: Let ρm = ρ(0)ρ(1) · · · ρ(i) · · · ρ(m) be a
marked finite state-trajectory, whereρ(i) = qi ∈ Q for
all i, 0 ≤ i ≤ m, for which there exists a corresponding
string em−1 = e(0)e(1) · · · e(m − 1) ∈ Lm(G) such that
ρ(i + 1) = δe(e(i), ρ(i)). Then Trim(G × C) is said to be
complete with respect toG if

1) |=q0 F (v0) and (q0, δs(v0, x0)) ∈ Q × X is the initial
state ofG × C;

2) for everyρm of G with ρ(m) ∈ Qm, if there exists a
v0v1v2 · · · vm ∈ Lm(C) such that for alli, 0 < i ≤ m,
|=qi F (vi), thenem−1 ∈ Lm(G × C).

Note that|=q0 F (v0) and antecedent of the second condition
of Definition 3 (or the consequent of the second condition of
Definition 2) define the (finitary) satisfaction or correctness
relation (13).

Theorem 2:Trim(G×C) is correct with respect to CNFω,
and complete with respect to DESG.

Proof: By E-XLAT translation toG × C, it follows
straightforwardly by Definitions 2 and 3 thatTrim(G × C)
is correct with respect toC, and complete with respect toG.
By Remark 4,S-XLAT returns a (trim) outputC (with its
Xm 6= ∅) for a PTL formulaω only if ω is a response PTL
formula; it follows thatC is an equivalent representation (that
exists) for a response PTL formulaω. A CNF, by definition,
is a response PTL formula. Hence the result.
Following Theorem 2, the whole translation algorithm (con-
sisting ofS-XLAT followed by E-XLAT) is said to be correct
and complete.

V. STATE-BASED TEMPORAL LOGIC &
EVENT-BASED FINITE AUTOMATA: A DISCUSSION

Our technical goal has been to build a standardE-automaton
that accepts completely a marked sublanguage whose corre-
spondingfinite state trajectories for a DES satisfy a finitary
control requirement written in state-based PTL. The proposed
G-based translation algorithm is developed for a class of
response PTL formulae (in CNF) that characterizes finitary
control requirements, and abides by the finitary notions of
correctness and completeness as defined in Section IV-D.
Importantly, marked semantics consistency, and hence validity
of the translation under infinitary semantics, holds for response
PTL (see Section III-C.4).

AutomatonC, the output of procedureS-XLAT, is neces-
sarily different from a B̈uchi automaton. For, in the latter’s
acceptance condition, infinite trajectories must visit some state
in an acceptance subset in theω-automaton infinitely often.
Thus although the idea underlying procedureS-XLAT is due
essentially to Wolper [30]’s that outputs a Büchi automaton,
we avoid callingS-XLAT’s outputC a Büchi automaton since,
while structurally similar, its marked state set is not interpreted
as an acceptance set formulated in the original definition for
Büchi automata. Besides, while a Büchi automaton generated
by Wolper’s original procedure is not deterministic, theS-
automaton generated byS-XLAT is (see Remark 3). Impor-
tantly, thatS-automatonC is deterministic leads us to a fruitful
result, namely, Theorem 1, as presented in Section IV-C.

Apparently, the final deterministicE-automaton translated
seems less complete (in some representative sense) than its
ω-version, as it admits only marked finite strings in contrast
to the latter accepting infinite ones. However, for finitary
construction, the former’s proposed translation algorithm can
do away with the latter’s having to translate the liveness part
of a PTL formula. In other words, it does not need to deal
directly with the temporal issue of liveness associated with
infinite strings [21]. Despite the (simpler) finitary translation,
it turns out that this need not lead to loss of completeness. For,
given a CNFω on a DESG whose state space is bounded,
an appropriate assignment or reassignment of marked states

10

in DESG is all that is required to establishmarked semantics
completeness, i.e., (|=ρ ω) → (|=ρm ω), whereρm, with state
ρ(m) ∈ Qm, is any marked finite trajectory of an infinite
DES state-trajectoryρ. Importantly, this means that as long
as there is an appropriate marking of DES states (such as that
suggested later in Section VI-A.1 for a useful class of response
PTL formulae), the proposed translation algorithm can be used
as a specification interface, without essential loss of temporal
completeness for discrete-event control synthesis founded on
the finitary case [2].

Thus in principle, using the proposed translation algorithm,
any PTL formulaω that a system designer could think of
can be specified, provided it is a CNF, and expressed using
only propositional variables inΠ characterizing the states
of a DES model[Π, G] (4). By an appropriate marking of
DES states, the resultantE-automaton (or equivalently its
generated marked sublanguage) can, in the limit, also represent
all infinite event strings on state trajectories satisfyingω. In
practice, such marking is often subject to a designer’s notion
of completed tasks for a specific DES, which determines the
DES marked languageLm(G). We believe that the design
synergy between DES marking and specifying nonblocking
control requirements in PTL could often be found, facilitating
well-understood finitary design.

VI. A SPECIFICATION INTERFACE &
APPLICATION EXAMPLES

A. An Interface for Control Synthesis

A software package called TCT [3] has been developed as
a tool for designing supervisors based on the conventional
(or finitary) automata-theoretic framework [2]. The proposed
translation algorithm has been implemented as a specification
interface called NanTA2 for use with TCT3, integrated as
depicted in Fig. 5.

TCT

Supervisor automaton

Control
automaton

DES
automaton

NanTA

ω PTL

CG ×

[]G,Π

G

TCT

Supervisor automaton

Control
automaton

DES
automaton

NanTA

ω PTL

CG ×

[]G,Π

G

Fig. 5. NanTA Interface for TCT

1) Specifications Considered:S-XLAT can actually be im-
plemented as similarly done in Fujita et al [31]. But as
a practical approach, for NanTA, onlyE-XLAT has been
implemented. Instead of usingS-XLAT to translate an arbitrary

2NanTA stands for ‘NANyang Temporal-to-Automaton’, and is theabbre-
viated chinese name of Nanyang Technological University.

3Specific version supported is XPTCT, for Windows 95/98/2000/XP.

PTL formula, we consider a useful class of response PTL
formulae of the (normal) form:

2[f1 → f2Uf3] (14)

wheref1, f2 andf3 are propositional state formulae. Typically,
a control requirement is expressed as some condition - an
invariant f2 - that must hold whenever itspreconditionf1 oc-
curs, and the invariant cannot be relaxed until itspostcondition
f3 occurs, as is embodied by the form (14) that is thus not
unfamiliar to system designers.

The S-automaton for formulae of the form considered,
synthesized usingS-XLAT, is shown in Fig. 2; the detailedS-
XLAT translation steps to construct it were given earlier in Ex-
ample 1 of Section IV-A.2. In NanTA, it has been implemented
as a computation ‘template’ from which theS-automaton
for each specific formula in this form can be ‘instantiated’.
To support the conjunctive combination of PTL formulae,
the operator⇑ has also been implemented to combine the
respectiveS-automata.

Finally, to deal with f3-liveness conditional uponf1 as
asserted in the PTL form (14), it is easily seen to be necessary
but quite natural to interpret the truth off3 as progress towards
some task completion represented by DES marked states.
Hence we can always assign or reassign some states in DES
G as marked, so that there is at least one marked stateq ∈ Qm

in which f3 is true.
It should be pointed out that two other useful forms are

subsumed by (14):
{

2[¬f1] if f3 = false,
2[f1 → 3f3] if f2 = true.

The former asserts a forbidden-state formula, while the latter,
a conditional response formula.

2) Class of DES’s Considered:The finite automata frame-
work [2], [3] for system design admits DES modelling as a
collection of individual finite automata prescribing the various
component processes. Such a DES model is not uncommon
(e.g., in manufacturing systems [4]). It is usually because
of interacting component processes that a designer needs to
specify control requirements to constrain and ensure proper
operation of the DES as a whole.

In the current version of NanTA, every state in a component
processGi of a DES modelG is uniquely characterized by
a propositional symbol (or state variable), i.e., the symbol
defined istrue only at that state, andfalse elsewhere. This,
however, is not an assumption of the general translation
algorithm proposed in Section IV, and can be relaxed in
a future version of NanTA. Nonetheless, it is believed that
many practical DES’s can be modelled with this assumption
which helps simplify the implementation of propositional
satisfiability checks.

B. Application Examples

To demonstrate the usefulness of the NanTA interface, we
consider two application examples, chosen to show how useful
(temporal) requirements can be specified in PTL, leaving the
tedium of translation to the interface. The first example is also

11

simple enough so that we can visually inspect the outputs of
the NanTA translator.

In both the examples, an automaton modelling a discrete-
event process is graphically depicted with a propositionalsym-
bol (or state variable) placed next to each node representing
a state; each symbol istrue only at that state, andfalse
elsewhere.

1a

1b

1c

1i

1r 1u

2a

2b

2c

2i

2r 2u

USER1

USER2

1a

1b

1c

1i

1r 1u

2a

2b

2c

2i

2r 2u

1a

1b

1c

1i

1r 1u

2a

2b

2c

2i

2r 2u

USER1

USER2

(a) Two users

(b) E-automaton forFirst-Come-First-Serve
requirement

Fig. 6. NanTA translation: Illustrative example 1 (resourceallocation)

1) Example 1 (Resource Allocation):Two usersUSER1
and USER2 operate asynchronously to access a resource
[5]. The automaton for each user is shown in Fig. 6(a). The
symbols used are defined in Table I.

TABLE I

SYMBOL DEFINITIONS FORUSER MODELS

State Event
i: idling; a: request-made;
r: resource requested; b: resource-accessed;
u: resource in-use; c: resource-released;

The integer subscripted to each symbol identifies the user
(see Fig. 6(a)). The systemG as a whole isUSER1 ‖
USER2.

Consider aFirst-Come-First-Servecontrol requirement. In
temporal logic, it may be simply written as a conjunction of
the following two formulae:

1) 2[r1 ∧ i2 → ¬u2Ui1], 2) 2[r2 ∧ i1 → ¬u1Ui2].

The first formula may be paraphrased as ‘wheneverUSER1
requests to use the resource whenUSER2 is idling (i.e.,r1∧
i2 is true), USER2 will not be allowed to use it (i.e.,u2

will remain false) until USER1 has finished with it, which
occurs onceUSER1 returns to its idling state (i.e.,i1 becomes
true)’. The second formula may be paraphrased similarly.

The conjunctive translation produced by NanTA is as shown
in Fig. 6(b).

1b

1i

1w
1d

1h1a

1g

1b

1i

1w
1d

1h1a

1g

2b

2i

2w
2d

2h2a

2g

2b

2i

2w
2d

2h2a

2g

M2BM11a 1b 2a 2b
M2BM11a 1b 2a 2b

e

f
1b

2a

}{ 2a−−−−Σ

}{ 1b−−−−Σ

e

f
1b

2a

}{ 2a−−−−Σ

}{ 1b−−−−Σ

Fig. 7. NanTA translation: Illustrative example 2 (a simple manufacturing
system)

2) Example 2 (Manufacturing System):A manufacturing
system adapted from [2] consists of two machinesM1 and
M2, and a one-slot bufferB, connected as shown in Fig. 7,
along with the automaton for each process. The symbols used
are defined in Table II.

The event set forMj, j ∈ {1, 2}, is Σj = {aj , bj , gj , hj}
and that forB is Σ, whereΣ = Σ1 ∪ Σ2. It is assumed that
M1 takes a workpiece from an infinite buffer; also, whenB
is filled, any attempt to add another workpiece to it will fail
as the workpiece will immediately drop offB. The systemG
as a whole isM1 ‖ B ‖ M2.

Consider the conjunction of the following control require-
ments expressed in PTL:

1) 2[e ∧ ¬w2 → ¬w2Uf] (Underflow avoidance);
2) 2[f ∧ ¬i1 → ¬i1U(e ∨ d1)] (Overflow avoidance);
3) 2[d1 ∧ d2 → ¬i1Ui2] (Repair priority ofM2

over M1).
The first formula may be paraphrased as ‘wheneverB is
empty andM2 is not processing any workpiece,M2 must
not take any workpiece fromB to process untilB is filled’.
The second formula may be paraphrased as ‘wheneverB is
filled and M1 is not idling, M1 must not put a workpiece
it is holding intoB until eitherB is emptied, orM1 breaks
down without placing the workpiece intoB’. The last formula
may be paraphrased as ‘wheneverM1 and M2 both break
down, M1 will not be repaired untilM2 is’.

A sample translation produced by NanTA is as shown in
Fig. 8.

3) Some Remarks:The two examples have demonstrated
the purpose of NanTA for use with TCT, namely, NanTA helps,
if not reduce the tedium of crafting error-free specification
automata, provide an alternative means to describing and
understanding control requirements, through enabling theuse
of (natural language) expressive and readable PTL.

As a final remark, we note that a system designer conversant
with finite automata might be able to write simpleE-automata
corresponding to the required specifications for the two exam-
ples. It however does not eradicate the fact that in general,the
designer may not always know for sure if a specificationE-
automaton captures the intended control requirement correctly

12

TABLE II

SYMBOL DEFINITIONS FOR MACHINE AND BUFFER MODELS

Process State Event

Mj ij : idling; ai: workpiece taken;
j ∈ {1, 2} wj : workpiece processing; bi: workpiece put into buffer;

dj : non-operating; gi: machine broken down;
hi: machine repaired.

B e: buffer emptied;
f : buffer filled;

Fig. 8. Example 2: Priority of repair:2[d1 ∧ d2 → ¬i1Ui2]

and completely, nor can another designer readily interpretthe
intended control meaning of theE-automaton. This potential
problem might be mitigated if the specifications are written
in readable (and thus more easily understood) PTL formulae,
with their translation to correct and completeE-automata
handled by an automation tool such as NanTA.

VII. CONCLUSIONS

This paper has proposed a translation algorithm as an
interface for specifying and converting a class of control
requirements in PTL for automata-theoretic finitary synthesis
of discrete-event supervisors. The resulting interface isa new

DES-contextual translator which can automatically convert a
class of state-based response PTL formulae into event-based
finite automata that, importantly, are deterministic, correct and
complete. In our opinion, its immediate impact is significant:
it mitigates, if not solve, the long-standing problem of speci-
fication for finitary control synthesis of DES’s.

NanTA, a practical implementation of the interface, has
been developed to provide an enabling technology for writing
control requirements in a more readily understood PTL form
that it translates intoE-automata for use with the finitary
control synthesis package, TCT [3]. Two simple but practical
application examples illustrate the usefulness of the NanTA
interface. The interface represents a step towards a more
‘specification-friendly’ design framework for finitary control
of DES’s. It would help reduce design errors and costs associ-
ated with incorrect, unnecessarily restrictive or misinterpreted
specifications. It should, in principle, also lend mutual support
to theusage(by a larger community of application researchers
and engineers) and furtherenhancement(by researchers and
collaborators) of TCT’s underlying capabilities for automated
systems design and control synthesis.

The proposed translation algorithm returns a trimE-
automatonAf of G × C representing the full nonblocking
behaviour captured by the corresponding PTL formulaω for
a DESG. However, the automatonAf can be larger in state
size than is necessary because it incorporates all thea priori
transitional constraints embodied in DES modelG itself. This
automatonAf represents the full nonblocking behaviour of
a supervisor if it is controllable. Su and Wonham [33] have
developedSupreduce, a heuristic reduction procedure of
polynomial complexity that can often find a greatly reduced-
state supervisor based on a given DESG and anE-automaton
representing the full nonblocking behaviour of a supervisor.
A procedure,Autreduce, can therefore be developed that
essentially isSupreduce but with all events ‘virtually set’ as
controllable, to convertAf to a state reduced (trim) automaton
Ap for which

Lm(Af) = Lm(Ap) ∩ Lm(G) (15)

But more useful would be a translation to be developed that
is partially contextual (with respect to DESG), in that it
producesAp in accordance to (15), and that works ‘on the
fly’, in that Ap is produced without the need to explicitly
constructAf altogether.

Active research in computer science has led to efficient

13

but non-contextual translation algorithms converting a PTL
formula to anω-automaton (see e.g., [34]), and they have
apparently already been implemented in tools like SPIN [35].
Future work on PTL translation toE-automata for finitary
control might benefit from adapting such developments, since
the worst-case complexity of constructing automata from PTL
formulae is known to be PSPACE-complete [30].

APPENDIX

The ‖-operation is implemented via thesynchronous prod-
uct of two arbitrary E-automata. ConsiderG1 = [Π1, G1] and
G2 = [Π2, G2], with Π1 ∩ Π2 = ∅ (i.e., no shared vari-
able), andE-automataG1 = (Q1, Σ1, δ

1
e , q1

0 , Qm1) and G2 =
(Q2, Σ2, δ

2
e , q2

0 , Qm2). Then, to yieldG = [Π, G], with E-automaton
G = (Q, Σ, δe, q0, Qm) as the synchronous product ofG1 andG2,
conveniently denoted byG = G1 ‖ G2, we haveΠ = Π1 ∪Π2, and
Q = Q1 × Q2, Qm = Qm1 × Qm2 such that

∏

u1
i
∈Π1

(u1
i = q1[u1

i]) ∧
∏

u2
i
∈Π2

(u2
i = q2[u2

i])

uniquely characterizes the state information inq = (q1, q2) ∈ Q.
The rest follows the conventional definition of‖ [2].

ACKNOWLEDGEMENTS

The author would like to thank his undergraduate research
students, Ming Gai and Tong Lee Lim, for co-prototyping the
NanTA software. He would also like to thank the Associate
Editor and all the anonymous referees for their critical butcon-
structive comments on the review versions of this manuscript.
The responsibility for the integrity of this work remains solely
with the author.

REFERENCES

[1] K. T. Seow, M. Gai, and T. L. Lim, “A temporal logic specification
interface for automata-theoretic finitary control synthesis,” in Proceed-
ings of the IEEE International Conference on Robotics and Automation,
Barcelona, Spain, 2005, pp. 567–573.

[2] W. M. Wonham, Notes on Control of Discrete-Event Systems ECE
1636F/1637S. Systems Control Group, University of Toronto, Updated
1st July 2005, http://www.control.toronto.edu/cgi-bin/dldes.cgi.

[3] ——, Control Design Software: TCT. Developed by Systems
Control Group, University of Toronto, Updated 1st July 2005,
http://www.control.toronto.edu/cgi-bin/dlxptct.cgi.

[4] B. A. Brandin, “The real-time supervisory control of an experimental
manufacturing cell,”IEEE Transactions on Robotics and Automation,
vol. 12, no. 1, pp. 1–14, February 1996.

[5] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,”SIAM Journal of Control and Optimization,
vol. 25, no. 1, pp. 206–230, January 1987.

[6] B. Caillaud, P. Darondeau, L. Lavagno, and X. Xie, Eds.,Synthesis
and Control of Discrete Event Systems. Kluwer Academic Publishers,
January 2002.

[7] M. Silva, A. Giua, and J. M. Colom, Eds.,Proceedings of the Sixth
International Workshop on Discrete-Event Systems. IEEE Computer
Society, U.S.A, October 2002.

[8] J. Zaytoon, V. Carre-Menetrier, and X. C. Christos Cassandras, Eds.,
Proceedings of the Seventh International Workshop on Discrete-Event
Systems (Preprints). IFAC, September 2004.

[9] J. E. Hopcroft and J. D. Ullman,Introduction to Automata Theory,
Languages and Computation. Reading, MA : Addison-Wesley, 1979.

[10] S. C. Lauzon, A. K. L. Ma, J. K. Mills, and B. Benhabib, “Application
of discrete event system theory to flexible manufacturing,”IEEE Control
Systems Magazine, vol. 16, no. 1, pp. 41–48, February 1996.

[11] J. Kǒsecḱa and R. Bajcsy, “Discrete event systems for autonomous
mobile agents,”Robotics and Autonomous Systems, vol. 12, no. 3-4,
pp. 187–198, April 1994.

[12] S. L. Ricker, N. Sarkar, and K. Rudie, “A discrete-eventsystems
approach to modeling dextrous manipulation,”Robotica, vol. 14, pp.
515–525, 1996.

[13] K. T. Seow and M. Pasquier, “Supervising passenger land-transport
systems,” IEEE Transactions on Intelligent Transportation Systems,
vol. 5, no. 3, pp. 165–176, September 2004.

[14] K. Rudie and W. M. Wonham, “Supervisory control of communicating
processes,” inProtocol Specification, Testing and Verification, X, L. Lo-
grippo, R. L. Probert, and H. Ural, Eds. Elsevier Science Publishers
B. V. (North-Holland), 1990, pp. 243–257.

[15] Z. Manna and A. Pnueli,The Temporal Logic of Reactive and Concur-
rent Systems : Specification. Springer Verlag New York, Inc, 1992.

[16] K. T. Seow, “Existence characterizations of temporal-safety supervisors,”
IEEE Transactions on Automatic Control, vol. 47, no. 10, pp. 1779–
1783, October 2002.

[17] ——, “Syntax-based synthesis for temporal-safety supervision,” Auto-
matica, vol. 41, no. 11, pp. 1965–1972, November 2005.

[18] A. Fusaoka, H. Seki, and K. Takahashi, “A description and reasoning
of plant controllers in temporal logic,” inProceedings of the 8th
International Joint Conference on Artificial Inteligence, 1983, pp. 405–
408.

[19] F. Lin, “Analysis and synthesis of discrete event systems using tem-
poral logic,” in Proceedings of the IEEE International Symposium on
Intelligent Control, Arlington, Virgina, U.S.A, 13-15 August 1991, pp.
140–145.

[20] M. Barbeau, F. Kabanza, and R. St.-Denis, “A method for the synthesis
of controllers to handle safety, liveness, and real-time constraints,”IEEE
Transactions on Automatic Control, vol. 43, no. 11, pp. 1543–1559,
November 1998.

[21] P. Wolper, “Constructing automata from temporal logic formulas: A
tutorial,” in Lecture Notes in Computer Science: Formal Methods and
Performance Analysis, Vol. 2090, E. Brinksma, H. Hermanns, and
J. Katoen, Eds. Springer Verlag, New York, 2001, pp. 261–277.

[22] D. Giannakopoulou and K. Havelund, “Automata-based verification of
temporal properties on running programs,” in16th IEEE International
Conference on Automated Software Engineering (ASE’01), San Diego,
California, USA, 2001, pp. 412–416.

[23] Y. Du and S. H. Wang, “Translation of output constraint into event
constraint in the control of discrete event systems,” inProceedings of the
27th IEEE International Conference on Decision and Control, Austin,
Texas, U.S.A, December 1988, pp. 1119–1124.

[24] A. Sanchez,Formal Specification and Synthesis of Procedural Con-
trollers for Process Systems. Lecture Notes in Control and Information
Sciences, Vol 212. Springer Verlag, London, 1996.

[25] R. Ziller and K. Schneider, “A generalised approach to supervisor
synthesis,” in Proceedings of the 1st ACM & IEEE International
Conference on Formal Methods and Models for Codesign, Mont Saint
Michel, France, June 2003, pp. 217–226.

[26] S. Jiang and R. Kumar, “Supervisory control of discrete event systems
with CTL* temporal logic specifications,” inProceedings of the 40th
IEEE International Conference on Decision and Control, Orlando,
Florida, USA, December 2001, pp. 4122–4127.

[27] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper, “Simple on-the-fly au-
tomatic verification of linear temporal logic,” inProtocol Specification,
Testing and Verification. Chapman & Hall, 1995, pp. 3–18.

[28] S. Safra, “On the complexity ofω-automata,” inProceedings of 1988
Annual Symposium on the Foundations of Computer Science, White
Plains, NY, 1988, p. 319327.

[29] E. A. Emerson, “Temporal and modal logic,” inHandbook of Theoretical
Computer Science (Vol. B), J. van Leeuwen, Ed. Elsevier Science
Publishers, Amsterdam, The Netherlands, 1990, pp. 995–1072.

[30] P. Wolper, “Temporal logic can be more expressive,”Information and
Control, vol. 56, no. 1-2, pp. 72–99, 1983.

[31] M. Fujita, “Application of temporal logic to the assistance of hardware
logic design,” inProceedings of the IEEE International Symposium on
Multiple-Valued Logic, 1988, pp. 254–263.

[32] M. Fujita, H. Tanaka, and T. Moto-oka, “Specifying hardware in
temporal logic & efficient synthesis of state-diagrams using prolog,”
in Proceedings of the International Conference on Fifth Generation
Computer Systems, 1984, pp. 572–581.

[33] R. Su and W. M. Wonham, “Supervisor reduction for discrete-event
systems,” inProceedings of The 2001 Conference on Information Sci-
ences and Systems, The Johns Hopkins University, Baltimore, Maryland,
U.S.A, March 2001, pp. 786–791.

[34] K. Schneider,Verification of Reactive Systems: Formal Methods and
Algorithms. Springer Verlag, 2004, texts in Theoretical Computer
Science. An EATCS Series.

14

[35] G. J. Holzmann, “The model checker SPIN,”IEEE Transactions on
Software Engineering, vol. 23, no. 5, pp. 279–295, May 1997.

