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Abstract— This paper presents and analyzes a correct and
complete translation algorithm that converts a class of proposi-
tional linear time temporal logic (PTL) formulae to deterministic
finite (-trace) automata. The translation algorithm is proposed
as a specification interface for finitary control design of discrete

event systems (DES’s). While there has been a lot of computer

science research that connects PTL formulae tav-automata,
there is relatively little prior work that translates state-based PTL
formulae, in the context of a finite-state DES model, to event-
based finite automata - the formalism on which well-established

control synthesis methods exist. The proposed translation allows

control requirements to be more easily described and understood
in temporal logic, widely recognized as a useful specification
language for its intuitively appealing operators that provide

the natural language expressiveness and readability needed to
express and explain these requirements. Adding such a transla-

tion interface could therefore effectively combine specifiability
and readability in temporal logic with prescriptiveness and
computability in finite automata. The former temporal logic

features support specification while the latter automata featurs

support the prescription of DES dynamics and algorithmic
computations. A practical implementation of the interface has
been developed, providing an enabling technology for writing
readable control specifications in PTL that it translates for

discrete-event control synthesis in deterministic finite automata
Two application examples illustrate the use of the proposed
temporal logic interface. Practical implications of the complexity
of the translation algorithm are discussed.

Note to Practitioners— Current software technology for fini-
tary control design of discrete-event systems (DES’s) requise
control requirements to be specified in event-based finite (-trae)
automata [2], [3]. This paper is motivated by the fact that
specification in automata can be a non-trivial problem, since a
system designer may not always know for sure if a specification
automaton captures the intended control requirement corredly
and completely, nor can another designer readily interpret the
intended control meaning of the automaton. As propositional
linear time temporal logic (PTL) is syntactically closer to natural

language, it suggests specifying a class of control requirements

restrictive or misinterpreted specifications. In future researd, to
support larger control systems design found in many real-world
manufacturing and automation systems (e.g., [4]), we will attempt
to make NanTA computationally more efficient, and generate
more compact specification automata.

Index Terms— Discrete-Event Systems, Propositional Linear
Time Temporal Logic, Finite Automata, Automation, Supervisory
Control

. INTRODUCTION

Supervisory control theory, initiated by Ramadge and Won-
ham [5], addresses the problem of synthesizing controllers
for discrete-event systems (DES's) by focussing on the-high
level characterizations of different existence condgioof
controllers, as well as the associated algorithms for cdimgu
them from formalized control requirements. The algoritbmi
considerations have included the different control aettitres
and/or the DES inherent mathematical structures, mitigati
the complexity of such control computations.

Although steady progress continues to be made in the study
of supervisory control (e.g., see recent proceedings [@], [
[8]), specifying the control requirements for a DES remains
a non-trivial problem that must be resolved d¢bntroller
synthesiss to become a formal method that is widely used.
The natural prerequisites of a language for specifying robnt
requirements are natural language expressiveness arabikad
ity. The former implies that it can specify complex require-
ments more readily, while the latter implies that statement
written in it can be easily understood.

Most synthesis methods for supervisory control require the
control requirements and DES dynamics to be represented
by finite (-trace) automata [9]. In DES formulation [5], a
finite automaton generates finite traces or strings of events
The finite automata DES framework [2] has been a pervasive

as state-based PTL formulae to render them more readable and formalism insupervisory control researctiue to its rudimen-
easily understood, and proposes a correct and complete algorithm tary, prescriptive and computation-oriented features DES

to convert these formulae into event-based finite automata. dynamics can be prescribed explicitly in automata to show
NanTA, a practical implementation of the algorithm, has been : :

developed as an interface to enable writing control requirements the events a_nd the states in Whlc_h they can occur. _Howe_ver, a
in PTL that it translates into finite automata for direct use ~CONtrol requirement (on a DES) is often more easily written
with TCT [3], a freely available, finite automata-based control and readily understood eorrectly - from a descriptive or
design software for DES’s. The interface would help reduce declarative rather than a prescriptive viewpoint. In gaher
design errors and costs associated with incorrect, unnecessarily\,\,riting a specification in the prescriptive language of auta

might not always be straightforward. This is evident in many
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earlier applications of the finite automata DES framework
(e.g., in automated manufacturing [4], [10], task-leveédatics
[11], [12], intelligent service transportation [13], andinsputer



and communication networks [14]), where a system desigriied directly by an automaton, with transitions defined on
is often confronted by the following specification problemstate symbols instead of event symbols of a given DES;
how do we know that a specification in automata does indetiwbir translation algorithm converts this automaton into a
capture the intended control requirement? E-automaton that marks a sublanguage of the DES model.
Specifications of control requirements, in our opinion, cahheir proposed specification automaton differs from &n
be correctly written down easily in temporal logic, since iautomaton in two aspects. Firstly, its transitions are éefion
offers simple syntax and semantics for descriptively wgti enumerated DES states instead of propositional state faemu
formulae that areparaphrasticin natural language. In fact, that the latter's are associated with. Secondly, all iteestare
temporal logic has long been recognized as an expressive apgarently assumed to be marked unlike the latter’s, tlyereb
readable language for specifying and verifying the pragert limiting the specifications to an equivalent of prefixedsed
of reactive systems [15], including DES’s (e.g., [16], [L7]languages.
[18], [19], [20]). Lin proposes to translate or synthesizefaautomaton from
Nonetheless, the dominance of automata in supervisaygiven temporal logic formula. However, the adapted tempor
control theory has led to extensive development of incredygi  logic framework only allows a formula to be expressed over
powerful automata-theoretic synthesis tools (e.g., TC]). [3the events, and not the state information, of a DES. This
These tools require both the control requirements and DBfparently limits the use of temporal logic features, ngmel
to be modelled byfinite automata. So, to incorporate thdts natural language expressiveness and readability, Asasve
specification merits of temporal logic in order to betterlekp a richer description of the DES.
these existing tools, the idea advocated in this paper isldo a Sanchez develops a design method that translates a small
an interface that accepts temporal logic specificationsotdss class of temporal logic formulae into what he calls @n
of control requirements for a given DES, and automaticalipachine, namely, an automaton incorporated or ‘labellathi w
translates them into finite automata. The specificationsiden state information. It is similar to the transition model dse
ered are expressed in terms of state information of the DE®rein, differing only in the way the state variables arerdfi
hence termedtate-basedThe proposed translation proceedsiowever, this class is rather restrictive as its formulae ar
in two steps: first, convert a state-based temporal logimite expressed in certain predefined formats according to which
into an S-automaton, one whose transitions are associatadlifferent translation subprocedure is designed. As altresu
with propositional state formulae, and second, convert tiSanchez’s design procedures offer a more rigid specifitatio
S-automaton into anf-automaton, a ‘conventional’ finite interface than the generic translation algorithm proposed
automaton [5] whose transitions are associated with sysnbthis paper.
of events of a given DES modelled by a transition system. Also related is the infinitary control synthesis research of
A transition system is af-automaton incorporated with stateBarbeau et al [20], and Ziller and Schneider [25]:
information. The DES model-automaton and-automaton ~ With control requirements specified in metric temporal
will be formally defined later in Section Ill. The proposedogic, Barbeau et al propose a method which composes a use-
translation iscontextualin that the finite automaton obtainedful event-based automaton that realizes a controllerfgatis
selects a sublanguage of (the marked language generatedthg$e requirements, but which is not necessarily maximally
the DES model, the context of interest. By this selectiom, tipermissive. Their method can be viewed as building the
sublanguage is also said to be marked by &hautomaton. translation of temporal logic to automata directly into the
In contrast, most current algorithms [21] in computer sceontrol synthesis process. This differs from our approach
ence are concerned with translating a temporal logic foamulhich treats the translation and control synthesis problam
to anw-automaton accepting an infinite language, not a finitdistinctly separate, and is concerned with finitary syrithes
one. Of these, including the few prior work [22] translatiag Similar to ours, the synthesis method is contextual, iteis i
temporal logic formula to a finite automaton, none is like théone with respect to (the transitions of) a DES. However, it
proposed translation framework, cast in a DES formalisnh thgynthesizes controllers in the context of uncontrollaiients
1) distinguishes event information as model transitiomsnfr characterized by nondeterminism. It is therefore not gmpro
state information, and 2) contextually connects statedbasate for the supervisory control framework [5] considered in
temporal logic to (event-based}automata for finitary control this paper, since control problems such as controllabdity
synthesis of a class of temporal-finitary control requiretee not naturally arise in their setting.
Thus, finite or infinite, no related algorithm in computer Ziller and Schneider propose that a control requirement be
science is directly suited as an interface to existing fipitaspecified jointly in automata and temporal logic. The part in
control design tools. Importantly, in our opinion, the ppgspd automata specifies the usual desired marked language, while
interface would help reduce design errors and costs asedcighat in temporal logic asserts a specific liveness condition
with incorrect, unnecessarily restrictive or misintetprespec- generalizing the nonblocking condition as formulated in-fin
ifications for finitary control systems design, covering mantary supervisory control [5]. Their method can be viewed as
manufacturing and automation systems in general. translating the temporal logic liveness expression, aleith
Perhaps, the DES research efforts most closely relatedthe system marked states, into a system-oflculus equations
the proposed translation are those of Du and Wang [23], Lirom which a set of states is computed in the initial part of
[19] and Sanchez [24]: the control synthesis process. The process is completed by
Du and Wang propose that a control requirement be spegay of restricting to these states, the cartesian product of



an £-automaton (specifying a desired marked language) apdmarily to [5]) given by a 5-tuple:

a DES automaton. Our translation interface can be used to dof

directly produce this cartesian product, where the inpuh& A= (Y.T,6,y0,Yn) @)

translation interface is a control requirement in temptgic whereY denotes the finite state séf, denotes the finite set

corresponding to the desired marked language. of symbols,d : T x Y — Y denotes the partial state transition
In another related work, Jiang and Kumar [26] claim thdtinction, yo € Y is the initial state and’;,, C Y is the set

it is possible to first convert a propositional linear timef marked states! is ‘partial’ in the sense that for each fixed

temporal logic formula to a nondeterministiéi€hi automaton y € Y, 6(¢,y) is defined (denoted(t,y)!) only for some

[27], which in turn is translated into a deterministic Rasubset ofT’, denoted?’(y) C T, i.e., each element e T'(y)

bin automaton [28], and finally fully synchronized with &as defined aty.

DES automaton to yield a deterministic Rabin automaton. ¢ can be recursively extendeddo T*xY — Y as follows.

However, a procedure like that in [27] can only convert Bort € T, s € T*,

temporal logic formula that is expressed over the events, 5(e,y) =y
and not the state information of a DES, to an event-based 5 t, st s (2
Biichi automaton. In any case, this approach only supports (st,y) =0(t,9(s,y))

infinitary control synthesis. Many practical DES’s (e.g}],[ providedd(t,y)! andd(¢,d(s,y))!. For anys’ € T*, ¢y €Y,
[10], [11], [12], [13], [14]) can be conveniently modelledd(s’,y’)! denotes thad(s’,y’) is defined. Whenever we write
by finite automata (generating marked finite languages &fs,yo) € Y or d(s,yo) € Yo, we imply (s, yo)!.

finite event-based behaviours), netautomata. So toward the Explicitly, A is a directed graph with node s&t and an
design automation and engineering of discrete-event aontedgey —— 4 labelledt for each triple(¢,y,y’) such that
systems, we believe it would be practically very useful taipg ' = §(¢, ). Such an edge is calledtaransition.

the well-established (finiteJ-automata control framework [2]  Definition 1: A finite automatonA is said to be determin-
with an interface that can automatically translate a cldss istic (as induced by) in the sense that for any two identical
readable (state-based) temporal logic formulag-mutomata. symbolst,,t, € T (i.e., t; = t;) defined at a given state

A theoretical analysis and a practical development for thisc Y, 6(t1,y) = 6(t2, ). [ ]
DES-contextual interface are the main contributions o§ thi In the directed graph ofA, the initial statey, € Y is
paper. labelled with an entering arrow, while a marked statec Y.,

The rest of the paper is organized as follows. Section il labelled as a darkened node or a double-concentric circle
presents the preliminaries on languages and automataosect The strings generated by automatArare characterized by
Il covers the background ofi-automata for DES modelling, two languages LZ(A), the closed language generated Ay
the syntax and semantics of propositional temporal logénd L,,(A), the language marked bi. More formally, we
proposed as a control specification language, as well as lmve:

S-automata that can furnish an intermediate representfdion L(A) ={se€T":0(s,50) €Y}

algorithmically conve;rtmg a class of temporal Io'g|c forlm Lon(A) ={s € L(A) : 6(s,y0) € Yon} )

to £-automata. Section IV presents the translation algorithm,

and establishes the finitary correctness and completerfesd e (A) C L(A) is the subset of strings if(A) which end
the algorithm in generating deterministic automata. ®ectiin any of the states ifY;;, and is a distinguished subset that
V examines the implications of the algorithm as a finitaris meant to represent the satisfaction of some property that
specification interface, along with discussions to distisf Model A is intended to represent.

it from similar work. Section VI presents a practical imple- A string s € T™ is said to be accepted or marked by a
mentation of the algorithm as a specification interface fdinite automatonA if §(s,y0) € Y. A languageL C T~
finitary control synthesis, and illustrates the usefulnegs IS termed regular if and only if every string € L can be
the developed temporal logic interface with two applicatiomarked or accepted b [9]. A statey € Y is reachable

examples. Section VII concludes the paper. in A if there exists a strings € 7" such thati(s,yo) = v;
and coreachable i\ if there exists a stringg € T™* such

that §(s,y) € Y,,. GeneratorA is said to betrim if every
II. LANGUAGES & DETERMINISTIC AUTOMATA state inY” is both reachable and coreachaliiem (A) defines
a trim version of A, i.e., it is automatonA but with all
Let T' be a non-empty finite set of symbols. The Kleenstatess(t,y) € Y that are not reachable or co-reachable, and
closureT™ denotes the set of all finite strings composed ahe respective transitions € T' removed. Unless otherwise
elements inl’, including the empty trace. A subsetl C T stated, an arbitrary finite automatci referred to henceforth
is called a language ovér; 27" is the power set of *, and is assumed to be trim.
denotes the set of all languages o¥e&r. If s, s’, s” € T* with
s's” = s, then we calls’ € T* a prefix ofs € T*. The closure 1. BACKGROUND
L of L is the language consisting of all the prefixes of string&. piscrete-Event System & Finite Automaton Model
in L; if L=0,thenL =0, and if L # 0, thene € L. L is
closed if L = L.
Let finite (-trace) automatorA [9] be a generator (due ¢g¥ [IT, G] 4)

Formally, let transition system



be a DES model such that %' (Q,X%, 0,90, Q) is a finite  equivalences

automaton (1), where
1) II denotes the finite set of propositional state symbols of
G, i.e., for each (non-temporal) variablec II, the do-
main Range(u) over which it ranges i§true, false}. A PTL formulaw is satisfiableprovided it is not false.
2) @ denotes the finite state set, defined to be the cartesia?) Semantics:A string over an event sef can be viewed
product of the ranges of the variablesIih i.e., Q df  as a mapping

true = w V w,

false = —w A w.

HRange(u), such that for any state € 2, we denote e {0, iyl S (5)
uell
the value ofu € II assigned byg to be g[u] over gsych that
its domain. Syntactically, the formulﬂ (u = qlu]) of
e = e(0)e(l)---e(i)---, e(i)eX.

uniquely characterizes the state inforurrﬁgtiorqiﬂ Q. . _ _

3) ¥ denotes the finite event set so that mogetan be Then, in the context of DEE = [II, G, e is an event string
interpreted as an event-driven system that starts frd#gnerated by-automatorz provided there exists a ‘labelling’
o € Q and executes eventsc ¥ defined at each state©f the string by states

q € Q, thus generating a string of events. p {0, iy} = Q (6)
4) L,,(G) C L(G) is meant to represent completed ‘tasks’
(or strings of tasks) carried out by the physical processich that
that G is intended to model. def _ .
p = p0)p(1)---p(i)---, p()€Q,

Remark 1:G is a DES model with both state and event
information incorporated. For notational conveniencdgs® for which
necessary, we simply use symb@l to refer to any deter- 1) ,(0) = ¢, (the initial label is the initial state);
ministic DES model, withIT implicitly assumed. An event- ) p(i + 1) = 6. (e(i), p(i)).
generating automatort; is referred to as ag-automaton -

h a labelli i i i . Th
one that is said to bevent-based n Such a labellingp is an arbitrary state trajectory af e

k-suffix of p is

B. DES as a Synchronous Product of Automata p(k)p(k+1)---p(i)---, k=0,

A complex DESG is usually modelled as a system ofand denoted by*). Note thatp(®) = p. The k-prefix of p is
several interacting component (discrete-event) prosesseh
modelled by ar€-automatonG,;. Composing a complex DES p(0)p(1) -+ p(k),
G from its component processe’s requires thesynchronous 5 finjte state-trajectory and denoted py. It is said to be
operator| [2], The synchronous operator for regular languagegarked if p(k) € Qum.
with state information is presented in the appendix.

k>0,

PTL formulae expressed over a given DE%re interpreted
over models of the fornfp, =), where

C. Control Specification & Temporal Logic 7 {0, Ky} X P — {true, false} @)

The temporal logic adopted for specifying control require- ) . . )
ments is propositional linear time temporal logic PTL [15]. Is a binary function that evaluates a propositional symbinl

1) Syntax: PTL formulae are constructed from a set oF’th statep(k), i.e.,

propositional symbolsP; the Boolean connectives (and) ) — true  if p holds inp(k),
and - (not); and the temporal operatofs (nex), O (alwayg m(k,p) = false otherwise.
andU (until).

The model(p, 7) is understood, and so we simply write’(*)
p if a propositional symbaop holds (i.e., is true) in statg(k).
. (k) . . . .
) We write =" w if the k-suffix of an arbitrary trajectory
2) if w, w1 andw, are formulae, SO aréw, wi Awa, Ow,  aves trye or satisfies formula It should be clear that the
Ow andw;Uws. ; o )
- . ] evaluations of a propositional symbplover ak-suffix p
In gddmon, the foIIow!ng equwalengeﬁi are used; about and ink-th statep(k) are logically equivalent, |.e),:f’( ) p=
which related connectives (or), — (implieg, and operator =r (k) .
< (eventually are defined. In addition to the standard rules for Boolean connectives,
w1 V wy = = (—wy A —ws), PTL uses the fo_llowing rules for _temp_oral operators that
establish the satisfaction of a suffix trajectory over a PTL
formula: For a state indek, k > 0, a propositional symbol
Ow = true Uw. p, formulaew, w; andws,

The language also includes propositional constants (va- . Izp(i) p iff 7r(lc,p)k:1 true;
lidity) and false (inconsistency defined respectively by the |:P( ! Qu iff }:P( o w;

The formula formation rules are:
1) every propositional symbgl € P is a formula;

wp — w2 = wp Vwe,



. |:f’(k) Ow iff for all j > k, ):f’”) w; With no essential loss of practical expressivehesse

o ':p‘k) Ow iff there exists aj > k such that):Im w; consider a class of PTL formulae representing (finitarytain
o =" wiUw, iff there is aj, j > k, such that=""" w, requirements inconjunctive normal formCNF). A CNF is
and for alli, k < i < j, ':p(’) Wi, defined as a conjunction of subformulae,k > 1, where

Th | b fok — 0 define th i ¢ PTL each subformula is imormal form The class of response
€ rules above fok =1 define the semantics o OV€formulae is closed under conjunction [15]; thus a CNF is

infinite state-trajectories. As mentioned in [29], the satita
of PTL can be restricted to finite state-trajectories aofod:
=rn w iff =" w, wherey' is an infinite extension af,, by an
empty trace: at statep(n) € Q, such that. (e, p(n)) = p(n).
3) Expansion RulesPTL uses the following rules to ex-
pand temporal formulae accordingly (see right-hand side Bf
these rules). '

(still) a response PTL formula. A CNF can be said to be in
invariance normal form if all its subformulae are in invanca
normal form, since for two arbitrary PTL formulag andws,
O(w1 Awe) = (Owq) A (Ows) [15].

Control Specification &S-Automaton

Control requirements can also be specified by automata
with their transitions defined on state formulae (i.e., folae

Ow=wA QOuw; without containing any temporal operators). Such stateta
Sw=wV (~wAOOw); spgcification models can represent subsets of the stage-traj
tories of DESG.
wiUws = wy V (mwa Awp A OQ(wrUws)) 5 Formally, let
“Ow = —wVwAQ(-0Ow); c Lf [C, F] ®)
—Ow = —w A Q(—=Ow); def

be a state-based specification model such that =
(X, V, 5,20, X) is a finite automaton (1), wheré denotes

It is based on these expansion rules that one could COI’]S’[I%(Hmte set of transition symbols labelled by a finite Seof

an S-automaton from a PTL formula, as will be presented iﬁatlsfiablestate formulae under a map, i.e., F: V — 5
Section IV-A. and has the following property:

Property 1: For an arbitraryx € X and two non-identical
vy,v3 € V, §s(v1, z)! andds(ve, x)! implies F(vy) A F(uvy) =
ffalse. |

Remark 2:For notational convenience, henceforth, unless
qwecessary, we will simply use automatan to refer to a
state-based specification model with the mapimplicitly
assumed. A state-generating automatohijs referred to as
an S-automaton. |

“(w10ws) = (w1 A —wa) V (w1 A ~wa A O (w1Uws)) .

4) Finitary Control Requirements & Normal FornMarked
sublanguages are clearly thpecification of interesh finitary
nonblocking control [2]. For such control, our intention o
writing a control requirement in PTL is to ‘select’ a desire
marked sublanguage of a DES model(4). Essentially, this
means we need to specify a PTL formulathat ‘selects’
marked finite state-trajectories,, for which == w (read:
pm Satisfiesw). However, = w must bemarked semantics
consistenwith the infinitary semantics of PTL. To elaborate, IV. G-BASED TRANSLATION & ANALYSIS
let Q*Q,, denote the set of finite state-strings ending in a ]
marked state (i.e., marked finite state-trajectories of pgs  For @ PTL formula. on a DESG, the translation operator
and (Q*@Q,,)>, the set of infinite state-trajectories said to def X 0 @11 9)
be in the limit (of @*@,,). Then to be consistent, all finite
trajectories p,, € Q*Q,., with =" w, need to be the converts the PTL formula to an£-automaton, with operation
infinitely many prefixes of some state trajectoriesn the &n translating this formulas (expressed in terms of variables
limit for which =* w. This is found to be so provided is a in II) to an S-automaton, and operatior¢ translating the
responsdormula [15]. It means a finitary control requirementS-automaton to af-automaton (in the event language space
that we specify in PTL is necessarily a response formula. of G). This is depicted as a commutative diagram in Fig. 1.

A PTL formula is said to be in disjunctive form if it is
expressed by a disjunction of a finite number of subformulae. o, C- o x
Then the PTL formula on the left-hand side of each expansion e
rule above is said to be in (finitaryjormal form if every W GxC
constituent formula (i.ew, wy or wo within the scope of an d
outermost temporal operator), when expressed in dispecti e d " @ based \ation vi )
form, does not contain persistence modalityThis modality gi ;ﬁd S(();mmutatlve iagram illustrating-based translation via operations
is ©0O for the first three expansion rules, and> for the last
three. Additionally, if the outermost operatortsor -, the  The following two sections present algorithmic procedures
PTL formula is said to be ifnvariancenormal form. that implementzy; and x¢.

The normal form is a conveniently recognizable structure of
a response PTL formula. At this juncture, the reader may skip This s in the sense tha following the usual approach [1896], require-

head to Section VI-A.1 for a glance at a useful class (14) ent specification is written as a conjunction of several Plibfermulae;
a .ea : g &d in practice, each response subformula that one coulld dgiim natural
this form. language for a finitary requirement is often expressible imab form.




A. Translating PTL Formula t&-Automaton resulting automaton constructed would have transitiortbet

1) The ProcedureThe proceduré&s-XLAT implements the Same state labelled by different satisfiable state formuad

operation®y. Intuitively, using the expansion rules (and logid'®nce can be associated with different transition symbmis f
arithmetic), the procedure expands an initial formuldnto which F' is deterministic and Property 1 holds (see Section

subformulae that are either atomic (i.e., without temporé”‘D)-
operators) or haveext() as their outermost operator, where Remark 4:If an initial PTL formula w has a satisfiable
the atomic subformulae ateansitional conditions while the Subformula containing gersistence modalifyw is not a
rest within each) arenext stateconditions. In turn, it expands fesponse PTL formulaS-XLAT, upon expanding such a
the latter next state subformulae similarly if they are new( formula, removes nondeterminism by essentially recomigini
not identical to those already formed). Thus, by repeatediySing disjunction) the next state subformulags’'s of all
applying expansion rules, it performs construction state /A Ow’’s generated, one’ of which is the subformula
state, until all next state subformulae are not new, yigidin containing the persistence modality, into one next statehwh
S-automaton. The procedure’s termination condition - whdhdoes not mark. In the ensuing logic arithmetic process, an
all next state subformulae are not new - will eventually hol@Mpty marked state set,,, will result when the procedure
since the length (in terms of the number of propositiondg'minates. Thus, in constructing ‘determinism’, and ragk
symbols or their negation) of the initial formula is finite ©nly those states labelled by PTL formulae in invariance
[30]. normal form, the (trim) outpu€' can exist (i.e., itsX,, # 0)
Formally, given a PTL formula, the procedure constructsunderS-XLAT only for an initial response PTL formula. In
an S-automatonC' from it as in the following. The statesOther words, although procedufXLAT accepts any state-
of the S-automaton created are labelled, under a migrpy Pased PTL formulav, it can retumn anS-automatonC' only
a finite set ofsatisfiable PTL formulae S generated under if w iS @ response PTL formula. Th-XLAT translation is
formula expansion. The map : X — S has the property there_fore suf_ﬂClent for our purpose, since a_fmltary cdn_tro
that F(z1) = F(as) iff 21 = x5. For a formulaw that labels réquirement in PTL, the focus of this paper, is necessarily a

a statez, we writew/{z}. response formula which we assume is a CNF (see Section
11I-C.4). [
Proc S-XLAT: Input isw, Output isC (8) 2) Translation E>_<amplesfl'o iIIu_strate the translation using
Proc S-XLAT, consider the following two examples.
1) Create and label initial state, asw, i.e., F(zo) = w. Example 1:PTL formulaO[f; — f>U f5], wheref;, fo and
;g :}etf)(( =) {zo}, Enew = {w} andlffold =E])- 4 0 X f5 are state formulae.
xo) IS In Invariance normal form, then a to X, —
4) While Ene, # 0, do the following. Letw/{zo} = D[fi — f2U f3]. Clearly,z € Xiy.. .
- _ Let ¢ = (f2U f3). Then, applying expansion rules and logic
a) For each formul@/{z} in Encw, arithmetic, we have
i) expand it using the expansion rules (see Section IlI-
C.3); w =0[f1 — foUfs]

o um of = finte mumber afy product terms. =\ 1t V1 A (U A O)
Each term is of the forny? A Ow’, where f? is a _[ﬁfl ANOW)V LA (foUfs) AOW)]
satisfiable state formula with the conjunction of any =["f1 AO(w) V fi A [fs V (f2 A = fs) A O(¢)] A O(w)]
[

two such state formulae beinfjalse, and @’ is a -1V f3) A V(A Fa A=fa) A A ).
differentsatisfiable PTL formula. CAVI)AOWIV AT fs) O((w /e })}

b) Empty all’s from Epeq into Eoa. Createv®, v! such that
c) For each product ternf¥ AQw’ (generated in Step (4a)),
do the following. F°) =(=f1V fs),
i) Create a new symbaV for 7, for which F'(v’) = F(ul) =(f1 A fo A —fa).
f7, and add it toV. @)= nf2 f3)
iy If @ ¢ E,4, then Define
A) create a new state’ for which F(z?) = @, and 0
add it to X; 5s(v 7960) =2,
B) addw’ to E_new; 53(U17$0) ! ng'

C) defineds(v’,x) = 27;

D) if F(27) is in invariance normal form (including Next, expanding similarly, we have
O(true)), then adde? to X,,.

iii) Else wA ¢ =0[f1 — foUfs] A[f2U fs]
A) get the old stater’ in X for which F/(z7) = &7, =[(=fiV ) AOW)V (fi A f2 A=fs)
B) defineds(v’,x) = a’. AOWAA]Afs V (f2 A=fs) AO(9)]

=[fs A V (fa Afs) A A Q).
Remark 3:That procedures-XLAT can construct a deter- U3 A Ol)V (J2 A=fs) A O A S

ministic state-based automaton (i&-automatorC) is facili-  Createv?,v3 such that
tated by logic arithmetic (including using appropriateidiy )
assertions) and expansion rules rewritten under equivalen F®) =(f2 A= f3),

for temporal operators> and U (see Section 11I-C.3). The F(v®) =f3.



Define
wA ¢ E(wl A ¢>1) A (o.)2 A (,232)

=fs A (291 Vgs)AgaA(=f1V f3) ANO(w)

55(1)2,:101) =zt

5s(v®, ') = V (f2 A—fs) A (mg1V gs) Ags A (=fiV fa V fs)
Hence theS-automaton graphically depicted in Fig. 2. ANOWA 1)V f3 A (g2 A=gs) A(=fLV f3)
ANOWA ¢2) V (fa A= f3) A (g2 A—gs)
ANV 2V ) AOWA ).
Createv'0, vt 12 v13 such that
F(0) =f3 A (=g1V g3),
F(o'h) :( A=f3) A(=g1 V gs),
F(0') =fs A (g1 A g2 A —ga),
3y
Fig. 2. S-automaton ford[f1 — faU f3] F(0') =(f2 A=f3) A (g1 A ga A —g3).
Define
Example 2: PTL formulaw; A we, with wy = O[f; — 5o, 21y o
fUfs] andwy = Olg1 — g2Ugs], where fi, f5, f3 and T
g1, 92,93 are all state formulae. Os(v,a7) =2,
Let w/{zo} = w1 Awa = O[(f1 — f2Ufs) A (g1 — 5s(v"?, 2" =a?,
g2Ug3)]. Clearly,z¢ € X,,. 3, (013, z1) =2,
Let o1 = (f2Uf3), ¢2 = (g2Ugs) and ¢ = ¢1 A ¢o. Then,
following from Example 1, Createv??, v2!, 22 y23 such that
wi =0lfs = LU F*) =g3 A (=1 V f3),
=[(=f1V f3) A V(i A fa A=fs) A A
| (A V f3) AOW1) V (fi A fa A=f3) AO(wi A )], F(0™) =gs A (fi A fa A —fs),
an - Ugs] F(v*) =(g2 A —g3) A (=1 V fs),
w2 =U[g1 — g2Ugs 23
F A= N Jo AN—J3).
(=g V g3) A Ows) V g1 A g2 A —gs A Olws A ). | (v™?) =(g2 A —g3) A (f1 A fa A= f3)
Thus expanding, it can be shown that Define
_ 55 (v*0, %) =ao,
w =w1 N\ w2 So(v2l 22) =41
=(=f1V fs) A1V gs) A Ow) s(v22,$2) 79:27
V(A A f2 A=fs) A (g1 V g3) AO ((w A 61)/{a'}) S0 ) =,
V(=1 V fs) Algr A ge A=gs) AO ((w A é2)/{2%}) 0 (v, 27) =a”.
V(fiAf2A=f3) A(gr Agz A=gs) AO (@A) /{z°}) . Createv?, v3!, 132, 433 such that
Createv™, v, 0%, v such that F(v 30) =f3 A (=91 V g3) Ags A (=fiV fs),
F™) =(=f1V fs) A (=g1 V g3), F*) =(fa A=fs) A(mg1 Vgs) Ags A (=f1V fa V f3),
F@™) =(fi A fa A=fz) A (=91 V g3), F(u*?) =f3 A (g2 A —gs) A (=1 V f3),
F”) =(=f1V fs) A(91 A g2 A —g3), F0®) =(fa AN=fs) A (g2 A=gs) A(=f1V fa V fs).
F®) =(fi A fa A=f3) A (g1 A ga A=gs). Define
Define 65('030,1'3) =Xo,
65(1}00)370) =Zo, 53(1}317173) :JCl’
58(’001,‘%0) =T ¢ va 65(1132,1}3) 2332,
85 (v%%, mg) =2® & Xy, 6s(v33, %) =23
05 (v, 20) =2 & X Hence theS-automaton graphically depicted in Fig. 3.
Next, expanding, it can be shown that 3) Dealing with Conjunction of Formulae:As Exam-

ple 2 might have revealed, using Prdg-XLAT to di-

AL =wi Ay A Ve .
WA PL=L A f1 N rectly translate a conjunctive formula could be tedious.

=fs A (g1 V 93) N O(w) However, by observation of the process in Pr®eXLAT,
V(2 A fs) A (291 V gs) NO(w A dr) one can define a binary operatgr to combine the indi-
V fa A(g1 A gz A=gs) AO(w A ¢2) vidual S-automataC; for w; to yield an S-automatonC
V(F2 A2fs) Agr Aga Amgs) AO(W A @) for w, w = Aw. Forw = wi A ws, whereC <
WA P2 =w1 Awa A P2 all i

V (g2 A—gs) A (fr A fo A—fa) AO(w A @), (X, V, 64,0, Xm), Fl, C1 & [(X1, V4, 8%, 2, X,m1), Fi] and



of cases, it is possible to build aiBhi automaton (the
parallel of which is theS-automaton) of a very reasonable
size for any PTL formula that the system designer could
think of for a program property, or in the DES context, for a
control requirement. In other words, the inherently exiaé
nature of PTL translation t&-automata is of little practical
significance [21]. As Section VI will show, the significance
diminishes further in our implementation approach, where
we use S-automatontemplatesrepresenting PTL formulae
of practically useful forms. Thes§-automaton templates are
instantiated accordingly and further translated iitautomata
using the procedure presented in Section IV-B.

Fig. 3. S-automaton ford[f; — foU f3] A O[g1 — g2Ugs] )
B. TranslatingS-Automaton tag-Automaton

de In further translating to a@-automaton, effectively, we are

Co = [(X2,Va,02,23, Xm2), F»] are theS-automata forw, selectinga set of marked strings generated by a (trim) DES
w1 andw, respectively, whose corresponding state trajectories satisfy a PTL famu
w represented by a§-automatonC.
C=CihC; 10 " Given a DES ¢ - [II,G] with &-automaton
where G def (@,2,0¢,Qm,q), and an S-automaton
1) X =X x Xo, Xon = Xin1 X Xino, c (X,V,ds,x0,X,,) converted from a PTL formula
2) xo = (x},23), w expressed in terms of the propositional variablesIlin
3) V. =Vj x Vu, such that forv = v! ov? € V, F(v) = the procedureE-XLAT that implementsxs to yield the
Fi(v') A Fx(v?), and translation, a cross product 6f x C, is as follows.

4) 6, = 6! x 62 is defined, forv = v 0v? € V, by

Proc E-XLAT: Input is (G, C), Output isTrim(G x C')
if 6%(vh,zt)IA

(6s(v',2"), 862 (v*, 2%)) 6s(v?,2%)!, and 1) Determine the initial state:
8s(v, (2", 2%)) = Fi(v") A Fa(v?) (qo,8s(vo, o)) € Q x X is the initial state iff Jv, €
is satisfiable, V, 6s(vo, zo)! 11 F(vo).
undefined otherwise 1) 2) Define the state transition function: ¥ x Q x X — Q x X:
11

Trim(C) is called aproper translation of PTL formulav. 8(o, (g, z)) =
4) A Note on Computer Implementatiorin procedure
S-XLAT: Step 4(a)ii, performing logic arithmetic by hand
may appear to require the ingenuity of the designer for an3) SetQ,, x X,. as the set of marked states.
initial formula w in CNF. However, to handle this translation 4) Trim G x C.
process in a computer implementation, practically, we can
apply a modular approach, namely, translate the individual
subformulae ofw into S-automata, and then combine them
using operator}. Since each subformula is in normal form
an instance of which is in Example 1 of Section IV-A.2_. 4
the expansion and logic arithmetic process of grouping inl[:c;g' '
sums of O)-product terms follows a well-defined recursive

and |=9¢(9:9) F(v),

(0e(0,9),6s(v,2))  if de(0,q)! A ds (v, z)!
undefined otherwise

(12

Following state initialization (Step 1), the pairing of &s
in G x C product synthesis (Step 2) is graphically depicted in

pattern that can be handled by adapting the parsing teahniqu C: @ Vi @ Vo @ Vs ®9
implemented in Fujita et al [31], [32]. / / / Y.

5) Procedural Complexity & Practical Implicationslt is / / / /
well known that the worst-case complexity of constructing G: (@ ) @) q
automata from PTL formulae is exponential in the number ' @ O, Y 01\3/ o, ®%

of propositional symbols contained in the formulae; foryal

the complexity is PSPACE-complete [30], and proced8fe Fig. 4. G x C synthesis: fori > 0, (g;,z;+1) € Q x X if % F(v;)
XLAT’s is no exception. However, such complexities often

occur only when the expressive power of PTL is exploited A resulting stringu = vovyvs - - - v, € V* is accepted by
in a way too unnatural to occur in many control requirementie S-automatonC' if 0s(u,xz9) € X, i.e., in a standard
for DES’s. A PTL formula as a control requirement is almodtshion [9] for finite strings. Due essentially to the expans
always very short. In substantiating this claim, the workules (see Section III-C.3) used Proc S-XLAT to produce
surveyed by Wolper [21] shows that in the very large majorit§Z, it follows that if C exists (i.e., itsX,, # 0) for a PTL



formulaw, the (finitary) satisfaction or correctness relation dllote that=% F(vy) and antecedent of the second condition
trajectory p,,, over the formulav can be written as of Definition 3 (or the consequent of the second condition of
Definition 2) define the (finitary) satisfaction or corredse
there existsugvivs - - - Uy, € L (C) relation (13). _ _
=m w iff  such that for alk,0 < i < m, (13) Theorem 2:Trim(G x C) is correct with respect to CNE,
=4 F(v;) and complete with respect to DHS.
Proof: By E-XLAT translation toG x C, it follows
As discussed in Section I1I-C.4, marked semantics comsigte straightforwardly by Definitions 2 and 3 thaim(G x C)
of =" w holds (and thug”' can exist)only for a response s correct with respect t6!, and complete with respect (.
PTL formulaw. By Remark 4,S-XLAT returns a (trim) outputC' (with its
Trim(G x C), an £-automaton, is called aroper transla- X, # 0) for a PTL formulaw only if w is a response PTL
tion of C' in the contextof G. The construction of product ormyla; it follows thatC is an equivalent representation (that
G x C is a translation algorithm of worst-case complexit)éxists) for a response PTL formula A CNF, by definition,

o(|Q[IX[Z[[V]). is a response PTL formula. Hence the result. [
Following Theorem 2, the whole translation algorithm (con-
C. Determinism of Translation sisting of S-XLAT followed by E-XLAT) is said to be correct

Theorem 1:Trim(G x C) is a deterministic-automaton. and complete.

Proof: By Property 1 ofS-automator', for an arbitrary
x € X, two non-identicalv’,v” € V(z) andd.(o,q) € Q, V. STATE-BASED TEMPORAL LOGIC &
=0(:9) F(v') implies - =9%(79) F(v"). Hence, there exists EVENT-BASED FINITE AUTOMATA: A DISCUSSION
at most onev € V(z) for which |=%(2:9) F(v). Thus from
function d (12), d(o, (¢, x))! for at most onev € V(z). Since
both C' and G are deterministic in the sense of Definition 1
it follows from functioné that Trim(G x C) is deterministic.

Our technical goal has been to build a standzalitomaton
that accepts completely a marked sublanguage whose corre-
spondingfinite state trajectories for a DES satisfy a finitary
control requirement written in state-based PTL. The prefdos
G-based translation algorithm is developed for a class of
response PTL formulae (in CNF) that characterizes finitary
D. Correctness and Completeness of Translation control requirements, and abides by the finitary notions of

Naturally, two important properties of a translation ame itcorrectness and completeness as defined in Section IV-D.
correctnessand completenesglefined as follows. Importantly, marked semantics consistency, and hencdityali
Definition 2: Let p,, = p(0)p(1)---p(i)--- p(m) be a of the translation under infinitary semantics, holds fopmse

marked finite state-trajectory, wheygi) € Q x X for all PTL (see Section 11I-C.4). _
i,0 < i < m, for which there exists a corresponding AutomatonC, the output of procedur€-XLAT, is neces-
String em—1 = e(0)e(1)---e(m — 1) € Ly(G x C) such Sarily different from a Bichi automaton. For, in the latter's
that p(i + 1) = 6(e(i), p(i)) and giy1 = 6.(e(i), ;). Then @acceptance condition, |nf|n.|te trajectories must visit ecstate
Trim(G x C) is said to be correct with respect @ if in an acceptance subset in theautomaton infinitely often.
1) =% F(ug) and (go, 6s(v0, 20)) € Q x X is the initial Thus a_lthough the idea upderlylng proced.QG_(LAT is due
state ofG x C- essentl_ally tq Wolper [30]'s that outputs.aJawl automa_ton,
2) for every em 1 € Ln(G x C), there exists a we.av0|d calImgS-)SLAT's_outputCaBUchl aut_omatqn since,
VoULUs -+ vy € Lim(C) such that=% F(v;) for all while structurally similar, its marked state set is not ipteted
i0<i<m. as an acceptance set formulgted in _the original definition fo
’ - Buichi automata. Besides, while d@iéhi automaton generated

. L _by Wolper’s original procedure is not deterministic, tiSe
The second condition of Definition 2 asserts that every €)nit, +omaton generated H§-XLAT is (see Remark 3). Impor-

state trajectory on a (marked) stringf, (G xC) must satisfy anyy thatS-automatorC is deterministic leads us to a fruitful
some_P_TL formula translated & ) result, namely, Theorem 1, as presented in Section IV-C.
Definition 3: Let pn, = p(0)p(1)---p(i)---p(m) be a Apparently, the final deterministi€-automaton translated
mar’ked f|nb|te state—trajecyory, wher,qz) = a4 € Q for. seems less complete (in some representative sense) than its
a".Z’O < ¢ = m, for which there exists a Corres‘pond'ng!u—version, as it admits only marked finite strings in contrast
string e,—1 = e(0)e(1)---e(m — 1) € Ln(G) such that i yhe [atter accepting infinite ones. However, for finitary
pli + 1) = de(e(i), p(i)). ThenTrim(G x C) is said 10 be qng4rction, the former's proposed translation algarittan
complete with respect (& if do away with the latter’s having to translate the liveness pa
1) E% F(vo) and (qo,ds(vo, z0)) € @ x X is the initial of a PTL formula. In other words, it does not need to deal
state ofG x C'; directly with the temporal issue of liveness associatech wit
2) for everyp,, of G with p(m) € Qy,, if there exists a infinite strings [21]. Despite the (simpler) finitary traasbn,
VoU1V2 - Um € L (C') such that for alli,0 < i <m, it turns out that this need not lead to loss of completeness. F
1 F(vi), thenem,—1 € L, (G x O). given a CNFw on a DESG whose state space is bounded,
B an appropriate assignment or reassignment of marked states
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in DES G is all that is required to establisharked semantics PTL formula, we consider a useful class of response PTL
completeness.e., (E” w) — ("™ w), wherep,,, with state formulae of the (normal) form:

p(m) € Qn, is any marked finite trajectory of an infinite

DES state-trajectory. Importantly, this means that as long Olfv = f2Uf3] (14)

as there is an appropriate marking of DES states (such as fjfikref, , £, andf; are propositional state formulae. Typically,
suggested later in Section VI-A.1 for a useful class of respo 5 control requirement is expressed as some condition - an
PTL formulae), the proposed translation algorithm can &lusjpyariant f» - that must hold whenever ifgreconditionf; oc-
as a specification interface, without essential loss of taip cyrs, and the invariant cannot be relaxed untipitstcondition
completeness for discrete-event control synthesis fadirae f3 occurs, as is embodied by the form (14) that is thus not
the finitary case [2]. unfamiliar to system designers.

Thus in principle, using the proposed translation algafith  The S-automaton for formulae of the form considered,
any PTL formulaw that a system designer could think ofsynthesized using-XLAT, is shown in Fig. 2; the detaileS-
can be specified, provided it is a CNF, and expressed USREAT translation steps to construct it were given earlier in Ex-
only propositional variables il characterizing the statesample 1 of Section IV-A.2. In NanTA, it has been implemented
of a DES modellll, G] (4). By an appropriate marking of 35 a computation ‘template’ from which th§-automaton
DES states, the resultarf-automaton (or equivalently its for each specific formula in this form can be ‘instantiated’.
generated marked sublanguage) can, in the limit, alsosepte To support the conjunctive combination of PTL formulae,

all infinite event strings on state trajectories satisfyingln the operator{ has also been implemented to combine the
practice, such marking is often subject to a designer'sonotirespectiveS-automata.

of completed tasks for a specific DES, which determines therinally, to deal with f5-liveness conditional uporf; as
DES marked languagé.,,(G). We believe that the designasserted in the PTL form (14), it is easily seen to be necgssar
synergy between DES marking and specifying nonblockingt quite natural to interpret the truth ¢f as progress towards
control requirements in PTL could often be found, facilitgt some task completion represented by DES marked states.

well-understood finitary design. Hence we can always assign or reassign some states in DES
G as marked, so that there is at least one marked gtaté),,,
VI. A SPECIFICATION INTERFACE & in which £ is true.
APPLICATION EXAMPLES It should be pointed out that two other useful forms are
subsumed by (14):
A. An Interface for Control Synthesis O[-fi] it f, = false,
A software package called TCT [3] has been developed as Olfy — Ofs] if fo = true.

a tool for designing supervisors based on the conventiorJIe}J'e former asserts a forbidden-state formula, while thtedat
(or finitary) automata-theoretic framework [2]. The propds o '
a conditional response formula.

translation algorithm has been implemented as a specificati 2) Class of DES's ConsideredEhe finite automata frame-

Idnet?)::?gg igagzﬁ' 5l\llanTA for use with TCT, integrated as work [?], [3].f0r. gystem Qesign admits DES. modelling as a
collection of individual finite automata prescribing theieas

component processes. Such a DES model is not uncommon
(e.g., in manufacturing systems [4]). It is usually because
of interacting component processes that a designer needs to
specify control requirements to constrain and ensure prope
operation of the DES as a whole.

In the current version of NanTA, every state in a component
processG; of a DES modelG is uniquely characterized by
a propositional symbol (or state variable), i.e., the syimbo
defined istrue only at that state, andalse elsewhere. This,
however, is not an assumption of the general translation
algorithm proposed in Section IV, and can be relaxed in
a future version of NanTA. Nonetheless, it is believed that
Fig. 5. NanTA Interface for TCT many practical DES’s can be modelled with this assumption

which helps simplify the implementation of propositional

1) Specifications Considere®-XLAT can actually be im- satisfiability checks.
plemented as similarly done in Fujita et al [31]. But as
a practical approach, for NanTA, onl-XLAT has been g application Examples
implemented. Instead of usir® XLAT to translate an arbitrary

GxC

Supervisor automaton

To demonstrate the usefulness of the NanTA interface, we
2NanTA stands for ‘NANyang Temporal-to-Automaton’, and is #isbre- consider two appllcatlon examples, Ch_O_SGﬂItO show hOV\.I usefu

viated chinese name of Nanyang Technological University. (temporal) requirements can be specified n PTL, |eaV|.ng the
33pecific version supported is XPTCT, for Windows 95/98/2860 tedium of translation to the interface. The first examplelss a
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simple enough so that we can visually inspect the outputs ofa, < : > b, B a, b,
the NanTA translator.

In both the examples, an automaton modelling a discrete-

event process is graphically depicted with a propositieyai- " 2 -{b}
bol (or state variable) placed next to each node repres«gantir;,‘1 .
a state; each symbol igue only at that state, angalse hy N
elsewhere.
Wy % d, . %
()
z_{az}
3 G Fig. 7. NanTA translation: lllustrative example 2 (a simple mfasturing
system)
n b 1Y
USERL . .
2) Example 2 (Manufacturing SystemiA manufacturing
i, system adapted from [2] consists of two machidégd and
M2, and a one-slot buffeB, connected as shown in Fig. 7,
a, c along with the automaton for each process. The symbols used
are defined in Table 1.
The event set follj, j € {1,2}, is 3; = {a;,b;,9;,h;}
2 %SERZ t and that forB is ¥, whereX = 3, U Y. It is assumed that

M1 takes a workpiece from an infinite buffer; also, whBn
is filled, any attempt to add another workpiece to it will fail
as the workpiece will immediately drop off. The systen
Fig. 6. NanTA translation: lllustrative example 1 (resouatiecation) as a whole isM1 || B || M2.
Consider the conjunction of the following control require-
1) Example 1 (Resource Allocationfiwo usersUSER1 Mments expressed in PTL:
and USFER2 operate asynchronously to access a resource

(a) Two users (b) £-automaton forFirst-Come-First-Serve
requirement

[5]. The automaton for each user is shown in Fig. 6(a). The 1) Ble A ~w2 — —wyUf] (Underflow avoidance);
symbols used are defined in Table I. 2) O[f A—ip — =i1U(e vV dy)]  (Overflow avoidance);

3) O[d1 A do — —i1Uls) (Repair priority of M2

TABLE | over M1).

SYMBOL DEFINITIONS FORUSER MODELS The first formula may be paraphrased as ‘wheneleiis

State Event empty andM2 is not processing any workpiecé/2 must

i idiing; a.  request-made; not take any workpiece fronB to process untilB is filled'.

ri resource requested; b resource-accessed, The second formula may be paraphrased as ‘whenBves

u:  resource in-use; c:  resource-released,;

filed and M1 is not idling, M1 must not put a workpiece
it is holding into B until either B is emptied, orM1 breaks
The integer subscripted to each symbol identifies the ut@wn without placing the workpiece int6’. The last formula
(see Fig. 6(a)). The syster@ as a whole isUSER1 | May be paraphrased as ‘wheneverl and M2 both break
USER®. down, M1 will not be repaired untilM/2 is’.
Consider aFirst-Come-First-Serveontrol requirement. In A sample translation produced by NanTA is as shown in
temporal logic, it may be simply written as a conjunction ofig- 8.

the following two formulae: 3) Some RemarksThe two examples have demonstrated
the purpose of NanTA for use with TCT, namely, NanTA helps,
1) O[ry Adg — —uUiy], 2) Ofra Adyp — —uyUig). if not reduce the tedium of crafting error-free specificatio

automata, provide an alternative means to describing and

The first formula may be paraphrased as ‘whenévSt~ R1 understanding control requirements, through enablingutee
requests to use the resource whésFE R2 is idling (i.e.,ry A of (natural language) expressive and readable PTL.
iz IS true), USER2 will not be allowed to use it (i.e.u; As a final remark, we note that a system designer conversant
will remain false) until USER1 has finished with it, which with finite automata might be able to write sim@feautomata
occurs oncé/ SER1 returns to its idling state (i.ei; becomes corresponding to the required specifications for the twarexa
true)’. The second formula may be paraphrased similarly. ples. It however does not eradicate the fact that in geniel,

The conjunctive translation produced by NanTA is as showdesigner may not always know for sure if a specificatibn
in Fig. 6(b). automaton captures the intended control requirementcityre
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TABLE I
SYMBOL DEFINITIONS FOR MACHINE AND BUFFER MODELS

Process State Event
Mj ij:  idling; a;:  workpiece taken;
je{1,2} | w;: workpiece processing| b;:  workpiece put into buffer;
dj:  non-operating; g;:  machine broken down;
h;:  machine repaired.
B e:  buffer emptied,;
f: buffer filled;

Fig. 8. Example 2: Priority of repaif@[d; A do — —i1Ui2]

DES-contextual translator which can automatically coneer
class of state-based response PTL formulae into eventtbase
finite automata that, importantly, are deterministic, eotrand
complete. In our opinion, its immediate impact is significan
it mitigates, if not solve, the long-standing problem of cpe
fication for finitary control synthesis of DES’s.

NanTA, a practical implementation of the interface, has
been developed to provide an enabling technology for vgritin
control requirements in a more readily understood PTL form
that it translates inta€-automata for use with the finitary
control synthesis package, TCT [3]. Two simple but prattica
application examples illustrate the usefulness of the ManT
interface. The interface represents a step towards a more
‘specification-friendly’ design framework for finitary ctol
of DES'’s. It would help reduce design errors and costs associ
ated with incorrect, unnecessarily restrictive or migipteted
specifications. It should, in principle, also lend mutughort
to theusage(by a larger community of application researchers
and engineers) and furthenhancemenfby researchers and
collaborators) of TCT'’s underlying capabilities for autated
systems design and control synthesis.

The proposed translation algorithm returns a trifn
automatonA; of G x C representing the full nonblocking
behaviour captured by the corresponding PTL formuléor
a DESG. However, the automatoAd; can be larger in state
size than is necessary because it incorporates alh thgori
transitional constraints embodied in DES modgitself. This
automatonA; represents the full nonblocking behaviour of
a supervisor if it is controllable. Su and Wonham [33] have
developedSupreduce, a heuristic reduction procedure of
polynomial complexity that can often find a greatly reduced-
state supervisor based on a given DE&nd anf-automaton
representing the full nonblocking behaviour of a supenviso

and completely, nor can another designer readily inteft A procedure, Autreduce, can therefore be developed that
intended control meaning of th&-automaton. This potential essentially isSupreduce but with all events ‘virtually set’ as

problem might be mitigated if the specifications are writtegontrollable, to convert ; to a state reduced (trim) automaton
in readable (and thus more easily understood) PTL formulal,@][5 for which

with their translation to correct and completeautomata

handled by an automation tool such as NanTA.

VII. CONCLUSIONS

Lin(Af) = Lin(Ap) 0 Lin(G) (15)

But more useful would be a translation to be developed that
is partially contextual (with respect to DES), in that it

This paper has proposed a translation algorithm as producesA, in accordance to (15), and that works ‘on the
interface for specifying and converting a class of contrdly’, in that A, is produced without the need to explicitly
requirements in PTL for automata-theoretic finitary syathe construct4; altogether.

of discrete-event supervisors. The resulting interfaca ew

Active research in computer science has led to efficient



but non-contextual translation algorithms converting aLPT[12]
formula to anw-automaton (see e.g., [34]), and they have
apparently already been implemented in tools like SPIN.[3E[13]
Future work on PTL translation t&-automata for finitary
control might benefit from adapting such developments,esin
the worst-case complexity of constructing automata frorh P
formulae is known to be PSPACE-complete [30].

ia]

[15]
APPENDIX

The ||-operation is implemented via theynchronous prod- (16]
uct of two arbitrary £-automata. Consideg: [II;, G1] and
Ga Iz, G2], with II; N II; ¢ (i.e., no shared vari- [17]
able), and&-automataG, (Q1,%1,02,45,Qm1) and G2
(Q2, 22,02, 4%, Qm2). Then, to yieldg = [II, G], with £-automaton [1g]
G =(Q,X%,de,q0,Qm) as the synchronous product 6f; and G2,
conveniently denoted bgx = G || G2, we havell = II, UII,, and
Q = Q1 X QQ, Qm = le X sz such that

[19]
II @wi=d'wihn I @wi=q[ui])
ulell u?€lly
uniquely characterizes the state informationgin= (¢*,¢%) € Q. 20]
The rest follows the conventional definition pf[2].
[21]
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