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A Collaborative Multiagent Taxi-Dispatch System
Kiam Tian Seow, Nam Hai Dang and Der-Horng Lee

Abstract— This paper presents a novel multiagent approach
to automating taxi dispatch that services current bookingsin a
distributed fashion. The existing system in use by a taxi oper-
ator in Singapore and elsewhere attempts to increase customer
satisfaction locally, by sequentially dispatching nearbytaxis to
service customers. The proposed dispatch system attempts to
increase customer satisfaction more globally, by concurrently
dispatching multiple taxis to the same number of customers
in the same geographical region, and vis-à-vis human driver
satisfaction. To realize the system, a multiagent architecture is
proposed, populated with software collaborative agents that can
actively negotiate on behalf of taxi drivers in groups of size N

for available customer bookings. Theoretically, an analysis of
the boundary and optimal multiagent taxi-dispatch situations is
presented along with a discussion of their implications. Experi-
mentally, the operational efficiency of the existing and proposed
dispatch systems was evaluated through computer simulations.
The empirical results, obtained for a 1000-strong taxi fleetover a
discrete range ofN , show that the proposed system can dispatch
taxis with reduction in customer waiting and empty taxi cruising
times of up to 33.1% and 26.3%, respectively; and up to 41.8%
and 41.2% reduction when a simple negotiation speedup heuristic
was applied.

Note to Practitioners— With the liberalization of the taxi
industry in Singapore and elsewhere, keener competition among
taxi operators has emerged. We believe the taxi operator that
leads the competition will be the one with the best automated
taxi dispatch system, offering the highest cost productivity and
customer satisfaction. Our research is motivated by the increasing
need for better automated approaches to match customer service
requests and taxis, whose arrival and availability, respectively,
might be sporadic or not known a priori. In this paper, we
propose a novel multiagent system, calledNTuCab dispatch, to
automate taxi dispatch in a distributed fashion. Our experiments
for a 1000-strong taxi fleet show thatNTuCab dispatch can
outperform existing centralized dispatch in terms of reduction
in customer waiting and empty taxi cruising times, when both
leverage on real-time traffic information for shortest-time path
computation over a road network as proposed in [2]. Additionally,
NTuCab dispatch can be implemented on an existing techno-
logical infrastructure, providing the opportunities to harness
the existing power of multiple intelligent transportation systems
technologies. A more efficient dispatch system can help maintain
a higher standard of customer service vis-̀a-vis human driver
satisfaction, especially when the demand for taxi service is
manageable for the fleet size. In future research, we will need
to add more features and investigate their effectiveness towards
achieving overall efficiency, including techniques to influence and
better match the physical distributivity between service demand
and available taxi supply in real-time.
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I. I NTRODUCTION

Taxisare a convenient means of paratransit in many coun-
tries, including Singapore. In providing quality customerser-
vice, fast and efficient fleet dispatching is essential. In Sin-
gapore, online dispatch of available taxis to current customer
bookings is done with the aid of a satellite-based taxi dispatch
system; the system utilizes a Global Positioning System (GPS)
to automatically locate taxis in real-time [3], [4].

In handlingcurrent taxi bookings, the major focus of taxi
dispatch systems has been primarily on reaching individual
customers in the shortest time possible to enhance customer
satisfaction [2]. This means reaching the customers via the
shortest real-time paths possible. However, merely increasing
individual customer satisfaction, as is the current practice, is a
local endeavor, in that it entails assigning the nearest taxi to a
customer prioritized in a first-come, first-served queue, without
considering the effects of the assignment on other awaiting
customers in the request queue.

In a real world scenario, there are often multiple taxi
service requests (current demand) and multiple taxis available
(current supply) in a given time window. To improve taxi
fleet service performance, ideally, we should simultaneously
and optimally assign taxis to service all customer bookings
that are made within the time window. This is a challenging
problem confronting current taxi dispatch systems. Practically,
one feasible approach is to effectively group these customer
bookings and then efficiently assign each group to the same
number of available taxis. One method that we propose along
this vein will be described later. The key purpose is to focus
on group averagecustomer satisfaction instead of a prioritized
individual’s. This is a moreglobal endeavor that will need
to consider the mutual assignment exchange effects among
the taxis for the concurrently awaiting customers, namely,
‘Would (group) total customer waiting time shorten if two taxis
are allowed to exchange their currently assigned bookings?’
The motivation is that, by increasinggroup averagecustomer
satisfaction, overall, more customers can be satisfied.

To elaborate, consider a scenario of two available taxis in
the vicinity of two taxi (service) requests, as depicted in Fig.
1. The shortest-time path to reach a request location can be
computed using real-time traffic information [2], but for the
convenience of illustration, we shall assume that a shorter
distance path is also a shorter real-time path. Say, request1 is
initiated before request 2 within a small time window. Under
the current practice, requests are allocated different taxis, one
request at a time on a customer first-come, first-served basis.
So the dispatcher would have to attend to request 1 first,
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Fig. 1. A taxi dispatch scenario

and assign taxi 1 to service it since taxi 1 is nearer to the
request than taxi 2; this leaves taxi 2 to be assigned to the
remaining request 2. However, one can see that if we could
allow the taxis to exchange their assigned requests, the group
average distance (or time) taken by a taxi, and hence the (group
average) customer waiting time, would be shorter. This more
balanced allocation is often possible if the two requests could
be consideredconcurrentlyfor taxi assignment, exploiting the
mutual assignment effects in attempting to minimize the total
real-time travel period of the taxis in picking up the customers.
And the allocation is practically efficient only if it can be done
without excessive communication between the taxi dispatch
center and the taxis. To the best of our knowledge, current
taxi dispatch systems do not support the kind of concurrent
taxi assignment envisaged, and cannot therefore exploit this
real world scenario to full advantage as needed for improving
fleet performance.

In our opinion, to support such concurrent taxi assignment
for current taxi bookings necessitates a novel approach to
fleet dispatch operation. The new approach should not only
aim at increasing average customer satisfaction, but also vis-
à-vis average driver satisfaction. And it must be implementable
on an existing technological infrastructure. With this philos-
ophy in mind, we propose a multiagent approach deploying
collaborative taxi agents that can, on behalf of taxi drivers,
cooperatively negotiate to decide among themselves their
different assignments, from among the multiple taxi requests
initiated within a time window. A taxi agent is an active
software entity residing in an in-vehicle computing unit ofa
taxi. By cooperative negotiation [5], several taxi agents can
collaboratively search for an assignment solution that they
jointly agree.1

Intelligent agents and multiagent approaches are gaining

1At this juncture, a general notion of negotiation suffices; it will become
clearer in Section II-B, where a specific automated negotiation mechanism
for taxi agents is introduced and elaborated.

increasing prominence in automation research, and have been
successfully formulated or applied in the domains of manu-
facturing (e.g., [6]), warehousing (e.g., [7]), product family
design (e.g., [8]) and hierarchical decision-making protocols
(e.g., [9]), to name a few. Although using multiple automated
agents is also not new in intelligent service transportation,
as seen in transport logistics [10] and route guidance [11],
we realize that it might be a radically new ideology to
deploy them for the specific purpose of taxi dispatch. For,
the new idea entails the software (‘agents’) localized in the
in-vehicle computing units tocollaborate and play a more
active role in consensus decision-making, rather than just
passively presenting a new request from, and relaying the
human driver’s request acceptance or refusal decision to the
taxi dispatch center. However, in our opinion, investigating
this idea is timely, since a multiagent approach will invariably
provide a set-up to harness the existing power of multiple
intelligent transportation systems (ITS) technologies in, for
example, vehicle routing [12], automatic vehicle location[13],
mobile phone location determination [14] and palmtop-based
navigation [15], exploiting the huge investments already made
in the internet, wireless communication and mobile devices, as
well as GPS-based location, geographic and traffic information
systems.

The rest of this paper is organized as follows. Section
II describes the basic architectures of both the existing and
proposed taxi dispatch systems, with emphasis on the core
problem and solution of the latter. Section III presents and
discusses a microscopic simulation study comparing the pro-
posed and current dispatch approaches. Section IV concludes
the paper and points to some future work.

II. TAXI DISPATCH SYSTEMS

A. Current Taxi Dispatch System

Fig. 2. Current state-of-the-art taxi dispatch system: Centralized architecture

Fig. 2 depicts the basic architecture of a current taxi dispatch
system in use by a taxi operator in Singapore and elsewhere.
Incoming taxi service requests are queued on a first-come,
first-served basis at the dispatch center. For each customer
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(a) An in-vehicle agent infrastructure (b) Collaborative multiagent architecture

Fig. 3. ProposedNTuCab dispatch system: Non-centralized

(online booking) request, available taxis in the vicinity of
the customer pick-up location are considered, and a taxi
among them is dispatched to service it, upon the human driver
acknowledging acceptance of the booking job. It is empirically
confirmed that an efficient way of dispatch is to assign a
nearby taxi that can traverse the shortest-time path to the
customer pick-up location, computed using real-time traffic
information over a road network [2].

In general, it is not feasible to compute the (locally)
shortest-time path for each of a possibly large number of
available taxis nearby a customer location, since determining
such a path requires a considerably significant amount of
computation time. Thus, it has been assumed [2] that a taxi
with the shortest-time path is found among a limited number
(say, 20) in the vicinity that are the nearest in terms of their
shortest straight-line distances to the customer location.

As a remark, besides [2] and a related but different effort
that empirically examines the performance improvement of
using GPS in taxi dispatch operations [3], there is apparently
little work in the published literature on automated taxi dis-
patch. This is despite its importance and commercial interest.2

Henceforth, for comparison purposes, we shall assume that
the existing (state-of-the-art) taxi dispatch system available
employs the centralized architecture of Fig. 2 and applies
the dispatch method proposed in [2]. In our opinion, this
system should compare favorably with the centralized dispatch
system provided by a market leader. According to the website
(www.cordic.com), the commercial system associates every
taxi service request with a taxi queue according to its customer
pick-up location, and then offers it to the first taxi in that
queue.

2Examples of commercial companies delivering automated taxi dispatch
solutions include Cordic, DDS Digital Dispatch and Mobisoft.

B. Proposed Taxi Dispatch System

As suggested in the introduction, multiagent collaboration
might leverage on the improved dispatch method [2] by
exploiting the mutual assignment exchange effects among
multiple taxis awaiting multiple requests - a scenario thatis
not uncommon. Towards this end, an infrastructure3 to support
a taxi agent capable of collaboration is proposed, as shown in
Fig. 3(a). And, to effectively utilize such software agentsfor
taxi dispatch, we deploy them in a multiagent architecture,
proposed as depicted in Fig. 3(b).

1) Multiagent Taxi Dispatch Architecture:The architecture
assumes that a geographical road network is partitioned into
m logical areas of taxi operation,m ≥ 1. This partition is
made known to all taxi agents. At the dispatch center, available
taxis and booking requests in a logical area are recorded in
a taxi queue and a request queue, respectively. The area and
corresponding queues are identified by the same indexi, 1 ≤
i ≤ m.

Initially, all participating taxis are in one of the designated
areas of operation, and the taxi queues at the dispatch center
are updated accordingly. The ‘housekeeping’ communication
protocol supporting the dispatch operations can then be pre-
scribed as follows:

1) A taxi agent [see Fig. 3(a)] performs the following
mandatory tasks:

a) Announce theavailability of its taxi in a new area
of operationto the dispatch center when (i) it is
not in negotiation, (ii) the taxi has entered (and is
currently in) the new area,4 and (iii) the passenger

3 We recommend JADE [16] as the agent technology development package
for MA3-LM agent software implementation. In principle, however,any other
agent development package that supports communication maybe used.

4That an areai is new means that, operationally, the taxi agent has not
notified the dispatch center to insert its taxi record into the taxi queuei (that
otherwise does not contain the record).
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has just alighted from the taxi or the taxi is empty,
with no committed taxi request to service next.
Also does so if its already assigned customer is
found to have cancelled the booking.

b) Negotiate on behalf of its human driver for a
booking job when it receives, from the dispatch
center, a request package containing a group of
bookings and thead hocgroup agent members with
whom it will collaborate with.

c) Inform the dispatch center of the taxi driver’s deci-
sion to accept or refuse its negotiated assignment.

2) The dispatch center performs the following mandatory
housekeeping tasks:

a) DMT-A : Update the availability of taxis in the
respective taxi queues, taking the information from
a common taxi queue that is continually updated in
response to notification by the taxi agents. When
a taxi has left an areax and entered a new area
y, update by deleting the taxi record from the taxi
queuex, and inserting the record, in a first in first
out fashion, into the taxi queuey.

b) DMT-B : Insert the records of taxi bookings into the
respective request queues, taking the information
from a common request queue that is continually
accepting customer taxi bookings. If a taxi request
is from an areai, insert the record, on a first-come,
first-served basis, into the request queuei.

c) DMT-C : Delete the records of a taxi and the
negotiated assignment that the taxi has accepted;
and communicate the service information of the
taxi to the assigned customer. Penalize by placing
the record of a taxi that has refused to accept its
negotiated assignment at the tail of the same taxi
queue at the time of update; and compensate by
placing that of the refused assignment at the head
of the respective request queue.

Under the proposed architecture, the dispatch center carries
out the following operations per cycle:

1) Distribute pending requests to available taxis for each
logical areai.
Take a group ofN requests from the head of the request
queuei and send it to anad hocgroup of taxis assembled
from the head of the taxi queuei. The size ofN of the
last group assembled may vary depending on the number
of pending requests and available taxis. Do so until the
the taxi or request queue is empty. (As soon as a group
of bookings is received, the taxi agents concerned will
asynchronously carry out intra-group negotiation over
theN requests.)

2) Do housekeeping and await taxi assignment decisions.

a) Do housekeeping tasksDMT-A and DMT-B as
needed till notification is received about comple-
tion of a group collaboration; following which
there is a pre-specified period when every agent in
the group submits the human driver’s decision of
either accepting or refusing its negotiated booking.

b) Do housekeeping taskDMT-C .

3) Continue with Step (2) if not all thead hoctaxi groups
across all the logical areas have completed negotiation,
else do tasksDMT-A and DMT-B as needed and
proceed to next cycle of dispatch operations.

We call the resulting system theN-Taxi GroUp CollABorative
(NTuCab) dispatch system.

2) Core Problem & Solution:Within this architecture, the
core issue in multiagent taxi dispatch is a linear assignment
problem (LAP) [17]. The problem is concerned with efficiently
assigning every taxi agent with a different taxi request. The
efficiency (or optimality) of the concurrent allocation is mea-
sured either in terms of minimizing total cost or maximizing
total service quality.

To elaborate formally, consider a group of taxi agentsA =
{a0, a1, · · · , aN−1} of sizeN ≥ 2, and a group of different
taxi service-requestsO = {r0, r1, · · · , rN−1} of sizeN . The
A-QoS (application quality-of-service) that an agenta ∈ A
can offer for each request is defined byd[a, r] for all r ∈ O.
Then our core objective of taxi dispatch is to find, for anN×N

LAP, the particular (total) assignment solution

Π : A → O such that forai, aj ∈ A,

i 6= j implies Π(ai) 6= Π(aj)
(1)

a one-to-one mapping of agents to requests that (ideally)
maximizes the total A-QoSStot,

Stot =

|A|−1∑

i=0

d[ai,Π(ai)] (2)

Π(a) ∈ O refers to a request selection by agenta ∈ A (under
an arbitrary permutation ofΠ); andmax{Stot(2)} defines the
(ideal) optimal social goal of the agents. An assignment or
allocation set corresponds to one permutation ofΠ (1), and
can also be equivalently represented as containing elements of
the form (a,Π(a)) ∈ A×O.

The generic LAP has been extensively researched in the Op-
erations Research literature [18]. Using agent modeling ideas,
recent research has developed agent mechanisms [19], [20]
for a multiagent version, termed collaborative LAP (CLAP),
where knowledge about the LAP is distributed among the
agents, such that every agenta ∈ A initially only has its
own local information,d[a, r] for all r ∈ O. The automated
mechanisms developed enable collaborative taxi agents to
cooperatively negotiate for different requestsby themselves,
in contrast to a centralized algorithm decidingfor them as in
[18]. In essence, these taxi agents can compute and leverage
on the possible overall A-QoS increments, achievable through
properly reassigning requests among themselves.

One important development for CLAP is a decentralized
agent algorithm calledMA3-LM [20], which is well-suited and
adapted for use with the proposed taxi dispatch architecture.
The reasons for consideringMA3-LM are: (i) the core problem
in collaborative taxi dispatch - taxi online assignment or
allocation - can clearly be treated as a CLAP, (ii)MA3-
LM is decentralized and so maps directly onto our proposed
multiagent architecture, and (iii) being computationallysimple
and easy to understand, one of our research contributions is
to propose the first potential real-world service-automation
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application of MA3-LM, along with an investigation of its
applicability and performance.

The MA3-LM agents divide their collaborative reasoning
process into negotiation rounds. All the agents begin ne-
gotiation with an initial selection made under an arbitrary
permutation ofΠ (1) (the one-to-one mapping). For taxi
dispatch, every taxi agent in groupA negotiates with the
other agents in the same group over the requests inO. The
purpose is to decide which two agents are to exchange their
current request selections in every consecutive round. This
is done by collaborative reasoning per round, during which
every agent determines its individual request exchangedesires
and resulting exchangeintention(its best desire), based on its
computedbeliefsof exchange alternatives that may increase
the group’s total A-QoS,Stot (2).

Definition 1 (Belief SetBi): Given that an agentai ∈ A’s
current request selection isri ∈ O. Then its (current) belief
setBi is given by

Bi = {r ∈ O | d[ai, r] > d[ai, r
i]} (3)

If Bi 6= ∅, this means that agentai ∈ A has at least one
alternative request selectionr ∈ Bi that may lead to increase
in total A-QoSStot (2) when made in exchange with an agent
whose current selection isr ∈ O.

Definition 2 (Desire SetDi): Given that an agentai ∈ A’s
current request selection isri ∈ O and its belief set isBi,
Bi 6= ∅. An arbitrary agentaj ∈ A whose current request
selection isrj ∈ O is said to accept agentai ∈ A’s beliefs
Bi if rj ∈ Bi. To generate the desired exchange options
or desiresDi, agentai ∈ A broadcasts its beliefsBi and
current selectionri ∈ O, and an arbitrary agentaj ∈ A
who accepts the beliefs would respond with a pair of A-
QoS valuesd[aj , rj ] andd[aj , ri], so that for each of the|Bi|
responses received, the corresponding request exchange option
[(ai, r

j), (aj , r
i), ρ] ∈ Di (i.e., is agentai ∈ A’s desire) if

ρ > 0, whereρ is defined by

ρ = −d[ai, r
i] + d[ai, r

j ]− d[aj , r
j ] + d[aj , r

i] (4)
If ρ > 0, it means that there is anet exchange gainif agent
ai ∈ A gives up its current selectionri ∈ O and selects
rj ∈ O, and in exchange, agentaj ∈ A gives up its current
selectionrj ∈ O and selectsri ∈ O. Thus, any desired ∈ Di,
when carried out, will definitely lead to an increase in total
A-QoS without violatingΠ. Quite naturally, it provides the
motivation for agentai ∈ A to want to exchange its current
request selection.

Definition 3 (IntentionIi): Given that an agentai ∈ A’s
desire set isDi, Di 6= ∅. Then, agentai ∈ A’s intentionIi is
given by

Ii = [(ai, r
j), (aj , r

i), ρ] ∈ Di, for which

ρ = max{ρ′ | [−,−, ρ′] ∈ Di }
(5)

Agentai ∈ A’s decisive stance or intention has to beIi since it
is viewed as the best exchange option (in terms of net exchange
gain from the agent’s perspective) that the agent can propose.
It is said to have no intention if eitherBi = ∅ or Di = ∅, in
which caseIi = nil, wherenil = [−,−, 0].

All the agents’ exchange intentions (or the lack thereof
communicated as anil intention)Ii ∈ I would need to undergo

arbitration to decide which two agents to proceed with the
request exchange, before a negotiation round is concluded,and
the next round begins. Essentially, an intentionI = [−,−, ρ]
with the highest exchange gainρ > 0, i.e., one that contributes
to the highest increase (in total A-QoS) if carried out, would
need to be selected. In so doing, all the agents perform
local mediation to arbitrate their intentions. This involves
incremental arbitration of intention as the better intention (i.e.,
the one with higher net exchange gain) - between a taxi
agent’s own and the intention it received - is passed by the
agent to another in a circular fashion, before finally reaching
a taxi agent that is concurrently and dynamically entrustedthe
role of a request selection-exchange initiator for a particular
negotiation round [20]. This process differs from that in the
original mechanism calledMA3 [19], which uses the same BDI
reasoning model but has an extra agent dedicated to receiving
and arbitrating all agent intentions. The negotiation process
will terminate following a negotiation round when all agents
have no (more) intention to exchange request selections andso
submitnil intentions, discovered through arbitration by local
mediation.

The relevant algorithmic details forMA3-LM agents [20]
based on the formal description above is generically summa-
rized in [1, p. 1050].MA3-LM agents always terminate with
an often highly efficient but not necessarily optimal solution
after a finite number of negotiation rounds [19], [20].

To reduce the number of negotiation rounds in the negotia-
tion process, an assignment initialization heuristic (labelledH-
Max) can be applied prior to negotiation, the details of which
are documented in the appendix. And to significantly reduce
the average communication time per negotiation round in
practice, a faster version called non-redundant BDI reasoning
discussed in [21, p. 685] forMA3 can be easily adapted to
MA3-LM agents.

In our current work, the A-QoS data entryd[ai, rj ] < 0
denotes the negation of the shortest (planned) real-time for a
taxi (that theMA3-LM agentai ∈ A represents) to travel from
its designated or current location to the pick-up location of a
customer (who initiated the requestrj ∈ O); the negation is so
that theMA3-LM agents, in maximizing the total A-QoSStot

(2), are minimizing the total travel time of their taxis. This
real-time travel period is that computed over a directed road
network with real-time traffic information [2]. The smallerthis
time value is, the nearer to the customer the taxi is said to be.

3) Decentralized versus Centralized - A Discussion:The
NTuCab dispatch system architecture deliberately avoids us-
ing a centralized (single-agent) algorithm [18] for assigning
requests to taxi agents, thus removing a processing bottleneck
and a crucial ‘single point of failure’. The A-QoS information
is already distributed among the taxi agents, so it is wasteful
to have to replicate by centralized information gathering or
computation, required if single-agent assignment processing is
used instead. In decentralizedMA3-LM processing, multiple
taxi agents share their local A-QoS information only as needed
when they negotiate for a request. In practice, the proposed
architecture can even allow theseMA3-LM taxi agents to
flexibly respond on-the-fly (i.e., during negotiation) to A-QoS
data invalidation, by their independently correcting their local
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A-QoS values as necessary before the start of each negotiation
round. Such data invalidation can occur due to, say, sudden
changes detected in road traffic conditions. In this practical
situation, the centralized algorithm, on the contrary, would
have to recompute from scratch the assignment solution, after
data validation through recomputing or re-gathering the A-
QoS values from the agents involved; and this could possibly
incur even higher processing and communication overheads.
Finally, the proposed system can also be readily extended to
degrade more gracefully when some of the taxis or taxi agents
are out of service temporarily.

4) Theoretical Boundary & Optimal Situations:The physi-
cal locations of taxis and customers are significant information
for taxi dispatch. They are in general not knowna priori. How-
ever, two theoreticalboundarysituations about their relative
locations can be identified:

1) DT-CC: Geographically distributed taxis for concen-
trated customers, as when dispatching taxis to a taxi
stand.

2) CT-DC: Geographically concentrated taxis for dis-
tributed customers, as when dispatching taxis from a
depot.

r0 r1 r2
a0 xh xh xh

a1 yh yh yh
a2 zh zh zh

(a) ForDT-CC

r0 r1 r2
a0 xv yv zv
a1 xv yv zv
a2 xv yv zv

(b) For CT-DC

Fig. 4. Types of CLAP for the boundary situations, shown forN = 3

Being ‘geographically concentrated’ means that the taxis
or customers are in close physical proximity of one another.
Theoretically, we shall assume that they are at the same
location point. Following, theDT-CC and CT-DC situations
result in taxi agents facing the types of CLAP as depicted in
Fig. 4, where each row of matrix entries are the respective
A-QoS valuesd[ai, rj ] as computed by an agentai ∈ A for
every requestrj ∈ O.

In between the two boundary situations, we also identify a
situation, labelledOM-TC , where the geographical distribu-
tions between the taxis and the service requests are optimally
matched, such that every taxi agenta ∈ A has a different
requestr ∈ O that is the nearestto its taxi location; all its
other requests are not as near. An example of situationOM-TC
is given in Fig. 5, in which the values shown each indicates the
largest A-QoS (or the least negative travel time) of an agent
ai ∈ A for a different request.

r0 r1 r2
a0 − − x2

0

a1 − x1
1 −

a2 x0
0

− −

Fig. 5. A CLAP instance ofOM-TC , with N = 3

Following, we present two propositions onMA3-LM in the
situations identified. The proofs entail an understanding of the

formal definitions of Belief (B), Desire (D) and Intention (I),
and the termination condition ofMA3-LM. For the proof of
Proposition 2, the reader is also referred to the appendix for
details of the speedup heuristic,H-Max.

Proposition 1: The MA3-LM taxi-agents in situationsDT-
CC and CT-DC will incur one negotiation round to reach
an optimal (or a maximal) total A-QoS assignment which is
arbitrary.

Proof: We sketch the proof as follows: In either situation,
in the first round of negotiation, everyMA3-LM taxi-agent
will yield a nil intention (Definition 3) - the termination
condition for MA3-LM. In the former situation, it is due
always to an empty belief set (Definition 1) computed by every
agent. In the latter, it is due always to an empty desire set
(Definition 2) computed by every agent except one, which
yields a nil intention due always to an empty belief set.
The first round is thus the last negotiation round. Finally,
the total A-QoS assignment solution reached must be optimal
when negotiation terminates, since, in either situation, any
collaborative assignment reached is associated with the same
set of A-QoS values,{d[a,Π(a)] | a ∈ A}, and thus it has the
same total value regardless of the request selections [under Π
(1)]. Hence the proposition.

In other words, in situationsDT-CC and CT-DC, MA3-
LM taxi-agents will incur the minimum number of negotiation
rounds [19], [20]. Despite the quick decision, negotiationis not
needed in such situations since every assignment is optimal.

Proposition 2: The MA3-LM taxi-agents usingH-Max in
situationOM-TC will incur a total of two negotiation rounds
to reach an optimal total A-QoS assignment.

Proof: We sketch the proof as follows: In situation
OM-TC , immediately after assignment initialization through
H-Max, every MA3-LM taxi-agent [underΠ (1)] will have
selected or reselected a different request that is the nearest
to its taxi location. This initialization process is considered
to incur the first negotiation round. In the second round of
negotiation that follows, everyMA3-LM taxi-agent will yield
a nil intention - the termination condition forMA3-LM - due
always to an empty belief set computed by the agent. The
second round is thus the last negotiation round. Finally, since
every agent will have selected its nearest request [underΠ (1)]
when negotiation terminates, it follows that the total A-QoS
assignment solution reached is optimal (or maximal). Hence
the proposition.

Proposition 2 suggests that situationOM-TC characterizes
the ideal condition to be in, where a relatively quick nego-
tiation will result in an assignment that is both locally and
globally optimal. By local optimality, every taxi agenta ∈ A
selects a requestr ∈ O for which the A-QoSd[a, r] among
all requests inO is the largest; and by global optimality, we
mean that the total A-QoS of the assignment is maximized.

From the above analysis and discussion, we infer that if the
working scenarios are exclusivelyDT-CC or CT-DC, as could
be reasonably assumed in the past, the proposed taxi dispatch
approach (see Fig. 3) might only perform as well as the
current approach (see Fig. 2). However, in a situation which
is in betweenDT-CC or CT-DC and OM-TC , we envisage
that the proposed distributed approach can often significantly
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Fig. 6. The TM2S-MITSIMLab simulation model

outperform the existing centralized one. With the pervasive
use of mobile phones and the associated technologies in cities
like Singapore, where one can conveniently book a taxi from
almost anywhere, the demand by individual customers for taxi
service has set to become more geographically distributed.
This emerging real-world scenario, along with the induced
necessity for empty taxis to roam about more frequently,
means that such in-between situations could become a com-
mon occurrence, and it is no longer acceptable to simply
assume situationDT-CC or CT-DC. All these are suggestive
of a better performance using our proposed approach, and this
is confirmed by simulations.

III. S IMULATIONS & PERFORMANCEEVALUATION

To study the comparative performance of the proposed
NTuCab dispatch system and an existing centralized system
(see Section II-A), we conducted microscopic computer simu-
lations, simulating taxi operations in a selected ITS-managed
urban road network of reasonable complexity. We focused
on operational efficiency. For both the systems, this was
investigated in terms of customer waiting time versus empty
cruising time. In our simulations,customer waiting timeis
measured from the moment a customer raises a request to
the moment an assigned taxi arrives to pick up the customer;
empty taxi cruising timeis measured from the moment it is
available to the moment it accepts (or commits to service) a
negotiated assignment.

A. Experimental Scope & Investigation

The experiments were performed on MITSIMLab [22],
[23], [24], through a Taxi Management Microscopic Simulator
(TM2S) developed for this research study. The overall software
architecture of the simulator is shown in Fig. 6.

The MITSIMLab simulation software (available from
web.mit.edu/its/mitsimlab.html) is an existing

Fig. 7. The urban road network model used

simulation-based laboratory originally developed for
evaluating traffic management system designs at the
operational level. It was adapted as the environment for all
the experiments, along with a urban road network model
built by MITSIMLab developers using a road network editor
[23]. The urban road network model used is shown in
Fig. 7; it covers a physical area of about15km × 10km.
In providing the required real-time traffic information for
dispatch operation, an abstracted road network was also built
over the MITSIMLab-based urban road network model.

The TM2S module wraps around the MITSIMLab to sim-
ulate the real time activities of a dispatch operator and the
associatedMA3-LM negotiation processes of a network of
collaborative taxi agents, in accordance to either the central-
ized or the proposedNTuCab dispatch system (see Section
II), but confined to one logical area of operation. The TM2S
module assumes that the taxi agents negotiate over a high-
speed wireless communication network. In calculating the
multiagent negotiation time, the module abstracts away the
underlying detailed communication costs and instead estimates
the total negotiation time based on the number of negotiation
rounds taken and a conservative estimate of0.2N seconds
per round for anN -group of taxi agents. The estimate is
the longest average time per negotiation round that we found
at N = 20, when we experimented separately for groups of
N ∈ {5, 10, 15, 20}, by running a Java program ofMA3-LM
implemented on a multiagent platform called JADE [16] in a
local area network (emulating the high-speed communication
infrastructure), and without applying the speedup heuristic, H-
Max.

In the MITSIMLab environment, the taxis move randomly
in the road network. The human drivers of available taxis
are assumed to always accept and service any taxi request
negotiated by their agent. Upon the taxi agents in TM2S
accepting their negotiated assignment, each corresponding taxi
moves from its current location to the assigned customer’s
pick-up location, and then to the customer’s destination.

For both the centralized and proposed systems, we com-
puted the travel times using real-time traffic information as
proposed in [2]. As defined, the A-QoSd[a, r] < 0 denotes
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the negation of the expected shortest travel time for a taxi
(represented by an agenta ∈ A) to move from its current
location to the pick-up location of a customer (who initiated
the pending requestr ∈ O); since taking the shortest-time
path is a time-efficient way to service taxi requests [2]. The
A-QoS formula used is

d[a, r] = −min
all i

{Ti} (6)

Ti denotes the expected real-time for the taxi to travel on
an arbitrary pathi through the road network connecting the
two locations. The expected shortest travel timemin

all i
{Ti}

was calculated using the route choice model provided by
the traffic flow simulator module of MITSIMLab. The time
computation considered (i) current traffic conditions, (ii) delay
and regulation of turning movements at road intersections
and (iii) possible penalties for certain designated links (e.g.,
freeway bias). Along with the determination of the associated
shortest-time path for a taxi, it is essentially a vehicle route
planning problem, solved using the techniques developed for
MITSIMLab [24, Appendix B].

In principle, both the existing centralized andNTuCab
dispatch systems should operate for any taxi fleet size. For
our simulations over the TM2S-MITSIMLab model, a taxi
fleet size of1000 was simulated for a one-hour duration.
The taxi fleet is about 30% of the traffic volume that can be
simulated on MITSIMLab, and constitutes a reasonable traffic
composition in the urban setting considered.

We carried out experiments for a range of hourly demand
rates (defined by taxi bookings per taxi per hour). For each
demand rate, simulated with incoming requests generated by
the request manager, thecustomer waitingand empty taxi
cruising times were recorded for centralized dispatch, and
collaborative agent dispatch for several group sizesN ∈
{5, 10, 15, 20}. The experiments were repeated for collab-
orative agent dispatch with speed-up initialization heuristic
incorporated (see Appendix).

The simulation data (raw customer waiting and empty
cruising times) gathered from the dispatch operator and taxi
agents were saved into a text file for offline performance
analysis.

B. Analysis of Numerical Results

Table I shows that underNTuCab dispatch, at each demand
rate and for a smallN = 5, the customer waiting time is
longer. This is due to less efficient assignments as some better
positioned taxis for the requests might not be in the taxi
groups that negotiated for them. AsN increases, initially,
the customer waiting time becomes shorter due to increase
in grouping efficiency, but for a biggerN = 20, especially at
higher demand rates, it starts increasing due to offset to the
gains in grouping efficiency, namely, longer negotiation time
for a biggerN , and service demand outstripping taxi supply
at higher demand rates.

Comparing Tables I(a) and I(b), we observe that incorporat-
ing the speedup heuristic mitigates the problem of negotiation
time, shortening customer waiting time for all demand rates
andN -group sizes.

TABLE I

OPERATIONAL EFFICIENCY OFNTUCAB AND CENTRALIZED DISPATCH:

CUSTOMER WAITING TIME (IN S)

(a) Without H-Max
Demand rate

N 1 1.5 2 2.5 3 3.5 4
5 128.1 127.0 135.9 165.7 189.0 281.2 479.9

10 109.9 111.4 116.1 141.0 161.3 225.6 371.8
15 110.1 106.6 113.5 136.6 155.5 222.1 352.8
20 112.0 112.9 120.8 144.1 168.6 255.9 422.9
c© 135.2 137.9 145.3 178.3 205.4 312.4 527.3

(b) With H-Max
Demand rate

N 1 1.5 2 2.5 3 3.5 4
5 127.0 126.6 135.0 166.5 187.1 282.1 468.3

10 108.9 102.4 93.3 117.3 129.2 196.5 347.5
15 110.1 99.5 97.2 112.0 126.9 192.1 349.6
20 112.0 99.0 95.0 103.8 127.1 195.3 340.6
c©: Centralized dispatch

TABLE II

CUSTOMER WAITING TIME: REDUCTIONS(IN %) OF NTUCAB OVER

CENTRALIZED DISPATCH

(a) Without H-Max
Demand rate

N 1 1.5 2 2.5 3 3.5 4
5 5.3 7.9 6.5 7.1 8.0 10.0 9.0

10 18.7 19.2 20.1 20.9 21.5 27.8 29.5
15 18.6 22.7 21.9 23.4 24.3 28.9 33.1
20 17.2 18.1 16.9 19.2 17.9 18.1 19.8

(b) With H-Max
Demand rate

N 1 1.5 2 2.5 3 3.5 4
5 6.1 8.2 7.1 6.6 8.9 9.7 11.2

10 19.5 25.7 35.8 34.2 37.1 37.1 34.1
15 18.6 27.8 33.1 37.2 38.2 38.5 33.7
20 17.2 28.2 34.6 41.8 38.1 37.5 35.4

Table III shows that, regardless of the group sizeN , under
NTuCab dispatch, as the demand rate increases, empty cruising
time shortens. This implies that taxis roam less frequently
without customers onboard. The empty cruising time con-
verges approximately to theN -group negotiation time, with
the roaming time without request negotiation approaching
zero. Comparing Tables III(a) and III(b), we observe that with
the speedup heuristic, group negotiation, and hence empty
cruising time, shortens for all demand rates andN -group sizes
considered.

At each demand rate (except when it is 1 forN = 5,
and without applying speedup heuristic),NTuCab dispatch
outperforms centralized dispatch, with good reductions in
customer waiting time of up to 33.1% at demand rate 4 for
N = 15 [see Table II(a)], and up to 41.8% at demand rate 2.5
for N = 20, when the speedup heuristic is used [see Table
II(b)]; and with good reductions in empty cruising time of up
to 26.3% at demand rate 1.5 forN = 20 [see Table IV(a)],
and up to 41.2% at demand rate 4 forN = 20, when the
speedup heuristic is used [see Table IV(b)].
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TABLE III

OPERATIONAL EFFICIENCY OFNTUCAB AND CENTRALIZED DISPATCH:

EMPTY CRUISING TIME (IN S)

(a) Without H-Max
Demand rate

N 1 1.5 2 2.5 3 3.5 4
5 2780.7 1973.9 1572.4 885.2 495.1 408.9 303.9

10 2305.5 1544.0 1235.6 697.2 389.2 333.2 247.1
15 2221.3 1519.8 1184.5 688.1 389.2 324.8 239.3
20 2332.6 1487.5 1227.6 709.8 412.7 325.3 250.9
c© 2715.5 2018.3 1596.3 904.2 511.4 420.2 315.2

(b) With H-Max
Demand rate

N 1 1.5 2 2.5 3 3.5 4
5 2685.6 1947.7 1529.3 869.0 495.1 403.0 303.9

10 2142.5 1463.3 1211.6 622.1 367.7 279.5 201.1
15 2169.7 1519.8 1168.5 641.1 340.6 279.9 200.8
20 2251.1 1408.8 1096.7 602.2 340.6 270.2 185.4
c©: Centralized dispatch

TABLE IV

EMPTY CRUISING TIME: REDUCTIONS(IN %) OF NTUCAB OVER

CENTRALIZED DISPATCH

(a) Without H-Max
Demand rate

N 1 1.5 2 2.5 3 3.5 4
5 -2.4 2.2 1.5 2.1 3.2 2.7 3.6

10 15.1 23.5 22.6 22.9 23.9 20.7 21.6
15 18.2 24.7 25.8 23.9 23.9 22.7 24.1
20 14.1 26.3 23.1 21.5 19.3 22.6 20.4

(b) With H-Max
Demand rate

N 1 1.5 2 2.5 3 3.5 4
5 1.1 3.5 4.2 3.9 3.2 4.1 3.6

10 21.1 27.5 24.1 31.2 28.1 33.5 36.2
15 20.1 24.7 26.8 29.1 33.4 33.4 36.3
20 17.1 30.2 31.3 33.4 33.4 35.7 41.2

IV. CONCLUSION

For automating distributed taxi dispatch, this paper has
introduced the new idea of multiagent collaborative assign-
ment of current bookings. The proposedNTuCab dispatch
system realizes the idea usingMA3-LM through a proposed
multiagent architecture (see Section II-B). Theoretical bound-
ary (DT-CC and CT-DC) and optimal (OM-TC ) situations
are analyzed (see Propositions 1 and 2, respectively) and
discussed. Using TM2S-MITSIMLab simulations on an urban
road network model (Fig. 7), we evaluated the performance of
theNTuCab dispatch system, and showed that, even on a basic
infrastructure [Fig. 3(b)], the distributed multiagent system
approach is promising in terms of significant improvements
in operational efficiency over an existing centralized approach
(see Section II-A). We also showed that incorporating a simple
negotiation speedup heuristic (see Appendix) could raise the
efficiency further.

To approximate more towards the ideal situationOM-TC
in real-time so as to better manage the overall efficiency
of NTuCab dispatch, future work includes investigating the
following issues:

1) Intelligent taxi roaming: Using historical service demand

data might lead to better advisory for available taxi
drivers to roam more intelligently to match the distribu-
tivity of service requests.

2) NTuCab dispatch queue pre-processing: Re-grouping
based on physical proximity between requests and taxis
in the respective queues, prior to the start of every
dispatch cycle, might better match the geographic dis-
tributivity of service requests to that of the available
taxis.

The impetus is to influence and better match the physical dis-
tributivity between service demand and available taxi supply
in real-time.

In conclusion, leveraging on the shortest-time paths com-
puted using real-time traffic information [2], the proposed
NTuCab dispatch system can potentially achieve high effi-
ciency, particularly in limiting customer waiting time provided
the demand for taxi service is manageable for a fleet size.
Explicated in this paper are, in our opinion, important theo-
retical and empirical insights about our proposed multiagent
approach. These fundamental insights would serve as a base
reference in further research and development on automating
distributed taxi dispatch, including the formulation and inves-
tigation of new A-QoS formulas to incorporate human drivers’
preferences.

APPENDIX

Assignment Initialization Heuristic: The negotiation
speed ofMA3-LM depends on the initial assignment. In at-
tempting to hasten the negotiation, a simple heuristic (labelled
H-Max) is presented herein. Intuitively, the heuristic attempts
to set the initial (assignment) solution, with each agenta ∈ A
selecting, as far as it is possible, a self-optimal but different
requestr ∈ O to begin negotiation with. Logically, it can be
said to contribute one negotiation round but the overall process
can become faster. The details, with|A| = |O| = N ≥ 2, are
as follows:

Heuristic H-Max: One of the agents in groupA is desig-
nated as the speedup initialization (SI) agent, and this fact is
made known to all agents at the outset. Every agenta ∈ A
selects and proposes to the SI agent a requestp ∈ O that
satisfies the following:

d[a, p] = max{d[a, r]| r ∈ O } (7)

The SI agent, upon receiving all such proposals (including its
own), will evaluate them as follows. For each requestr ∈ O:

• It will approve an agent’s proposal (i.e., request selection)
if it is the only agent selecting requestr ∈ O.

• If two or more agents select the same requestr ∈ O in
their proposal, it will approve the proposal by an agent
that offers the highest A-QoS value among them.

Assume thatF ≥ 1 agents have had their proposals approved.
Then following the proposal evaluation, if(N − F ) ≥ 1, the
SI agent will arbitrarily allocate each of the remaining(N −
F ) agents with a different request taken from the(N − F )
unselected requests.
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