
1

Discrete-Event Coordination Design for Distributed
Agents

Manh Tung Pham and Kiam Tian Seow

Abstract— This paper presents new results on the formal
design of distributed coordinating agents in a discrete-event
framework. In this framework, agents are modeled to be in-
dividually equipped with a coordination module, through which
they interact and communicate. In terms of existing control-
theoretic concepts, we first define the concept of a coordinable
language and show that it is the necessary and sufficient existence
condition of coordination modules for distributed agents to
achieve conformance to a pre-specified inter-agent constraint
language. Following, we present a synthesis algorithm to compute
near-optimal coordination modules. An example is providedto
illustrate the design synthesis using the proposed algorithm.
Finally, a discussion with related work distinguishes our coordi-
nation design problem from related problems in the literature.

Note to Practitioners—Multiagent coordination presents a key
approach to developing complex systems. In this approach, the
basic idea is to model a system as a network of interacting
agents, and design for each agent a coordination module by
which the agents can interact and communicate to manage the
inter-dependencies arising due to system needs or limitations [1].
In this paper, we propose a novel approach for coordination
design of distributed agents. By modeling coordinating agents as
discrete-event processes, we formulate and address the problem
of synthesizing for each agent a coordination module to achieve
conformance to a given inter-agent constraint. Importantly,
by showing that our multiagent coordination problem shares
the same algorithmic foundation with existing problems in the
literature, we are able to adapt existing techniques to develop
a new coordination synthesis algorithm, without reinventing the
wheel. The coordination modules synthesized by our algorithm
are proven to be minimally interventive with the agents’ local
plans and ensure that communication among the agents is made
only when necessary. Potential applications of our work canbe
found in domains where discrete-event modeling has proven to
be suitable and effective, and these include manufacturing[2],
transportation [3] and logistics systems [4].

Index Terms— Coordinability, Coordination Design, Control
Synthesis, Discrete-Event Systems

I. I NTRODUCTION

In modern electronic environments, it is becoming increas-
ingly important to deploy multiple agents with the autonomy
capability of coordinating among themselves in conformance
to inter-agent constraints [1]. In general, these are social
constraints that specify mandatory policies for regulating the
interaction behaviors of agents. Intelligent schedulers [5],
distributed sensor networks [9], [10], unmanned vehicles [8],

M.T Pham and K.T. Seow are with the Division of Computing Sys-
tems, School of Computer Engineering, Nanyang Technological Uni-
versity, Republic of Singapore 639798.pham0028@ntu.edu.sg,
asktseow@ntu.edu.sg

distributed networked resource allocation [11] are some ex-
amples of multiagent applications where the aforementioned
agent regulation capability is a mandatory requirement.

In the abovementioned application domains, agents must
follow certain “built-in” strategies realized as coordination
modules to coordinate their activity in order to ensure the
success of their design goals. For example, providers and
consumers of networked resources must operate cooperatively
by following a negotiation protocol that regulates their inter-
actions [11]; distributed sensors must coordinate the allocation
of their sensing resources in order to accurately track multiple
targets [9]; and unmanned train agents accessing a shared
two-way tunnel must interact and communicate to respect,
say, a “first arrival first access” protocol [7]. Generally, these
agents are autonomous entities designed by different groups
of people and so it is critical for the coordination modules
to be minimally interventive, giving the coordinating agents
maximal control of their own operation as long as it does
not lead to the violation of the constraint. Moreover, when
the underlying communication infrastructure has limited ca-
pability or the communication cost is high, it is important that
the amount of communication among the agents is minimal.
Furthermore, it is desirable that resource requirements interms
of computational time or memory required to implement the
coordination module for each agent are minimal.

Modern engineering systems such as those described above,
as well as in manufacturing [2], transportation [3] and logistics
[4], have to deal with discrete state spaces and event-driven
dynamics [14]. To design and deploy systems as distributed
coordinating agents, the concern, in one way or another, is with
the problem of how agents can interact among themselves to
ensure some orderly state-to-state occurrences of interleaving
events specified as inter-agent constraints. This motivates our
development of a generic design framework for coordinating
agents in a discrete-event paradigm.

Previous work [6], [7] has established a fundamental math-
ematical connection between discrete-event multiagent coordi-
nation and supervisory control [12]. The important implication
is that coordination planning can be done by utilizing well-
established results from discrete-event control theory. That
leads to a method using control synthesis for multiagent
planning. By modeling agents as discrete-event processes,the
method proposes to solve a coordination planning problem
by first synthesizing a global supervisor for the system to
achieve conformance to a pre-specified inter-agent constraint,
and then using it to construct a coordination module for
every agent, which together specifies how the agents should
interact and communicate. Importantly, using that method,



2

minimal intervention is mathematically guaranteed by discrete-
event control theory. However, in the proposed method, every
coordination module is constructed almost similarly as the
supervisor, which results in their nearly identical structure.
So, although conceptually illuminating, the method does not
consider that an inter-agent constraint may impose different
restrictions on different agents. As a result, some agents may
have to interact and communicate more than it is necessary.

This paper borrows and re-interprets discrete-event concepts
from supervisory control [12] and sensor selection [13] to
develop a novel approach that allows coordination modules
to be individually synthesized for each agent. As a result,
an agent can expect a simpler coordination module if it
is not tightly restricted by the inter-agent constraint. Two
new developments are presented in this paper. Firstly, the
concept of a coordinable language is introduced, based on
which the necessary and sufficient condition for the existence
of coordination modules is presented. Secondly, a synthesis
algorithm for computing coordination modules, if they do
exist, is developed. Importantly, the synthesized coordination
modules are not only minimally interventive, but also ensure
that communication among the agents is made only when
necessary. Each of the coordination modules can also be
efficiently implemented in terms of memory requirements as
their state size may be greatly reduced, though not necessarily
minimized, for each agent model. Such coordination modules
are said to be near-optimal.

The rest of the paper is organized as follows. In Section II,
we review preliminary results in languages and automata, and
in supervisory control theory, that are most relevant to this
paper. In Section III, we present our main results on discrete-
event multiagent coordination, along with an illustrativedesign
synthesis example in Section IV and a discussion with related
work in Section V, before concluding the paper in Section VI.

II. PRELIMINARIES

A. Languages and Automata

LetΣ be a finite alphabet of symbols representing individual
events. Astring is a finite sequence of events fromΣ. Denote
Σ∗ as the set of all strings fromΣ including the empty string
ε. A string s′ is aprefixof s if (∃t ∈ Σ∗) s′t = s. A language
L overΣ is a subset ofΣ∗. SayL1 is a sublanguageof L2 if
L1 ⊆ L2. Theprefix closureL̄ of a languageL is the language
consisting of all prefixes of its strings. ClearlyL ⊆ L̄, because
any strings in Σ∗ is a prefix of itself. A languageL is prefixed-
closedif L = L̄.

Given Σ1 ⊆ Σ2, the natural projectionPΣ2,Σ1 : (Σ2)∗ →
(Σ1)∗, which erases from a strings ∈ (Σ2)∗ every eventσ ∈
(Σ2 − Σ1), is defined recursively as follows:PΣ2,Σ1(ε) = ε,
and (∀s ∈ (Σ2)∗)(∀σ ∈ Σ2),

PΣ2,Σ1(sσ) =

{

PΣ2,Σ1(s)σ, if σ ∈ Σ1;
PΣ2,Σ1(s), otherwise.

For L ⊆ (Σ2)∗, PΣ2,Σ1(L) ⊆ (Σ1)∗ denotes the language
{PΣ2,Σ1(s) | s ∈ L}. The inverse image ofPΣ2,Σ1 , denoted by
P−1
Σ2,Σ1 , is a mapping from(Σ1)∗ to (Σ2)∗, and defined as: for

L1 ∈ (Σ1)∗, P−1
Σ2,Σ1(L1) = {L ⊆ (Σ2)∗ | PΣ2,Σ1(L) = L1}.

Clearly, forL ∈ (Σ2)∗, P−1
Σ2,Σ1(PΣ2,Σ1(L)) ⊇ L.

If a language is regular [14], then it can be gen-
erated by an automaton. Anautomaton A is a 5-tuple
(XA,ΣA, δA, xA

0 , X
A
m), whereXA is the finite set of states,

ΣA is the finite set of events,δA : ΣA × XA → XA is
the (partial) transition function,xA

0 is the initial state and
XA

m ⊆ XA is the subset ofmarker states.
Write δA(σ, x)! to denote thatδA(σ, x) is defined. An

event σ ∈ ΣA is a strictly self-loop event of A if (∀x ∈
XA)[δA(σ, x)!⇒ (δA(σ, x) = x)]. Such an event would never
bring A from one state to a different state. For an automaton
A, ΣA

loop denotes the set of all its strictly self-loop events.
The definition ofδA can be extended to(ΣA)∗×XA as fol-

lows: δA(ε, x) = x, and(∀σ ∈ ΣA)(∀s ∈ (ΣA)∗)δA(sσ, x) =
δA(σ, δA(s, x)). The behaviors of automatonA can then
be described by the prefix-closed languageL(A) and the
marked languageLm(A). Formally, L(A) = {s ∈ (ΣA)∗ |
δA(s, x0)!}, andLm(A) = {s ∈ L(A) | δA(s, x0) ∈ XA

m}.
A statex ∈ XA is reachableif (∃s ∈ (ΣA)∗) δA(s, x0) =

x, and coreachable if (∃s ∈ (ΣA)∗) δA(s, x) ∈ XA
m.

AutomatonA is trim if all its states are both reachable and
coreachable and soLm(A) = L(A). If A is not trim, then
a trim automaton, denoted byTrim(A), can be computed to
generate the same marked language asA by deleting fromA
every state that is either not reachable or not coreachable.

Let Ai, i ∈ {1, 2}, be two automata. Then theirsynchronous
productA, denoted byA = A1 ‖ A2, models a discrete-event
system (DES) ofA1 andA2 operating concurrently by inter-
leaving events generated byA1 andA2, with synchronization
on shared eventsσ ∈ ΣA1 ∩ ΣA2 . Formally, synchronous au-
tomatonA = (XA,ΣA, δA, xA

0 , X
A
m) is computed as follows:

XA = XA1 ×XA2 , XA
m = XA1

m ×XA2

m , ΣA = ΣA1 ∪ ΣA2 ,
xA
0 = (xA1

0 , xA2

0 ), andδA(σ, (x1, x2)) is defined by:


















(δA1 (σ, x1), δA2 (σ, x2)), if σ ∈ ΣA1 ∩ ΣA2 and
δA1 (σ, x1)! andδA2 (σ, x2)!;

(δA1 (σ, x1), x2), if δA1 (σ, x1)! andσ 6∈ ΣA2 ;
(x1, δ

A2 (σ, x2)), if δA2 (σ, x2)! andσ 6∈ ΣA1 ;
undefined, otherwise.

It has been shown that ifA = A1 ‖ A2 then
L(A) = P−1

ΣA,ΣA1
(L(A1)) ∩ P−1

ΣA,ΣA2
(L(A2)) andLm(A) =

P−1
ΣA,ΣA1

(Lm(A1)) ∩ P−1
ΣA,ΣA2

(Lm(A2)) [14].
If ΣA1 = ΣA2 , thenL(A1 ‖ A2) = L(A1) ∩ L(A2) and

Lm(A1 ‖ A2) = Lm(A1)∩Lm(A2). The synchronous product
of n ≥ 2 automataA1, A2, ... An, denoted by‖i=n

i=1 Ai, can
be defined recursively using the associativity of‖ [14].

B. Control of Discrete-Event Systems

Given a DESA = (XA,ΣA, δA, xA
0 , X

A
m) to be controlled

(A can be built by the synchronous product of a set of
simple automata modeling the system components), let the
event setΣA be partitioned into (i) thecontrollableevent set
ΣA

c and theuncontrollableevent setΣA
uc, and also into (ii)

the observableevent setΣA
o and theunobservableevent set

ΣA
uo. In the control context, asupervisorwhich observes only

the observable events inΣA
o can modify the behavior ofA

by disabling only the controllable events inΣA
c . Formally,



3

a supervisorS is an automaton overΣA (ΣS = ΣA) that
satisfies the following conditions:

1) S is ΣA
uc-enabling, namely,(∀s ∈ (ΣA)∗)(∀σ ∈ ΣA

uc)
[(s ∈ L(S ‖ A) andsσ ∈ L(A))⇒ sσ ∈ L(S ‖ A)].

2) S is ΣA
uo-feasible, namely,(∀σ ∈ ΣA

uo)[((∃x ∈
XS)δS(σ, x)!)⇒ σ ∈ ΣS

loop].

SupervisorS tracks and controls the behavior of DESA.
It changes state according to the events generated byA and
enables (or allows to occur) at each state only those events
defined at that state. ThatS is ΣA

uc-enabling ensures that
uncontrollable events inΣA

uc will never be prevented from
happening. ThatS is ΣA

uo-feasible means that its state change
can only be triggered by the occurrence of events inΣA

o which
it can observe.

Write S/A for A under the supervision ofS. The prefix-
closed behavior of the controlled DES,L(S/A), consists of
those strings inL(A) containing events enabled byS. The
marked behaviorLm(S/A) consists of those strings inL(S/A)
that are marked by bothS andA. Formally,L(S/A) = L(S)∩
L(A) andLm(S/A) = Lm(S) ∩ Lm(A). Thus, the behavior
of systemA under the supervision of supervisorS can be
modeled by the synchronous automatonS ‖ A. SupervisorS
is said to be nonblocking (for DESA) if every string generated
by S/A can be completed to a marked string, i.e.,Lm(S/A) =
L(S/A). Formally, the general problem of supervisory control
may be stated as follows.

Problem 1 (Supervisory Control Problem (SCP)):Given
DES A and a control specification automatonC with
ΣC = ΣA, construct a nonblocking supervisorS for A such
thatLm(S/A) = Lm(A) ∩ Lm(C).

In the context of SCP,Lm(C) specifies the desired behavior
for controlled DESA, i.e., it embodies all the desirable
event sequences that one wishes to impose on the system
A. In addressing SCP, the following concepts of language
controllability and observability are developed by Ramadge
and Wonham [12] and Lin and Wonham [15], respectively.

Definition 1: Controllable language [12]:A languageK ⊆
L(A) is said to becontrollablewith respect to (w.r.t)A andΣA

c

(or just controllable ifΣA
c is understood) if(∀s ∈ K)(∀σ ∈

ΣA
uc) [sσ ∈ L(A)⇒ sσ ∈ K].
In other words,K is controllable provided noL(A)-string

which is already a prefix of some string inK, that when
followed by an uncontrollable event inΣA

uc, would exit from
K.

Definition 2: Observable language [15]:A languageK ⊆
Lm(A) is said to beobservablew.r.t A andPΣA,ΣA

o
(or just

observable ifPΣA,ΣA
o

is understood) if(∀s, s′ ∈ (ΣA)∗) for
whichPΣA,ΣA

o
(s) = PΣA,ΣA

o
(s′), the following two conditions

are satisfied: (1)(∀σ ∈ ΣA)[(sσ ∈ K ands′ ∈ K ands′σ ∈
L(A))⇒ s′σ ∈ K], and (2)[s ∈ K ands′ ∈ K ∩Lm(A)]⇒
s′ ∈ K.

The above conditions ensure thatΣA
o provides a sufficient

view for an observer to determine all necessary control and
marking actions. Given a DESA and an automatonC with
Lm(C) = K, the observability property ofK can be checked
in polynomial time [14]. Note that ifΣA

o = ΣA, an arbitrary
sublanguageK of Lm(A) is observable.

A fundamental theorem in supervisory control theory [15]
may now be stated.

Theorem 1:There is a nonblocking supervisorS, which
observes onlyΣA

o and controls onlyΣA
c , such thatLm(S/A) =

K, if and only if (1) K is controllable w.r.tA andΣA
c , and

(2) K is observable w.r.tA andPΣA,ΣA
o

.
It has been shown that thesupremal controllable sublan-

guage[12] of K w.r.t A andΣA
c exists, and is equal toK if

it is controllable. For an automatonC, theSupcon(C,A,ΣA
c )

procedure [16], which computes a nonblocking automatonS
such thatLm(S) is the supremal controllable sublanguage
of Lm(A) ∩ Lm(C), can be implemented with polynomial
time complexity [14]. Such automatonS can be used as (the
internal model for) a nonblocking supervisor which observes
ΣA and controlsΣA

c such thatLm(S/A) = Lm(S) [12].

III. M ULTIAGENT COORDINATION

A. Discrete-Event Agents and Coordination

Consider a system ofn ≥ 2 agents modeled by the
respective automataAi = (XAi ,ΣAi , δAi , xAi

0 , XAi
m ) (1 ≤

i ≤ n), whereΣAi ∩ ΣAj = ∅ for i 6= j. From an agent
planning viewpoint, automatonAi is viewed as the local plan
of an agent, referred to as agentAi (or justAi), encompassing
all possible local ways to achieve the agent’s local goal.
Note that, since each agent is assumed to formulate its local
plan independently, the total absence of shared events among
coordinating agents, i.e.,ΣAi ∩ ΣAj = ∅ for i 6= j, is not
uncommon.

If the agents operate independently, then the synchronous
productA =‖ni=1 Ai which encompasses every possible way
of interleaving event sequences of then automata, can be used
to describe the system evolution. The agentsAi (1 ≤ i ≤ n)
would need to coordinate among themselves if, due to system
needs or limitations, the execution of some event sequences
in L(A) is undesirable and should be prevented. If a language
K ⊆ L(A) encompasses all the desirable event sequences,
then at an appropriate level of abstraction, the coordination
problem can be defined as modifying the system in a certain
way so that none of those sequences inL(A) −K will ever
be generated.

The event setΣAi of agentAi is partitioned into the con-
trollable setΣAi

c and the uncontrollable setΣAi
uc . Interpreted

from the coordination viewpoint, an uncontrollable event is
inherently autonomous and can be executed solely at the free
will of the owner agent. As a rule, an event is pre-specified
as uncontrollable if it is critical to the owner agent such
that disabling the event and limiting its autonomy just to
conform to an inter-agent constraint is undesirable, expensive
or impossible. However, unlike in discrete-event control,the
observable and unobservable event sets are not pre-specified. It
is quite natural to assume that an agent is capable of observing
every event of its own. Whether the agent needs to observe the
other agents’ events will depend on the inter-agent constraint
and the coordination means among the agents. Those that need
to be observed are coordination-relevant events that must be
communicated to the agent.



4

In enabling distributed agents to coordinate, each agentAi

is equipped with a coordination module (CM) modeled by an
automatonSi defined as follows.

Definition 3: Coordination Module
A coordination module for agentAi (1 ≤ i ≤ n) is an

automatonSi with the following properties:

1) ΣSi = ΣAi ∪
⋃

1≤j≤n,j 6=i

ComSet(Si, Aj), where

ComSet(Si, Aj) ⊆ ΣAj , (1 ≤ j ≤ n, j 6= i). ΣSi

is called the coordination event set for agentAi, and
ComSet(Si, Aj) is the subset of events that agentAj

needs to communicate toAi to synchronizeSi.
2) Si is ΣAi

uc -enabling, namely,(∀s ∈ (ΣSi)∗)(∀σ ∈ ΣAi
uc )

[s ∈ L(Si ‖ Ai) andPΣSi ,ΣAi (s)σ ∈ L(Ai)] ⇒ [sσ ∈
L(Si ‖ Ai)].

3) ∀1 ≤ i, j ≤ n, i 6= j, Si andSj are cooperative, namely,
(∀s ∈ (ΣA)∗)(∀σ ∈ ComSet(Si, Aj)) [PΣA,ΣAj (s)σ ∈
L(Aj) andPΣA,ΣSj (s)σ ∈ L(Sj)] ⇒ [PΣA,ΣSi (s)σ ∈
L(Si)].

CM Si is used by agentAi to implement its local coordi-
nation process.ΣSi represents theobservation capabilityof
Ai: a strings ∈ L(A) is perceived byAi asPΣA,ΣSi (s). An
agent can observe all its events, henceΣAi ⊆ ΣSi .

By Definition 3, the coordination among discrete-event
agents through their respective CM’s, as depicted in Fig. 1,
can be explained as follows. Following the execution of a
string s ∈ L(A), agentAi, 1 ≤ i ≤ n, due to partial
observation, perceives onlysi = PΣA,ΣSi (s) and updates
the state of CMSi to xi = δSi(si, x

Si

0 ). Only every event
σi ∈ ΣAi that is defined atxi (i.e., δSi(σi, xi)!) can be
enabled (allowed to be executed next) byAi. That Si is
ΣAi

uc -enabling guarantees that uncontrollable events are always
enabled (hence are never prevented from being executed). With
i 6= j, that Si andSj are cooperativeensures that whenever
an eventσ ∈ ComSet(Si, Aj) is executed and communicated
by agentAj , Ai can update its CM accordingly. Importantly,
this means that if everySi, 1 ≤ i ≤ n, is an agentAi’s
CM, every agentAj , 1 ≤ j ≤ n, coordinating with agentAi

can independently enable and execute its own events through
Sj , and continually do so following its event execution and
communication, and in response to a communicated event
occurrence. The result is a restriction of the system behavior
to a sublanguage ofL(A).

Note that the events in the set
⋃

1≤j≤n,j 6=i

ComSet(Si, Aj)

or equivalently(ΣSi −ΣAi) are those to be communicated to
agentAi by the other agents in the system during coordination.
It then follows that the events in the set

⋃n

i=1(Σ
Si − ΣAi),

called the system communication set, are those to be commu-
nicated among the agents during coordination.

Let ASi

i denote agentAi coordinating with the other agents
using its (local) CMSi, and‖i=n

i=1 ASi

i denote the system of
n agentsAi coordinating among themselves through their re-
spective CM’s. From the foregoing discussions, the behaviors
of the coordinated system can be defined as follows.

Definition 4: (Coordinated Behaviors)1:

1The definition of marked coordinated behavior specified herein revises that
in the preliminary conference version [17].

CM
Agent A1 Agent A2

CM

2S1S

Fig. 1. Two agentsA1 andA2 coordinating through their respective CM’s
S1 and S2: Following the execution of a strings ∈ L(A1 ‖ A2), agent
Ai updates the state of its CMSi to xi = δSi (si, x

Si
0

). Only every event
σi ∈ ΣAi that is defined atxi (i.e., δSi(σi, xi)!) is then enabled (allowed to
be executed next) byAi. The result is that the system behavior is restricted
to a sublanguage ofL(A1 ‖ A2).

1) Prefix-closed coordinated behaviorL(‖i=n
i=1 ASi

i )

a) ε ∈ L(‖i=n
i=1 ASi

i ),
b) if s ∈ L(‖i=n

i=1 ASi

i ), σ ∈ ΣAi , sσ ∈ L(A) and
PΣA,ΣSi (s)σ ∈ L(Si) thensσ ∈ L(‖i=n

i=1 ASi

i ),
c) no other strings belong toL(‖i=n

i=1 ASi

i ).
2) Marked coordinated behaviorLm(‖i=n

i=1 ASi

i )
(∀s ∈ L(A)) s ∈ Lm(‖i=n

i=1 ASi

i ) if and only if
[s ∈ L(‖i=n

i=1 ASi

i )) and s ∈ Lm(A) and (∀1 ≤ i ≤
n)PΣA,ΣSi (s) ∈ Lm(Si)].

In Definition 4,Lm(‖i=n
i=1 ASi

i ) consists of every strings ∈
L(‖i=n

i=1 ASi

i )∩Lm(A) whose projectionPΣA,ΣSi (s) is marked
by the respective CMSi. CM set{Si | 1 ≤ i ≤ n} is then said
to be nonblocking if every string generated during coordination
can be completed to a marked string, i.e.,Lm(‖i=n

i=1 ASi

i ) =
L(‖i=n

i=1 ASi

i ).
Since CM’sSi andSj are cooperative (Definition 3), it can

be easily shown that the prefix-closed and marked behaviors
of the coordinated system can be equivalently represented by
the respective languages generated by the synchronous product
‖i=n
i=1 (Ai ‖ Si). It follows thatASi

i can be modeled asAi ‖ Si,
and the coordinated system as a whole can be represented by
‖i=n
i=1 (Ai ‖ Si).
Now, based on the mathematical equivalence between su-

pervision and multiagent coordination [6], [7], we could bor-
row and re-interpret discrete-event concepts from supervisory
control [12], [15], and define a new concept called language
coordinability for coordinating agents, as follows.

Definition 5: Coordinable Language:Given n ≥ 2 agent
automataAi, 1 ≤ i ≤ n, with ΣAi ∩ ΣAj = ∅ for i 6= j. Let
A =‖ni=1 Ai andΣcom ⊆ ΣA. A languageK ⊆ Lm(A) is
said to becoordinablew.r.t A andΣcom if

1) K is controllable w.r.tA andΣA
c =

⋃n

i=1 Σ
Ai
c , and

2) K is observable w.r.tA andPΣA,ΣAi∪Σcom
, 1 ≤ i ≤ n.

If the two conditions of coordinability in Definition 5 are
satisfied, then a set of CM’s, with one CM for each agent,
can be synthesized such that the overall system behavior
conforms toK and the system communication event set is
Σcom. This is formally stated in Theorem 2. The proof of
this fundamental theorem requires a procedure calledCM
which computes a CMSi for an agentAi, given automaton
S and event setΣCMi ⊆ ΣS for ΣSi = ΣCMi , with L(Si) =
PΣS ,ΣCMi (L(S)) andLm(Si) = PΣS ,ΣCMi (Lm(S)).

Computation-wise, procedureCM is the same as the well-
known procedure [14] used in supervisory control to compute
an observer for a partially observable DES.

Theorem 2:Given n ≥ 2 agent automataAi, 1 ≤ i ≤ n,
with ΣAi ∩ ΣAj = ∅ for i 6= j. Let A =‖ni=1 Ai, ∅ 6= K ⊆



5

ProcedureCM (S,ΣCMi)

begin
1 Let π : Xp → 2X

S

− {∅} be a bijective mapping;

2 Compute automatonS′
i = (ΣCMi , Xp, δ

S′

i , x
S′

i

0 , X
S′

i
m )

where:
• x

S′

i
0

∈ Xp with π(x
S′

i
0

) = {δS (s, xS
0
) | P

ΣS,ΣCMi (s) = ε};

• X
S′

i
m = {xp ∈ Xp | (∃s ∈ Lm(S))δS (s, xS

0
) ∈ π(xp)};

• (∀σ ∈ ΣCMi )(∀xp ∈ Xp) [δS
′

i(σ, xp)! if and only if
(∃sσ ∈ L(S))δS (s, xS

0
) ∈ π(xp)];

When defined,δS
′

i (σ, xp) = x′

p with
π(x′

p) = {δS (s′, x) | x ∈ π(xp), PΣS,ΣCMi (s
′) = σ};

3 ReturnSi = Trim(S′
i);

Lm(A) andΣcom ⊆ ΣA. Then, there exists a CM set{Si |
1 ≤ i ≤ n}, whereSi is forAi, such thatLm(‖ni=1 ASi

i ) = K,
L(‖ni=1 ASi

i ) = K and
⋃n

i=1(Σ
Si−ΣAi) = Σcom, if and only

if K is coordinable w.r.tA andΣcom.
Proof: For economy of notation, letPi denotePΣA,ΣSi

for 1 ≤ i ≤ n.
(If) Suppose thatK is coordinable w.r.tA andΣcom, namely

K is controllable w.r.tA and ΣA
c =

⋃n
i=1 Σ

Ai
c , and for all

1 ≤ i ≤ n, K is observable w.r.tA andPΣA,ΣAi∪Σcom
. We

present a constructive proof that computes a CM set{Si | 1 ≤
i ≤ n}, whereSi is for Ai, such thatLm(‖ni=1 ASi

i ) = K,
L(‖ni=1 ASi

i ) = K and
⋃n

i=1(Σ
Si − ΣAi) = Σcom.

Let S be a trim automaton withLm(S) = K; and for
each1 ≤ i ≤ n, let Si = CM(S,ΣCMi), whereΣCMi =
ΣAi ∪ Σcom. Since the event sets of the agents are pair-wise
disjoint andΣcom ⊆ ΣA, it is obvious that

⋃n

i=1(Σ
Si−ΣAi) =

⋃n
i=1((Σ

Ai ∪ Σcom) − ΣAi) = Σcom. Following, sinceK
is controllable w.r.tA and ΣA

c and observable w.r.tA and
PΣA,ΣAi∪Σcom

for all 1 ≤ i ≤ n, it is easy to verify that
the automataSi’s meet the CM requirements as formalized in
Definition 3, namely,ΣSi ⊇ ΣAi , Si is ΣAi

uc -enabling andSi

andSj are cooperative fori 6= j.
To show that our construction works, it remains to show

thatLm(‖ni=1 ASi

i ) = K andL(‖ni=1 ASi

i ) = K.
To begin with, note that sinceSi = CM(S,ΣCMi), we

haveΣSi = ΣAi ∪Σcom, Lm(Si) = Pi(Lm(S)) andL(Si) =
Pi(L(S)). It follows that ∀1 ≤ i ≤ n, K is observable w.r.t
A andPi, and(∀s ∈ (ΣA)∗),

Pi(s) ∈ L(Si)⇔ (∃s′ ∈ K)Pi(s
′) = Pi(s) (1)

Pi(s) ∈ Lm(Si)⇔ (∃s′ ∈ K)Pi(s
′) = Pi(s) (2)

• Proof ofL(‖ni=1 ASi

i ) = K

– Since for1 ≤ i ≤ n, L(Si) = Pi(L(S)), we have
P−1
i (L(Si)) = P−1

i (Pi(L(S))) ⊇ L(S). Therefore,

L(‖ni=1 ASi

i ) = L[‖ni=1 (Ai ‖ Si)]

= L[(‖ni=1 Si) ‖ (‖
n
i=1 Ai)]

= L[(‖ni=1 Si) ‖ A]

= [

n
⋂

i=1

P−1
i (L(Si))] ∩ L(A)

⊇ L(S) ∩ L(A) = K.

– We show the other inclusionL(‖ni=1 ASi

i ) ⊆ K by
induction on the length of strings, as follows.

∗ Base:It is obvious thatε ∈ L(‖ni=1 ASi

i ) ∩K.
∗ Inductive Hypothesis:Assume that(∀s ∈ (ΣA)∗),
|s| = m for somem ≥ 0, s ∈ L(‖ni=1 ASi

i ) ⇒
s ∈ K.
Now we must show that(∀σ ∈ ΣA) and (∀s ∈
(ΣA)∗), |s| = m, sσ ∈ L(‖ni=1 ASi

i ) ⇒ sσ ∈ K.
This can be done as follows.

· Without loss of generality, supposeσ ∈ ΣAi for
some1 ≤ i ≤ n.
· By Definition 4, sσ ∈ L(‖ni=1 ASi

i ) ⇒
Pi(s)σ ∈ L(Si).
· Since σ ∈ ΣAi , by (1), Pi(s)σ ∈ L(Si) ⇒
((∃s′σ ∈ K)Pi(s

′) = Pi(s)).
· By inductive hypothesis,s ∈ L(‖ni=1 ASi

i ) ⇒
s ∈ K.
· Hence, sinceK is observable w.r.tA and Pi,

by Condition 1) of Definition 2, the conditions
Pi(s) = Pi(s

′), s ∈ K, sσ ∈ L(A) ands′σ ∈
K together implysσ ∈ K.

∗ Hence the inclusionL(‖ni=1 ASi

i ) ⊆ K.

• Proof ofLm(‖ni=1 ASi

i ) = K

– Since for 1 ≤ i ≤ n, Lm(Si) = Pi(Lm(S)), we
haveP−1

i (Lm(Si)) = P−1
i (Pi(Lm(S))) ⊇ Lm(S).

Therefore,

Lm(‖ni=1 ASi

i ) = Lm[‖ni=1 (Ai ‖ Si)]

= Lm[(‖ni=1 Si) ‖ (‖
n
i=1 Ai)]

= Lm[(‖ni=1 Si) ‖ A]

= [

n
⋂

i=1

P−1
i (Lm(Si))] ∩ Lm(A)

⊇ Lm(S) ∩ Lm(A) = K.

– We now show the other inclusionLm(‖ni=1 ASi

i ) ⊆
K. Let s ∈ Lm(‖ni=1 ASi

i ), we shows ∈ K, as
follows.

∗ By Definition 4, s ∈ Lm(‖ni=1 ASi

i ) ⇒ [s ∈
L(‖ni=1 ASi

i ) and s ∈ Lm(A) and (∀1 ≤ i ≤
n)Pi(s) ∈ Lm(Si)].

∗ SinceL(‖ni=1 ASi

i ) = K, s ∈ Lm(‖ni=1 ASi

i ) ⇒
[s ∈ K ∩ Lm(A) and (∀1 ≤ i ≤ n)Pi(s) ∈
Lm(Si)].

∗ By (2), (∀1 ≤ i ≤ n) [Pi(s) ∈ Lm(Si)⇒ [(∃si ∈
K)Pi(si) = Pi(s)]].

∗ Hence, since∀1 ≤ i ≤ n, K is observable w.r.tA
andPi, by Condition 2) of Definition 2, the condi-
tionss ∈ K∩Lm(A), Pi(s) = Pi(si) andsi ∈ K
together implys ∈ K.

∗ Hence the inclusionLm(‖ni=1 ASi

i ) ⊆ K.

(Only If) Suppose that there exists a CM set{Si | 1 ≤
i ≤ n}, whereSi is for Ai, such thatLm(‖ni=1 ASi

i ) = K,
L(‖ni=1 ASi

i ) = K and
⋃n

i=1(Σ
Si − ΣAi) = Σcom. We show

thatK is coordinable w.r.tA andΣcom.
By Definition 5, to show thatK is coordinable w.r.tA and

Σcom, we have to show that



6

1) K is controllable w.r.tA andΣA
c =

⋃n
i=1 Σ

Ai
c , and

2) K is observable w.r.tA andPΣA,ΣAi∪Σcom
, 1 ≤ i ≤ n.

• Proof of Condition 1 of Coordinality
To prove the controllability ofK, let s ∈ K and σ ∈
ΣAi

uc for some1 ≤ i ≤ n such thatsσ ∈ L(A). By
Definition 1, we have to show thatsσ ∈ K. This can
done as follows.

– To begin with, sinceK = L(‖ni=1 ASi

i ), by Defi-
nition 4, s ∈ K ⇒ s ∈ L(‖ni=1 ASi

i ) ⇒ Pi(s) ∈
L(Si).

– Next, sincesσ ∈ L(A) and σ ∈ ΣAi
uc , we have

PΣA,ΣAi (s)σ ∈ L(Ai). Therefore, since CMSi

is ΣAi
uc -enabling, [PΣA,ΣAi (s)σ ∈ L(Ai) andσ ∈

ΣAi
uc ]⇒ Pi(s)σ ∈ L(Si).

– Therefore, by Definition 4, the conditionss ∈
L(‖ni=1 ASi

i ), sσ ∈ L(A) andPi(s)σ ∈ L(Si)
together implysσ ∈ L(‖ni=1 ASi

i ) or sσ ∈ K. Hence
the controllability condition.

• Proof of Condition 2 of Coordinality
To prove the observability ofK, let s, s′ ∈ (ΣA)∗

and σ ∈ ΣA such that PΣA,ΣAi∪Σcom
(s) =

PΣA,ΣAi∪Σcom
(s′) for some1 ≤ i ≤ n. By Definition

2, we have to show that:
(i) [sσ ∈ K and s′ ∈ K and s′σ ∈ L(A)] ⇒ s′σ ∈ K,
and
(ii) [s ∈ K ands′ ∈ K ∩ Lm(A)]⇒ s′ ∈ K.
To begin with, we first note that since

⋃n

i=1(Σ
Si−ΣAi) =

Σcom, (∀1 ≤ i ≤ n) ΣAi ∪ Σcom ⊇ ΣSi . It follows
thatPΣAi∪Σcom

(s) = PΣAi∪Σcom
(s′) implies (∀1 ≤ i ≤

n)Pi(s) = Pi(s
′).

– Proof of Condition i) of Observability
Suppose that PΣA,ΣAi∪Σcom

(s) =

PΣA,ΣAi∪Σcom
(s′), sσ ∈ K, s′ ∈ K and

s′σ ∈ L(A). We show thats′σ ∈ K, as follows.
Without loss of generality, supposeσ ∈ ΣAi for
some1 ≤ i ≤ n.
∗ SinceK = L(‖ni=1 ASi

i ), [sσ ∈ K and s′ ∈ K
ands′σ ∈ L(A)] ⇒ [sσ ∈ L(‖ni=1 ASi

i ) ands′ ∈
L(‖ni=1 ASi

i ) ands′σ ∈ L(A)].
∗ By Definition 4, [sσ ∈ L(‖ni=1 ASi

i ) and σ ∈
ΣAi ]⇒ Pi(s)σ ∈ L(Si).

∗ Since PΣA,ΣAi∪Σcom
(s) = PΣA,ΣAi∪Σcom

(s′),
Pi(s) = Pi(s

′) and therefore,Pi(s)σ ∈ L(Si)⇒
Pi(s

′)σ ∈ L(Si).
∗ Thus, by Definition 4, the conditionsσ ∈

ΣAi , s′ ∈ L(‖ni=1 ASi

i ) andPi(s
′)σ ∈ L(Si)

together implys′σ ∈ L(‖ni=1 ASi

i ), or s′σ ∈ K.
Hence Condition i) of observability.

– Proof of Condition ii) of Observability
SupposePΣA,ΣAi∪Σcom

(s) = PΣA,ΣAi∪Σcom
(s′),

s ∈ K ands′ ∈ K ∩ Lm(A). We show thats′ ∈
K, as follows.

∗ SinceL(‖ni=1 ASi

i ) = K and Lm(‖ni=1 ASi

i ) =
K, [s ∈ K ands′ ∈ K∩Lm(A)]⇒ [s ∈ Lm(‖ni=1

ASi

i ) ands′ ∈ L(‖ni=1 ASi

i ) ∩ Lm(A)].
∗ By Definition 4,s ∈ Lm(‖ni=1 ASi

i )⇒ (∀1 ≤ i ≤
n)Pi(s) ∈ Lm(Si).

∗ Since PΣA,ΣAi∪Σcom
(s) = PΣA,ΣAi∪Σcom

(s′),
(∀1 ≤ i ≤ n)Pi(s) = Pi(s

′) and therefore,
(∀1 ≤ i ≤ n)Pi(s) ∈ Lm(Si) ⇒ (∀1 ≤ i ≤
n)Pi(s

′) ∈ Lm(Si).
∗ Hence, by Definition 4, the conditionss′ ∈

L(‖ni=1 ASi

i ), s′ ∈ Lm(A), and (∀1 ≤ i ≤
n)Pi(s

′) ∈ Lm(Si) together implys′ ∈ Lm(‖ni=1

ASi

i ), or s′ ∈ K. Hence Condition ii) of observ-
ability.

B. Problem Statement and Solution Properties

A general multiagent coordination planning problem may
now be stated as follows.

Problem 2 (Multiagent Coordination Problem (MCP)):
Given multiagent systemA =‖i=n

i=1 Ai of n ≥ 2 interacting
agents Ai and an inter-agent constraint automaton
C with ΣC = ΣA, construct a set of nonblocking
CM’s {Si | 1 ≤ i ≤ n}, with Si for agent Ai,
such that Lm(‖i=n

i=1 ASi

i ) = Lm(Supcon(C,A,ΣA
c ))

and L(‖i=n
i=1 ASi

i ) = L(Supcon(C,A,ΣA
c )), where

ΣA
c =

⋃n
i=1 Σ

Ai
c .

In the context of MCP,Lm(C) specifies the desired behav-
ior, i.e., it embodies all the desirable event sequences that one
wishes to impose on the systemA. A CM set{Si | 1 ≤ i ≤ n}
that satisfies the conditions stated in Problem 2 is said to be
minimally interventivesince, using these CM’s, each agentAi

does not unnecessarily disable its controllable events, unless
not doing so could lead eventually to the violation of the inter-
agent constraintC.

When solving MCP, it is desirable to synthesize optimal
CM’s, i.e., minimally interventive CM’s with the following
additional properties:

1) Minimal Communication: The cardinality of the event
set to be communicated among the agents is minimal. Such
a property is desirable when the underlying infrastructurehas
limited capability or the communication cost is high.

2) Efficient Implementation: Each CMSi is of minimal state
size (among all minimally interventive CM’s for agentAi

satisfying the minimal communication property), and so can
be efficiently implemented in terms of memory requirements.

Remark 1:That the cardinality of the event set to be
communicated among the agents is minimal does not nec-
essary imply that the actual number of events that the agents
communicate among themselves during coordination will be
minimal. It is possible that some events in a minimal car-
dinality communication set are executed and communicated
more frequently than the events in some larger communication
set, resulting in a larger number of events communicated
during coordination. However, in order for our coordination
framework to be widely applicable, the underlying mechanism
with which a coordinating agent selects an enabled event to
execute is assumed not modeled. It follows that quantitative
information such as the frequencies of event occurrences
are not knowna priori, and we therefore postulate that the
problem of minimizing inter-agent communication can be
logically addressed as that of minimizing the cardinality of
the event set to be communicated among the agents.



7

As will be explained, by Definition 5 and Theorem 2, MCP
can be solved by re-interpreting and utilizing control synthesis
methods developed for SCP (Problem 1).

Definition 6: Minimal Inter-Agent Communication Set:Let
L ⊆ Lm(A). A subsetΣ′ of ΣA is a minimal (cardinality)
inter-agent communication set (ofA for L) if

1) L is observable w.r.tA, PΣA,ΣAi∪Σ′ for all 1 ≤ i ≤ n.
2) (∀Σ′′ ⊆ ΣA) if L is observable w.r.tA andPΣA,ΣAi∪Σ′′

for all 1 ≤ i ≤ n then |Σ′| ≤ |Σ′′|.
A minimal (cardinality) inter-agent communication set is de-
noted byMinSysComSet(L,A).

By Definition 5 and Theorem 2, when the agents are coor-
dinating to achieve conformance to an inter-agent constraint
prescribed by the languageL, MinSysComSet(L,A) in
Definition 6 is a set of events that must be communicated
among the agents during coordination. Computing such an
event set is mathematically equivalent to a variant of the
minimal (cardinality) sensor-selection problem [13], [18]. The
original sensor-selection problem [13] is addressed in the
control context, on the premise that event observation incurs
sensor installation cost. Given the languageL for systemA,
the problem is finding a minimal cardinality event setΣ′ ⊆ ΣA

whose observation ensures the observability ofL w.r.t A
and PΣA,Σ′ . Formally, the statement of the sensor-selection
problem [13] can be given as follows.

Problem 3 (Minimal sensor-selection problem [13]):
Given a DESA and an automatonH with Lm(H) = L ⊆
Lm(A), find an event setΣ′ ⊆ ΣA (of minimal cardinality)
that satisfies the following conditions: (1)L is observable
w.r.t A and PΣA,Σ′ , and (2) (∀Σ′′ ⊆ ΣA)(L is observable
w.r.t A andPΣA,Σ′′ ⇒ |Σ′| ≤ |Σ′′|).

The minimal sensor-selection problem has been shown to
be NP-hard [19]. Its current state-of-the-art solutions include
an exponential time exact algorithm [13] and polynomial time
approximate algorithms [18], [25]. Besides not guaranteeing
a minimal cardinality solution set, the latter are also only
applicable under some assumptions.MinSysComSet(L,A)
could be computed by adapting the former [13].

Remark 2:Given L and A, the original algorithm [13]
considers all subsets ofΣA and selects from them a minimal
cardinality event setΣ′ for which the observability ofL
w.r.t A and PΣA,Σ′ holds. In modifying the algorithm for
MinSysComSet(L,A), we consider all subsets ofΣA and
select from them a minimal cardinality event setΣ′ for which
the observability ofL w.r.t A andPΣA,ΣAi∪Σ′ holds for all
1 ≤ i ≤ n.

By Definition 6, a languageK ⊆ Lm(A) is always
observable w.r.tA and PΣA,ΣAi∪MinSysComSet(K,A) for all
1 ≤ i ≤ n. If K is also controllable, then by Definition
5, it is coordinable w.r.tA and MinSysComSet(K,A). It
follows that, to guarantee minimal communication among
n ≥ 2 agents coordinating to achieveK, by Theorem 2 and
its constructive proof, CM’sSi can be computed such that
⋃n

i=1(Σ
Si −ΣAi) = MinSysComSet(K,A), and done with

ΣSi = ΣAi ∪MinSysComSet(K,A).
Remark 3:For a coordinableK ⊆ Lm(A) w.r.t A

and MinSysComSet(K,A), there might exist some other
CM’s Sj , 1 ≤ j ≤ n, with

⋃n

i=1(Σ
Si − ΣAi) =

MinSysComSet(K,A), for which ΣSj is a strict subset
of ΣAj ∪MinSysComSet(K,A). Such CM’s might further
reduce the communication needs for some individual sending
agents. However, as explained above, CM’sSi with ΣSi =
ΣAi∪MinSysComSet(K,A) for all 1 ≤ i ≤ n do guarantee
minimal communication at the system level.

Finally, from the control viewpoint, considerAi, when self-
looped at each state with events inΣSi − ΣAi , as a plant
to be supervised. Then each CMSi can be thought of as
a supervisor controlling the plant to achieve the controlled
behaviorSi ‖ Ai. The problem of minimizing the state size
of CM Si for agentAi is therefore mathematically related to
the minimal supervisor problem [20]. The original minimal
supervisor problem [20], which is formally stated below, is
proposed in the control context to address the economy of
implementation in terms of memory requirements for the
supervisor.

Problem 4 (Minimal supervisor problem [20]):Given a
DESA and a supervisorS for A with ΣS = ΣA, synthesize a
minimal state size supervisor automatonSmin that is control
equivalent toS, i.e., a supervisor automaton that satisfies the
following conditions: (1)L(Smin) ∩ L(A) = L(S) ∩ L(A)
and Lm(Smin) ∩ Lm(A) = Lm(S) ∩ Lm(A),
and (2) (∀S′)(L(S′) ∩ L(A) = L(S) ∩ L(A) and
Lm(S′) ∩ Lm(A) = Lm(S) ∩ Lm(A)) ⇒ |XSmin | ≤ |XS′

|).
The minimal supervisor problem has been shown to be

NP-hard [20]. Thus, the computational complexity of an
algorithm addressing Problem 4 is expected to be exponential.
To mitigate the computational hardness of synthesizing a
minimal state size supervisorSmin for Problem 4, a heuristic
(polynomial time) reduction procedure calledSupreduce [20]
is proposed. The procedureSupreduce(S,A) synthesizes and
returns a reduced state size supervisorSreduced which is con-
trol equivalent to the given supervisorS for DESA. Formally,
the synthesized supervisorSreduced is an automaton with
L(Sreduced)∩L(A) = L(S)∩L(A), Lm(Sreduced)∩Lm(A) =
Lm(S) ∩ Lm(A) and ideally should haveXSreduced << XS.
Numerical experimentation has shown thatSupreduce can
often return a supervisorSupreduce that has significant state
size reduction for a moderate size supervisorS [20].

ProcedureCMreduce(Si, Ai)

begin
1 Add every event in(ΣSi − ΣAi) as a self-loop

transition at every state ofAi. Let the resulting
automaton beA′

i;
2 ReturnSupreduce(Si, A

′
i);

Thus, procedureSupreduce [20] could be modified as a
new procedure calledCMreduce, in attempting to address
the efficient implementationof CM’s Si, 1 ≤ i ≤ n. The
result is that, givenSi andAi, CMreduce(Si, Ai) can often
return a greatly state-size reduced CM automaton for agent
Ai achieving the same behavior ofSi ‖ Ai. Since for all
1 ≤ i ≤ n, L(Ai ‖ Si) = L(Ai||CMreduce(Si, Ai)) and
Lm(Ai ‖ Si) = Lm(Ai||CMreduce(Si, Ai)), it can be easily



8

shown thatCMreduce(Si, Ai) returns a CM as formalized in
Definition 3.

To highlight, procedureCMreduce is different from the
original procedureSupreduce [20] in that it is for Si ‖ Ai

with ΣSi ⊇ ΣAi , instead of that withΣSi = ΣAi .

C. Coordination Module Synthesis

An important implication of the preceding discussions is
that the discrete-event techniques of control and sensor se-
lection can be adapted and applied to synthesize CM’s for
distributed agents.

Algorithm 1: Coordination Module Synthesis

Input : n ≥ 2 agentsA1, A2, ...,An with ΣAi ∩ΣAj = ∅
for 1 ≤ i 6= j ≤ n, and constraintC where
ΣC =

⋃n

i=1 Σ
Ai

Output : A near-optimal nonblocking CM set
{Si | 1 ≤ i ≤ n}, whereSi is for Ai, such that
Lm(‖ni=1 ASi

i ) ⊆ Lm(‖ni=1 Ai) ∩ Lm(C)
begin

Compute automatonA and controllable setΣA
c

1 A←‖ni=1 Ai; ΣA
c ←

⋃n

i=1 Σ
Ai
c ;

Compute a nonblocking supervisorS
2 S ← Supcon(C,A,ΣA

c );
Compute coordination event setsΣCMi , 1 ≤ i ≤ n

3 ΣCMi ← ΣAi ∪MinSysComSet(Lm(S), A);
Compute CM’sSi, 1 ≤ i ≤ n

4 Si ← CM(S,ΣCMi);
Reduce state size of the CM’sSi, 1 ≤ i ≤ n

5 Si ← CMreduce(Si, Ai);
6 Return CM set{Si | 1 ≤ i ≤ n};

Algorithm 1 details the planning steps for coordination
design ofn ≥ 2 agents. Givenn agentsAi, 1 ≤ i ≤ n, and
inter-agent constraintC, it constructs a CM set{Si | 1 ≤ i ≤
n}, whereSi is for Ai, which is nonblocking and minimally
interventive, i.e.,Lm(‖ni=1 ASi

i ) is equal to the supremal
controllable sublanguage ofLm(A) ∩ Lm(C). Moreover, the
event set to be communicated among the agents is minimal
among all the CM sets that achieve the same coordinated
behavior. Furthermore, the state size of each CMSi is often
significantly reduced by theCMreduce procedure. Whereas
the two properties of minimal intervention and communication
are guaranteed, the CM’s returned by the algorithm have a
relatively small state size that is not necessarily minimal;
hence these CM’s can only be said to benear-optimal. The
correctness of the proposed algorithm is immediate based on
the previous discussions. The planning steps presented may
utilize TCT [16], a freely available software for DES synthesis.

Note that every event inMinSysComSet(Lm(S), A) will
need to be communicated by one agent and received by at
least one other agentAj . However, in cases where an event in
MinSysComSet(Lm(S), A) appears as a self-loop transition
at every state of agentAj ’s CM, it need not be communicated
to agentAj . As a matter of practical interest, every such event

should be removed from agentAj ’s CM to obtain a new CM
Sj as in Remark 3 for actual implementation.

In the worst case, Algorithm 1 has exponential time com-
plexity because all the following procedures suffer from
exponential complexity: the synchronous product ofA, the
projection of S onto the event subsetΣCMi ⊆ ΣS in
ProcedureCM , and the construction of the minimal inter-
agent communication set in ProcedureMinSysComSet. This
exponential complexity is not surprising since in our MCP, the
multiagent systemA =‖ni=1 Ai, the inter-agent constraintC
and each CMSi, when self-looped at each state with events
in ΣA − ΣSi , share the same mathematical models as ann-
component modular DES plant, a control specification and a
supervisor controlling the plant, respectively; and the problem
of synthesizing multiple supervisors for such a modular DES
subject to a specification has been shown to be NP-hard [21].

When necessary, heuristic algorithms or data structures
should be designed for the synthesis of large systems. It
is envisioned that existing work on complexity reduction in
discrete-event systems could be utilized to address this design
issue. For example, binary decision diagrams and state tree
structures [22] have proven to be efficient encoding techniques
for reducing the complexity of synthesizing the productA and
the automatonS. To mitigate the complexity of Procedure
CM , each event subsetΣCMi could be enlarged such that
PΣS ,ΣCMi becomes a natural observer ofLm(S) [23], before
applying ProcedureCM to compute CMSi from S and
ΣCMi . It has been shown that ifPΣS ,ΣCMi is a natural
observer ofLm(S), then computing a projection ofS on
ΣCMi only requires polynomial time w.r.t the state size of
S [23]. However, one should note that enlargingΣCMi would
increase the number of events to be communicated among
coordinating agents. To mitigate the complexity of Procedure
MinSysComSet, the polynomial time approximate algo-
rithms for sensor selection [18], [25] may be adapted and
applied to compute a small but not necessarily minimal inter-
agent coordination event set. However, this approach also
compromises the minimal inter-agent communication property
guaranteed by Algorithm 1. Thus, one might have to trade-
off between the computational complexity of synthesizing
CM’s and the number of events to be communicated among
coordinating agents. A deeper investigation of this issue is an
interesting topic that is beyond the scope of this paper.

IV. I LLUSTRATIVE EXAMPLE

We now present an example to illustrate the use of Algo-
rithm 1 and the design improvement it offers over the original
approach [6], [7]. The system under study is a manufacturing
system consisting of two agentsA1 and A2 connected in
tandem and separated by a one-slot buffer BUF [Fig. 2(a)].
The working environment considered requires autonomous and
“active” agents capable of coordinating between themselves to
achieve the goal of satisfying a given inter-agent constraint.
These agents would need to be individually equipped with
CM’s implementing built-in strategies for achieving the goal.
In a conventional manufacturing environment, we might be
able to treat each agent as a “passive” process to be controlled,



9

Producer 
Agent A1

One Slot 
Buffer BUF

Consumer 
Agent A2

(a) Overall structure of the manufacturing system

1

2

0

3

1a
rrive

d

1produced

1placed

1a
rr

iv
e
d

1produced

(b) Producer agentA1

2t
ak

e
n

2a
rrived

0

1

(c) Consumer agentA2

0 1

23

1arrived

1p
ro

du
ce

d

1placed

2taken2arrived 2arrived

2arrived2arrived

1p
ro

du
ce

d 1arrived

1placed

2taken

(d) Inter-agent constraintC

Fig. 2. Coordination planning for a manufacturing system

and develop external supervisors - with each over the system
of passive agents – using a decentralized control framework
[24], [26]. However, as will be discussed in the next section,
treating agents as passive processes to be controlled is not
always possible or the most appropriate, and may have some
limitations in distributed system modeling.

In all subsequent figures for the example, an automatonG
is represented by an edge-labelled directed graph with a state
represented by a node, and a transitionδG(σ, x) = x′ by a
directed edge from statex to x′ labelled with the symbol
σ ∈ ΣG of an event whose occurrence it represents. Theσ-
labelled edge is drawn as a directed line with an optional tick
(◦—|—>–◦) if the eventσ ∈ ΣG is controllable. The initial state
is represented by a node with an entering arrow, and a marker
state by a node drawn as a double concentric circle.

Initially, the buffer is empty.A1 is a producer that produces
workpieces continually, one piece at a time, and places them
into the buffer BUF. In order to do so,A1 has to produce a
workpiece, go to the buffer place, and place the workpiece
into the buffer. According to its local plan,A1 can either
produce a workpiece first or go to the buffer place first [Fig.
2(b)].A2 is a consumer that consumes workpieces continually,
one piece at a time, from the buffer BUF. To do so,A2 first
needs to go to the buffer place. Upon arriving, it then takes a
workpiece from BUF and returns to its initial state for a new
consumption cycle [Fig. 2(c)]. In this example, we arbitrar-
ily fix ΣA

c = {1produced, 1arrived, 2arrived, 2taken} and
ΣA

uc = {1placed}.
The inter-agent constraint is stated as follows:Producer

agent must produce a workpiece first before going to the buffer
place. Moreover, the buffer must never overflow or underflow.

Intuitively, the constraint requires1produced to be exe-
cuted first, and1arrived and 1produced must be executed
alternately thereafter; and similarly for1placed and 2taken.
Clearly, the constraint imposes more restrictions on the plan

of A1 than that ofA2. Hence, one would expect CMS1 to
be more complex than CMS2. The textual description of the
constraint can be formulated by automatonC [Fig. 2(d)]. How
this can be done is simply taken for granted here. Such an
automaton may be more easily prescribed with the aid of a
high-level specification translator [27].

Nonblocking CM pair(S1, S2) with Lm(AS1

1 ‖ AS2

2 ) ⊆
Lm(A) ∩ Lm(C) may now be synthesized using Algorithm
1. After Line 2, automatonS = SupCon(C,A,ΣA

c ),
whose marked languageLm(S) is the supremal
controllable sublanguage of Lm(A) ∩ Lm(C), is
constructed [see Fig. 3]. Following Line 3, we obtain
MinSysComSet(Lm(S), A) = {1placed, 2taken},
ΣCM1 = {1produced, 1arrived, 1placed, 2taken} and
ΣCM2 = {2arrived, 2taken, 1placed}; using which, CM’s
Si = CM(S,ΣCMi), i ∈ {1, 2}, are computed at Line 4
[see Fig. 4]. Finally, the state size of these CM’s is reduced
by procedureCMreduce at Line 5, and the synthesis CM
solution is returned at Line 6 [see Fig. 5]. To elaborate,
using these CM’s means:A1 must inform A2 whenever it
places a workpiece into the buffer, andA2 reciprocates in
turn whenever it takes a workpiece from the buffer. For
this example, the CM’sS1 and S2 returned by Algorithm
1 are verified to be optimal, i.e., each is of minimal state
size among all the minimally interventive CM’s that entail
minimal communication between the agents.

0

1

3

2

4

6

5

9

7

8

1produced 1arrived

1arrived

2arrived

1p
la

c
e
d

2taken

2ta
ken

1produced

2arrived

1p
la

ce
d

2
a
rrive

d 2
a
rr

iv
e
d

2arrived

1p
ro

d
u
c
e
d

1
p
ro

d
u
c
e
d

Fig. 3. AutomatonS with Lm(S) - the supremal controllable sublanguage
of Lm(A) ∩ Lm(C)

1

2

0

3

1arrive
d

1placed

2ta
ken

4

1produced

2t
ak

en

1p
ro

du
ce

d

(a) CM S1 for producer agentA1

1

2

0

3

1placed

2taken

2a
rr

iv
ed

1placed

2arrived

(b) CM S2 for consumer agentA2

Fig. 4. Coordination modules for the manufacturing agents before applying
the state-size reduction procedureCMreduce

In [6], [7], a different approach to the synthesis of CM’s is
presented. There, a supervisorS′ is first computed by applying
procedureSupreduce to automatonS [see Fig. 6]. Following,
CM’s S′

1 andS′
2, with S′

i for Ai, are computed by removing
from S′ all its strictly self-loop events that are not defined
in agent modelsA1 and A2, respectively [see Fig. 7]. The
supervisorS′ returned might be minimally reactive as is the
case in this example, i.e.,S′ has the least number of states and



10

0

3

1

2

2t
ak

en

1p
laced

0

1

2arrived

2arrived

2t
a

ke
n

2arrive
d

0

1

1

2

1arrive
d

1produced

1placed

1a
rr

iv
ed

1produced

0

3

1a
rrived

1p
ro

d
uc

ed

1placed

2taken

1p
ro

du
ce

d

2taken

1placed
2taken

Fig. 5. Coordination modules for the manufacturing agents

the largest number of strictly self-loop events among thosethat
can controlA to satisfyC [7]. With this method, a minimally
reactiveS′ is the best outcome though this is not guaranteed in
general. Synthesizing from such anS′ produces rather state-
efficient CM’s S′

i with a reduced number of events (inΣA −
ΣS′

loop) to be communicated between the agents.

0 1

23

1arrived

1p
ro

du
ce

d

1placed

2taken2arrived 2arrived

2arrived2arrived

1produ
ced

2taken

Fig. 6. Minimally reactive supervisorS′

0 1

23

1a
rrived

1p
ro

du
ce

d

1placed

2taken

1p
ro

du
ce

d

2taken

(a) CM S′

1
for producer agentA1

0 1

23

1arrived

1p
ro

du
ce

d

1placed

2taken2arrived 2arrived

2arrived2arrived

1produ
ced

2taken

(b) CM S′

2
for consumer agentA2

Fig. 7. Non-optimal coordination modules for the manufacturing agents

However, as this example clearly illustrates, Algorithm 1
offers an improvement in coordination design synthesis over
the original method [6], [7], even with the latter producing
a minimally reactiveS′ for CM design. Firstly, the system
communication set{1placed, 2taken} between the agents
(using CM’sS1 andS2) is a subset of that when using CM’sS′

1

and S′
2, which is {1produced, 1arrived, 1placed, 2taken},

thanks to theMinSysComSet procedure. Secondly, CMS2

has a smaller state size than CMS′
2, and thus has a lower

memory requirement. Achieving this higher level of efficiency
in implementation is the result of individually reducing the
CM’s state size using procedureCMreduce in Line 5 of
Algorithm 1, instead of reducing them ‘together’ using pro-
cedureSupreduce, as in the original method. In essence, the
individual state-size reduction of CM’s exploits the fact that
an inter-agent constraint may impose different restrictions on
different agent models, and thus the less restricted agent should
expect a simpler CM.

V. RELATED WORK

A. In Agent Research

Among related work under the same discrete-event
paradigm, we have earlier discussed the design improvement
in synthesizing CM’s that Algorithm 1 offers over an existing
approach [6], [7]. We shall now discuss our discrete-event
coordination framework in relation to some other important
frameworks for coordinating agents.

Yokoo et al. [9], [10] study a Distributed Constraint Satisfac-
tion Problem (DCSP). In its most basic form, a DCSP consists
of a finite set of agents and their inter-agent constraints. An
agent is represented by a variable and its set of possible actions
is represented by the variable’s domain of discrete values.Each
inter-agent constraint is a restriction on the actions among
the agents, specified as a predicate on the domain values
of their variables. The problem of interest is then for the
agents to cooperatively find a combination of their actions
that satisfies these inter-agent constraints. It has been shown
that various important multiagent application problems can be
formalized and addressed as DCSPs [9]. Examples include
distributed resource allocation, distributed sensor network and
distributed scheduling. However, to the best of our knowledge,
the DCSP framework could not be readily exploited to address
the coordination problem among interacting agents modeled
as discrete-event processes. Our work runs in parallel with
the DCSP framework, presenting a new constraint satisfaction
foundation for discrete-event agents. An advantage of our
work is that it is expressed in the rudimentary framework of
languages and automata, and hence can furnish a theoretical
basis for a wide range of applications.

In another research direction, a formal agent model called
Markov Decission Process (MDP) [28] has been generalized
in different ways to model a network of coordinating agents
[29], [30]. In these MDP-extension frameworks, a coordination
strategy for an individual agent maps a set of historical
system state sequences observed by the agent onto a set of
the agent’s local actions, each represented by a probability
distribution over the agent’s (next) local states. The problem
of interest is to synthesize optimal coordination strategies for
MDP agents to maximize some given reward function defined
on the set of possible system state sequences. A key feature
that differentiates our work from these research efforts isthat
we treat events rather than states as the fundamental concept,
and model them as explicit transitions in an agent structure.
That enables interesting characteristics of agents to be modeled
using the properties of events. For instance, the autonomy of
coordinating agents can be modeled using controllable and
uncontrollable events, as explained in Section III-A. Moreover,
it is argued that in some technical situations, when compared to
the state-based modeling approach, the event-based modeling
approach is more flexible and may be computationally more
advantageous [31]. This is because the structural information
of a system, which is not reflected in state-based models,
is readily captured by the concept of events in event-based
models.

Finally, one feature of our work is that we assume an
inter-agent constraint has already been given and focus on



11

synthesizing CM’s for the agents to satisfy the constraint.
In contrast, there have been extensive research efforts focus-
ing on how to specify inter-agent constraints. For example,
Rosenschein and Zlotkin [32] investigate on how to design
inter-agent constraints, referred to as “rules of encounters”,
to restrict individual self-interested agents to act in a certain
way that benefits the whole system. Shoham and Tennenholtz
[33], [34] study the problem of designing social constraints to
ensure that interacting agents will not arrive at situations that
can lead to conflict. An interesting direction for future work
is to integrate these research efforts with ours in a unified
framework so that the whole process of specifying inter-agent
constraints and designing CM’s for interacting agents can be
fully automated.

B. In Control Research

The proof of Theorem 2 has utilized established mathe-
matical results for the existence of a supervisor in discrete-
event control theory [15]. However, multiagent coordination
and supervisory control are conceptually different problems.
As first explained in [6], [7], the latter entails enablement
or disablement of events in a DES by external supervisors,
while the former entails interaction and communication among
agents in the DES through their local CM’s. Below, we attempt
to further distinguish our coordination design problem from
related problems in the control literature.

Lin and Wonham [24] and Rudie and Wonham [26] study
the decentralized discrete-event control problem which shares
the same mathematical foundation with but is different from
our problem of multiagent coordination, as will be explained
later in this section. The decentralized control problem isto
synthesize multiple supervisors, each with different observa-
tion and control capabilities, that jointly control a DES to
achieve conformance to a given global control specification.
The observation and control capabilities of individual (decen-
tralized) supervisors are predetermined respectively as subsets
of observable and controllable events of the DES, and can be
different for each supervisor.

In [26], an important condition is established, specifying
that a set of decentralized supervisors exists if and only if
the global specification language satisfies the two properties
of controllability and co-observability. It has been shownthat
the latter property reduces to the observability [15] of the
specification language with respect to each of the supervisors’
observable event subset, if the supervisors’ controllableevent
subsets are pair-wise disjoint [14]. Thus, for the case ofn ≥ 2
supervisors controlling a DESA =‖ni=1 Ai with ΣAi ∩ΣAj =
∅ for 1 ≤ i 6= j ≤ n, and with each supervisori observing
what is equivalent to the event setΣAi ∪Σcom and controlling
event setΣAi

c , a controllable and co-observable language is
mathematically equivalent to a coordinable language givenin
Definition 5.

When the co-observability of the global specification lan-
guage is not satisfied, decentralized supervisors may commu-
nicate observable events among themselves to establish co-
observability [35], [36], [25]. Among the first research efforts,
Wong and Schuppen [35] present a necessary and sufficient

condition for solving the decentralized control problem with
communication by formulating a refinement relation between
observation and control. Barrett and Lafortune [36] develop
a decentralized control with communication framework using
state estimation. Rohloff and Schuppen [25] discuss the re-
lationship between the minimal communication and minimal
sensor selection problems, and propose several heuristic algo-
rithms for approximating the minimal communication event
sets among decentralized supervisors.

Like [25], we also study the problem of minimal commu-
nication, but in a new discrete-event multiagent coordination
setting. In our multiagent coordination framework, the sets
of observable events constitute the system communication
set Σcom, which is a union of local event subsets of the
sending agents that need to be determined for each receiving
agent. Unlike decentralized control and supervisory control
in general, the observable events for a receiving agent (or
events to be communicated to the agent when they occur) are
not pre-determined but computed with the aim of minimizing
communication, and therefore can be different for a different
inter-agent constraint. Applying our synthesis algorithmfor
two agents, the local event subsetΣcom ∩Σ

Ai of the sending
agentAi can be determined and minimized for the receiving
agent Aj , thereby minimizing communication among the
coordinating agents. Minimizing communication is a problem
of significant importance for application domains in which
communication bandwidth is a scare resource.

Significantly, what distinguishes our multiagent coordina-
tion problem from the decentralized control problem (with or
without communication) reviewed above is that, the former
arises in application domains such as robotic agents where
distributed agent autonomy is a key consideration, whereas
the latter arises in domains where it is not and the discrete-
event processes are not active agent models but (can be
treated as) passive system components to be controlled. From
this perspective, the supervisory control framework presents a
“supervisor-subordinate” architecture where a plant (which can
consist of multiple components) is monitored and controlled
by a single supervisor or a set of decentralized supervisors. In
contrast, our multiagent framework presents a “peer-to-peer”
architecture where distributed agents operate independently
but cooperatively to achieve conformance to some system
level constraint. Unlike a component to be controlled in the
supervisory control framework, which acts passively underthe
direction of external supervisors, an agent in our framework
acts actively following its own defined plan and its built-in
coordination strategy (represented by its CM).

Recently, the problem of minimizing communication be-
tween interacting discrete-event systems has been gaining
increasing attention. Rudie, Lin and Lafortune [37], [38]
consider a problem where one control agent (or supervisor)
communicates with another agent for information so as to
distinguish the states of its automaton, or recognize the set
of transitions pre-specified as essential, for control decision-
making or diagnosis. Since communication may be costly,
a strategy to reduce communication between agents is de-
veloped. Like theirs, we also seek to reduce communication
between agents, but consider a different problem where the



12

agents coordinate by interacting and communicating for infor-
mation so as to cooperatively satisfy an inter-agent constraint.

Finally, to emphasize, a coordination module in our frame-
work is conceptually different from a local supervisor in modu-
lar supervisory control [39]. The former is an interface through
which a coordinating agent interacts and communicates with
other agents in a multiagent system. The latter is an external
supervisor controlling a group of discrete-event processes in a
modular DES plant.

VI. CONCLUSION AND FUTURE WORK

This paper has presented new results on multiagent coor-
dination in a discrete-event framework. A fundamental in-
sight unearthed in this paper is thatminimal sensor selection
and minimal agent communicationactually share the same
algorithmic solution although they are conceptually different
domains. Importantly, this insight, together with earlierwork
[6], [7] establishing the mathematical connection between
supervisory control and multiagent coordination, leads usto
adapting and applying the DES algorithmic foundation to
develop an algorithm (Algorithm 1) to synthesize coordination
modules for coordinating agents. As guaranteed by an estab-
lished theoretical result (Theorem 2), the synthesis algorithm
(Algorithm 1) computes and returns near-optimal coordination
modules which are minimally interventive and entail minimal
communication among the agents. Moreover, they are state-
reduced individually for each agent, leading to design im-
provement over the original method [6], [7] as demonstrated
by an example. To reduce computational complexity, future
research includes investigating a localized version of synthesis
that can avoid the explicit computation of global supervisor
altogether. Another line of research is a nontrivial extension
to multiple inter-agent constraints distributed among agents
in a network, where every agent would need to interact with
those agents sharing mutually relevant constraints, but not
necessarily with all the others in the network. The framework
will also need to be further extended to model real-time
events, and applied to modeling and designing some real-world
systems to demonstrate the practical utility and benefits ofthe
approach.

REFERENCES

[1] T. W. Malone and K. Crowston, “The interdisciplinary study of coordi-
nation,” ACM Computing Surveys, vol. 26, no. 1, pp. 87–119, 1994.

[2] S. F. Chew, S. Wang, and M. A. Lawley, “Robust supervisorycontrol for
product routings with multiple unreliable resources,”IEEE Transactions
on Automation Science And Engineering, vol. 6, no. 1, pp. 195–200,
2009.

[3] A. Giua and C. Seatzu, “Modeling and supervisory controlof railway
networks using petri nets,”IEEE Transactions on Automation Science
And Engineering, vol. 5, no. 3, pp. 431–445, 2008.

[4] H. Chen, L. Amodeo, F. Chu, and K. Labadi, “Modeling and per-
formance evaluation of supply chains using batch deterministic and
stochastic petri nets,”IEEE Transactions on Automation Science And
Engineering, vol. 2, no. 2, pp. 132–144, 2005.

[5] J. Tsai, S. Rathi, C. Kiekintveld, F. Ordóñez, and M. Tambe, “Iris -
a tool for strategic security allocation in transportationnetworks,” in
Proceedings of the 8th International Joint Conference on Autonomous
Agents and Multi-Agent Systems – Industrial Track (AAMAS’09), Bu-
dapest, Hungary, May 2009, pp. 37–44.

[6] K. T. Seow, C. Ma, and M. Yokoo, “Multiagent planning as control
synthesis,” inProceedings of the Third International Joint Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS’04), Columbia
University, New York City, USA, July 2004, pp. 972–979.

[7] K. T. Seow, M. T. Pham, C. Ma, and M. Yokoo, “Coordination planning:
Applying control synthesis methods for a class of distributed agents,”
IEEE Transactions on Control Systems Technology, vol. 17, no. 2, pp.
405–415, 2009.

[8] M. Montemerlo, S. Thrun, H. Dahlkamp, D. Stavens, and S. Strohband,
“Winning the darpa grand challenge with an ai robot,” inProceedings
of the 21st National Conference on Artificial Intelligence (AAAI’06),
Boston, Massachusetts, USA, July 2006, pp. 982–987.

[9] M. Yokoo, Distributed Constraint Satisfaction : Foundations of Cooper-
ation in Multi-Agent Systems. Springer-Verlag, Heidelberg, Germany,
2000, Springer Series on Agent Technology.

[10] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara, “The distributed
constraint satisfaction problem : Formalization and algorithms,” IEEE
Transactions on Knowledge and Data Engineering, vol. 10, no. 5, pp.
673–685, 1998.

[11] B. An, V. Lesser, D. Irwin, and M. Zink, “Automated negotiation with
decommitment for dynamic resource allocation in cloud computing,” in
Proceedings of the 9th International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS’2010), Toronto, Canada, May
2010, pp. 981–988.

[12] P. J. Ramadge and W. M. Wonham, “Supervisory control of aclass of
discrete event processes,”SIAM Journal of Control and Optimization,
vol. 25, no. 1, pp. 206–230, 1987.

[13] A. Haji-Valizadeh and K. A. Loparo, “Minimizing the cardinality of an
events set for supervisors of discrete-event dynamical systems,” IEEE
Transactions on Automatic Control, vol. 41, no. 11, pp. 1579–1593,
1996.

[14] W. M. Wonham, Notes on Control of Discrete-Event Systems.
Systems Control Group, University of Toronto, Canada, 2008,
http://www.control.toronto.edu/cgi-bin/dldes.cgi.

[15] F. Lin and W. M. Wonham, “On observability of discrete event systems,”
Information Sciences, vol. 44, no. 3, pp. 173–198, 1988.

[16] W. M. Wonham,Control Design Software: TCT. Developed by Systems
Control Group, University of Toronto, Canada, Updated 1st July 2008,
http://www.control.toronto.edu/cgi-bin/dlxptct.cgi.

[17] M. T. Pham and K. T. Seow, “Towards synthesizing optimalcoordination
modules for distributed agents,” inProceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence (AAAI’08), Chicago, Illinois,
USA, July 2008, pp. 1479–1480.

[18] K. R. Rohloff, S. Khuller, and G. Kortsarz, “Approximating the mini-
mal sensor selection for supervisory control,”Discrete Event Dynamic
Systems: Theory and Applications, vol. 16, no. 1, pp. 143–170, 2006.

[19] T.-S. Yoo and S. Lafortune, “NP-completeness of sensorselection
problems arising in partially observed discrete-event systems,” IEEE
Transactions on Automatic Control, vol. 47, no. 9, pp. 1495–1499, 2002.

[20] R. Su and W. M. Wonham, “Supervisor reduction for discrete-event
systems,”Discrete Event Dynamic Systems : Theory and Applications,
vol. 14, no. 1, pp. 31–53, 2004.

[21] P. Gohari and W. M. Wonham, “On the complexity of supervisory
control design in the rw framework,”IEEE Transactions on Systems,
Man, and Cybernetics, Part B, vol. 30, no. 5, pp. 643–652, 2000.

[22] C. Ma and W. M. Wonham,Nonblocking Supervisory Control of State
Tree Structures. Lecture Notes in Control and Information Sciences, Vol
317. Springer-Verlag, New York, 2005.

[23] L. Feng and W. M. Wonham, “Computationally efficient supervisor
design: Abstraction and modularity,” inProceedings of the Eighth
International Workshop on Discrete Event Systems (WODES’06), New
York, USA, July 2006, pp. 3–8.

[24] F. Lin and W. M. Wonham, “Decentralized control and coordination of
discrete event systems with partial observation,”IEEE Transactions on
Automatic Control, vol. 35, no. 12, pp. 1330–1337, 1990.

[25] K. R. Rohloff and J. H. van Schuppen, “Approximat-
ing minimal communicated event sets for decentralized
supervisory control,” in IFAC World Congress 2005,
http://www.nt.ntnu.no/users/skoge/prost/proceedings/ifac2005/Fullpapers
/02992.pdf.

[26] K. Rudie and W. M. Wonham, “Think globally, act locally :Decen-
tralized supervisory control,”IEEE Transactions on Automatic Control,
vol. 37, no. 11, pp. 1692–1708, 1992.

[27] K. T. Seow, “Integrating temporal logic as a state-based specification
language for discrete-event control design in finite automata,” IEEE
Transactions on Automation Science and Engineering, vol. 4, no. 3,
pp. 451–464, 2007.



13

[28] M. L. Puterman,Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. John Wiley & Sons, Inc., New York, NY, USA,
2005.

[29] J. Marecki, T. Gupta, P. Varakantham, M. Tambe, and M. Yokoo, “Not all
agents are equal: Scaling up distributed pomdps for agent networks,” in
Proceedings of the 7th International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS’08), Estoril, Portugal, May
2008, pp. 485–492.

[30] C. V. Goldman and S. Zilberstein, “Decentralized control of cooperative
systems: Categorization and complexity analysis,”Journal of Artificial
Intelligence Research, vol. 22, pp. 143–174, 2004.

[31] X.-R. Cao,Stochastic Learning and Optimization: A Sensitivity-based
Approach. Springer, 2007.

[32] J. S. Rosenschein and G. Zlotkin,Rules of Encounter: Designing
Conventions for Automated Negotiation Among Computers. MIT Press
Cambridge, Mass, 1994.

[33] Y. Shoham and M. Tennenholtz, “On social laws for artificial agent
societies: Off-line design,”Artificial Intelligence, vol. 73, no. 1-2, pp.
231–252, 1995.

[34] ——, “On the emergence of social conventions: modeling,analysis, and
simulations,”Artificial Intelligence, vol. 94, no. 1, pp. 139–166, 1997.

[35] K. C. Wong and J. H. van Schuppen, “Decentralized supervisory control
of discrete-event systems with communication,” inProceedings of the
Third International Workshop on Discrete Event Systems (WODES’96),
Edinburgh, U.K, August 1996, pp. 284–289.

[36] G. Barrett and S. Lafortune, “Decentralized supervisory control with
communicating controllers,”IEEE Transactions on Automatic Control,
vol. 45, no. 9, pp. 1620-1638, 2000.

[37] K. Rudie, S. Lafortune, and F. Lin, “Minimal communication in a
distributed discrete-event system,”IEEE Transactions on Automatic
Control, vol. 48, no. 6, pp. 957–975, 2003.

[38] ——, “Minimal communication for essential transitionsin a dis-
tributed discrete-event system,”IEEE Transactions on Automatic Con-
trol, vol. 52, no. 8, pp. 1495–1502, 2007.

[39] M.H. de Queiroz and J.E.R. Cury, “Modular control of composed
systems,”Proceedings of the American Control Conference, Chicago,
IL, USA, June 2000, pp. 4051–4055.


