
1

Command and Control of Discrete-Event Systems:
Towards On-line Hierarchical Control Based on

Feasible System Decomposition
Quang Ha Ngo and Kiam Tian Seow,Senior Member, IEEE

Abstract— A new operational design for hierarchical control
of discrete-event systems is proposed. The design brings the
structure of command and control from concept to realization
for on-line control operation. For a command reference input,
a new concept for output control feasibility of a discrete-event
system modeled by a Moore automaton is characterized; and a
system decomposition of a suitably structured Moore automaton
into a controllable subsystem and an uncontrollable subsystem
is formulated. Based on these results, the new command and
control design for controller operation is realized, examined and
discussed.

Note to Practitioners—In the academic literature, the com-
mand and control theory of hierarchical control for discrete-event
systems [2] is well established for meeting control specifications
of safety with nonblockingness. This paper proposes a new
operational design that uses the two-level structure of high-
level command and low-level control, hitherto only a theoretical
concept, for on-line translation of command to control during
runtime hierarchical control. The design is realized with a two-
level control algorithm and a reusable ‘control technology’ for
the real discrete-event system at the low level, developed using
the fresh theoretical findings in this paper. As the first steps
in filling the theory-to-practice gap, the practical advantages
of this new operational design include facilitating a deeper
understanding of control with on-line causal clarity of command
over control, and a significant reduction in off-line synthesis
complexity with fast on-line control computation. In laying
an algorithmic foundation for online hierarchical control , the
proposed design has potential applications for many engineering
control problems, where command and control is the inherent
mode of runtime operation, or is needed to provide operational
clarity when subjecting the control system to validation tests
by simulation and observation. Problems include the designof
logical command and control systems for supervising smart grids,
traffic light systems and mass rapid transit networks, where
the manager in the central command center may issue high-
level commands to the operators to control the low-level physical
system.

Index Terms— Discrete-event systems, hierarchical control, on-
line supervision, formal languages and automata.

I. I NTRODUCTION

Since its founding [3], the supervisory control of discrete-
event systems (DES’s) [2], [4], [5] has evolved into an

This paper revises and extends the 2012 IEEE CASE version [1].
Q.H. Ngo and K.T. Seow are with the School of Computer Engineer-

ing, Nanyang Technological University, Republic of Singapore 639798.
QUANG5@e.ntu.edu.sg, asktseow@ntu.edu.sg

This work was partially supported by the Singapore Agency for Science,
Technology and Research (A*Star), under a Thematic Scientific Research
Programme Grant.

increasingly important science of automation for many engi-
neering control problems, with particular application success
reported for automated manufacturing systems (see e.g., [6],
[7], [8]). In this paper, for problems where command and
control is required, a new theoretical and algorithmic basis
for operational design of hierarchical discrete-event control is
investigated.

Hierarchical control of DES’s is a research area of current
vitality. Broadly speaking, two types of event reporter maps
have been proposed to model a DES hierarchy, namely, virtual
[2], [9] (as is referred to in this paper) and natural [10],
[11], [12] projections. In the basic two-level hierarchy, by the
former projection, the high-level DES is modeled by virtual
events, i.e., events abstracted or projected as a symbolically
different set from that of the low-level DES, whereas, by
the latter projection, the high-level DES is modeled by a
subset of the events modeling the low-level DES. This paper
contributes to the virtual projection paradigm; a new approach
to hierarchical control realization in a command and control
fashion is described.

loG

hiG

loC

hiC

lohiInf

loInf

hiloCom

hiInf

hiCon

loCon

loG

hiG

loC

hiC

lohiInf

loInf

hiloCom

hiInf

hiCon

loCon

Fig. 1. The command & control concept for hierarchical control [13]

The proposed research is based on the seminal work on
hierarchical control [13]. There, a two-level control hierarchy
for DES’s is first introduced, and is founded on the concept
of command and control shown in Fig. 1. In a standard
feedback fashion, the low-level DESGlo is a real system to
be supervised by the low-level controllerClo, and the high-
level DES Ghi is an abstract and simplified model to be
supervised by the high-level controllerChi. This is effected
via the respective control channels,Conhi and Conlo, and
the information feedback channels,Infhi andInflo. The two
levels are interconnected by the top-down command channel
Comhilo and the bottom-up information channelInflohi.
The controllerChi is said to be virtual sinceGhi is an
abstract model driven byGlo via the channelInflohi; and it

2

summarizes the behaviour ofGlo that is important. Significant
information from Glo is reported toGhi via the channel
Inflohi, and in turn is fed back toChi via the channelInfhi.
In response, the virtual control ofChi onGhi, via the channel
Conhi, is transmitted toClo as command via the channel
Comhilo, which in turn controlsGlo via the channelConlo

as commanded.
In the setup described, the structural conditions for hierar-

chical consistency (HC) [13] and that with marking (HCM)
[14], [15], to be met by a suitably formulated hierarchical
information map for a properly structured DES, have been
developed. Intuitively, achieving HC means that a specification
task of the high-level controller can be realized supremally
through low-level control, whereas achieving HCM means that
it can be realized supremally with nonblockingness through
nonblocking low-level control. However, under HC or HCM,
the existing operational design is a flat low-level controller
[2], [13], [14], [15], [16] synthesized from a base-level
specification converted from a given high-level specification.
Besides incurring high complexity of control synthesis, this
design consolidates in a flat structure all the possible controls
translated off-line from the regulated commands at the high
level, with the result that the command and control structure as
conceptualized in Fig. 1 is lost in implementation. In contrast
to the consolidated flat structure, the design proposed in this
paper implements the command and control structure, hitherto
only a theoretical concept, through a two-level control algo-
rithm for on-line translation of high-level commands for low-
level control. In so doing, the control algorithm can facilitate
a deeper understanding of control during runtime operation.
To explain and discuss later, the novelty of this new design
idea lies in basing the on-line command-to-control translation
on some reusable ‘control technology’ developed for the low-
level DES, and the algorithmic cooperation between the two
levels.

Among recent efforts in the virtual projection paradigm,
hierarchical control has been extended to handle partial ob-
servation of the low-level DES [9], and to ensure control
robustness [17]. It has also been generalized to handle partial
observation of the low-level system modeled as a fuzzy DES
[18].

Related work based on the other paradigm of natural projec-
tion [10], [11], [19] develops different methods of subsystem
synthesis aimed at reducing the computational effort. Recent
efforts include proposing or enhancing different hierarchical
design methods for nonblocking control synthesis (e.g., [11],
[20], [21], [22], [23], [24]), by exploiting modularity andde-
centralization of DES’s in a hierarchical structure. In essence,
unlike a centralized controller that has to be constructed to
act fully on the overall system, modular or decentralized
controllers are synthesized to exercise their control onlyon
that part of the DES that matches their event set. Hierarchical
control has also been extended to handle partial observation
of the low-level DES [12], and to generalω-languages using
natural projection defined for infinite strings [25]. In an-
other development, strict decoupling between levels achieved
through the use of well-defined interfaces has been proposed
(e.g., [26], [27]), followed by an extension to multiple levels

[28] and an alternative interfaced-based approach [29].
The rest of this paper is organized as follows. In formalizing

and examining the proposed design idea in the virtual projec-
tion paradigm, the necessary background and motivation are
presented in Section II. In Section III, the system-output con-
trol feasibility and decomposition of a DES into a controllable
subsystem and an uncontrollable subsystem, given a command
reference input, are first formulated; and are illustrated by an
example. Based on these results, the implementability of the
new command and control design for hierarchical control is
investigated in Section IV, and a resultant control algorithm
is developed with its design complexity examined. Section V
summarizes the contribution of the paper and points to future
research.

II. BACKGROUND & M OTIVATION

A. Basics for Supervisory Control & DES

The relevant components of the language and automata
framework for supervisory control [2], [3], [5], [30] are first
reviewed.

1) Languages & Automata for DES Modeling: Let Σ be a
finite set of symbols representing individual events. A string is
a finite sequence of events. DenoteΣ∗ as the set of all strings
with events fromΣ, including the empty string (sequence with
no events) denoted byε; and letΣ+ = Σ∗ − {ε}. A string s′

is a prefix ofs if (∃t ∈ Σ∗)s′t = s. It is a strict prefix ofs,
denoted bys′ < s , if (∃t ∈ Σ+)s′t = s.

A formal languageL overΣ is a subset ofΣ∗. A language
L1 is said to be a sublanguage ofL2, if L1 ⊆ L2. The prefix
closureL of L is the language consisting of all prefixes of
strings ofL, i.e., L = {s | (∃s′)ss′ ∈ L}. Clearly L ⊆ L,
andε ∈ L providedL 6= ∅. A languageL is called closed if
L = L.

A regular language [31] is a language that can be generated
by a finite state automaton [2]. Formally, an automatonG is a
5-tuple(Q,Σ, δ, q0, Qm) where (i)Q is the finite set of states,
(ii) Σ is the finite set of events, (iii)δ : Σ × Q → Q is the
(partial, deterministic) transition function, (iv)q0 is the initial
state, and (v)Qm ⊆ Q is the subset of marked states. That
an eventσ ∈ Σ is defined at a stateq ∈ Q is denoted by
δ(σ, q)!, and, for an event subsetΣ′ ⊆ Σ and a stateq ∈ Q,
defineΣ′(q) = {σ ∈ Σ′ | δ(σ, q)!}. The definition ofδ can be
extended toΣ∗ as follows:δ(ε, q) = q and (∀σ ∈ Σ)(∀s ∈
Σ∗)δ(sσ, q) = δ(σ, δ(s, q)), and is defined when bothq′ =
δ(s, q) andδ(σ, q′) are defined.

Following, the behavior may then be described by the two
languages generated byG: L(G) = {s ∈ Σ∗ | δ(s, q0)!} and
Lm(G) = {s ∈ L(G) | δ(s, q0) ∈ Qm}. L(G) is called the
prefix-closed language andLm(G), the marked language. By
definition,Lm(G) ⊆ L(G).

A stateq ∈ Q is reachable (from the initial stateq0) if (∃s ∈
Σ∗)δ(s, q0) = q, and coreachable if(∃s ∈ Σ∗)δ(s, q) ∈ Qm.
AutomatonG is reachable if all its states are reachable, and
coreachable if all its states are coreachable and soLm(G) =
L(G). Finally, automatonG is trim if it is both reachable and
coreachable.

3

2) Supervisory Control: Let a reachable automatonG =
(Q,Σ, δ, q0, Qm) model a DES, with the event setΣ parti-
tioned into the controllable event setΣc and the uncontrollable
event setΣu. A specification languageK ⊆ Σ∗ is said to be
controllable with respect to (w.r.t)G if KΣu ∩ L(G) ⊆ K.
This controllability condition complies with the fact thata
supervisor that exists for DESG cannot physically disable
an uncontrollable event, and so only the occurrence of any
uncontrollable event always not exiting the bounds ofK can
guarantee non-violation of the specificationK. If K is not
controllable, there exists a supremal (or largest) controllable
marked sublanguage of the DESG that lies within the lan-
guageK. This sublanguage can be generated by the trim
automaton returned bySupcon(G,K) [30], which has worst-
case time complexity ofO(lm2), where l and m are the
respective cardinality of the event setΣ and the cross-product
state set of DESG and the automaton modelingK.
Supcon(G,K) is a supervisor automatonS =

(X,Σ, ξ, x0, Xm), and is said to be nonblocking (for
DES G) since Lm(S) = L(S) for a trim and hence
coreachableS = Supcon(G,K). Its associated control data
setCondat [2] w.r.t G is given by

Condat(G,S) = { ∆(q, x) ⊆ Σc | (∃s ∈ Σ∗)
δ(s, q0) = q ∈ Q and
ξ(s, x0) = x ∈ X },

where∆(q, x) = Σc(q) − Σc(x). Condat(G,S) has worst-
case time complexity ofO(cm), wherec is the cardinality of
the controllable event setΣc.

Intuitively, each data element∆(q, x) specifies the control-
lable events to be disabled at a composite state(q, x) ∈ Q×X
reachable by a commons ∈ Σ∗. By default, the events in
Σ(q)∩Σ(x) are enabled at state(q, x). With L(S) ⊆ L(G), a
data element∆(δ(s, q0), ξ(s, x0)) is also conveniently denoted
by Condat(S, s).

A control law for a DESG specifies a set of controllable
events to be disabled following every input historys ∈ L(G).
Formally, a control lawf is a functionf : L(G) → 2Σ with
the constraint

(∀s ∈ L(G)) (Σu ∩ Σ(δ(s, q0)) ⊆ (Σ− f(s))) .

The prefix-closed language that results from imposingf onG
is denoted byL(f,G) and defined as

ε ∈ L(f,G),

(∀s ∈ L(f,G))(∀sσ ∈ L(G))sσ 6∈ L(f,G) ⇔ σ ∈ f(s).

3) Moore Automaton for Low-level DES Modeling in Hier-
archical Control: In the study of two-level hierarchical control
(e.g., [13]), the real system at the base or low level is a DES
that is equipped with an output function to send significant
events to the high-level. A Moore automaton [32] is used to
model a class of such DES’s.

In general, a DES automatonG with event setΣ needs
to be re-structured into a Moore automaton - an automaton1

1Although the same 5-tuple notation is used as in Section II-A.2, it should
be clear in the context that the structure ofGlo is in general not the same as
that of a given DESG.

Glo = (Q,Σ, δ, q0, Qm) associated with an information chan-
nel defined by a vocalization mapV : Q → T ∪ {τo} - such
thatL(Glo) = L(G) andLm(Glo) = Lm(G). T denotes the
high-level (virtual) event set, and the symbolτo 6∈ T denotes
a ‘silent output’. The Moore construction [32] for the DES
G is based on a given reporter map - a virtual projection
θ : L(G) → T ∗, defined such thatθ(ε) = ε and, forσ ∈ Σ and
sσ ∈ L(G), θ(sσ) is eitherθ(s) or θ(s)τ for someτ ∈ T .
For the constructedGlo, the vocalization mapV for every
s′ ∈ L(Glo) is defined by

V (δ(s′, q0)) =







τo, if s′ = ε
or δ(s′, q0) 6∈ Qvoc

τ ∈ T, otherwise,

where the selected subsetQvoc ⊆ Q, called vocal state set, is
defined as follows. Forσ ∈ Σ ands′ = sσ,

δ(sσ, q0)

{

6∈ Qvoc, if θ(sσ) = θ(s)
∈ Qvoc, if θ(sσ) = θ(s)τ .

The reporter mapθ can be extended toθ(K) ⊆ T ∗ for K ⊆
L(Glo) as follows: θ(K) = {θ(s) | s ∈ K}. The inverse
reporter map fort ∈ T ∗ is then defined as follows:θ−1(t) =
{s ∈ L(Glo) | θ(s) = t}. The inverse reporter mapθ−1 can
be extended toθ−1(E) ⊆ L(Glo) for E ⊆ T ∗ as follows:
θ−1(E) =

⋃

t∈E θ−1(t).
Through the mapV , Glo outputs events inT to drive some

high-level θ-image modelGhi whenever it reaches a vocal
stateq ∈ Qvoc, and otherwise outputs the silent symbolτo 6∈ T
to signal no ‘significant’ change for the high level. The high-
level image ofGlo that results is an automatonGhi, such that
L(Ghi) = {θ(s) | s ∈ L(Glo)} and Lm(Ghi) = {θ(s) |
s ∈ Lm(Glo)}. Ghi is said to generate events ofT under the
θ-map onL(Glo).

The high-level event setT of Ghi is partitioned into the
controllable event setTc and the uncontrollable event setTu.
To ensure that every such high-level eventτ ∈ T defined and
output by (Glo, V) is unambiguously controllable or uncon-
trollable, the Moore automaton(Glo, V), or simplyGlo when
V is understood, needs to be refined so that it becomes output-
control consistent (OCC). Formally, (the Moore transition
structure of) a DESGlo is said to be OCC [2] if, for every
string s ∈ L(Glo) of the form

s = σ1σ2 · · ·σk or, respectively,s = s′σ1σ2 · · ·σk

wheres′ ∈ Σ+, with

• V (δ(σ1σ2 · · ·σi, q0)) = τo (1 ≤ i ≤ k − 1),
• V (δ(s, q0)) = τ ∈ T

or, respectively,

• V (δ(s′, q0)) ∈ T ,
• V (δ(s′σ1σ2 · · ·σi, q0)) = τo (1 ≤ i ≤ k − 1),
• V (δ(s, q0)) = τ ∈ T ,

it is the case that

• if τ ∈ Tc, then for somei (1 ≤ i ≤ k), σi ∈ Σc,
• if τ ∈ Tu, then for alli (1 ≤ i ≤ k), σi ∈ Σu.

4

loG

hiG

loC

hiC

s

)(st θ=

),(tSCondat hi

),(sSCondat lo

loG

hiG

loC

hiC

s

)(st θ=

),(tSCondat hi

),(sSCondat lo

(a) Existing [2]: Uses base-level control only

loG

hiG

loC

hiC

)(sθ

s

comf

)(st θ=

),(tSCondatf hicom =

),(sfcomµ

loG

hiG

loC

hiC

)(sθ

s

comf

)(st θ=

),(tSCondatf hicom =

),(sfcomµ

(b) Proposed: Uses command and on-line control

Fig. 2. Operational designs for hierarchical control

B. Research Motivation

In [2], the command and control structure, theoretically con-
ceptualized for hierarchical control as depicted in Fig. 1,is not
implemented as such for runtime operation, once hierarchical
consistency between a low-level DESGlo and its high-level
abstractionGhi is assured2. Instead, given a high-level specifi-
cationE for DESGhi, hierarchical control according to high-
level supervisionShi = Supcon(Ghi, E) is actually imple-
mented using a low-level supervisor automatonSlo

3, which is
either Supcon(Glo, θ

−1(E)) or Supcon(Glo, θ
−1(L(Shi))),

whereGlo is Glo but with all its states marked, and the asso-
ciated control data. Besides the issue of synthesis complexity,
such a consolidated ‘flat’ design, shown in Fig. 2(a), may
not be adequate for two other reasons. Firstly, command and
control may be the inherent mode of runtime operation for
the engineering control problem of interest. Secondly, there
is limited operational clarity when command is not explicitly
linked to control on-line to show what stepwise controls are
exercised in carrying out the commands from above. Such on-
line causal clarity of command over control is important to
designers, when subjecting the control system to validation
tests by simulation and observation.

In this paper, an operational design linking command and
control is proposed as depicted in Fig. 2(b), bringing the
concept depicted in Fig. 1 to realization. Referring to Fig.
2(b), the design uses the high-level supervisor automatonShi

and afcom-output control lawµ, also called a command-to-
control ‘transfer’ function, to continually translate command
data infcom to control data during runtime. Clearly, this design
obviates the need for the low-level supervisor automatonSlo.
The details and discussion of this alternative approach are
presented in the rest of the paper.

III. SYSTEM-OUTPUT CONTROL WITH COMMAND INPUT

A. Preliminaries

Consider the feedback control loop shown in Fig. 3.
The closed loop interconnecting the controller and DES

allows the former to modify the latter’s dynamics based on

2The reader is referred to the literature for details of HC [2], [13], HCM
[2], [14], [15], and a more specialized concept of HCM [2] relevant to this
paper (mentioned later in Remark 1).

3It can be computed asSupcon(Glo, θ
−1(E)) if HCM holds; and as

Supcon(Glo, θ
−1(L(Shi))) if the more specialized concept [2] of HCM

holds.

Control
input

Controller DES

Command
input

System
output

Feedback

),(sfcomµ
comf)(sθ

s

reporterloG

Control
input

Controller DES

Command
input

System
output

Feedback

),(sfcomµ
comf)(sθ

s

reporterloG

Fig. 3. Feedback control of a DES with command input and system output

feedback. In a standard setting, this loop applies a principle of
feedback and control, namely, the control design of dynamics
through feedback. Set in the Moore DES paradigm, the design
dynamics refers to that generated by the system under control,
without vocalizing or outputting via the reporter the virtual
events specified in the command reference inputfcom (from
the instant the reference is set). Based on the system feedback
string s generated under control, the controller continually
computes the next control input.

The fundamental problem, then, is whether a feasible output
control lawµ for the reference inputfcom exists for controller
realization or implementation. To explain more formally later,
a feasible output control law can prevent the vocalization of
events specified in the reference input set. In the rest of this
section, this is theoretically investigated for a single reference
and an extension to some regulated sequences of references.

B. Problem Approach: Uncontrollable & Controllable States

Without loss of generality, in this research, a Moore automa-
ton is always constructed such that its initial state is non-vocal
or silent.

Now, consider a (reachable) Moore DESGlo with θ :
L(Glo) → T ∗. For q ∈ Qvoc, V (q) = τ , let

Bu[q, V (q)] ={p ∈ Q− {q0} | (∃t ∈ Σ∗
u)(δ(t, p) = q &

(∀t′ < t)V (δ(t′, p)) = τo)}.

Excluding the initial stateq0 ∈ Q, Bu[q, V (q)]4 defines a set
of τ -uncontrollable states which are non-vocal other than the
stateq, and each non-vocal state can reach stateq via a string
of uncontrollable events defined at non-vocal states.

4The definition ofBu[q, V (q)] revises the initial formulation presented in
the conference version [1].

5

The complete set ofτ -uncontrollable states is

Bτ
u =

⋃

V (q)=τ

Bu[q, V (q)]. (1)

Now, define

Bc[q, V (q)] = Q−Bu[q, V (q)].

Then

Bτ
c =

⋂

V (q)=τ

Bc[q, V (q)]

= Q−Bτ
u

is said to define the complete set ofτ -controllable states if the
following condition holds for virtual eventτ ∈ T :

(∀q′ ∈ Qvoc ∪ {q0})(∀w ∈ Σ+)
(V (δ(w, q′)) = τ) ⇒ w 6∈ Σ∗

u.
(2)

Informally, Condition (2) asserts that from the initial state or
any vocal state, a nonempty string leading to a state vocalizing
the high-level eventτ is not uncontrollable.

If Condition (2) holds, then the following condition also
holds:

(∀sσ ∈ L(Glo), σ ∈ Σc)(∀t ∈ Σ∗
u)

(V (δ(sσt, q0)) = τ) ⇒ (∀t′ < t)V (δ(sσt′, q0)) = τo.
(3)

Informally, Condition (3) asserts that if a nonempty string
of uncontrollable events immediately following a controllable
event leads the DES to a reachable stateq vocalizing the
high-level eventτ , all the states exceptq via which the
uncontrollable string traverses are non-vocal.

In what follows, w.r.tfcom ⊆ T of a DESGlo,

Bfcom
c =

⋂

τ∈fcom

Bτ
c

= Q−Bfcom
u

(4)

is said to be the (fcom-)controllable state set, where

Bfcom
u =

⋃

τ∈fcom

Bτ
u (5)

is the (fcom-)uncontrollable state set, if the following condition
holds forfcom:

(∀q′ ∈ Qvoc ∪ {q0})(∀w ∈ Σ+)
(V (δ(w, q′)) ∈ fcom) ⇒ w 6∈ Σ∗

u.
(6)

That Condition (6) holds implies that the following condition
also holds5:

(∀sσ ∈ L(Glo), σ ∈ Σc)(∀t ∈ Σ∗
u)

(V (δ(sσt, q0)) ∈ fcom) ⇒ (∀t′ < t)V (δ(sσt′, q0)) = τo.
(7)

Then the command-to-control ‘transfer’ functionµ, as
shown in the proposed operational design depicted in Fig. 2(b),
can be written as

µ(fcom, s) ={σ ∈ Σc | (∃t ∈ Σ∗
u)(V (δ(sσt, q0)) ∈ fcom

& (∀t′ < t)V (δ(sσt′, q0)) = τo)}.
(8)

5That (2) implies (3) and (6) implies (7) can be proved by contradiction.
The proofs are simple and straightforward, and hence are omitted.

This function is an output control law that is said to be
‘permissive’, in that it disables a controllable event only
when the event occurrence can otherwise lead the system
uncontrollably to a state vocalizing a virtual event in the
reference inputfcom. Based on the characterization ofBτ

u (1)
and the definition ofBfcom

u (5), this law can be rewritten as

µ(fcom, s) = {σ ∈ Σc | δ(sσ, q0)!&δ(sσ, q0) ∈ Bfcom
u }. (9)

C. Output Control Feasibility

Theorem 1: Consider a Moore DES(Glo, V) constructed
with θ : L(Glo) → T ∗, and an arbitraryfcom ⊆ T . Then
for all s ∈ L(Glo), µ (9) is the permissive control law for
(fcom, s) such thatV (δ(s, q0)) ∈ fcom or δ(s, q0) ∈ Bfcom

c

implies

(∀σ ∈ Σu(δ(s, q0)))δ(sσ, q0) 6∈ Bfcom
u

iff Bfcom
c is the controllable state set.
Proof: See Appendix A.

Intuitively, Theorem 1 states the necessary and sufficient
condition for the control law (9) to be feasible for(fcom, s).
Being feasible means the output control law can always
prevent the system from next enteringBfcom

u if it is in a vocal
state that just vocalized an event infcom or in Bfcom

c , and
thus guarantees subsequent nonoccurrence of events infcom.

D. The Decomposition Theorem

In partitioning the states of a Moore DESGlo =
(Q,Σ, δ, q0, Qm) w.r.t an arbitraryfcom ⊆ T , it can be said
that Bfcom

c (4) induces a subsystem, denoted byGfcom
c , that

is controllable if it is the controllable state set, andBfcom
u (5)

induces the corresponding uncontrollable subsystem denoted
by Gfcom

u . The pair(Gfcom
c , Gfcom

u) is then called a feasible
system decomposition.

Formally, the subsystemsGfcom
c andGfcom

u can be modeled
as automata6 derived from the Moore automatonGlo. For the
subsystemGfcom

c = (Qc,Σ, δc, Q0,c, Qm,c), the state set is
Qc = Bfcom

c ⊆ Q, the transition functionδc : Σ ×Qc → Qc

is a restriction ofδ to Σ ×Qc, the initial state set isQ0,c =
Qc ∩ (Qvoc ∪ {q0}), defining an initial state as wherefcom is
computed following system initialization or a high-level event
occurrence, and the marked state set isQm,c = Qm ∩Qc.

For the uncontrollable subsystemGfcom
u =

(Qu,Σ, δu, Q0,u, Qm,u), the state set isQu = Bfcom
u ⊆ Q,

the transition function δu : Σ × Qu → Qu is a
restriction of δ to Σ × Qu, the initial state set is
Q0,u = {q ∈ Qu | (∃q′ ∈ Bfcom

c)(∃σ ∈ Σ)q = δ(σ, q′)},
defining an initial state as the first state of entry into the
subsystem, and the marked state set isQm,u = Qm ∩Qu.

Each subsystem can be represented by a (possibly uncon-
nected) subgraph of the state-transition graph representing the
DESGlo.

Below, Theorem 2 states that a (feasible) system decompo-
sition, as conceptually depicted in Fig. 4, exists for a DESGlo

that is OCC, with command inputfcom ⊆ Tc.

6Note that, with some abuse of notation, the initial stateq0 in the usual
5-tuple formalization of an automaton is extended to a stateset.

6

The proof of Theorem 2 requires the following lemma.
Lemma 1: For everyτ ∈ Tc of an OCC DESGlo, Condi-

tion (2) holds.
Proof: See Appendix B.

Uncontrollable
Subsystem

Controllable
Subsystem

Control
input

System
output

Of an OCC DES w.r.t command input

Uncontrollable
Subsystem

Controllable
Subsystem

Control
input

System
output

Of an OCC DES w.r.t command input

Fig. 4. Conceptual decomposition of a DES

Theorem 2: An OCC Moore automatonGlo, w.r.t an ar-
bitrary fcom ⊆ Tc, can be decomposed into a controllable
subsystemGfcom

c and an uncontrollable subsystemGfcom
u .

Proof: See Appendix C.
Illustrative Example: Consider the OCC DESGlo =

(Q,Σ, δ, q0, Qm) with high-level event setT for system out-
put, as adapted from [13] and shown in Fig. 5. The DES
model is represented by an edge-labeled directed graph with
a state represented by a node, and a transitionδ(σ, q) = q′

by a directed edge from stateq to q′ labeled with the symbol
σ of an event whose occurrence it represents. The symbol
for a controllable and an uncontrollable event is indicated
with a superscript ‘+’ and ‘-’, respectively.Σ = {σ+

i | i =
1, 2, 3, 4} ∪ {σ−

j | j = 5, 6, 7, 8, 9}, and T = {τ+i | i =

1, 2, 3}∪{τ−4 }. Every state is denoted by a number. The initial
stateq0 = 0 is represented by a node with an entering arrow, a
marked state by a darkened node, and a vocal state by a node
containing the symbol of an event that it vocalizes.

The τ -uncontrollable state sets forTc are given in the

following: B
τ
+

1
u = Bu[1, V (1)] ∪ Bu[8, V (8)]; B

τ
+

2
u =

Bu[5, V (5)] and B
τ
+

3
u = Bu[7, V (7)], whereBu[q, V (q)] is

respectively depicted in Fig. 5. One can easily verify that
every arbitraryfcom ⊆ Tc decomposes the OCCGlo into a
controllable and an uncontrollable part (Theorem 2), such that
when the system is in a state of the controllable part (induced
by Q−Bfcom

u) or a state that has vocalized a high-level event
in fcom , it can be prevented from entering the uncontrollable
part by disabling some controllable low-level events (Theorem
1), and hence disallowing the events infcom as desired.

IV. COMMAND & CONTROL OPERATIONAL DESIGN

A. The Implementability Theorem

The implementability result is now established for the
command and control design shown in Fig. 2(b). The result is
based on the feasibility and decomposition Theorems 1 and 2,
respectively. Formally, it shows that the design can be realized
for a controllable high-level specification, w.r.t a high-level
DES Ghi obtained under a language mapθ on a low-level
DESGlo that is OCC.

0

1

2 3 4 5

7

6

8

9

11 12

10

+
1τ +

2τ

+
3τ

−
4τ

+
1τ

+
1σ −

5σ +
2σ

−
9σ

−
6σ −

5σ

+
3σ

−
8σ

−
5σ

−
5σ

−
7σ+

4σ

−
7σ −

7σ−
7σ−

7σ

+
2σ −

6σ

−
6σ

−
6σ

−
9σ −

8σ

−
8σ

)]5(,5[VBu

)]8(,8[VBu

)]1(,1[VBu

)]7(,7[VBu

13

14

15

16

0

1

2 3 4 5

7

6

8

9

11 12

10

+
1τ +

2τ

+
3τ

−
4τ

+
1τ

+
1σ −

5σ +
2σ

−
9σ

−
6σ −

5σ

+
3σ

−
8σ

−
5σ

−
5σ

−
7σ+

4σ

−
7σ −

7σ−
7σ−

7σ

+
2σ −

6σ

−
6σ

−
6σ

−
9σ −

8σ

−
8σ

)]5(,5[VBu

)]8(,8[VBu

)]1(,1[VBu

)]7(,7[VBu

13

14

15

16

Fig. 5. An example OCC DESGlo and its τ -uncontrollable state sets,
τ ∈ Tc

Theorem 3: Given that an OCC Moore automatonGlo is
constructed withθ : L(Glo) → T ∗ such thatL(Glo) 7→
L(Ghi) andLm(Glo) 7→ Lm(Ghi); andE ⊆ T ∗. Let Shi =
Supcon(Ghi, E) and Slo = Supcon(Glo, θ

−1(L(Shi))),
where Glo is Glo but with all its states marked. Assume
L(Shi) 6= ∅. Then

L(µ,Glo) = L(Slo),

whereµ(fcom, s) (9) is the permissive control law, withs ∈
L(Slo) andfcom = Condat(Shi, θ(s)). �

Proof: See Appendix D.
SinceBfcom

u =
⋃

τ∈fcom
Bτ

u according to (5), under Theo-
rem 3,Bτ

u (1) for all τ ∈ Tc form the set ofτ -components that
is said to provide the ‘control technology’ for implementing
command and control using the lawµ (9).

Remark 1: Note that L(Shi) = Lm(Shi). In general,
θ(L(Slo)) ⊆ L(Shi). Thus Theorem 3 alone does not imply
that the high-level controllable sublanguageL(Shi) can be
fully met by low-level control via the lawµ (9), and without
high-level blocking during runtime caused by a low-level
string s ∈ L(Slo) that cannot be extended, by anys′ ∈ Σ∗,
to ss′ ∈ L(Slo) such thatθ(ss′) ∈ Lm(Shi). To meet such
a high-level (nonblocking) expectation through the control
law µ, the assurance of both HC [13] and hierarchical non-
blockingness (N) [2] - a more specialized concept (HCN) of
HCM - must first be provided, for which additional structural
conditions have been developed [2]. �

B. Algorithmic Procedures

Based on Theorem 3, hierarchical control depicted in Fig.
2(b) can be realized by a control algorithm computing the law
(9) on-line, with a command and a control level coupled by
top-down commandfcom and bottom-up event vocalization
feedbackV implementing the reporter mapθ.

The control algorithm contains two procedures
HI-manager and LO-operator, shown respectively
in Figs. 6 and 7. Through the command of the high-level
DES Ghi by HI-manager, LO-operator computes
on-line the control of the low-level DESGlo. Without loss of

7

generality, the algorithm is assumed to be non-terminating,
hence the use of the unconditional ‘while’ loop in the two
procedures.

Let ξ and x0 be the transition function and initial state
of the high-level supervisor automatonShi, respectively. The
following notation is used in the procedures: For an evolving
t ∈ L(Ghi) and s ∈ L(Glo), θ(s) = t, the current high-level
state ofShi is x = ξ(t, x0); the current low-level state ofGlo

is q = δ(s, q0); the command or high-level control data to
transmit isfcom(Shi, x) = Condat(Shi, t) and the translated
low-level control data is

fcon(fcom, q) = µ(fcom, s), (10)

whereµ is the control law (9).
To sharpen causal clarity to a finer level of ascertaining

the control data from each individual event command, the law
fcon can be refined tofcon(fcom, q) =

⋃

τ∈fcom
fcon(τ, q),

wherefcon(τ, q) = {σ ∈ Σc | δ(σ, q)!&δ(σ, q) ∈ Bτ
u} is the

τ -commanded control data set, i.e., the set of low-level events
to be disabled as commanded by (the control data for virtual
event)τ ∈ fcom.

ProcedureHI-manager (High Level)

begin
initialize1

Initialize state inShi;2
Use initial statex0 to retrieve off-line Condatfcom;3
Sendfcom down to low level;4

while true do5
Wait to receive high-level event occurrence (fromT);6
Update state inShi;7
Use current statex to retrieve off-line Condatfcom ;8
Sendfcom down to low level;9

end

Fig. 6. Procedural realization for high-level controllerChi

ProcedureLO-operator (Low Level)

begin
initialize1

Initialize state inGlo;2
Wait to receive updatedfcom from high level;3
Use currentfcom and stateq to compute Condatfcon, and apply it to4
Glo;

while true do5
Wait to receive low-level event occurrence (fromΣ);6
Update state inGlo;7
if current state q is vocal then8

Send vocalized eventV (q) up to high level;9
Wait to receive updatedfcom from high level;10

Use currentfcom and stateq to compute Condatfcon, and apply11
it to Glo;

end

Fig. 7. Procedural realization for low-level controllerClo

C. Computational Complexity

Off-line Complexity Reduction: It is assumed that the hi-
erarchical structuring of a low-level DES to achieve HCN
[2] (see Remark 1) is already applied. Under the same HCN
setup for a trim low-level DES, the worst-case time complexity

comparison is made between the existing design [2], [15] and
the proposed design for hierarchical controller operation, as
follows.

• To implement the existing controller design (realized by
Slo in Theorem 3 and the associated control data), the
low-level specification automaton has to be computed
[15] first for the inverse mappingθ−1 of the closure of
the supremal controllable sublanguage of a given high-
level specificationE ⊆ T ∗, beforeSupcon andCondat
are computed accordingly for the low-level DES .

• To implement the proposed design (realized by the con-
trol algorithm in Figs. 6 and 7 regulatingfcon (10)), every
τ -uncontrollable state setBτ

u (1) for τ ∈ Tc needs to be
computed for the low-level DESGlo (to implementµ in
Theorem 3 forfcon), along with Supcon and Condat
for the high-level DESGhi.

The various component complexities and the overall complex-
ity are summarized in Table I. The complexity ofBτ

u for all
τ ∈ Tc is based on the analysis in Appendix E. The rest are
based on the results in [2], [15], [33].

The low-level specification automaton generating the lan-
guageθ−1(L(Shi)) ⊆ L(Glo), Shi = Supcon(Ghi, E), is
constructed using the method developed in [15, p. 58], and is
assumed to be of minimal state cardinality for the complexity
analysis. This method, in the final step, obtains the trim
specification automaton by computing a natural projection
P : La → Σ∗, where La ⊆ (Σ ∪ T)∗ is the closed
language generated by the (trim) cartesian product of two
automata. One automaton is aT -embedded and completely
state-marked version of the trim DESGlo, and the other is
a Σ-self-looped version of the automaton that isShi but is
completely state-marked to modelL(Shi). Both these versions
are computed in earlier steps of the method. For an optimistic
(or best) worst-case complexity analysis of the existing design,
it is assumed that the projectionP is an observer of the
(closed) languageLa. By the complexity results in [33] and
using the notation defined in Table I, the exponential worst
case of computing natural projection, in time complexity
of O(2nenhi(nvoc+n)) and returning an automaton of state
cardinality O(2nenhi(nvoc+n)), can then be avoided. In fact,
the automaton returned has worst-case state cardinality ofonly
nenhi(nvoc + n). However, this projection step alone still
incurs a high polynomial time complexity ofO((nenhi(nvoc+
n))4+l(nenhi(nvoc+n))5+l2(nenhi(nvoc+n))7), as derived
based on the complexity result in [33] for such an observer
P .

The hierarchical construction for HCN of(Glo, Ghi) [2]
entails structuring the reporter mapθ as an observer. It is
assumed thatGhi is a minimal-state recognizer of the language
θ(Lm(Glo)). From the results on observers [34] and using the
notation defined in Table I, it then follows thatnhi ≤ n. Thus,
implementing the proposed design incurs an off-line control
synthesis complexity that is significantly lower in generaldue
to the following:

1) the smaller state cardinality of the high-level DES in-
volved in Supcon synthesis instead of the low-level
DES;

8

TABLE I

CONTROL OPERATIONAL DESIGN OF A HIGH-LEVEL REGULAR SPECIFICATION LANGUAGEE ⊆ T ∗ FOR A HCN PAIR (Glo, Ghi): AN OFF-LINE ,

WORST-CASE TIME COMPLEXITY COMPARISON

ComponentO(.) For existing design [2], [15] [Fig. 2(a)] For proposed design [Fig. 2(b)]
High-level Supcon lhi(nenhi)

2 lhi(nenhi)
2

High-level Condat — vnenhi

nvoc + lnenhi + lnenhi(nvoc + n)+ —
θ−1 mapping (nenhi)

4(nvoc + n)4 + l(nenhi)
5(nvoc + n)5+

l2(nenhi)
7(nvoc + n)7

Low-level Supcon l(nenhi(nvoc + n))2 —
Low-level Condat cnenhi(nvoc + n) —
Bτ

u for all τ ∈ Tc — u(2nvoc − v)(n − nvoc − 1) + vu(n− nvoc − 1)2

Overall complexity nvoc + cnenhi(nvoc + n) + lnenhi(1 + nvoc + n)+ vnenhi + lhin
2
en

2

hi
+ u(2nvoc − v)(n − nvoc − 1)+

n2
en

2

hi
(lhi + l(nvoc + n)2) + n4

en
4

hi
(nvoc + n)4+ vu(n − nvoc − 1)2

ln5
en

5

hi
(nvoc + n)5 + l2n7

en
7

hi
(nvoc + n)7

Nomenclature:
For Glo : Cardinality For Ghi : Cardinality

n : state set ofGlo with event setΣ nhi : state set ofGhi with event setT
nvoc : vocal state set ofGlo ne : state set of the trim automaton forE
l : event setΣ lhi : event setT
c : controllable event setΣc v : controllable event setTc

u : uncontrollable event setΣu

2) the τ -uncontrollable state sets which can be computed
in polynomial time complexity in the (non-initial) non-
vocal state cardinality of the low-level DES; and

3) not having at all to compute the low-level specification
automaton for the inverse mappingθ−1 of the closure of
the supremal controllable sublanguage of a given high-
level specification language.

Besides, computingτ -uncontrollable state sets is a one-off
exercise for a given DESGlo. For a different high-level specifi-
cation, only the high-level supervisor needs to be recomputed.
In this sense,Bτ

u (1) for τ ∈ Tc is reusable.
Low On-line Complexity: Not surprisingly, the potentially

significant savings in off-line synthesis comes at the expense
of incurring on-line low-level control (data) computation.
Fortunately, however, this on-line time complexity is generally
low, as explained below.

In the control algorithm,fcon (10) is recomputed each time
an event inGlo occurs, and in absorbing the cardinality ofΣc

in the constants ofO(.), each on-line computation incurs, in
the worst case, only a linear time complexity ofO(r), where
r is the cardinality of the setBfcom

u , givenfcom ⊆ Tc.
In a related but different work [35], a baseline procedure

for computing the control law (8) on-line has linear time
complexity of O(n) in the worst case, wheren is the state
cardinality of the low-level DESGlo. When compared with
this procedure, computing the equivalent lawfcon in O(r) as
used in the proposed design is faster. This is because the state
cardinalityr of a setBfcom

u is often very much smaller than
the state cardinalityn of the low-level DES.

V. CONCLUSION

Based on the results of output control feasibility and system
decomposition, the command and control design proposed
for hierarchical control is shown to be implementable. The
implementation entails the off-line computation of the high-
level controlled DES and the reusableτ -uncontrollable state
sets, instead of the larger scale, low-level controlled DES. This

operational design is attractive as it offers the intrinsicmerit
of furnishing causal clarity of command over control during
on-line operation, along with off-line complexity reduction
and fast on-line computation. These practical advantages are
useful for engineering control problems, where the required
runtime operational mode is command and control, or the
control solution needs to be subjected to validation tests by
simulation and observation.

To do away with using the high-level supervisor automaton
without significantly increasing on-line computation, oneap-
proach might be to deploy on-line limited lookahead control
[36] at the high level of the command and control hierarchy.
And together with treating every high-level specification as a
control task, the foundation laid in this paper could pave the
way towards on-line hierarchical control of DES’s that can
support operationally clearer command-to-control transfer and
flexible sequential or nonconcurrent multi-tasking. This is the
subject for future research.

APPENDIX

A. Proof of Theorem 1

(If) The sufficiency proof proceeds as follows. Fors ∈
L(Glo), let q′ = δ(s, q0). There are two cases to consider.
To prove by contradiction for each case, assume that there
exists aσ ∈ Σu(q

′) such thatδ(σ, q′) ∈ Bfcom
u .

• Case 1: Supposeq′ ∈ Bfcom
c − (Qvoc ∪ {q0}).

Then by definition ofBfcom
u and the assumption, it

follows thatq′ ∈ Bfcom
u . Therefore,q′ ∈ Bfcom

u ∩Bfcom
c ,

contradicting the fact thatBfcom
u ∩Bfcom

c = ∅.
• Case 2: Supposeq′ ∈ Bfcom

c ∩ (Qvoc ∪ {q0}) (implying
V (q′) 6∈ fcom), orV (q′) ∈ fcom (i.e.,q′ ∈ Bfcom

u ∩Qvoc).
Then by definition ofBfcom

u and the assumption, there
is an uncontrollable stringw = σt ∈ Σ+

u such that
V (δ(σt, q′)) ∈ fcom, contradicting the fact thatw con-
tains a controllable event by Condition (6).

(Only If) The necessity proof proceeds as follows. Given an
arbitraryBfcom

c , fcom ⊆ T :

9

• Suppose, for every strings ∈ L(Glo) such thatq′ =
δ(s, q0) ∈ Bfcom

c , or V (q′) ∈ fcom and henceq′ ∈ Qvoc,

(∀σ ∈ Σu(q
′))δ(σ, q′) 6∈ Bfcom

u .

Since by definition,Bfcom
u ∪ Bfcom

c = Q andBfcom
u ∩

Bfcom
c = ∅, δ(σ, q′) 6∈ Bfcom

u iff δ(σ, q′) ∈ Bfcom
c . By

definition, for V (q) = τ ∈ fcom, Bu[q, τ] of Bτ
u ⊆

Bfcom
u contains non-vocal states (excluding the initial

stateq0 ∈ Q) and the stateq ∈ Qvoc, such that each
non-vocal member state can reach stateq via a string of
uncontrollable events defined at non-vocal member states.
As a result, ifq′ = δ(s, q0) ∈ Bfcom

c or V (q′) ∈ fcom,
then every eventσ ∈ Σ for which δ(σ, q′) ∈ Bfcom

u must
be controllable; and so is it ifq′ ∈ Bfcom

c ∩(Qvoc∪{q0})
or V (q′) ∈ fcom. Therefore, every stringw ∈ Σ+ that
can bring every suchq′ ∈ Q to some stateq vocalizing
a τ ∈ fcom, i.e., V (δ(w, q′)) = V (q) = τ ∈ fcom,
must contain at least one controllable eventσc, such that
w = s′σct for somes′ ∈ Σ∗ and t ∈ Σ∗

u. Together with
the fact thatq0 ∈ Bfcom

c andGlo is reachable, it follows
that Condition (6) holds, sincew = s′σct 6∈ Σ∗

u.

Hence the theorem.

B. Proof of Lemma 1

Consider a strings′ ∈ L(Glo), where q′ = δ(s′, q0) ∈
Qvoc∪{q0}. For an OCCGlo, if the strings′ can be extended
to a state vocalizing an eventτ ∈ Tc, i.e., (∃w ∈ Σ+)(q =
δ(s′w, q0) = δ(w, q′) ∈ Qvoc and V (q) = τ ∈ Tc), then
w = sσct for somes ∈ Σ∗, σc ∈ Σc andt ∈ Σ∗

u. This in turn
implies that Condition (2) holds sincew = sσct 6∈ Σ∗

u. Hence
the lemma.

C. Proof of Theorem 2

For a Moore automatonGlo that is OCC, by Lemma 1,
Condition (2) holds for everyτ ∈ Tc. It is easy to show that,
for all τ ∈ fcom ⊆ Tc, the conjunctions of Condition (2)
constitute Condition (6). Hence, for an arbitraryfcom ⊆ Tc,
the set Bfcom

c (4) is controllable, inducing a controllable
subsystemGfcom

c , with Bfcom
u (5), whereBfcom

c ∩Bfcom
u = ∅,

inducing the corresponding uncontrollable subsystemGfcom
u .

Hence the theorem.

D. Proof of Theorem 3

Given that an OCC Moore automatonGlo is constructed
with θ : L(Glo) → T ∗ such thatL(Glo) 7→ L(Ghi) and
Lm(Glo) 7→ Lm(Ghi); and that for someE ⊆ T ∗, Shi =
Supcon(Ghi, E) and Slo = Supcon(Glo, θ

−1(L(Shi))),
whereGlo is Glo but with all its states marked, andfcom =
Condat(Shi, θ(s)) for an s ∈ L(Slo).

For an arbitrary output subsetf ⊆ Tc of the OCCGlo, by
Theorem 2, the controllable state setBf

c exists.
Let L(S′

hi) = θ(L(Slo)) andf ′
com = Condat(S′

hi, θ(s)) ⊆
Tc with s ∈ L(Slo). It follows that L(S′

hi) ⊆ L(Shi)
since f ′

com ⊇ fcom in general for the same control data

Condat(Slo, s) following s ∈ L(Slo). In what follows, it can
be shown that

Bfcom
c = B

f ′

com
c ∪ [(

⋃

τ∈f ′

com−fcom

Bτ
u)−Bfcom

u]. (11)

By the characterization of the controllable state setB
f ′

com
c and

the controllability ofL(Slo), for an arbitrary controlled string
s ∈ L(Slo),

V (δ(s, q0)) 6∈ f ′
com =⇒ δ(s, q0) ∈ B

f ′

com
c .

In other words,V (δ(s, q0)) ∈ f ′
com or δ(s, q0) ∈ B

f ′

com
c .

However, since vocal states for differentτ ∈ Tc reside only in
their respectiveBτ

u, for V (δ(s, q0)) ∈ f ′
com−fcom, δ(s, q0) ∈

[(
⋃

τ∈f ′

com−fcom
Bτ

u)−Bfcom
u]. Together with (11), it follows

that
V (δ(s, q0)) ∈ fcom or δ(s, q0) ∈ Bfcom

c . (12)

SinceBfcom
c is a controllable set, by Theorem 1,V (δ(s, q0)) ∈

fcom or δ(s, q0) ∈ Bfcom
c implies δ(sσ, q0) /∈ Bfcom

u for
all σ ∈ Σu(δ(s, q0)). Applying (12) and the fact thatQ =
Bfcom

u ∪Bfcom
c with Bfcom

u ∩Bfcom
c = ∅, the result is that, for

all s ∈ L(Slo),

(∀σ ∈ Σu(δ(s, q0)))δ(sσ, q0) ∈ Bfcom
c .

Now, together with the controllability ofL(Slo), it follows
that for all σ ∈ Σu, for all s ∈ L(Slo), whereδ(sσ, q0)!,

δ(sσ, q0) ∈ Bfcom
c iff sσ ∈ L(Slo).

Next, it needs to be proved that, for allσ ∈ Σc, for all s ∈
L(Slo), whereδ(sσ, q0)!,

δ(sσ, q0) ∈ Bfcom
c iff δ(sσ, q0) 6∈ Bfcom

u

iff sσ ∈ L(Slo),

as follows:
• (If) sσ ∈ L(Slo) andσ ∈ Σc. Assumeδ(sσ, q0) ∈ Bfcom

u .
This implies there is aτ ∈ fcom = Condat(Shi, θ(s)),
unambiguously controllable sinceGlo is OCC, that can
uncontrollably occur by vocalization, contradicting the
fact that θ(s)τ 6∈ L(Shi). Thus δ(sσ, q0) 6∈ Bfcom

u or
equivalently,δ(sσ, q0) ∈ Bfcom

c .
• (Only If) s ∈ L(Slo), δ(sσ, q0)!, δ(sσ, q0) ∈ Bfcom

c and
σ ∈ Σc. There are two cases:

– Case 1: θ(sσ) = θ(s) ∈ L(Shi).
Since Bfcom

c is controllable, and the controllable
L(Slo) is supremally permissive w.r.tθ−1(L(Shi)),
sσ ∈ L(Slo).

– Case 2: θ(sσ) = θ(s)τ for some τ 6∈ fcom, and
thereforeθ(s)τ ∈ L(Shi).
Assuming sσ 6∈ L(Slo) contradicts the fact that
θ(s)τ ∈ L(Shi). Thus,sσ ∈ L(Slo).

Hence for allσ ∈ Σ, for all s ∈ L(Slo), whereδ(sσ, q0)!,

(s ∈ L(Slo)&δ(sσ, q0) ∈ Bfcom
c) iff sσ ∈ L(Slo).

Assuming thatL(Shi) 6= ∅, ε ∈ L(Shi) and thereforeε ∈
L(Slo). Thus, with µ (9) as the permissive control law for
fcom according to

µ(fcom, s) = {σ ∈ Σc | δ(sσ, q0)!&δ(sσ, q0) ∈ Bfcom
u }

10

such that(∀σ ∈ Σu(δ(s, q0)))δ(sσ, q0) ∈ Bfcom
c , it follows by

induction on the strings ∈ L(Slo), beginning withs := ε ∈
L(Slo), that, for allσ ∈ Σ,

sσ ∈ L(µ,Glo) iff sσ ∈ L(Slo);

or thatL(µ,Glo) = L(Slo). Hence the theorem.

E. Computational Analysis for all Bτ
u , τ ∈ Tc

Note that for an OCC DESGlo, a non-vocal state that is in
a setBτ

u may not be in another setBτ ′

u , for τ ∈ Tc andτ ′ ∈
Tc−{τ}. In what follows, the total time complexity analysis,
of computingBτ

u for all τ ∈ Tc, is based on first determining
the worst-case time complexity of constructing everyBτ

u,
using ProcedureBuStateSet-Compute below that does
not exploit this fact. The result is a (well-defined) theoretical
upper bound of the worst-case total time complexity.

ProcedureBuStateSet-Compute

input : Moore DES(Glo, V) with vocal state setQvoc ⊆ Q, andτ ∈ Tc.
output: Bτ

u .
begin

initialize1
Initialize Bτ

u := {q ∈ Qvoc | V (q) = τ};2
Initialize B := ∅;3

while Bτ
u 6= B do4

C := Bτ
u − B;5

B := Bτ
u ;6

foreach q ∈ Q − (Qvoc ∪ {q0} ∪ Bτ
u) do7

foreach σ ∈ Σu do
if δ(σ, q)! and δ(σ, q) ∈ C then

Bτ
u := Bτ

u ∪ {q};

return Bτ
u ;8

end

To begin with, refer to Table I for the definitions ofn, nvoc, u
and v. Let a = n − (nvoc + 1) + nj

0, which is the number
of states in[Q − (Qvoc ∪ {q0})] ∪ {q ∈ Qvoc | V (q) =
τcj ∈ Tc}, wherenj

0 is the number of vocal states outputting
τcj ∈ Tc underV . Then the iterative computations of Pro-
cedureBuStateSet-Compute will produce the following
complexity series:

(a − n0)n0u, (a − n1)(n1 − n0)u, (a − n2)(n2 −
n1)u, · · · , (a− ni)(ni − ni−1)u · · · , 0,

where n0 = nj
0, ni+1 = ni + ki+1, with ni+1 and

ni denoting the cardinality ofBτ
u immediately after and

before each forloop iteration i ≥ 0 (from line 7 of
BUStateSet-Compute), respectively;(a−ni)(ni−ni−1)u,

with n−1
def
= 0, is the time complexity incurred at iterationi,

and ki+1 ≥ 0 is the number of new non-vocal states added
to the iteratingBτ

u following iteration i. The series stops at
some iterationm with 0, wherenm = nm−1 (i.e., no more
non-vocal state was added at iterationm− 1).

Let nq+ = n−(nvoc+1), which is the total number of non-
vocal states in the DES, excluding the initial stateq0. Then
the series can be rewritten as

(nq+)n
j
0u, (nq+ − k1)k1u, (nq+ −

2
∑

j=1

kj)k2u, · · · ,

(nq+ −
i

∑

j=1

kj)kiu · · · , 0.

Computationally, the theoretical worst case occurs if the
iterating Bτ

u increases by one new state per iteration until
iteration nq+ − 1, at which knq+

= 0 (i.e., ki+1 = 1, for
all 0 ≤ i < nq+ − 1). In other words, the worst case occurs if
the complexity series is

(nq+)n
j
0u, (nq+ − 1)u, (nq+ − 2)u, (nq+ − 3)u, · · · , (1)u, 0.

Reversing the series, the terms from 0 to(nq+ − 1)u form an
arithmetic series ofnq+ terms with a difference of1u between
consecutive terms.

Summing the series and(nq+)n
j
0u returns the result

(
nq+

2
[nq+ − 1] + (nq+)n

j
0)u = 0.5unq+(nq+ + 2nj

0 − 1).

Hence the worst-case complexity of Procedure
BuStateSet-Compute is

O(un2
q+ + (2nj

0 − 1)unq+)

or

O((2nj
0 − 1)u(n− nvoc − 1) + u(n− nvoc − 1)2)

for eachτcj ∈ Tc. Hence, the overall complexity for allτcj ∈
Tc is

O(u

v
∑

j=1

[(2nj
0 − 1)(n− nvoc − 1) + (n− nvoc − 1)2])

or

O(u(2αnvoc − v)(n− nvoc − 1) + vu(n− nvoc − 1)2),

whereα ≤ 1 andαnvoc refers to the total number of vocal
states outputting events inTc.

It follows that the worst-case total time complexity7 occurs
in the limit whereα = 1 (i.e., T = Tc), and is

O(u(2nvoc − v)(n− nvoc − 1) + vu(n− nvoc − 1)2).

ACKNOWLEDGMENT

The authors would like to thank the Editor, the Associate
Editor and all the anonymous referees for their constructive
comments on the review versions of this paper. However, the
authors remain solely responsible for the presented work.

REFERENCES

[1] Q. H. Ngo and K. T. Seow, “Hierarchical control of discrete-event
systems: A new command and control design based on feasible system
decomposition,” inProceedings of the IEEE International Conference on
Automation Science and Engineering (CASE’12), Seoul, Korea, August
2012, pp. 674–679.

[2] W. M. Wonham,Supervisory Control of Discrete-Event Systems. Sys-
tems Control Group, University of Toronto, Canada, July 2012 (Updated
annually), http://www.control.toronto.edu/cgi-bin/dldes.cgi.

[3] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,”SIAM Journal of Control and Optimization,
vol. 25, no. 1, pp. 206–230, January 1987.

[4] B. Hrúz and M. Zhou,Modeling and control of discrete-event dynamic
systems: With petri nets and other tools. Springer, 2007, vol. 59.

[5] C. G. Cassandras and S. Lafortune,Introduction to Discrete Event
Systems. Springer, 2008.

7Based on the corrected definition ofBu[q, V (q)], the revised worst-case
complexity result is not significantly lower than that stated in the conference
version [1].

11

[6] H. Hu, M. Zhou, Z. Li, and Y. Tang, “Deadlock-free controlof
automated manufacturing systems with flexible routes and assembly op-
erations using petri nets,”IEEE Transactions on Industrial Informatics,
vol. 9, no. 1, pp. 109–121, February 2013.

[7] J. S. Lee, M. Zhou, and P. L. Hsu, “A petri-net approach to modular
supervision with conflict resolution for semiconductor manufacturing
systems,”IEEE Transactions on Automation Science and Engineering,
vol. 4, no. 4, pp. 584–588, October 2007.

[8] R. J. Leduc, , M. Lawford, and P. Dai, “Hierarchical interface-based su-
pervisory control of flexible manufacturing system,”IEEE Transactions
on Control Systems Technology, vol. 14, no. 4, pp. 654–668, July 2006.

[9] M. Z. Fekri and S. Hashtrudi-Zad, “Hierarchical supervisory control of
discrete-event systems under partial observation,” inProceedings of the
48th IEEE International Conference on Decision and Control, Shanghai,
China, December 2009, pp. 181 –186.

[10] A. E. C. da Cunha and J. E. R. Cury, “Hierarchical supervisory
control based on discrete event systems with flexible marking,” IEEE
Transactions on Automatic Control, vol. 52, no. 12, pp. 2242–2253,
December 2007.

[11] K. Schmidt and C. Breindl, “Maximally permissive hierarchical control
of decentralized discrete event systems,”IEEE Transactions on Auto-
matic Control, vol. 56, no. 4, pp. 723–737, April 2011.

[12] O. Boutin, J. Komenda, T. Masopust, K. Schmidt, and J. H.van
Schuppen, “Hierarchical control with partial observations: Sufficient
conditions,” inProceedings of the 51th IEEE International Conference
on Decision and Control, Orlando, FL, USA, December 2011, pp. 1817
– 1822.

[13] H. Zhong and W. M. Wonham, “On the consistency of hierarchical
supervision in discrete-event systems,”IEEE Transactions on Automatic
Control, vol. 35, no. 10, pp. 1125–1134, October 1990.

[14] K. C. Wong and W. M. Wonham, “Hierarchical control of discrete-event
systems,”Discrete Event Dynamic Systems : Theory and Applications,
vol. 6, no. 3, pp. 241–273, July 1996.

[15] S. Yi, “Hierarchical Supervision with Nonblocking,” Graduate Depart-
ment of Electrical and Computer Engineering, University ofToronto,
Canada, Master of Applied Science (MASc) Thesis, June 2004.

[16] K. Q. Pu, “Modeling and Control of Discrete-Event Systems with Hier-
archical Abstraction,” Graduate Department of Electricaland Computer
Engineering, University of Toronto, Canada, Master of Applied Science
(MASc) Thesis, March 2000.

[17] M. Z. Fekri and S. Hashtrudi-Zad, “Hierarchical robustsupervisory
control of discrete-event systems,” inProceedings of the American
Control Conference, Seattle, Washington, USA, June 2008, pp. 1178–
1183.

[18] A. Jayasiri, G. K. I. Mann, and R. G. Gosine, “Modular supervisory
control and hierarchical supervisory control of fuzzy discrete-event
systems,”IEEE Transactions on Automation Science and Engineering,
vol. 9, no. 2, pp. 353–364, April 2012.

[19] A. E. C. da Cunha, J. E. R. Cury, and B. H. Krogh, “An assume-
guarantee reasoning for hierarchical coordination of discrete event
systems,” inProceedings of the 6th International Workshop on Discrete-
Event Systems, Zaragoza, Spain, October 2002, pp. 75–80.

[20] K. Schmidt, M. H. de Queiroz, and J. E. R. Cury, “Hierarchical
and decentralized multitasking control of discrete event systems,” in
Proceedings of the 46th IEEE International Conference on Decision and
Control, New Orleans, LA, U.S.A, December 2007, pp. 5936–5941.

[21] B. Gaudin and H. Marchand, “Supervisory control of product and
hierarchical discrete event systems,”European Journal of Control,
vol. 10, no. 2, pp. 131–145, 2004.

[22] K. Schmidt, T. Moor, and S. Perk, “Nonblocking hierarchical control of
decentralized discrete event systems,”IEEE Transactions on Automatic
Control, vol. 53, no. 10, pp. 2252–2265, November 2008.

[23] K. Schmidt, H. Marchand, and B. Gaudin, “Modular and decentralized
supervisory control of concurrent discrete event systems using reduced
system models,” inProceedings of the 8th International Workshop on
Discrete-Event Systems, Ann Arbor, MI, USA, July 2006, pp. 149–154.

[24] L. Feng and W. M. Wonham, “Supervisory control architecture for
discrete-event systems,”IEEE Transactions on Automatic Control,
vol. 53, no. 6, pp. 1449–1461, July 2008.

[25] C. Baier and T. Moor, “A hierarchical control architecture for sequential
behaviours,” in Proceedings of the 11th International Workshop on
Discrete-Event Systems, Guadalajara, Mexico, October 2012, pp. 259–
264.

[26] R. J. Leduc, B. A. Brandin, M. Lawford, and W. M. Wonham, “Hierar-
chical interface-based supervisory control - Part I: Serial case,” IEEE
Transactions on Automatic Control, vol. 50, no. 9, pp. 1322–1334,
September 2005.

[27] R. J. Leduc, P. Dai, and R. Song, “Synthesis method for hierarchical
interface-based supervisory control,”IEEE Transactions on Automatic
Control, vol. 54, no. 7, pp. 1548–1560, July 2009.

[28] R. C. Hill, J. E. R. Cury, M. H. de Queiroz, D. M. Tilbury, and
S. Lafortune, “Multi-level hierarchical interface-basedsupervisory con-
trol,” Automatica, vol. 46, no. 7, pp. 1152–1164, July 2010.

[29] R. Malik and R. J. Leduc, “Hierarchical interface-based supervisory
control using the conflict preorder,” inProceedings of the 11th In-
ternational Workshop on Discrete-Event Systems, Guadalajara, Mexico,
October 2012, pp. 163–168.

[30] W. M. Wonham and P. J. Ramadge, “On the supremal controllable
sublanguage of a given language,”SIAM Journal of Control and Op-
timization, vol. 25, no. 3, pp. 637–659, May 1987.

[31] J. E. Hopcroft and J. D. Ullman,Introduction to Automata Theory,
Languages and Computation. Reading, MA : Addison-Wesley, 1979.

[32] S. Eilenberg,Automata, Languages and Machines : Volume A. Aca-
demic Press, New York, 1974.

[33] K. C. Wong, “On the complexity of projections of discrete-event
systems,” inProceedings of the 4th International Workshop on Discrete-
Event Systems. Cagliari, Italy: IEE Computing and Control Division,
August 1998, pp. 201–206.

[34] K. C. Wong and W. M. Wonham, “On the computation of observers in
discrete-event systems,”Discrete Event Dynamic Systems : Theory and
Applications, vol. 14, no. 1, pp. 55–107, January 2004.

[35] K. T. Seow, “Organizational control of discrete-eventsystems: A hier-
archical multi-world supervisor design,”IEEE Transactions on Control
Systems Technology, Early On-line Access: March 2013.

[36] N. B. Hadj-Alouane, S. Lafortune, and F. Lin, “Variablelookahead
supervisory control with state information,”IEEE Transactions on
Automatic Control, vol. 39, no. 12, pp. 2398–2410, December 1994.

Quang Ha Ngo received the B.Eng. (Hons) degree
in computer engineering in 2008 from Nanyang
Technological University (NTU), Singapore.

He is currently a Ph.D. candidate at the School of
Computer Engineering, NTU. Prior to this, he was
an associate consultant at Oracle Financial Services
Software Pte Ltd, Singapore, from 2008 to 2010. His
research interests include discrete-event systems and
applications, data mining and big data analytics.

Kiam Tian Seow (SM’10) received the B.Eng.
(Hons) degree in electrical engineering from the Na-
tional University of Singapore, Singapore, in 1990
and the M.Eng. and Ph.D. degrees in electrical and
computer engineering from Nanyang Technological
University (NTU), Singapore, in 1993 and 1998,
respectively.

In February 2003, he joined the School of Com-
puter Engineering, NTU, where he has been a faculty
member. He has held visiting research appointments
with the Systems Control Group, University of

Toronto, ON, Canada, in 1997; the Korea Advanced Institute of Science and
Technology, Daejeon, Korea, in 2002; the Nippon Telegraph and Telephone
Corporation (NTT) Communication Science Laboratories, Kyoto, Japan, in
2003; and the Institute of Information Science, Academia Sinica, Taipei, Tai-
wan, in 2005. His research interests include intelligent agents and multiagent
systems, supervisory control of discrete-event systems and temporal logic,
with emphasis on their mutual connections and applications.

Dr. Seow has been a member of Sigma Xi, the Scientific Research
Honor Society since 2005. He has been an Associate Editor forthe IEEE
TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING
since 2009, and the IEEE TRANSACTIONS ON SYSTEMS, MAN AND
CYBERNETICS: SYSTEMS since 2013, and was an Associate Editor for
the IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS-
PART A: SYSTEMS AND HUMANS from 2010 to 2012.

