
1

Coordination Planning: Applying Control
Synthesis Methods for a Class of Distributed

Agents

Kiam Tian Seow, Manh Tung Pham, Chuan Ma, and
Makoto Yokoo

Abstract— This paper proposes a new multiagent planning
approach to logical coordination synthesis that views a class of
distributed agents as discrete-event processes. The coordination
synthesis problem involves finding a coordination module for
every agent, using which their coordinated interactions would
never violate some specified inter-agent constraint. The paper
first shows explicitly that, though conceptually different, the well-
researched problem of supervision in control science and the
problem of distributed agent coordination planning in computer
agents science are mathematically related. This basic result
enables the application of the vast body of knowledge and asso-
ciated synthesis tools already founded in discrete-event control
theory for automatic coordination synthesis of distributed agents.
Within this logical framework, a basic planning methodology
applying the discrete-event control synthesis methods is proposed,
and illustrated using TCT, a software design tool implementing
these methods. A simple example demonstrates how it supports
formal synthesis of coordination modules for distributed agents.
Discussions in relation to previous work examine the relative
significance of the new multiagent planning framework.

Index Terms— Multiagent Planning, Coordination Design,
Control Synthesis, Discrete-Event Systems, Automata

I. I NTRODUCTION

Rapid advances in information and communication tech-
nologies are providing a new infrastructural and communi-
cations basis that opens up new challenges to developing
complex automated systems more effectively. These systems
could offer a richer variety of new or improved services in
transportation, telecommunication, education, finance, elec-
tronic commerce, manufacturing and defence. The field of
Multiagent Systemsdefines a research framework to tackle
these challenges by viewing a system as an environment of
distributed interacting agents - entities capable of flexible
autonomous actions [1, Ch. 1].

In developing effective multiagent systems, one of the key
challenges is how to synthesize agents that couldcoordinate
their activity, i.e., manage among themselves the interdepen-
dent constraints [2] that must exist among them. In essence,
this involves deciding which agent does what over time
when sharing limited resources, so that they can accomplish
their assigned tasks in complex environments. This multiagent
coordination problem is important because of the increasing
need to deploy computer agents to operate autonomously in
distributed electronic environments, where the agents often

K.T. Seow and M.T Pham are with the Division of Computing Systems,
School of Computer Engineering, Nanyang Technological University, Repub-
lic of Singapore 639798.{asktseow,PHAM0028}@ntu.edu.sg

C. Ma is with the Systems Control Group, The University of Toronto,
Toronto, ON M5S 1A4, Canada.cma@control.utoronto.ca

M. Yokoo is with the Department of Intelligent Systems, Faculty of Infor-
mation Science and Electrical Engineering, Kyushu University, 744 Motooka,
Nishi-ku, Fukuoka 819-0395, Japan.yokoo@is.kyushu-u.ac.jp

need to coordinate on a variety of tasks. But in order to
build coordination into such systems that could eventually
benefit from agent-inspired features such as higher flexibility,
autonomy, scalability, reliability and fault tolerance, the use
of more formal approaches to laying a strong foundation for
system planning and design is necessary.

This paper introduces a formal, domain independent frame-
work for the problem of distributed agent (coordination) syn-
thesis. It can be viewed as a multiagent planning approach [3],
[4] to coordination as follows: The starting point is that weare
given a system of free agents that need to coordinate, subject
to a set of inter-agent constraints. The free (or unconstrained)
but fixed-by-design behavior of each agent is prescribed by an
automaton [5] interpreted as a discrete-event process (DEP)
[6]. From the agent planning viewpoint, this behavior is
viewed as an individual agent’s fixed local plan, formulated
independently to encompass all possible (but not necessarily
desirable) local ways to achieve its own goals (or complete
its own design tasks). Each inter-agent constraint is also
modeled by an automaton in terms of the events of the agents.
The system of free agents is called adiscrete-event system
(DES) (Sections II-A and II-B). The fundamental multiagent
planning problem then is to synthesize a coordination module
for each agent, using which the coordinated interactions among
them would never violate some specified inter-agent constraint
(Section III). As it turns out, this problem is equivalent tothe
problem of synthesizing a supervisory controller (SectionII-
C) for a system of interacting DEPs [6]. A major implication
of significant interest is that we can now adapt and apply
the vast body of knowledge and associated synthesis tools
from supervisory control[7], [8] for the automatic synthesis
of coordinating agents (Section IV). This will be illustrated by
an example (Section V), with a discussion distinguishing the
coordination framework from related research (Section VI)and
a conclusion summarizing the paper along with some future
work (Section VII).

II. BACKGROUND ON SUPERVISORYCONTROL OFDES

In this section, we review the essential concepts and su-
pervisory control synthesis methods, along with the relevant
procedures of a software design package called TCT [9] that
implements these methods [6], [7].

A. Languages and Automata

Let Σ be a finite alphabet of symbols that we refer to as
events. Astring (word) is a finite sequence of events fromΣ.
DenoteΣ∗ as the set of all finite strings of elements ofΣ. Let
ǫ denote the empty string (sequence with no events). Trivially,
ǫ ∈ Σ∗. A string s′ is a prefix of s if (∃t ∈ Σ∗)s′t = s.

A formal languageL over Σ is any subset ofΣ∗. SayL1

is a sublanguageof L2 if L1 ⊆ L2. The prefix closureL̄ of
L is the language consisting of all prefixes of strings ofL.
ClearlyL ⊆ L̄, because any strings in Σ∗ is a prefix of itself.
A languageL is closedif L = L̄.

2

Eventsσ ∈ NULL in stringss ∈ Σ∗ can be masked out or
erased byprojectionP0 : Σ∗ → (Σ − NULL)∗ according to

P0(ǫ) = ǫ

(∀s ∈ Σ∗)(∀σ ∈ Σ)

P0(sσ) =

{

P0(s)σ, if σ ∈ Σ − NULL

P0(s), otherwise.

The action ofP0 on a strings ∈ Σ∗ is to erase all the
occurrences ofσ ∈ NULL in string s. P0 is the natural
projection ofΣ∗ onto (Σ − NULL)∗.

A language usually has infinite number of strings. However,
if the language isregular [5], then it can begeneratedby an
automaton with a finite state set. AnautomatonA is a 5-tuple
(Q,Σ, δ, q0, Qm) where (i)Q is the finite set of states, (ii)Σ
is the finite set of events, (iii)δ : Σ × Q → Q is the (partial,
deterministic) transition function, (iv)q0 is the initial state,
and (v)Qm ⊆ Q is the subset ofmarker states.

An automaton can be represented graphically by an edge-
labelled directed graph with states represented by nodes, a
transition δ(σ, p) = q by an edge going from the statep to
q with an event labelled byσ, the initial state by an entering
arrow, and the marker states by darkened nodes. We write
δ(σ, p)! to denote that a transitionδ(σ, p) is defined.

The definition of δ can be extended toΣ∗ as follows:
δ(ε, q) = q and (∀σ ∈ Σ)(∀s ∈ Σ∗)δ(sσ, q) = δ(σ, δ(s, q)).

The behavior may then be described by two languages:
L(A) = {s ∈ Σ∗ : δ(s, q0)!} and Lm(A) = {s ∈ L(A) :
δ(s, q0) ∈ Qm}. L(A) is called the prefix-closed language
generated by automatonA, andLm(A), the language marked
by automatonA.

By definition, Lm(A) ⊆ L(A), i.e., it is a sublanguage
of L(A) whose strings end in a state ofQm, and is a
distinguished subset. If automatonA represents a DES, then
Qm is meant to represent completed ‘tasks’ andLm(A),
sequences of tasks carried out by the physical process that
the modelA is intended to model [6]. If automatonA models
a constraint (behavioral) specificationK, thenK = Lm(A) is
the behavior of interest.

A state q ∈ Q is reachable(from the initial stateq0) if
there exists a strings ∈ Σ∗ such thatδ(s, q0) = q. Similarly,
a stateq ∈ Q is coreachableif there exists a strings ∈ Σ∗

such thatδ(s, q) ∈ Qm. Then automatonA is trim if every
state inQ is both reachable and coreachable.A is said to be
nonblockingif every reachable state inQ is coreachable, i.e.,
Lm(A) = L(A). Otherwise,A is blocking. In particular,A
is nonblocking if it is trim. If A is not trim, the procedure
Trim(A) in TCT returns a trimmed automaton that generates
the same marked language asA.

On ‘equivalence’ of two automataA1 and A2, we write
A1 = A2 if their edge-labelled directed graphs are identical
in structure (including marker states); andA1 ≡ A2 if
the automata generate the same prefix-closed and marked

languages. So(A1 = A2)
(implies)

=⇒ (A1 ≡ A2) but the converse
is not true in general. Finally, we writeA1 ⊑ A2 if automaton
A1 is nonblocking and generates a marked sublanguage ofA2.

In TCT, the procedureCreate allows the input of automata
(in a certain format). The projectionP0 for regular languages

(i.e., languages generated by automata) is implemented by the
procedureP0.

B. Composition of Automata

1) The Synchronous Product:Consider an automatonG
modeling (the behavior of) a DES. A complex DES modelG
is usually modeled as a system of several interacting discrete-
event processes (DEP’s), each modeled by an automatonAi

and composed together using thesynchronousoperator‖. The
systemG is thus a synchronous product defined as follows.

Let Ai = (QAi ,ΣAi , δi, qi
0, Q

Ai
m), i = 1, 2, be two au-

tomata. ThenG = (Q,Σ, δ, q0, Qm), as the synchronous
product [10] of A1 and A2 denoted byG = A1 ‖ A2, is
synthesized with (i)Σ = ΣA1 ∪ ΣA2 , (ii) Q = QA1 × QA2 ,
(iii) Qm = QA1

m ×QA2
m , (iv) q0 = (q1

0 , q2
0), and (v)δ = δ1×δ2

defined by

δ(σ, (q1, q2)) =



















(δ1(σ, q1), δ2(σ, q2)), if σ ∈ ΣA1 ∩ ΣA2 and
δ1(σ, q1)! andδ(σ, q2)!

(δ1(σ, q1), q2), if δ1(σ, q1)! andσ 6∈ ΣA2

(q1, δ2(σ, q2)), if δ2(σ, q2)! andσ 6∈ ΣA1

undefined, otherwise.

Intuitively, the synchronous product ofA1 and A2 models
DES G, of A1 andA2 operating concurrently by interleaving
events generated byA1 andA2 with synchronization on shared
eventsσ ∈ ΣA1 ∩ ΣA2 , such that

• events common to both the automata can occur only if
each automata is in a state where such an event is defined;

• events that are not common to both the automata may
occur as long as they occur in a sequential order along
which they are defined by the respective transition func-
tions of A1 andA2.

In TCT, the operator‖ is implemented by the procedureSync.
So Sync(A1, A2) returns the synchronous productA1 ‖ A2,
which in general may be blocking even whenA1 andA2 are
not.

2) Cartesian Product: Let S ⊓ G denote the cartesian
operation between two automataS and G, such thatL(S ⊓
G) = L(S) ∩ L(G) andLm(S ⊓ G) = Lm(S) ∩ Lm(G).

If ΣS = ΣG, the synchronous operation‖ betweenS and
G reduces to the cartesian operation⊓ between the two and
equivalently, we can writeS ‖ G ≡ S ⊓ G.

In TCT, the operator⊓ is implemented by the procedure
Meet. SoMeet(S,G) returns the cartesian productS⊓G which
in general need not be nonblocking.

C. Controllability and Supervision

Let G = (Q,Σ, δ, q0, Qm) be a DES (G can be built by
the synchronous product of a set of simpler automata), and
another automatonC specify the desired constraint over the
entire event setΣ. The basic control problem is to modify
G such that the modified DESG′ is nonblocking and only
generates strings belonging toL(C).

The basic control framework partitions the event setΣ into
two disjoint subsets: the setΣc of controllableevents that can
be disabled (or inhibited) by an external controller and theset

3

Σu of uncontrollableevents that can never be. In an edge-
labelled directed graph, a controllable event may be indicated
by an optional tick on an edge (◦—|—>–◦) representing it. In the
control context, a controller can restrict (and therefore modify)
the system behavior by only disabling controllable events.We
call such a controller asupervisor(or supervisory controller).
Formally, a supervisor is a functionV : L(G) → Γ with
Γ := {γ ∈ 2Σ|γ ⊇ Σu}. Only events inV (s) ∈ Γ are enabled
(and allowed to occur) following the execution ofs ∈ L(G).
Write V/G for ‘G under the supervision ofV .’ The closed
behaviorgenerated byV/G is defined recursively as follows:

1) ǫ ∈ L(V/G),
2) if s ∈ L(V/G), σ ∈ V (s), and sσ ∈ L(G) then sσ ∈

L(V/G),
3) no other strings belong toL(V/G).

Equivalently, the supervisorV can be more abstractly rep-
resented by an automatonS = (XS ,ΣS , δS , xS

0 ,XS
m) with

ΣS = Σ, so that L(V/G) = L(S ⊓ G), and S and G
are interconnected in a closed-loop feedback configuration
[see Fig. 1(a)]. Corresponding toΓ, S is said to beΣu-
enabling, i.e.,(∀s ∈ Σ∗)(∀σ ∈ Σu) s ∈ L(S ⊓ G) & sσ ∈
L(G) =⇒ sσ ∈ L(S ⊓ G). The marked behaviorof G under
the supervision ofS is Lm(S⊓G). S is said to benonblocking
(for DES G) if Lm(S ⊓ G) = L(S ⊓ G).

Formally, a general problem statement of supervisory con-
trol may be given as follows:

Problem 1: Given a DESG and a control constraintC, find
a supervisorS such thatS ⊓ G ⊑ C.
In addressing the problem, a fundamental theorem states that a
nonblocking supervisorS for G exists such that the controlled
behaviorLm(S ⊓ G) = K, whereK = Lm(C) ∩ Lm(G), if
and only if C is controllable [6] with respect toG, namely
KΣu ∩ L(G) ⊆ K. (Here the notationKΣu denotes the set
of strings of the formsσ with sl ∈ K for some l ∈ Σ∗

andσ ∈ Σu.) In other words,C is controllable (with respect
to G) provided noL(G)-string which is already a prefix of
L(C)∩Lm(G), that when followed by an uncontrollable event
in G, would exit from the bounds ofLm(C) ∩ Lm(G); the
prefix closed languageLm(C) ∩ Lm(G) is invariant under the
occurrence of uncontrollable events inG.

AutomatonC is one such nonblocking supervisorS that
exists if C is controllable andC and G are nonconflicting,
namely,L(C) ∩ L(G) = Lm(C) ∩ Lm(G), i.e., every string
in L(C ⊓ G) can be completed to a string inLm(C ⊓ G).
If C is not controllable, there always exists a controllable
automaton1 S generating thelargest closed sublanguage of
L(C) ∩ L(G) and is nonconflicting withG [6]. Thus S is
nonblocking, generating (withG) the largest marked sublan-
guage ofLm(C)∩Lm(G). It follows thatS ⊓G ⊑ C, andS
is called a supremal controllable and nonblocking automaton
of C (with respect toG).

In TCT, a supervisor synthesis algorithm [11] is imple-
mented by the procedureSupcon. Supcon(C,G) returns a
nonblocking supervisor automaton denoted bySG, with SG ≡
(S⊓G). The trim automatonSG can be larger in state size than
is necessary to achieve the same coordinating actions because

1Note, however, that the language ofS may be an empty set∅.

it has ‘embedded’ in it all thea priori transitional constraints
embodied in the free behavior of the systemG itself, as well
as some auxiliary constraints. TCT providesSupreduce, a
heuristic reduction procedure of polynomial complexity that
can often find a greatly state-reduced supervisorS [12]. The
procedure also provides a lower bound on the state size of the
minimal state supervisor, and the computed supervisorS is
actually minimal state if its size matches this bound.

D. Minimally Reactive Supervision

In the rest of this paper, unless otherwise stated, an automa-
ton is assumed to be trim. LetE(C) denote the non-empty set
of automata, such thatS ∈ E(C) iff (i) (S ⊓ G) ≡ SG =
Supcon(C,G) and (ii) ΣS = Σ(SG). And let minQE(C)
denote the subset of automata of minimum state size inE(C).
Formally,

minQE(C) = {S ∈ E(C) | (∀S′ ∈ E(C))|XS | ≤ |XS′

|}.

Let ΣS
loop ⊆ ΣS denote the set of all strictly self-loop events

in a supervisor automatonS; such an event would never bring
S from one state to a different state, i.e.,

(∀σ ∈ ΣS
loop)(∀x ∈ X)(δS(σ, x)! =⇒ δS(σ, x) = x).

Following, letmaxLE(C) denote the set of automata with the
largest set of strictly self-loop events inE(C). Formally,

maxLE(C) = {S ∈ E(C) | (∀S′ ∈ E(C))|ΣS′

loop| ≤ |ΣS
loop|}.

Let S∗ be the automaton that has the largest number of strictly
self loop events among all the automata inminQE(C). In
other words,S∗ ∈ minQE(C) and

(∀S′ ∈ minQE(C))|ΣS′

loop| ≤ |ΣS∗

loop|.

Clearly, S∗ ∈ minQE(C) ∩ maxLE(C) provided
minQE(C) ∩ maxLE(C) 6= ∅.

Intuitively, a supervisorS∗, with the leastnumber of states
and the largest number of strictly self-loop events,reacts
the leastin the sense that it induces the most memory-state
efficient control that need not respond to the largest number
of events of DESG to achieveSG ⊑ C. It is said to be
minimally reactive(underG-equivalence forC). As will be
explained later in Section III, such an automaton is found to
have an important implication for coordination between two
agents.

III. M ULTIAGENT COORDINATION PLANNING

The basic multiagent coordination planning problem consid-
ered in this paper is to modify a system ofn interacting agents
such that the modified system as a whole is nonblocking and
conforms to some inter-agent constraint. The free behaviorof
each agentAi is modeled as an automaton interpreted as a
DEP. The inter-agent constraint is qualitative (non-numerical)
and also specified by some automatonC over the events of
all the agents. The basic coordination problem is to modify
the multiagent systemG =‖n

i=1 Ai such that the modified
systemG′ is nonblocking and only generates strings belonging
to L(C).

4

Supervisor
S

System G

DEP A1

DEP A2
σ ∈Σ

γ

Supervisor
S

System G

DEP A1

DEP A2
σ ∈Σ

γ

(a) Supervision of two DEP’sA1 andA2

CM
Agent A1 Agent A2

CM
/
2S/

1S

CM
Agent A1 Agent A2

CM
/
2S/

1S

CM
Agent A1 Agent A2

CM
/
2S/

1S

(b) Coordination of two agentsA1 andA2

Fig. 1. Illustrating the basic difference: The notion of event-feedback fundamental to implementing supervisory controlis absent in multiagent coordination.
Following, for the supervisory control problem, the supervisorS is the required solution but for the multiagent coordinationproblem, the coordination modules
S′

1
andS′

2
are the required solution.

Note that the coordination and supervisory control problems
areconceptuallydifferent. The latter achieves conformance to
constraints through an external supervisor interacting with the
system of DEP’s by event enablement or disablement based
on information feedbackon the occurrence of events [see
Fig. 1(a)]. But the former does so by the agents interacting
among themselves through their coordination modules (CM’s)
[see Fig. 1(b)]. Unlike event-feedback control, coordinating
interaction also involves synchronous event message passing,
where each agent sends messages (for events executed under
its jurisdiction) to, and receives relevant event messagesfrom
the other agents. This form of communication is necessary to
maintain conformance to the specified inter-agent constraint.

Consider two automataAi and S′
i, with ΣAi ⊆ ΣS′

i . The
event set ofAi are classified into controllable event setΣAi

c

and uncontrollable event setΣAi
u . Then S′

i can be a CM of
agentAi providedS′

i is ΣAi
u -enabling, i.e.,

(∀s ∈ (ΣS′

i)∗)(∀σ ∈ ΣAi
u) s ∈ L(Ai ‖ S′

i) & P0(s)σ ∈
L(Ai) =⇒ sσ ∈ L(Ai ‖ S′

i), where P0 is the natural
projection from(ΣS′

i)∗ to (ΣAi)∗.
Informally, ΣAi

u -enabling means that when agentAi is
coordinating (via‖) throughS′

i, its uncontrollable events can
never be prevented from occurring.

Formally, a general problem statement of multiagent coor-
dination planning may now be given as follows:

Problem 2: Given a systemG =
fn

i=1 Ai of n agents and
an inter-agent constraintC, find a CM S′

i for each agentAi

such that
fn

i=1(Ai ‖ S′
i) ⊑ C.

Interestingly, it turns out that the Control Problem 1 and
Coordination Problem 2 aremathematicallyequivalent in the
sense of Theorem 1 below. The theorem presents the result for
two agents, but can be easily extended to multiple agents. As
we will show and explain, this theoretical insight and existing
control synthesis methods help us to focus on the synthesis
of agent CM’s - the modification solution - that have the
following nice properties:

1) The agent CM’s are minimally interventive, meaning
that the coordinating agents do not disable their own
controllable events unless not doing so will lead to
violation of the inter-agent constraintC.

2) The number of events to be communicated via CM’s
between the agents is relatively small. This property is
necessary when the underlying communication infras-
tructure has limited capability or the communication cost

is high.
3) Each agent CM can be efficiently implemented in terms

of a relatively small number of memory states.

A class of such agent CM’s, calledminimal coordination
modules, will be formally described later.

Theorem 1:Given automataS, A1 and A2, with ΣS =
ΣA1 ∪ ΣA2 ,

S ⊓ (A1 ‖ A2) ≡ (A1 ‖ S′
1) ‖ (S′

2 ‖ A2)

and
ΣS′

1 ∩ ΣS′

2 = (ΣS − ΣS
loop) ∪ (ΣA1 ∩ ΣA2),

whereS′
i, i ∈ {1, 2}, is automatonS, but with all its strictly

self-loop events not defined in agentAi, i.e.,σ ∈ ΣS
loop−ΣAi ,

removed.
Proof: SinceS and A1 ‖ A2 share the same event set

ΣS and‖ is associative and commutative, it follows that

S ⊓ (A1 ‖ A2) ≡ S ‖ (A1 ‖ A2)

≡ S ‖ A1 ‖ A2

≡ A1 ‖ S ‖ A2.

And sinceS′
i is S but with all its strictly self-loop events in

S not defined in agentAi, i.e., σ ∈ ΣS
loop − ΣAi , removed, it

follows by the definition of thesynchronousoperator‖ (see
Section II-B.1) thatS ≡ S′

1 ‖ S′
2. Thus,

S ⊓ (A1 ‖ A2) ≡ A1 ‖ (S′
1 ‖ S′

2) ‖ A2

≡ (A1 ‖ S′
1) ‖ (S′

2 ‖ A2).

By set-theoretic manipulations,

ΣS′

1 ∩ ΣS′

2 =
{

ΣS − (ΣS
loop − ΣA1)

}

∩
{

ΣS − (ΣS
loop − ΣA2)

}

=
{

(ΣS − ΣS
loop) ∪ (ΣS

loop ∩ ΣA1)
}

∩
{

(ΣS − ΣS
loop) ∪ (ΣS

loop ∩ ΣA2)
}

= (ΣS − ΣS
loop) ∪ (ΣA1 ∩ ΣA2 ∩ ΣS

loop)

=
{

(ΣS ∪ ΣA1 ∩ ΣA2) − ΣS
loop

}

∪ (ΣA1 ∩ ΣA2 ∩ ΣS
loop)

= (ΣS − ΣS
loop)

∪
{

(ΣA1 ∩ ΣA2 − ΣS
loop) ∪ (ΣA1 ∩ ΣA2 ∩ ΣS

loop)
}

=(ΣS − ΣS
loop) ∪ (ΣA1 ∩ ΣA2).

Hence the result.

5

Theorem 1 may be interpreted as follows: Suppose automa-
ton G = A1 ‖ A2 models a system. Then the left-hand side
(of Theorem 1) can be viewed as a supervisorS controlling
the systemG (of possibly interacting DEP’sA1 andA2) if S
is controllable with respect toG. SupervisorS is nonblocking
(with respect toG) if SG ≡ S ⊓ G is trim. The right-hand
side can be viewed as distributed agents, each (with its free
behavior) modeled byAi, i ∈ {1, 2}, coordinating between
themselves via their respective coordination modulesS′

i that
each is deemed to be ‘equipped’ with.

By definition,ΣS
loop is the set of all strictly self-loop events

for a given S, and these events are said to be ‘irrelevant’
to S as a supremal controllable and nonblocking automaton
of some inter-agent constraintC, but which can occur in the
agents composed asG. Being inherently synchronous in the
free interactions between the agentsA1 andA2, every shared
eventσ ∈ ΣA1 ∩ ΣA2 must be included for synchronization,
even if it is irrelevant to achieving conformance to constraint
S, i.e., σ ∈ ΣS

loop. It follows that [ΣS
loop − (ΣA1 ∩ ΣA2)] is

the largest event set thatneed notbe communicated between
the agents to achieve conformance to the (controllable) inter-
agent constraintS. However, internal communication with the
local events of each agentAi is needed. Therefore, as formally
established,ΣS

loop − ΣAi is the largest set of events that can
be removed from a givenS to yield S′

i, and yet(A1 ‖ S′
1) ‖

(A2 ‖ S′
2) preservesS ‖ G. Importantly, being equipped with

S′
i means that the agentsAi’s need to synchronize with each

other only on the set of eventsΣS
sync, ΣS

sync = ΣS′

1 ∩ΣS′

2 (all
events except the set of unshared and strictly self-loop events
in S).

In the context of coordination, the controllable(S ‖ G) ⊑ C
is the correct and complete (feasible) coordination subspace of
C in the presence of uncontrollable events in the multiagent
systemG; and (S ‖ G) and (S ⊓ G) (the control space)
are equivalent sinceΣS = Σ. This suggests that we can
apply existing control synthesis methods to obtain a supremal
controllableS (which is nonblocking), from which everyS′

i

can be obtained as implied in Theorem 1. It means we can
obtain coordination modules for agents in a systemG such
that the coordinating behaviorS ‖ G is nonblocking and does
not contradict the inter-agent constraintC. As S′

1 ‖ S′
2 = S,

the coordination is minimally interventive, meaning that the
coordinating agents will not unnecessarily disable their own
controllable events since the admissible coordination space
S ‖ G (due to the supremal controllable and nonblocking
automatonS of C [8]) is feasibly the least constrained that
still conforms to the specified inter-agent constraintC.

The size and events ofΣS
loop may change, and so may those

of ΣS
sync for an S of a different state size inE(C). If S ∈

minQE(C)∩maxLE(C) (which means it is of minimum state
size and has the largestΣS

loop) andΣS
loop

⋂

(ΣA1 ∩ΣA2) is the
smallest [among all automata ofE(C)], then each moduleS′

i

obtained from such anS is said to be aminimal coordination
module2 because of the following additional properties:

1) The common set of eventsΣS
sync they collectively offer

2The conditions for minimal coordination specified herein revise and clarify
that in the preliminary conference version [13].

for synchronization between the two agents would be the
smallest, inducing efficient communication (and hence a
relatively small amount of information to be shared3)
between the agents when coordinating to satisfy the
inter-agent constraintC.

2) The CM S′
i that each agentAi is equipped with is

memory-state efficient, since it is synthesized from a
minimum stateS.

Unfortunately, finding a supervisorS of minimum state size
is already NP-hard [12].

Corollary 1: Given automataS, A1 and A2, with ΣS =
ΣA1 ∪ ΣA2 ,

S ⊓ (A1 ‖ A2) ≡ (A′
1 ⊓ S′

1) ‖ (S′
2 ⊓ A′

2)

and

ΣS′

1 ∩ ΣS′

2 = (ΣS − ΣS
loop) ∪ (ΣA1 ∩ ΣA2),

where, fori ∈ {1, 2},

1) A′
i is agentAi, but with all the events ofS′

i not defined
in agentAi, i.e., σ ∈ ΣS′

i − ΣAi , self-loop adjoined at
each stateq ∈ QAi , and

2) S′
i is automatonS, but with all its strictly self-loop

events not defined in agentAi, i.e., σ ∈ ΣS
loop − ΣAi ,

removed.
Proof: For i ∈ {1, 2}, since ΣS′

i = (ΣA1 ∪ ΣA2) −
(ΣS

loop − ΣAi), it follows that ΣAi ⊆ ΣS′

i . This impliesAi ‖
S′

i ≡ A′
i ⊓ S′

i, with A′
i as defined. Hence, rewriting Theorem

1, the corollary follows.
Corollary 1 offers an intellectually interesting view: A feasi-

ble control solutionS can be decomposed into a coordination
solution with CM’sS′

1 andS′
2, connected in a close interplay

of local control (⊓) and global coordination(‖). Control is
local in that an individual agentAi is augmented to only enable
or disable events in itslocal set ΣAi . Coordination is global
in that it involves synchronous communication between the
agents on events in thesystemsubsetΣS′

1∩ΣS′

2 . This interplay
can meet some (global) inter-agent constraintC (expressed
over the whole event setΣS) if S is a supremal controllable
and nonblocking automaton ofC.

IV. COORDINATION PLANNING AS CONTROL SYNTHESIS

An important implication of Theorem 1 presented in the
preceding section and the discussion that followed is that
control synthesis can be adapted and applied as a new mul-
tiagent planning approach to coordination. And the approach
can be carried out without ‘reinventing the wheel’ through
a planning methodology that we will present in Section IV-
C. This approach allows automatic synthesis of minimally
interventive coordination modules. These modules guarantee
that the respective agents, individually equipped with each,
will exhibit a coordinated behavior that is not only correct
but feasibly complete with respect to specified inter-agent
constraints.

3The amount of (event) information that the agents may share alsodepends
on how stringent the inter-agent constraint is.

6

A. Uncontrollable and Controllable Events in an Agent Model

An agent is said to own an event provided its free behavioral
model contains the event. Then interpreted slightly differently
from the context of control design [see Fig. 1(a)], in the new
context of coordinating agent design [see Fig. 1(b)], an agent
is said to only enable or disable the events it owns. An event
can either be controllable or uncontrollable.

One can think of an uncontrollable event as one that is
predetermined to be inherentlyautonomous, i.e., it can occur
solely at thefree will of its owner agent. Such a free will is
usually exerted by the engineering dynamics inside the agent’s
local state where the event is defined. Following the discrete-
event modeling of a multiagent system, a system modeler has
to pre-specify each event as either controllable or uncontrol-
lable. As a rule, an event is pre-specified as uncontrollableif
it is critical to the owner agent such that disabling the event
and limiting its autonomy just to conform to an inter-agent
constraint is undesirable, expensive or impossible. Machine
breakdownis a hard example of an uncontrollable event. It
can occur at the free will of the machine agent. Here, of
course, the free will is exerted by the possibly unrestrained
ageing dynamics of the machine agent. Customerarrival at
a banking ATM is a softer example of an uncontrollable
event. It is inhibitable by its owner agent (the customer).
But in coordination, not only is always prohibiting such an
event unnecessarily restrictive to the agent, it is often also an
undesirable decision, hence pre-specified as uncontrollable.

An agent either inhibits or executes its controllable events
when interacting with other agents. While the agent can cer-
tainly prevent a controllable event from occurring by disabling
it, whether or not an enabled event can be executed depends
on the agent’s underlying mechanism4. A system modeler can
freely pre-specify an event to be controllable as he sees fit,
provided that some mechanism can be implemented for the
agent to actually prohibit or execute the event as necessary. An
example of an event that may be pre-specified as controllable
is a traffic green lightturned on.

B. Multiagent Coordination and Communication

Under the foregoing notation, in a multiagent setting,

ΣS
sync =

⋂

all i

ΣS′

i = [(ΣS − ΣS
loop) ∪

⋂

all i

ΣAi].

Agent Ai would need to communicate the (occurrence of its
local) events inΣAi ∩ ΣS

sync to every other agent (via syn-
chronous event message passing), but need not communicate
those inΣAi ∩(ΣS

loop−ΣAj) to agentAj , j 6= i, nor any other
agent it does not inherently share these events with. It however
needs to communicate the events inΣAi ∩ (ΣAj − ΣS

sync)
specifically to agentAj . ΣAi ∩ (ΣAj − ΣS

sync) ⊆ ΣS
loop, but

is also the subset of events shared inherently between itself
and agentAj and so must be communicated, regardless of the
fact that these events are irrelevant to achieving conformance
to S.

4As Section IV-D will elaborate more on, we can view this as a commitment
mechanism.

So in general, everyS′
i obtained from anS is a minimal

coordination module if all the following criteria hold:
1) S ∈ minQE(C) ∩ maxLE(C);
2) among all automata ofminQE(C) ∩ maxLE(C),

a) ΣS
loop ∩

⋂

all k ΣAk is the smallest;
b) (∀j)ΣAi ∩ (ΣAj − ΣS

sync) is the smallest.

Condition 1 ensures thatΣS
loop is the largest. Together with

Criterion 2a,ΣS
sync is the smallest. And together with Criterion

2b, for every pair of agents(Ai, Aj), j 6= i, the event set
ΣS

sync ∪ [ΣAi ∩ (ΣAj − ΣS
sync)] that each corresponding pair

(S′
i, S

′
j) collectively offers for synchronous communication

between the two agents would bethe smallest. It should be
clear that

ΣS
sync∪[ΣAi∩(ΣAj−ΣS

sync)] = ΣS
sync∪[ΣAj∩(ΣAi−ΣS

sync)],

thus clarifying that the set on the left-hand side is the commu-
nication event set between agentsAi andAj for coordination.

In the special case of only two coordination agents,A1 and
A2, ΣA1 ∩ (ΣA2 − ΣS

sync) = ∅.
A sufficiency condition for Criterion 2b is the following:

(∀σ ∈ Σ)(∀j, k; j 6= k)
(

σ ∈ ΣAj ∩ ΣAk =⇒ σ ∈
⋂

all i

ΣAi

)

.

Intuitively, it means that any shared event is a common one
among all the agents. When this condition holds, Condition
2b is satisfied, sinceΣAi ∩ (ΣAj −ΣS

sync) = ∅ and thus is the
smallest. A special and not uncommon case of the sufficiency
condition is the total absence of shared events among agents,
i.e., (∀j, k; j 6= k)ΣAj ∩ ΣAk = ∅. With this special case,
ΣS

loop ∩
⋂

all k ΣAk = ∅, thus also satisfying Criterion 2a.

C. Coordination Planning Methodology

Based on the proposed approach, dubbed ‘planning as
control synthesis,’ a simple methodology for the design of co-
ordinating agents follows. The proposed methodology supports
the following planning steps, which can be clearly prescribed
in terms of procedures provided by TCT [9].

Step 1: Modeling.

• UseCreate to input all automaton models of the
free agents and their inter-agent constraints.

• Use Meet and Sync, procedures for⊓ and ‖
respectively, to combine the automata as needed.

Step 2: Control Synthesis.

• UseSupcon:

– Input: automatonG, a synchronous product
on all agent automataAi and automatonC, a
meeting of all inter-agent constraintsCj , with
ΣC =

⋃

all i ΣAi .
– Output: automatonSG, a nonblocking super-

visor.

• UseCondat:

– Input: automataG andSG.
– Output: control data DAT (i.e., events disabled

at each state) forSG.

7

• UseSupreduce:
– Input: automatonSG and control data DAT.
– Output: automatonS (state-reduced supervi-

sor).
Step 3: Coordination Synthesis.

• UseAsynevent:
– Input: automatonS.
– Output: event setΣS

loop (set of strictly self-
loop events inS).

• UseP0 for each agent automatonAi:
– Input: automatonS and event setΣS

loop−ΣAi

as theNULL set.
– Output: automatonS′

i, a coordination module
for agentAi.

The key procedures in the planning steps above have been
defined in Section II, and the rest should be clear from their
specified input-output. The reader may refer to Wonham [7]
for a more detailed description of the TCT procedures used.

The current version of TCT [9] supports synthesis for a
system of up to 2 million states. Synthesis of very large
systems is a subject of ongoing research (e.g., [14]), and is
beyond the scope of this paper. In any case, the proposed
methodology applies DES control synthesis methods, and
need not depend on TCT which is one available software
implementation of the methods.

One obvious coordination solution5 is S′
i = S. In this

case, the agents communicate synchronously all of their (lo-
cal) events to achieve conformance to inter-agent constraints.
However, this solution may entail unnecessary events commu-
nicated between the agents. Theorem 1 has clearly revealed
the possibility of a better coordination solution with regard to
less synchronous communication. It is the basis for extending
the control methodology (Steps 1 and 2) with Step 3, as in
the coordination planning methodology presented above.

Finally, it is worth pointing out that many man-made
systems can, at some level as abstraction, be modeled by
automata (interpreted as DEPs). As with any design modeling
formalism, abstraction is inevitable. But as long as a system’s
constraint-related features can be described in automata,an
abstractionof the resulting system (of agents) can be modeled
and the coordination planning methodology can be applied.
Within this formalism, modeling is very flexible. We can use a
number of automata to formally describe one agent’s behavior,
or use a number of them as inter-agent constraints describing
the interactions among two or more agents. So the modeling
of agent behavior within this planning framework is naturally
modular and decentralized.

D. Conventions, Commitments and Joint Intentions

Jennings [4], [15] has hypothesized thatcommitmentsand
conventionsconstitute coordination in multiagent systems. The
former are pledges to undertake specific actions; the latter
are means of monitoring commitments as the system actually
evolves. Accordingly, the proposed planning framework, being

5Note that such a trivial solution need not satisfy the conditions for S′

i
as

in Theorem 1.

very general, only supports the design of agent conventions
but lends credentials to theCentrality of Commitments and
Conventions Hypothesis[15] that all coordination mechanisms
can ultimately be reduced to commitments and their associated
conventions, as explained below:

Let automatonA be (the free behavior of) a distributed
agent, equipped withS′, a coordination module synthesized
under the proposed methodology. Where a state inA ‖ S′ has
more than one event defined, the agent is deemed to be capable
of selectingan event to execute via an underlying mechanism.
This mechanism, however, is assumed not modeled in supervi-
sory control theory as originally asserted in [16], and hence in
the current proposed planning framework that inherits it. The
reason is to develop a coordination theory that is valid for a
wide range of applications. Therefore, within the framework,
no postulation is made on how the mechanism selects an event
for execution. The actual selection might be decided offline
or online among the agents through their mechanism. This
might be separately designed for a peculiar application domain
by a system designer. In connecting to the two concepts that
co-found the idea of coordination, an eventσ local to agent
A (i.e., σ ∈ ΣA) that is selected for execution in a state of
A ‖ S′ is deemed as a commitment by the agent, since the
selected event would occur unless preempted by another whose
occurrence is uncontrollable. The agent’s (local) convention is
the language space defined byA ‖ S′, since it details all
the event sequences in which the agent’s commitments can
traverse feasibly, i.e., without ever exiting the bounds ofthe
inter-agent constraint on whichS′ is synthesized.

Finally, viewed from a taxonomy of multiagent interactions
proposed by Parunak et al [17], our proposed framework
can be regarded as collaboration defined as ‘coordination
based on direct communication plus joint intentions.’ In our
coordination paradigm, the agents are designed to synchronize
or directly communicate with each other on a subset of their
events to carry out theirjoint intentions. The inter-agent
constraint can be said to specify their joint intentions.

V. I LLUSTRATIVE EXAMPLE

In this section, we present an example to illustrate and dis-
cuss the use of the proposed TCT-based planning methodology
for coordination design of a multiagent system.

The system under study is a different version of the
train controller system adapted in [18]. As shown in Fig.
2(a), the distributed system has two train agents, mod-
eled by automataT1 and T2 as shown in Figs. 2(b) and
2(c), but no central controller. The modeled train behav-
iors should be quite self-explanatory, withΣ = Σc ∪ Σu,
where we arbitrarily fixΣc = {1entered , 2entered} and
Σu = {1arrived , 1left , 2arrived , 2left}. The train agents, one
eastbound (EB) and one westbound (WB), each occupies its
own loop track. But at one point, both tracks pass through a
tunnel. There is no room to accommodate both trains going
past each other in the tunnel. Unlike in [18], there are no traffic
lights at both ends of the tunnel. Both trains are equipped with
a signaller, using which they can send signals to communicate
with each other.

8

Train1,
eastbound

Tunnel

Train2,
westbound

Train1,
eastbound

Tunnel

Train2,
westbound

(a) Overall structure of train system

1arrived

1entered

1left

1A

1W 1T

1arrived

1entered

1left

1A

1W 1T

(b) EB train agentT1

2arrived

2entered

2left

2A

2W 2T

2arrived

2entered

2left

2A

2W 2T

(c) WB train agentT2

A: away from-Tunnel; W : wait at-Tunnel; T : in-Tunnel

1arrived

1arrived

2arrived

1entered1entered

1left

1left 2arrived

2arrived

2entered 2entered

1arrived

2left

2left

1arrived

1arrived

2arrived

1entered1entered

1left

1left 2arrived

2arrived

2entered 2entered

1arrived

2left

2left

(d) Inter-agent constraintC

Fig. 2. Multiagent coordination planning for a distributedtrain system

Given this scenario, one possible solution is to let the train
agents coordinate between themselves so as to respect the
following inter-agent constraint:

The train agents are allowed access to the tunnel
on a first arrival first access (FAFA) basis, and such
that they are never both in the tunnel at the same
time.

The textual description of the desired constraint can be formal-
ized by an automatonC as shown in Fig. 2(d). How this can be
done is simply taken for granted here. We refer the reader to
the paper [19] on how such an automaton may be more easily
determined with the aid of a specification translator. In fact,
the reader may convince himself that the automatonC repre-
sents the desired constraint. The problem then becomes that
of formally synthesizing coordination modules for the train
agents. This can be systematically done using the automated
planning methodology proposed in Section IV-C.

The result after completingStep 2is a simplified supervisor
S which, for this system, is found to be minimal state (by
Supreduce) and by inspection, can be verified to be an au-
tomatonS∗ (see Section II-D). It is shown in Fig. 3. Following
Step 3, we obtainΣS

loop = {1entered , 2entered}, using which
the eventσ ∈ ΣS

loop − ΣTi , i ∈ {1, 2} is projected or masked
out from S to obtain the coordination module (CM)S′

i for

train agentTi, as shown in Fig. 4. To elaborate, using these
CM’s means: agentT1 must inform agentT2 whenever any
of its events,1arrived and 1left , occurs, but need not do so
when event1entered occurs; and agentT2 reciprocates in turn.
SinceΣA1 ∩ ΣA2 = ∅, Criterion 2 stated in Section IV-B is
satisfied, and so it follows that the resulting CM’s are minimal
coordination modules.

2arrived

1left,1arrived,

1arrived

2entered

2entered

1entered,

1entered

2arrived

1left,1arrived,

1arrived

2entered

2left2left

2entered

1entered,

1entered

2left

2arrived,1left,

2left

2arrived,1left,

2arrived

1left,1arrived,

2arrived

1left,1arrived,

1arrived

2entered

2entered

1entered,

2entered

1entered,

1entered

2arrived

1left,1arrived,

2arrived

1left,1arrived,

1arrived

2entered

2left2left

2entered

1entered,

2entered

1entered,

1entered

2left

2arrived,1left,

2left

2arrived,1left,

2left

2arrived,1left,

2left

2arrived,1left,

Fig. 3. A simplified (minimally reactive) supervisorS

To meet the specified inter-agent constraintC, a clear
advantage of our approach is that it offers unintuitive design
insights, informing us the events (namely,ΣS

sync ∩ ΣTi =
{iarrived , ileft}) that agentTi, i ∈ {1, 2}, would need to
communicate to the other agentTj , i 6= j ∈ {1, 2}, via
synchronous messaging, and those (namely,(ΣS

loop − ΣTj) =
{ientered}) that it need not. In our opinion, without the formal
synthesis methodology, even for this simple train example,it
would have been quite difficult to determine which events can
be in ΣS

loop that need not be coordinated between the train
agents.

VI. RELATED WORK

In Agents Research:Wooldridge and Dunne [20], [21]
investigate an agent design problem. Basically, the problem
investigates the existence (or success) of an abstract agent that
can perform some specified achievement and/or maintenance
tasks in a given model of anondeterministicenvironment.
Achievement and maintenance tasks are specified as subsets of
states in the environment model, and correspond respectively
to marker (or goal) states of the system models and (static)
constraint specifications in the supervisory control framework
[6]. In the Wooldridge and Dunne setting, an agent is similar
to a supervisor as in the original supervisory (discrete-event)
control setting (see Section II-C). Their existence of an agent
for some specified tasks is due solely tonondeterminismof
the environment (or system) model, which is well understood
in the agents literature (e.g., [20]). However, issues of agent
existence (and synthesis) due to the presence of uncontrollable
events do not naturally arise in their non-control-theoretic
setting.

In the Wooldridge and Dunne framework, the focus has been
on the computational complexity associated with various task
versions of their existence problem. Unlike in the supervisory
control framework [7], [9], no constructive method for syn-
thesizing an agent, if it exists, has been proposed to facilitate
planning. In the supervisory control framework, agent (or
supervisor) synthesis for a nondeterministic environmentcan
be easily handled as well. Two basic approaches are supported:

9

1arrived

1entered

1left

1A

1W 1T

1arrived

1entered

1left

1A

1W 1T

2arrived

2entered

2left

2A

2W 2T

2arrived

2entered

2left

2A

2W 2T

2arrived

1left,1arrived,

1arrived

2left

1entered

1entered

2left

2arrived,1left,

2arrived

1left,1arrived,

1arrived

2left

2entered

2entered

2left

2arrived,1left,

1T
2T

/
1S /

2S

1arrived

1entered

1left

1A

1W 1T

1arrived

1entered

1left

1A

1W 1T

2arrived

2entered

2left

2A

2W 2T

2arrived

2entered

2left

2A

2W 2T

2arrived

1left,1arrived,

1arrived

2left

1entered

1entered

2left

2arrived,1left,

2arrived

1left,1arrived,

1arrived

2left

1entered

1entered

2left

2arrived,1left,

2arrived

1left,1arrived,

1arrived

2left

2entered

2entered

2left

2arrived,1left,

2arrived

1left,1arrived,

1arrived

2left

2entered

2entered

2left

2arrived,1left,

1T
2T

/
1S /

2S

Fig. 4. Coordination modules (CM’s) for the distributed train agents

(i) prior to synthesis, convert a nondeterministic model toa
deterministic one that is equivalent with respect to language
[5], and (ii) perform synthesis directly on a nondeterministic
model [14]. The former is a standard conversion approach
while the latter is a recent proposal that circumvents the
problem of NP-hardness associated with conversion.

Giunchiglia and Traverso [22] and Hoek and Wooldridge
[18] use model checking [23] to establish the existence of a
group of agents that coordinate to achieve the goals stated
in the constraint specifications expressed in branching time
temporal logic and alternating temporal epistemic logic, re-
spectively. It essentially involves determining a path in the
transition model, associated with the respective approach, of
the environment against the specified logic constraints.

All the approaches mentioned above are cast in a setting
where all the transitions in their environment models are
assumed to be controllable or inhibitable. Existence of an
agent [20], [21], [24] or a group of agents [22], [20] has
been the key focus in these planning approaches. Afeasible
transition path that exists, achieving the goal stated in the
specification, no doubt admits a feasible plan but is often
not complete, resulting in it being too restrictive. There are
possibly many other (feasible) paths that also achieve the goal,
but have been omitted.

Wolper and Manna [25] and Clarke and Emerson [26]
synthesize, instead of just a path, a synchronization skeleton of
a concurrent system, if it exists, from specifications expressed
in linear and branching time temporal logic, respectively.
However, their methods also implicitly assume that all the
transitions in the skeleton are controllable.

In Control Research:Rudie et al [27] consider a problem
where one control agent (or supervisor) communicates with
another agent for information so as todistinguish the states
of its automaton for control decision-making or diagnosis.
Since communication may be costly, a strategy to minimize
communication between agents is developed. Like theirs, we
also seek to minimize communication between agents, but
consider a different problem where one coordinating agent
communicates with another agent for information so as to
synchronize designated events for meeting a specified inter-
agent constraint.

Rohloff and Lafortune [28] explore issues related to non-
blocking verification of similar control agents (with identical
structures) that interact through events broadcast over a net-

work. System events are partitioned into global and private
events that affect all agents and exactly one agent, respectively.
In our work, ΣS

sync corresponds to the global event set and
(ΣS

loop−
⋃

(∀j)j 6=i ΣTj) corresponds to agentAi’s private event
set. However, our global and private event sets are determined
based on some global controllable automatonS, whereas theirs
are pre-specified independently. Referring to the train example
in Section V, based on the supervisor automaton in Fig. 3,
{1arrived , 1left , 2arrived , 2left} is the global event set and
{ientered} is agentTi’s private event set. Finally, despite the
different setting and formulation, once the control existence
conditions are met for, say DESG = G1 ‖ G2, we get, from
[28, p. 2678, Theorem 3] but using our notations, that

(S′
1 ⊓ G1) ‖ (S′

2 ⊓ G2) ≡ SG,
where automatonSG is trim and K = Lm(SG) ⊆ Lm(G)
is the specified global controllable specification; and{S′

1, S
′
2}

is called a set of isomorphic module controllers. Corollary
1 can provide complementary insights, namely, with DES
G = G1 ‖ G2 = A′

1 ‖ A′
2 = A1 ‖ A2, how each local

control of an individual‖-componentGi (or A′
i) in DES G

can be related to global control of the DES in meeting a global
controllable specificationK.

Finally, Cho and Lim [29] study a new control problem
called multiagent supervisory control in the domain of anti-
fault propagation in serial production systems. Therein, two
adjacent agent supervisorsSAi

and SAi+1
are synthesized to

control their respective discrete-event processesGi andGi+1,
such that the latter supervisorSAi+1

along the production line
can eliminate any fault propagation fromGi to Gi+1.

A Note on Synthesis versus Verification:Design or synthesis
is concerned with finding or constructing somestructures
(either agents situated in some environment model or the
coordination modules for given agents) that satisfy given
constraint specifications. This is related to but differentfrom
verification [30], which is concerned with whether or not some
already constructedstructures satisfy the stated specifications
such as the nonblocking property [28].

VII. C ONCLUSION

This paper has introduced multiagent coordination planning
as control synthesis, motivated by the fundamental connec-
tion between control synthesis and coordination planning as
manifested by Theorem 1 and depicted in Fig. 1. Importantly,
without ‘reinventing the wheel,’ it points us to a new planning

10

basis for the formal design of coordinating agents, by using
already well-established control synthesis procedures [7], [12].
And for a start, a coordination planning methodology is
proposed, expressed in terms of procedures supported by TCT
[9]. Using a simple but non-trivial example, we have illustrated
the use of the methodology to synthesize coordination modules
for distributed agents.

The use ofSupreduce [12] is an important step in the coordi-
nation planning framework. This heuristic reduction procedure
can often find a greatly state-reduced automaton. However, the
procedure is in general not guaranteed to output an automaton
that is minimally reactive under system equivalence for an
inter-agent constraint. Future research work will investigate the
issues associated with the existence, structure and synthesis of
such automata for constructing minimal coordination modules.

The proposed multiagent coordination framework models
the evolution of multiagent systems by interleaving individual
agents’ events on the synchronous product‖. One important
generalization is to admit concurrency, in which multiple
events can occur simultaneously. Future work could adapt
modeling techniques founded on concurrent discrete-event
systems [31] and multiagent products [32], [33] to address
concurrency issues. This should enable us to design coordi-
nating agents for more sophisticated and realistic applications.

In conclusion, research on formal coordination synthesis is
still relatively new. Automata theory provides the generalfoun-
dation of computer systems, and we have utilized automata -
interpreted as DEP’s - as the foundation of agents residing
in computer systems. We believe that coordination synthesis
founded on discrete-event automata, when fully developed
through a fruitful interplay of control-theoretic [10] andagent-
theoretic [1] ideas, is general and will have wide applicability
for a variety of distributed service systems.

REFERENCES

[1] G. Weiss, Ed.,Multiagent System : A Modern Approach to Distributed
Artificial Intelligence. The MIT Press, London, U.K, 1999.

[2] T. W. Malone and K. Crowston, “The interdisciplinary study of coor-
dination,” ACM Computing Surveys, vol. 26, no. 1, pp. 87–119, March
1994.

[3] E. H. Durfee, V. R. Lesser, and D. D. Corkill, “Trends in cooperative
distributed problem solving,”IEEE Transactions on Knowledge and
Data Engineering, vol. 1, no. 1, pp. 63–83, March 1989.

[4] N. R. Jennings, “Coordination techniques for distributed artificial intel-
ligence,” in Foundations of Distributed Artificial Intelligence, G. M. P.
O.’Hare and N. R. Jennings, Eds. John Wiley and Sons, Inc., New
York, 1996, pp. 187–210.

[5] J. E. Hopcroft and J. D. Ullman,Introduction to Automata Theory,
Languages and Computation. Reading, MA : Addison-Wesley, 1979.

[6] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,”SIAM Journal of Control and Optimization,
vol. 25, no. 1, pp. 206–230, January 1987.

[7] W. M. Wonham, Notes on Control of Discrete-Event Systems ECE
1636F/1637S. Systems Control Group, University of Toronto, Updated
1st July 2004, http://www.control.toronto.edu/cgi-bin/dldes.cgi.

[8] P. J. Ramadge and W. M. Wonham, “The control of discrete event
systems,”Proceedings of the IEEE, vol. 77, no. 1, pp. 81–98, January
1989.

[9] W. M. Wonham, Control Design Software: TCT. Developed by
Systems Control Group, University of Toronto, Updated 1st July 2007,
http://www.control.toronto.edu/cgi-bin/dlxptct.cgi.

[10] C. G. Cassandras and S. Lafortune,Introduction to Discrete Event
Systems. Kluwer Academic Publishers, MA, USA, 1999.

[11] W. M. Wonham and P. J. Ramadge, “On the supremal controllable
sublanguage of a given language,”SIAM Journal of Control and Op-
timization, vol. 25, no. 3, pp. 637–659, May 1987.

[12] R. Su and W. M. Wonham, “Supervisor reduction for discrete-event
systems,”Discrete Event Dynamic Systems : Theory and Applications,
vol. 14, no. 1, pp. 31–53, 2004.

[13] K. T. Seow, C. Ma, and M. Yokoo, “Multiagent planning as control
synthesis,” inProceedings of the Third International Joint Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS’04), Columbia
University, New York City, USA, July 2004, pp. 972–979.

[14] C. Ma and W. M. Wonham,Nonblocking Supervisory Control of State
Tree Structures. Lecture Notes in Control and Information Sciences, Vol
317. Springer-Verlag, New York, 2005.

[15] N. R. Jennings, “Commitments and conventions : The foundation
of coordination in multi-agent systems,”The Knowledge Engineering
Review, vol. 8, no. 3, pp. 223–250, 1993.

[16] W. M. Wonham, “A control theory for discrete-event systems,” in
Advanced Computing Concepts and Techniques in Control Engineering.
NATO ASI Series, Vol. F47, M. J. Denham and A. J. Laub, Eds.
Springer-Verlag, Berlin, Heidelberg, 1988, pp. 129–169.

[17] H. V. D. Parunak, S. Brueckner, M. Fleischer, and J. Odell, “A pre-
liminary taxonomy of multi-agent interactions,” inProceedings of The
Second International Conference on Autonomous Agents and MultiAgent
Systems (AAMAS’03), Melbourne, Australia, July 2003, pp. 1090–1091.

[18] W. van der Hoek and M. Wooldridge, “Tractable multiagentplanning for
epistemic goals,” inProceedings of The First International Conference
on Autonomous Agents and MultiAgent Systems (AAMAS2002), Bologna,
Italy, July 2002, pp. 1167 – 1174.

[19] K. T. Seow, “Integrating temporal logic as a state-basedspecification
language for discrete-event control design in finite automata,” IEEE
Transactions on Automation Science and Engineering, vol. 4, no. 3,
pp. 451–464, July 2007.

[20] M. Wooldridge, “The computational complexity of agent design prob-
lems,” in Proceedings of The Fourth International Conference on Multi-
Agent Systems (ICMAS2000), Boston, MA, U.S.A, July 2000, pp. 341–
348.

[21] M. Wooldridge and P. E. Dunne, “Optimistic and disjunctive agent
design problems,” inPre-Proceedings of The Seventh International
Workshop on Agent Theories, Architectures and Languages, Boston,
MA, U.S.A, July 2000, pp. 1–14.

[22] F. Giunchiglia and P. Traverso, “Planning as model checking,” in Recent
Advances in AI Planning, Lecture Notes in Artificial Intelligence, Vol
1809 - Subseries of LNCS, L. Cavedon, A. Rao, and W. Wobcke, Eds.
Springer-Verlag, Heidelberg, Germany, 1999, pp. 1–20.

[23] E. M. Clarke, O. Grumberg, and D. A. Peled,Model Checking. MIT
Press, Cambridge, MA, U.S.A, 2000.

[24] P. E. Dunne, M. Wooldridge, and M. Laurence, “The computational
complexity of boolean and stochastic agent design problems,”in Pro-
ceedings of The First International Conference on Autonomous Agents
and MultiAgent Systems (AAMAS2002), Bologna, Italy, July 2002, pp.
976–983.

[25] P. Wolper and Z. Manna, “Synthesis of communicating processes from
temporal logic specifications,” inProceedings of the 1981 Workshop on
Logics of Programs. Springer-Verlag, New York, 1982, pp. 253–281.

[26] E. M. Clarke and E. A. Emerson, “Design and synthesis of synchroniza-
tion skeletons using branching time temporal logic,” inProceedings of
1981 Workshop on Logics of Programs. Springer-Verlag, New York,
1982, pp. 52–71.

[27] K. Rudie, S. Lafortune, and F. Lin, “Minimal communicationin a
distributed discrete-event system,”IEEE Transactions on Automatic
Control, vol. 48, no. 6, pp. 957–975, June 2003.

[28] K. Rohloff and S. Lafortune, “The control and verification of similar
agents operating in a broadcast network environment,” inProceedings
of the 42nd IEEE International Conference on Decision and Control,
Maui, Hawaii, U.S.A, December 2003, pp. 2673 – 2679.

[29] K. H. Cho and J. T. Lim, “Multiagent supervisory control for antifault
propagation in serial production systems,”IEEE Transactions on Indus-
trial Electronics, vol. 48, no. 2, pp. 460–466, April 2001.

[30] M. Wooldridge, “Agent-based software engineering,”IEE Proceedings
on Software Engineering, vol. 144, no. 1, pp. 26–37, 1997.

[31] Y. Li and W. M. Wonham, “Concurrent vector discrete eventsystems,”
IEEE Transactions on Automatic Control, vol. 40, no. 4, pp. 628–638,
April 1995.

[32] P. Hubbard and P. E. Caines, “Initial investigations ofhierarchical
supervisory control for multi-agent systems,” inProceedings of the
38th IEEE International Conference on Decision and Control, Phoenix,
Arizona USA, December 1999, pp. 2218–2223.

11

[33] I. Romanovski and P. E. Caines, “On the supervisory control of multi-
agent product systems: Controllability properties,”Systems and Control
Letters, vol. 56, no. 2, pp. 113–121, April 2007.

