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Organizational Control of Discrete-Event Systems:
A Hierarchical Multi-World Supervisor Design
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Abstract— An organizational control architecture for super-
vising a class of multi-level hierarchical discrete-eventsystems
is proposed in this paper. The architecture can be built based
on a standard, scalable hierarchical design method, formalizing
a common design practice of structuring the control of a
discrete-event organization bottom-up into a consistent multi-
world control hierarchy. It is shown that under some mild
condition of fairness, a multi-level recursive control law exists
that is optimal and nonblocking. This law governs the hierarchy
top-down as a dynamic programming recursion, over which
an organizational control algorithm is obtained that computes
the control decisions partially on-line, and in linear time. It
is explained and illustrated how the approach reduces the
complexity of off-line control synthesis and increases theon-line
transparency of control operations.

Index Terms— Discrete-event systems, hierarchical supervisory
control, dynamic programming and recursion, automata.

I. I NTRODUCTION

In discrete-event system (DES) research, one major problem
is the complexity of control [2], [3] that renders synthesis
intractable or the resulting implementation non-transparent for
large DES’s. To mitigate this problem, an intuitive strategy
is to reorganize a DES so that it becomes amenable to
hierarchical control. Basic research in hierarchical control
(e.g., [4], [5], [6]) has been concerned with the synthesis of a
low-level supervisor for a two-level hierarchy. In this set-up,
the high-level system is an aggregated model of the low-level
process, and is driven by the latter via an information channel.
Other strategies or architectures investigated include modular
(e.g., [7], [8]) and decentralized control (e.g., [9], [10], [11],
[12]).

To reduce control complexity, we propose a new multi-
level architecture called organizational control for supervising
a class of hierarchical DES’s, in a manner reminiscent of
commanding and controlling human organizations. Organiza-
tional control involves managing the interrelated commandand
control decisions of event enablement or disablement between
levels in a multi-level control hierarchy. Specifically, for a class
of modular DES’s modeling (hierarchical) organizations, we
formulate and implement the multi-level control architecture
that can effectively ensure qualitative optimization of maximal
permissiveness at every level, using recursion that supports a
scalable hierarchical design method [3].

Our research on organizational control is based on a bottom-
up design philosophy. Prior bottom-up approaches to hierar-
chical control have made important progress by developing
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different scalable design methods for achieving nonblocking
(or marked) hierarchical consistency. These methods use suit-
ably formulated hierarchical information maps for the standard
DES model [3], the DES model with flexible marking [6]
and that with multitasking [13]. Intuitively, achieving marked
hierarchical consistency means that, in a two-level hierarchy,
the nonblocking specification task of the high-level controller
can be realized through nonblocking control implemented at
the low level. Two types of event reporting for hierarchical
maps have been proposed, namely, virtual [3] and natural
projections [6], [13]. When scaling up to multiple levels, we
posit that the former type induces a multi-world hierarchy -
one where each hierarchical level represents a different world.
Different worlds are modeled by different disjoint event sets as
follows: The base level is modeled by only real events; the top
level by only virtual events, i.e., events abstracted or projected
from the level below; and an intermediate level is modeled
by both real and virtual events. The latter type induces a
single-world hierarchy - one where successively higher levels
are modeled by successively smaller subsets of real events
modeling the system world.

For the single-world paradigm [6], [13], recent efforts in-
clude attempts to leverage on modularity and decentralization
of DES’s in a hierarchical structure, proposing or enhancing
different hierarchical design methods for nonblocking control
synthesis (e.g., [14], [15], [16], [17], [13], [18]). All aim
at reducing the computational effort using different methods
of subsystem synthesis. Like their centralized versions, the
resultant controllers residing at the same or different levels in
a hierarchical architecture are realized by non-recursiveaction
implementations. Unlike a centralized controller that acts on
the overall system, each of these modular or decentralized
controllers generally exercises its control decisions only on
that part of the DES that matches its event set.

For the multi-world paradigm, the well-established bottom-
up design framework [3], [4], [5], [19], [20] currently syn-
thesizes the final controller as a flat, non-recursive action
implementation, and does so from a base-level specification.
The base-level specification is first obtained by recursively
compiling the constraint specifications from higher levels
and vertically collapsing them onto the base level. However,
besides higher complexity of control synthesis, such base-
level action implementation for a multi-world hierarchy cannot
provide transparency (of the relationship) of on-line or runtime
control operations between levels. The multi-world paradigm
can and should facilitate this, in the sense of making explicit
what stepwise control decisions are needed to carry out a
specific command decision (i.e., control decision on a virtual
event) from immediately above. For homogeneous systems
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designed in the single-world paradigm reviewed above, the
natural solution is a non-recursive control action implementa-
tion and no such operational transparency is needed. In our
opinion, such transparency can be useful when monitoring
complex heterogeneous systems that have to, or are better to
be designed as a command and control organization in the
multi-world paradigm.

In this paper, a review on two-level hierarchical control is
presented in Section II. A multi-world hierarchical control
problem is described and formulated, and an organizational
control architecture for the multi-world paradigm is proposed
as a solution in Section III. In Section IV, it is then shown
that the two-level hierarchical control design method reviewed
can be incrementally applied to synthesize the organizational
control architecture bottom-up into a consistent multi-world
control hierarchy. Under some mild condition of fairness, an
optimal and nonblocking multi-level control law is shown to
exist, and can govern this hierarchy top-down as a dynamic
programming recursion [21]. An algorithm for implementing
the multi-level control law to run such a control organization
is developed. Section V presents a discussion explaining the
approach and the merits and limitations of organizational
control, and where relevant, in relation to existing work.
An example is then provided to explain the overall design
approach and illustrate the on-line control operations of the
algorithm in Section VI, followed by some concluding remarks
in Section VII.

II. BACKGROUND

LetΣ be a finite alphabet of symbols representing individual
events. A string is a finite sequence of events. DenoteΣ∗ as
the set of all strings with events fromΣ. Let ε denote the
empty string (sequence with no events). Trivially,ε ∈ Σ∗. A
string s′ is a prefix ofs if (∃t ∈ Σ∗)s′t = s.

A formal languageL overΣ is a subset ofΣ∗. A language
L1 is said to be a sublanguage ofL2, if L1 ⊆ L2. The prefix
closureL of L is the language consisting of all prefixes of
strings ofL, i.e., L = {s | (∃s′)ss′ ∈ L}. Clearly L ⊆ L,
and ε ∈ L providedL 6= ∅. A languageL is called closed if
L = L.

For Σ1 ⊆ Σ2, the natural projectionPΣ2,Σ1 : Σ2,∗ →
Σ1,∗ is defined recursively as follows:PΣ2,Σ1(ε) = ε and
(∀s ∈ Σ2,∗)(∀σ ∈ Σ2) PΣ2,Σ1(sσ) = PΣ2,Σ1(s)σ if σ ∈ Σ1,
and PΣ2,Σ1(sσ) = PΣ2,Σ1(s) otherwise. The definition of
projection can be extended toPΣ2,Σ1(L) ⊆ Σ1,∗ for L ⊆ Σ2,∗,
as follows:PΣ2,Σ1(L) = {PΣ2,Σ1(s) | s ∈ L}.

A regular language [22] is a language that can be generated
by an automaton with a finite state set. An automatonA is a
5-tuple(Q,Σ, δ, q0, Qm) where (i)Q is the finite set of states,
(ii) Σ is the finite set of events, (iii)δ : Σ × Q → Q is the
(partial, deterministic) transition function, (iv)q0 is the initial
state, and (v)Qm ⊆ Q is the subset of marked states. That
an eventσ ∈ Σ is defined at a stateq ∈ Q is denoted by
δ(σ, q)!, and, for an event subsetΣ′ ⊆ Σ and a stateq ∈
Q, defineΣ′(q) = {σ ∈ Σ′ | δ(σ, q)!}. The definition of
δ can be extended toΣ∗ as follows:δ(ε, q) = q and (∀σ ∈
Σ)(∀s ∈ Σ∗)δ(sσ, q) = δ(σ, δ(s, q)), and is defined when both

q′ = δ(s, q) andδ(σ, q′) are defined. Following, the behavior
may then be described by two languages:L(A) = {s ∈ Σ∗ |
δ(s, q0)!} andLm(A) = {s ∈ L(A) | δ(s, q0) ∈ Qm}. L(A)
is called the prefix-closed language andLm(A), the marked
language. By definition,Lm(A) ⊆ L(A).

A stateq ∈ Q is reachable (from the initial stateq0) if (∃s ∈
Σ∗)δ(s, q0) = q, and coreachable if(∃s ∈ Σ∗)δ(s, q) ∈ Qm.
AutomatonA is reachable if all its states are reachable, and
coreachable if all its states are coreachable and soLm(A) =
L(A). Finally, automatonA is trim if it is both reachable and
coreachable.

On ‘equivalence’ of two automataA1 and A2, we write
A1 = A2 if their edge-labelled directed graphs are identical
in structure (including marked states); andA1 ≡ A2 if
the automata generate the same prefix-closed and marked

languages. So(A1 = A2)
(implies)
=⇒ (A1 ≡ A2) but the converse

is not true in general.
The synchronous product‖ [23] of two automataA1 and

A2 is the automatonA = A1 ‖ A2. The standard synchronous
operator‖ is useful for modeling a complex DES as a modular
system of interacting discrete-event automata. Using the same
syntax‖ as synchronous operator over automata and languages
[3], L(A1 ‖ A2) = L(A1) ‖ L(A2) and Lm(A1 ‖ A2) =
Lm(A1) ‖ Lm(A2).

Finally, letA1 ⊓A2 denote the cartesian operation between
two automataA1 and A2, such that (i)L(A1 ⊓ A2) =
L(A1) ∩L(A2) and (ii) Lm(A1 ⊓A2) = Lm(A1) ∩Lm(A2).
If Σ1 = Σ2, whereΣi, i = 1, 2, is the event set ofAi, the
synchronous operation‖ betweenA1 andA2 reduces to this
cartesian operation⊓ between the two.

A. Local Level Supervisory Control

Consider a DESG = (Q,Σ, δ, q0, Qm), with the event
set Σ partitioned into the controllable event setΣc and the
uncontrollable event setΣu [2]. A local level specification
languageK ⊆ Σ∗ is said to be controllable [2] with respect
to (w.r.t)G if KΣu∩L(G) ⊆ K. This controllability condition
complies with the fact that a supervisor that exists for DES
G cannot physically disable an uncontrollable event, and
so only the occurrence of any uncontrollable event always
not exiting the bounds ofK can guarantee non-violation of
the specificationK. If K is not controllable, there exists a
supremal (or largest) controllable sublanguage ofK∩Lm(G).
This sublanguage can be generated by the trim automaton
returned bySupcon(G,K) [24].

The automatonSupcon(G,K) is often larger in state size
than is necessary to achieve the same control action becauseit
has ‘embedded’ in it all thea priori transitional constraints em-
bodied in DESG itself, as well as some auxiliary constraints.
The trim automaton returned by a polynomial state reduction
procedure calledSupreduce [25] is often a greatly state-
reduced supervisor (automaton)S = (XS,ΣS , δS , x0,−) [25]
for G, fully achieving Lm(S ⊓ G) such thatΣS = Σ and
S ⊓G ≡ Supcon(G,K).

Any state-reduced supervisorS, including Supcon(G,K)
itself, is said to be nonblocking (for DESG) since
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Lm(Supcon(G,K)) = L(Supcon(G,K)) for a trim and
hence coreachableSupcon(G,K).

Of interest is the associated control data setCondat [3] for
the state-reduced supervisorS.

Condat(G,S) = { ∆(q, x) ⊆ Σc | (∃s ∈ Σ∗)
δ(s, q0) = q ∈ Q and
δS(s, x0) = x ∈ XS },

where∆(q, x) = Σc(q)−ΣS
c (x). Intuitively, each data element

∆(q, x) specifies the controllable events to be disabled at a
composite state(q, x) ∈ Q×XS reachable by a commons ∈
Σ∗. By default, the events inΣ(q)∩ΣS(x) are enabled at state
(q, x). ∆(δ(s, q0), δ

S(s, x0)) is also denoted byCondat(G ⊓
S, s).

A control law for a DESG specifies a set of controllable
events to be disabled following every input historys ∈ L(G).
Formally, a control lawf is a functionf : L(G) → 2Σ with
the constraint(∀s ∈ L(G)) (Σu ∩ Σ(δ(s, q0)) ⊆ (Σ− f(s))) .
The prefix-closed language that results from imposingf onG

is denoted byL(f,G) and defined as follows:ε ∈ L(f,G)
and (∀s ∈ L(f,G))(∀sσ ∈ L(G))sσ 6∈ L(f,G) ⇔ σ ∈ f(s).
The control lawf is said to be nonblocking ifL(f,G) =
Lm(f,G), whereLm(f,G) ⊆ L(f,G) ∩ Lm(G) is defined
such that when the lawf is implementable by a supervisorS
for the DESG according toL(f,G) = L(S⊓G), Lm(f,G) =
Lm(S ⊓G).

B. Two-level Hierarchical Control

Consider a two-level hierarchy consisting of a low-level
DES Gh

lo and low-level supervisorSh
lo, coupled with a high-

level DESGh+1
hi and high-level supervisorSh+1

hi , as shown
in Fig. 1. The DES and supervisor at each level are in-
terconnected in a standard feedback fashion.Gh+1

hi is an
abstract model ofGh

lo, and the high-level supervisorSh+1
hi

is to be completely implemented or realized by the low-level
supervisorSh

lo.

1+h
hiS 1+h

hiG

h
loS h

loG

1+h
hiS 1+h

hiG

h
loS h

loG

Fig. 1. Two-level hierarchy set-up

In the following, we review the basic theory of hierarchical
structuring of a DESGh

lo for nonblocking hierarchical control
[3], [4], i.e., low-level nonblocking control synthesis for Gh

lo

to realize the high-level supervisor given a high-level specifi-
cation forGh+1

hi .
A given DES G with event setΣ is first structured

into a Moore automaton1 [26] - an automatonGh
lo =

(Qh
lo,Σ

h
lo, δ

h
lo, q

h
lo,0, Q

h
lo,m) with Σh

lo = Σ, associated with an
information channel defined by a vocalization mapV : Qh

lo →
Σh+1

hi ∪{τo}, such thatGh
lo ≡ G. Σh+1

hi denotes the high-level

1In this paper, a Moore automaton [26] is often simply denotedby Gh

lo

instead of(Gh

lo
, V ); the mapV is then implied.

(virtual) event set for a two-level hierarchy, and the symbol
τo 6∈ Σh+1

hi denotes a ‘silent output’. The Moore construction
[26] for the DESG is based on a reporter map - a virtual
projectionθ : L(G) → Σh+1,∗

hi , defined such thatθ(ε) = ε

and, forσ ∈ Σ andsσ ∈ L(G), θ(sσ) is eitherθ(s) or θ(s)τ
for someτ ∈ Σh+1

hi . For the constructedGh
lo, the vocalization

mapV for everys′ ∈ L(Gh
lo) is defined by

V (δhlo(s
′, qhlo,0)) =





τo, if s′ = ε

or δhlo(s
′, qhlo,0) 6∈ Qh

lo,voc

τ ∈ Σh+1
hi , otherwise,

where the selected subsetQh
lo,voc ⊆ Qh

lo, called vocal state
set, is defined as follows. Forσ ∈ Σh

lo ands′ = sσ,

δhlo(sσ, q
h
lo,0)

{
6∈ Qh

lo,voc, if θ(sσ) = θ(s)

∈ Qh
lo,voc, if θ(sσ) = θ(s)τ .

The reporter mapθ can be extended toθ(K) ⊆ Σh+1,∗
hi

for K ⊆ L(Gh
lo) as follows:θ(K) = {θ(s) | s ∈ K}. The

inverse reporter map fort ∈ Σh+1,∗
hi is then defined as follows:

θ−1(t) = {s ∈ L(Gh
lo) | θ(s) = t}. The inverse reporter map

θ−1 can be extended toθ−1(E) ⊆ L(Gh
lo) for E ⊆ Σh+1,∗

hi as
follows: θ−1(E) =

⋃
t∈E θ−1(t).

Through the mapV , Gh
lo outputs events inΣh+1

hi to drive
some high-levelθ-image modelGh+1

hi whenever it reaches
a vocal stateq ∈ Qh

lo,voc, and otherwise outputs the silent
symbol τo 6∈ Σh+1

hi to signal no ‘significant’ change for the
high level. For concreteness of reference, we writeGh+1

hi =
Higen(Gh

lo) to denote thatGh+1
hi is the high-level image of

Gh
lo, such thatL(Gh+1

hi ) = {θ(sh) | sh ∈ L(Gh
lo)} and

Lm(Gh+1
hi ) = {θ(sh) | sh ∈ Lm(Gh

lo)}. Gh+1
hi is said to

generate events ofΣh+1
hi under theθ-map onL(Gh

lo).
In the standard control setting, the high-level event setΣh+1

hi

is partitioned into the controllable event setΣh+1
hi,c and the

uncontrollable event setΣh+1
hi,u. The Moore automaton(Gh

lo, V )
needs to be refined so that it becomes output-control consistent
(OCC). A DESGh

lo is said to be OCC [3] if, for every string
s ∈ L(Gh

lo) of the form

s = σ1σ2 · · ·σk or, respectively,s = s′σ1σ2 · · ·σk

wheres′ ∈ Σh,∗
lo − {ε}, with

• V (δhlo(σ1σ2 · · ·σi, q
h
lo,0) = τo (1 ≤ i ≤ k − 1),

• V (δhlo(s, q
h
lo,0)) = τ ∈ Σh+1

hi

or, respectively,

• V (δhlo(s
′, qhlo,0)) ∈ Σh+1

hi ,
• V (δhlo(s

′σ1σ2 · · ·σi, q
h
lo,0)) = τo (1 ≤ i ≤ k − 1),

• V (δhlo(s, q
h
lo,0)) = τ ∈ Σh+1

hi ,

it is the case that

• if τ ∈ Σh+1
hi,c , then for somei (1 ≤ i ≤ k), σi ∈ Σh

lo,c,
• if τ ∈ Σh+1

hi,u, then for alli (1 ≤ i ≤ k), σi ∈ Σh
lo,u.

Being OCC intuitively means that every such high-level event
τ ∈ Σh+1

hi defined and output byGh
lo is unambiguously

controllable or uncontrollable.
Given an OCCGh

lo, further re-structuring ofGh
lo and

modification of the associatedθ-map above are needed, to ad-
dress the problem of rendering the resulting pair(Gh

lo, G
h+1
hi )
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hierarchically consistent with marking (HCM2) [5]:

HCM of ⇐⇒ (∀E)(E ⊆ Σh+1,∗
hi )

(Gh
lo, G

h+1
hi ) θ

(
Lm(Supcon(Gh

lo, θ
−1(E)))

)

=
(
Lm(Supcon(Gh+1

hi , E))
)
.

(1)

Relating (1) to the set-up in Fig. 1,Sh+1
hi ⊓ Gh+1

hi ≡
Supcon(Gh+1

hi , E) and Sh
lo ⊓ Gh

lo ≡ Supcon(Gh
lo, θ

−1(E)).
Under HCM, therefore, we can synthesize a low-level non-
blocking Sh

lo for an OCCGh
lo, to implement the high-level

nonblockingSh+1
hi for Gh+1

hi for an arbitraryE.
To achieve HCM, one computational approach applies the

weakest known sufficiency conditions of HCM developed in
[3] to restructureGh

lo and modify the associatedθ-map. The
first known key computational procedures available to render
Gh

lo OCC and the pair(Gh
lo, G

h+1
hi ) HCM are reported in [20].

III. M ULTI -LEVEL HIERARCHICAL CONTROL

A. Multi-World Control Hierarchy

We can now describe a multi-world control hierarchy.
Consider a modular DES

G = G0 ‖ G1 ‖ · · · ‖ Gh ‖ · · · ‖ GN , (2)

where eachGh, h = 0, · · · , N , with real event set denoted
by Σh, is trim and defines the real system component situated
at levelh of a system hierarchy. Such a modular DES is said
to model a discrete-event organization (DEO). The component
event sets are pair-wise disjoint, i.e,(∀i, j ∈ [0, N ]; i 6= j)Σi∩
Σj = ∅.

The basic building block of the multi-world control hier-
archy is the structure depicted in Fig. 2(a), where∆h and
∆h

lo denote the respective control data. This building block
requires, at levelh, the DES modelGh with event set denoted
by Σh, the nonblocking supervisorSh for a given local
specificationKh ⊆ Σh,∗, the resultant local control model
Gh

lo ≡ Sh ⊓ Gh, and a further nonblocking supervisorSh
lo to

realize a given high-level specificationEh+1
hi ⊆ Σh+1,∗

hi , for
some DES modelGh+1

hi at level (h + 1) with virtual event
set Σh+1

hi . The modelGh+1
hi = Higen(Gh

lo) is obtained by
some virtual projectionθ on (the languages generated by) the
level-h local control modelGh

lo. The trim modelGθ
h+1 is an

abstraction of the resulting nonblocking control model denoted
by Sh

lo ⊓Gh
lo, or equivalently,Ŝh ⊓Gh, where

Ŝh
def
= Sh

lo ⊓ Sh. (3)

This abstraction is obtained under the virtual projectionθ on
the control model, such that

Lm(Gθ
h+1) = θ(Lm(Ŝh ⊓Gh)). (4)

Forh < N , the real componentGh+1 is composed with the
virtual componentGθ

h+1 to form the modelGh+1. The model
Gh at every level, with event setΣh, is thus

Gh =





Gh, for h = 0
Gθ

h ‖ Gh, for h = 1, · · · , N
Gθ

h, for h = N + 1.
(5)

2Depending on context, HCM stands for either ‘hierarchically consistent
with marking’ or ‘hierarchical consistency with marking’.

hhS ∆, hG

h
lo

h
loS ∆, h

loG

θ

θ
1+hG

hhS ∆, hG

h
lo

h
loS ∆, h

loG

θ

θ
1+hG

(a) Structure forh-th subproblem,0 ≤ h ≤ N

Nf
θ
NG || 

NG
NG

1f
θ
1G || 

1G
1G

0f 0G
0G

1−Nf
θ

1−NG || 
1−NG
1−NG

θ
1+NG

NfNf
θ
NG || 

NG
NG

1f1f
θ
1G || 

1G
1G

0f 0G
0G

1−Nf 1−Nf
θ

1−NG || 
1−NG
1−NG

θ
1+NG

(b) Architecture

0µ

1µ

∪
21
lo∆

00,∆S 0G

00 , loloS ∆ 0
loG∪

10
lo∆

V,θ

V,θ

θ
3G

11 , loloS ∆ 1
loG

θ
1G ||

1G11,∆S

θ
2G || 2G22,∆S

2
loG22, loloS ∆

∪

∪

∪

1G

0G

2G

V,θ

0µ

1µ

∪
21
lo∆

00,∆S 0G

00 , loloS ∆ 0
loG∪

10
lo∆

V,θ

V,θ

θ
3G

11 , loloS ∆ 1
loG

θ
1G ||

1G11,∆S

θ
2G || 2G22,∆S

2
loG22, loloS ∆

∪

∪

∪

1G

0G

2G

V,θ

(c) Realization forN = 2

Fig. 2. Organizational control for a multi-world control hierarchy

The virtual event set ofGθ
h+1 is denoted byΣθ

h+1. Σh+1 =
Σθ

h+1 ∪ Σh+1, andΣN+1 = ∅. Referring to Fig. 1, one can
also think ofGθ

h+1 as the result of some nonblocking virtual
supervisionSh+1

hi on the modelGh+1
hi with virtual event set

Σh+1
hi ⊇ Σθ

h+1, to meet the given high-level specification
Eh+1

hi ⊆ Σh+1,∗
hi . In meeting (4), the virtual supervision on

Gh+1
hi at level(h+1) is effectively implemented bŷSh (3) on

Gh at the lower level.Σh+1
hi ∩ Σh+1 = ∅, and it follows that

Σθ
h+1 ∩ Σh+1 = ∅.
In modelingGh as a different world, the event sets ofGi

and Gj are pair-wise disjoint, i.e.,(∀i, j ∈ [0, N + 1]; i 6=
j)Σi∩Σj = ∅. (G0, G1, · · · , GN+1) constitutes a multi-world
control hierarchy.

B. Organizational Control: Solution Architecture

To realize the multi-world control hierarchy, we propose
an organizational control architecture as depicted in Fig.2(b).
Therein, the control lawfh : L(Gh) → 2Σ

h

, h = 0, · · · , N ,
with fN+1 = ∅, is said to be optimal w.r.t each pair of high-
level and local specifications(Eh+1

hi ,Kh), if all the following
conditions hold.

1) Gh
lo = Supcon(Gh,Kh).

2) Gθ
h+1 = Supcon(Gh+1

hi , Eh+1
hi ), where Gh+1

hi =
Higen(Gh

lo).
3) σ ∈ fh(G

h, sh)− Condat(Gh ⊓ Ŝh, s
h) implies either

• (∃t ∈ Σh,∗
lo,u)(∃σ

′ ∈ Σh
lo,u)

(
shσtσ′ ∈ L(Gh

lo) and
θ(shσtσ′) = θ(shσt)τ = θ(sh)τ

)
or
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• shσ ∈ L(Gh
lo) andθ(shσ) = θ(sh)τ ,

andτ ∈ fh+1 ∩ Σθ
h+1.

We may now state the problem.
Problem 1: Given a multi-world control hierarchy

(G0, G1, · · · , GN+1) as described, construct an optimal
nonblocking multi-level control lawfh over h = 0, · · · , N ,
such thatθ(Lm(fh, G

h)) ⊆ Lm(Gθ
h+1).

IV. CONTROL SYNTHESIS AND IMPLEMENTATION

A. Hierarchical Control Synthesis

In addressing the organizational control Problem 1, we
first consider building the modelGθ

h+1 for a different world
Gh+1, h ≥ 0, as the optimization subproblem of two-level
hierarchical control unified with local level supervision.

The subproblem is defined as follows. Subject to a spec-
ification pair (Eh+1

hi ,Kh), h = 0, · · · , N , for a DES Gh

(5), let Eh = Lm(Gh
lo) ∩ θ−1(Eh+1

hi ), where Gh
lo =

Supcon(Gh,Kh) ≡ Sh ⊓Gh for some state-reduced supervi-
sorSh; andGh+1

hi = Higen(Gh
lo). Then the subproblem is to

find Ŝh (3) for Gh, Supcon(Gh, Eh) ≡ Ŝh ⊓Gh, such that

Lm(Gθ
h+1) = θ(Lm(Ŝh ⊓Gh)),

where Gθ
h+1 = Supcon(Gh+1

hi , Eh+1
hi ). In essence, the

subproblem is to meet (4) that relates consecutive worlds
(Gh, Gh+1).

Now, we can construct a state-reduced supervisorSh
lo such

that Supcon(Gh
lo, θ

−1(Eh+1
hi )) ≡ Sh

lo ⊓ Gh
lo. In what follows,

Theorem 1 states the condition for solving the subproblem.
Theorem 1:By the foregoing definitions and synthesis, if

the pair(Gh
lo, G

h+1
hi ) is HCM (1), Lm(Gθ

h+1) = θ(Lm(Ŝh ⊓
Gh)).

Proof: By the HCM of (Gh
lo, G

h+1
hi ), Lm(Gθ

h+1) =

θ(Lm(Sh
lo ⊓ Gh

lo)). Since Ŝh ⊓ Gh ≡ Sh
lo ⊓ Gh

lo, it follows
thatLm(Gθ

h+1) = θ(Lm(Ŝh ⊓Gh)). Hence the theorem.
Under HCM of (Gh

lo, G
h+1
hi ), an approach to building a

multi-world control hierarchy is to first solve, successively
bottom-up from levelh = 0, the overlapping hierarchical
optimization subproblems of the same kind described above
and depicted in Fig. 2(a). The ‘overlap’ in the structures
between consecutive levels is the aggregated virtual model
Gθ

h+1 in Gh (5).
Once HCM is achieved for the pair(Gh

lo, G
h+1
hi ), the same

constructions can be applied again by assigning state outputs
in Gh+1

lo - the component obtained under local level-(h+ 1)
control Sh+1 of Gh+1 for Kh+1, and bringing in the next
level Gh+2

hi . Clearly, HCM can be achieved for the pair
(Gh+1

lo , Gh+2
hi ), constructed without disturbing the HCM of

(Gh
lo, G

h+1
hi ), and so on. Referring to Fig. 2(a), at each level

h, the component supervisors ofSh
lo andSh for the worldGh

can be constructed given the specification pair(Eh+1
hi ,Kh).

In what follows, a control law for the constructed multi-
world hierarchy (G0, G1, · · · , GN+1) of a DEO G (2) is
proposed. Over past event dynamics or event historysh ∈

L(Gh), h = 0, · · · , N , it is a dynamic programming recursion

fh(G
h, sh) = Condat(Gh ⊓ Sh, sh)

∪ Condat(Gh
lo ⊓ Sh

lo, s
h)

∪ µh(fh+1(G
h+1, sh+1) ∩ Σθ

h+1, G
h
lo, s

h),

h = 0, · · · , N − 1,

fN(GN , sN ) = Condat(GN ⊓ SN , sN)

∪ Condat(GN
lo ⊓ SN

lo , s
N ),

(6)

whereµh(.) =
{
σ ∈ Σh

lo,c | (∃t ∈ Σh,∗
lo,u)V (δhlo(s

hσt, qhlo,0))

∈ fh+1(G
h+1, sh+1) ∩ Σθ

h+1

}
.

The setΣcomdat
h+1

def
= (fh+1 ∩Σθ

h+1) in µh of fh (6) is said to
constitute the command decisions at level(h+1) for level h,
due to the constraints imposed at higher levels (> h).3 These
commands are control decisions onGθ

h+1 of Gh+1.
To depict the overall approach, Fig. 2(c) shows a realization

of the control hierarchy depicted in Fig. 2(b), based on the
subproblem structure depicted in Fig. 2(a). ForN = 2, the
figure shows the consecutively overlapping control structures
of three optimization subproblems of the same kind, addressed
to build an organizational control architecture for a DEO
G = G0 ‖ G1 ‖ G2. Under control lawfh, µh determines
∆

(h+1)h
lo , the set of control decisions at levelh to carry out

the commands inΣcomdat
h+1 .

B. Optimal and Nonblocking Control Law

We now introduce a mild assumption that asserts some
fairness of command at level(h + 1), in that the transitions
of every controllable (virtual or command) event ofΣθ

h+1 ⊆
Σh+1 are never permanently disabled inGθ

h+1:
Assumption 1:For h = 0, · · · , N − 1,

PΣh+1,Σθ
h+1

(
L
(
Ŝh+1 ⊓Gh+1

))
= L

(
Gθ

h+1

)
.

Under this assumption,̂Sh+1 is said to ‘preserve’ the aggre-
gated virtual modelGθ

h+1.
Theorem 2:Given that, forh = 0, · · · , N , Gh

lo is OCC and
(Gh

lo, G
h+1
hi ) is HCM. Then, under Assumption 1,fh (6) is a

solution control law for Problem 1.
Proof: We need to establish the optimality and non-

blockingness offh (6), and show thatθ(Lm(fh, G
h)) ⊆

Lm(Gθ
h+1).

1) Proof of optimality: The three conditions for optimality
w.r.t each specification pair(Eh+1

hi ,Kh), as stated in
Section III-B, are satisfied as follows:
By construction,Gh

lo = Supcon(Gh,Kh) andGθ
h+1 =

Supcon(Gh+1
hi , Eh+1

hi ), whereGh+1
hi = Higen(Gh

lo).
SinceGh

lo is OCC,µh as infh (6) is such that:
σ ∈ µh(fh+1 ∩ Σθ

h+1, G
h
lo, s

h) iff either

• (∃t ∈ Σh,∗
lo,u)(∃σ

′ ∈ Σh
lo,u)

(
shσtσ′ ∈ L(Gh

lo) and
θ(shσtσ′) = θ(shσt)τ = θ(sh)τ

)
or

3It should be clear thatΣcomdat

h+1 is not a constant set and depends in
general on the event historysh+1 ∈ L(Gh+1).
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• shσ ∈ L(Gh
lo) andθ(shσ) = θ(sh)τ ,

andτ ∈ fh+1 ∩ Σθ
h+1.

SinceGh ⊓ Ŝh ≡ (Gh ⊓ Sh) ⊓ (Gh
lo ⊓ Sh

lo),

Condat(Gh ⊓ Ŝh, s
h) = Condat(Gh ⊓ Sh, sh)

∪ Condat(Gh
lo ⊓ Sh

lo, s
h).

Therefore, together with (6) we have
(
fh(G

h, sh)− Condat(Gh ⊓ Ŝh, s
h)
)
⊆ µh(−, Gh

lo, s
h).

The last stated condition is thus satisfied. Hencefh is
optimal.

2) Proof of nonblockingness: Stating (4) which holds under
HCM of (Gh

lo, G
h+1
hi ) by Theorem 1:

θ(Lm(Ŝh ⊓Gh)) = Lm(Gθ
h+1). (7)

Implicitly, θ(L(Ŝh ⊓ Gh)) = L(Gθ
h+1) since, by

construction, Lm(Ŝh ⊓Gh) = L(Ŝh ⊓ Gh) and
Lm(Gθ

h+1) = L(Gθ
h+1). Then, under Assumption 1 and

OCCGh
lo, it can be shown thatL(fh, Gh) = L(Ŝh⊓Gh),

and therefore

Lm(fh, G
h) = Lm(Ŝh ⊓Gh). (8)

It follows easily thatLm(fh, Gh) = L(fh, G
h). Hence

fh is nonblocking.
3) Proof of θ(Lm(fh, G

h)) ⊆ Lm(Gθ
h+1): From (7) and

(8), it follows that

θ(Lm(fh, G
h)) = Lm(Gθ

h+1) ⊆ Lm(Gθ
h+1).

Hence the theorem.
In building a multi-world control hierarchy for Problem 1,

we can first apply the HCM synthesis method [3], [20] to
render everyGh

lo OCC and every pair(Gh
lo, G

h+1
hi ) HCM.

C. Organizational Control Algorithm

The organizational control architecture can be realized asa
control algorithm with a command and control recursion cou-
pling top-down control lawfh (6) to bottom-up information
feedback (by event vocalizationV ).

Function com(Σcomdat
h+1 , Gh

lo, qhlo)

Input: Σcomdat
h+1 , Gh

lo, andqhlo . Output: ∆
(h+1)h
lo

.
begin

if Σcomdat
h+1 = ∅ then

∆
(h+1)h
lo

:= ∅;
else

QZ
m :=

⋃

τ∈Σcomdat
h+1

Qh
lo,voc[τ ]; z0 := qhlo;

Z := (Qh
lo,Σ

h
lo, δ

h
lo, z0, Q

Z
m); Z := RTrim(Z);

if QZ = ∅ then ∆
(h+1)h
lo

:= ∅;
else ∆

(h+1)h
lo

:= ΣZ(z0);

return ∆
(h+1)h
lo

;
end

Fig. 3. A basic on-line computational functioncom

Key to the recursive control algorithm is a command-to-
control functioncom that computesµh on-line, and returns

ProcedureHI-manager (Level h = N )

begin
initialize1

Initialize states inSN , SN
lo , GN

lo andGN ;2
Use initial states to apply off-line condat[∆N ∪ ∆N

lo] to GN ;3
ComputeΣcomdat

N := [∆N ∪ ∆N
lo] ∩ Σθ

N and send it down to level4
(N − 1);

while true do5
Wait to receive level-N event occurrence (fromΣN ) and update6
states inSN , SN

lo , GN
lo andGN ;

Use current states to update off-line condat[∆N ∪ ∆N
lo], and apply7

it to GN ;
ComputeΣcomdat

N := [∆N ∪ ∆N
lo] ∩ Σθ

N and send it down to8
level (N − 1);

end

Fig. 4. Organizational control: LevelN

ProcedureMID-manager (Level h = 1, · · · , N − 1)

begin
initialize1

Initialize states inSh, Sh
lo, Gh

lo andGh;2
Use initial states to apply off-line condat[∆h ∪∆h

lo] to Gh;3
Wait to receive updatedΣcomdat

h+1 from level (h + 1);4
Use currentΣcomdat

h+1 andqhlo to compute condat∆(h+1)h
lo

:= com,5
and apply it toGh;
ComputeΣcomdat

h := [∆h ∪ ∆h
lo ∪∆

(h+1)h
lo

] ∩ Σθ
h and send it6

down to level(h− 1);
while true do7

Wait to receive level-h event occurrence (fromΣh) or updated8
Σcomdat

h+1 from level (h + 1);
if level-h event is receivedthen9

Update states inSh, Sh
lo, Gh

lo andGh;10
Use current states to update off-line condat[∆h ∪ ∆h

lo], and11
apply it toGh;
if current stateqhlo is vocal then12

Send vocalized eventV (qhlo) up to level(h + 1);13
Wait to receive updatedΣcomdat

h+1 from level (h + 1);14

Use currentΣcomdat
h+1 andqhlo to compute condat15

∆
(h+1)h
lo

:= com, and apply it toGh;

ComputeΣcomdat
h := [∆h ∪∆h

lo ∪∆
(h+1)h
lo

]∩Σθ
h and send it16

down to level(h − 1);

end

Fig. 5. Organizational control: Mid-level

that as part of the control decisions onGh. Fig. 3 presents
a basic function forcom, where the input event historysh

is replaced by the corresponding stateqhlo = δhlo(s
h, qhlo,0) of

Gh
lo; andRTrim(Z) returnsTrim(Z ⊓R), a trim automaton

of Z ⊓R for someZ = (QZ ,ΣZ , δZ , z0, Q
Z
m) that isGh

lo but
with initial statez0 := qhlo and marked state set

QZ
m :=

⋃

τ∈Σcomdat
h+1

Qh
lo,voc[τ ],

whereQh
lo,voc[τ ] = {q ∈ Qh

lo,voc | V (q) = τ ∈ Σh+1
hi }; and

R is a two-state trim automaton withLm(R) = Σh
lo,cΣ

h,∗
lo,u if

Σh
lo,c 6= ∅, and is otherwise an empty automaton.
Specifically, the control algorithm contains three procedures

HI-manager, MID-manager andLO-manager that im-
plement the hierarchical control at levelsh = N ≥ 1,
h = 1, · · · , N − 1 andh = 0, as shown respectively in Figs.
4 to 6, wherein, following an evolving historysh, the current
stateqhlo = δhlo(s

h, qhlo,0), ∆h = Condat(Gh ⊓ Sh, sh) and
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ProcedureLO-manager (Level h = 0)

begin
initialize1

Initialize states inS0, S0
lo, G0

lo andG0;2
Use initial states to apply off-line condat[∆0 ∪ ∆0

lo] to G0;3
Wait to receive updatedΣcomdat

1 from level 1;4
Use currentΣcomdat

1 andq0lo to compute condat∆10
lo := com, and5

apply it toG0;
while true do6

Wait to receive level-0 event occurrence (fromΣ0) or updated7
Σcomdat

1 from level 1;
if level-0 event is receivedthen8

Update states inS0, S0
lo, G0

lo andG0;9
Use current states to update off-line condat[∆0 ∪ ∆0

lo], and10
apply it toG0;
if current stateq0lo is vocal then11

Send vocalized eventV (q0lo) up to level1;12
Wait to receive updatedΣcomdat

1 from level 1;13

Use currentΣcomdat
1 andq0lo to compute condat∆10

lo := com,14
and apply it toG0;

end

Fig. 6. Organizational control: Base level

∆h
lo = Condat(Gh

lo ⊓ Sh
lo, s

h).
Note that, where it is necessary to have a procedure to track

the states inGθ
N+1 during operation, procedureHI-manager

can be easily modified to send vocalized events to the proce-
dure that updates the current state inGθ

N+1.

V. D ISCUSSION

A. Incremental Synthesis

The approach to organizational control as described in
Section IV-A can be said to apply incremental synthesis of
HCM to build a multi-world control hierarchy using virtual
projection. Incremental synthesis in general entails successive
construction of a hierarchy by synchronizing some remaining
system components with abstracted controlled subsystems for
control synthesis at consecutively higher levels, until nocom-
ponent is left at the highest level of the hierarchy. This helps
to mitigate synthesis complexity by avoiding computation over
the synchronous product of all system components.

The conceptual idea of incremental synthesis is found to
originate with the work of [27] in DES control research.
Therein, however, it is formalized using natural projection
as abstraction, and applied to synthesize modular controllers
entirely off-line, whereas it is formalized in our work using
virtual projection as abstraction, and applied to build a control
organization that performs control computations partially on-
line based on hierarchical system evolution.

B. Design Reusability

The organizational control architecture as proposed and
depicted in Fig. 2 offers reusability in the sense that a level-
k ≥ 1 component other thanGθ

k can be modified without
having to redesign the lower levels0, · · · , (k − 1). It is also
possible that the higher levels(i+1), · · · , N for some smallest
i ≥ k need not be redesigned. However, this is provided the
modification and redesign made at levelk does not change the
virtual componentGθ

i+1, which may not always happen.

C. Computational Complexity

1) Off-line versus On-line & Response Time:It is known
[23] that Meet (implementing operator⊓) has (an order of)
complexity in the product of the state sizes of the two input
automata, andTrim has linear complexity in the state size of
the input automaton. Following which, it can be easily shown
that the on-line computational complexity forcom at levelh
(see Fig. 3) is linear in the state size ofGh

lo.
Now, givenfh (6), it can be shown that for someS(h+1)h

lo ,

L
(
S
(h+1)h
lo ⊓

(
(Ŝh ⊓Gh) ‖ Gh+1 · · · ‖ GN

))

= L(fh, G
h) ‖ L(fh+1 ∩ Σh+1, G

h ‖ Gh+1)

· · · ‖ L(fN ∩ ΣN , Gh ‖ Gh+1 · · · ‖ GN ).

Clearly, the on-line functioncom for µh of fh (6) in the
organizational control architecture does away altogetherthe
computationally intensive synthesis ofS(h+1)h

lo that would
otherwise be required as in existing work [3], [20]. This
evidently reduces the off-line time complexity and memory
requirements in organizational control built according toThe-
orem 2, but comes at the expense of increasing the on-line
time complexity. Though linear, the total time incurred due
primarily to on-line computation bycom at every responding
control levelh = 0, · · · , N − 1 needs to be accommodated
by the required response time, if the proposed hierarchical
control approach is to be preferred over that of having to
constructSh

def
= S

(h+1)h
lo ‖ Ŝh, whereS0 is effectively the

control solution for DESG (2). Investigating this real-time
feasibility issue is beyond the logical DES scope of this paper.

2) Memoization Strategy in Dynamic Programming:The
functional solution equation (6) furnishes the basis of a
caching or memoization strategy in the dynamic programming
control implementation (Figs. 4 to 6). By memoization, the
valid on-line decision cache previously computed is reused
when computing new control decisions. So by this strategy,
the computation of the next control decisions following an
event σ ∈ Σ occurrence can continually reuse the on-line
command cacheΣcomdat

h+1 previously computed, as long as
the cache remains valid, in that the current stateqhlo (of Gh

lo)
entered is due toσ ∈ Σh and is not vocal. It can also reuse
the off-line control cache[∆h

lo ∪ ∆h] without updating it,
as long as the eventσ ∈ Σ that occurs is from the higher
levels,

⋃N
i=h+1 Σi. This means that in response to an event

occurrence, the caching strategy can always keep the control
data of the solution controlS0 validated, without having
to recompute or redundantly update any valid command or
control decisions.

D. On-line Transparency of Control Operations

The individual off-line synthesis of supervisorsSh and
Sh
lo that constitute the subproblem solution̂Sh leads to on-

line (or runtime) transparency of control operations for the
respective specificationsKh and Eh+1, namely, we can
know what stepwise control decisions are needed to enforce
the respective specifications. By being able to successively
explicate the level-h control decisions made specifically to
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carry out level-(h + 1) commands throughcom, the on-line
transparency is increased to include control operations between
consecutive levels, namely, we can also know what stepwise
control decisions are needed to carry out a command decision
from immediately above. This is a beneficial byproduct of
organizational control.

VI. I LLUSTRATIVE EXAMPLE

We consider a robot transfer manipulator moving work-
pieces from an input buffer to an output buffer in an obstacle-
constrained manufacturing workspace. This simple but inter-
esting example is adapted and modified from [19].

A. Problem Description

Obstacle

Output
Buffer

Input
Buffer

Extendible
Arm

Magnetic
Hand

Motor

Obstacle

Output
Buffer

Input
Buffer

Extendible
Arm

Magnetic
Hand

Motor

Input
Buffer

Extendible
Arm

Magnetic
Hand

Motor

Fig. 7. Physical layout of a robot transfer manipulator and its workspace

As shown in the physical layout in Fig. 7, the robot
manipulator consists of an extendible arm and a magnetic
hand, and is motor driven to traverse horizontally along a
track between two buffers. The capacities of the input and
output buffers are two and one, and are initially full and empty,
respectively. Initially, the arm rests extended, with the hand left
open (by electrically turning off the magnet) and touching the
foremost workpiece in the input buffer. Initially on the left,
the motor can drive the manipulator back-and-forth, between
the left and the right. The workpieces enter the system when
they are put and held in the input buffer, and exit the system
when they are taken out of the output buffer that they were
transferred into. The arm can contract, or extend so that the
hand attached to its end can reach a buffer to pick or to drop a
workpiece. The hand picks and drops a workpiece by closing
and opening, respectively.

By designer intuition, the DES can be modeled and hi-
erarchically modularized asG = G0 ‖ G1 ‖ G2, where
G0 = ARM ‖ MOTOR, G1 = HAND andG2 = InBUF ‖
OutBUF (look for these component automata in Fig. 8, which
depicts the overall system and multi-level control).

In Fig. 8, an automaton is represented by an edge-labelled
directed graph with a state represented by a node, and a transi-
tion δ(σ, q) = q′ by a directed edge from stateq to q′ labelled
with the symbolσ of an event whose occurrence it represents.
A controllable event may be indicated by an optional tick on
its edge (◦—|—>–◦). The initial state is represented by a node
with an entering arrow, a marked state by a darkened node,
and a vocal state by a node containing the symbol of an event
that it vocalizes.

B. Bottom-up Design Modeling: Specifications & Abstractions

With N = 2, the organizational control structure has four
worlds at levels0, · · · , 3 (see Fig. 8), and can be built by suc-
cessively solving each overlapping subproblem (with control
structure as depicted in Fig. 2(a)) bottom-up, as follows.

• At level 0 is the robot joint space (G0) to be controlled
so that the obstacle can always be avoided. Given local
level specificationK0 for obstacle avoidance,G0

lo ≡
Supcon(G0,K0), which is reconstructed withG1

hi =
Higen(G0

lo) such that the pair(G0
lo, G

1
hi) is HCM. Not

shown, G1
hi is an automaton that contains the same

transition structure asG0
lo, except that every transition

into a state is labelled with an event vocalized by the
latter’s corresponding state.

• Next, we need level-1 to model the robot task space,
which is an abstracted model of transporting workpieces
(Gθ

1) without oscillation between adjacent states (result-
ing from some high-level specificationE1

hi), interleaving
with the hand operations (G1). Gθ

1 = Supcon(G1
hi, E

1
hi).

Ensuring no oscillation entails underlying supervisionS0
lo

sinceLm(Gθ
1) ⊂ Lm(G1

hi).
Following, the resultant task space modelG1 =

Gθ
1 ‖ G1 is to be controlled to ensure that a proper

workcycle is continually carried out. Given specification
K1 for workcycle, G1

lo ≡ Supcon(G1,K1), which is
reconstructed withG2

hi = Higen(G1
lo) such that the pair

(G1
lo, G

2
hi) is HCM.

• Further up, level-2 needs to model the robot workspace,
which is an abstracted pick-and-drop manipulator model
(Gθ

2) resulting fromE2
hi = Lm(G2

hi), interleaving with
the buffer operations (G2). SinceGθ

2 ≡ G2
hi, no underly-

ing supervision is required.
Following, the resultant workspace modelG2 = Gθ

2 ‖
G2 is to be controlled to ensure no overflow or underflow
of the input and output buffers due to their capacity
limits. Given specificationK2 for buffer limits, G2

lo =
Supcon(G2,K2).

• Finally, level-3 needs to model the storage usage with
the workpieces entering or exiting the system, and with
the robot manipulator never holding on to a workpiece
indefinitely (Gθ

3). It turns out thatGθ
3 and an equivalent

model of G3
hi can be obtained by projecting out all

events exceptin and out in G2
lo, and replacing them

by enter and exit, respectively. Clearly no underlying
supervision is required sinceGθ

3 ≡ G3
hi. Assuming that

no level-3 state tracking ofGθ
3 is required, the design

reconstruction ofG2
lo with G3

hi = Higen(G2
lo) to render

the pair(G2
lo, G

3
hi) HCM is not necessary.

C. Control Synthesis & Implementation

SinceQh
lo can be used as the composite state set ofGh ⊓

Sh, the off-line local control data at each levelh = 2, 1, 0 is
computed and listed as∆h(q) in Tables I(a), I(b), and I(d),
respectively, whereq ∈ Qh

lo. DenoteQθ
1 as the state set ofGθ

1.
Then a subset of the composite state setQθ

1×Q0
lo can be used

as the state set ofS0
lo such that for every reachable state(q, x)

in G0
lo⊓S

0
lo, q ∈ Q0

lo andx = (qθ, q) ∈ Qθ
1×Q0

lo. Abbreviating
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Fig. 8. Organizational control architecture: Bottom-up HCM systems modeling for multi-level control of a robot transfer manipulator

TABLE I

CONTROL DATA

(a) Local control data atq ∈ Q2
lo

(Level 2)

△2(2a) = {in, out} △2(2b) = {in} △2(2c) = {in, out} △2(2d) = {drop, in}

△2(2e) = {out} △2(2f) = {pick} △2(2g) = {out} △2(2h) = {drop}

△2(2i) = {pick, out} △2(2j) = {pick} △2(2k) = {out} △2(2l) = {drop}

(b) Local control data atq ∈ Q1
lo

(Level 1)

△1(1a) = {contracted} △1(1b) = {open} △1(1c) = {open} △1(1d) = {open}

△1(1e) = {contracted} △1(1f) = {close} △1(1g) = {close} △1(1h) = {close}

(c) High-level control data atx ∈ X(S0
lo) ⊆ Qθ

1 ×Q0
lo

(Level 0)

△0
lo(v1a, 0a) = ∅ △0

lo(v1b, 0b) = {extend}

△0
lo(v1c, 0c) = {motorLeft} △0

lo(v1d, 0d) = ∅

△0
lo(v1e, 0c) = {extend} △0

lo(v1f, 0b) = {motorRight}

(d) Local control data atq ∈ Q0
lo

(Level 0)

△0(0a) = {motorRight} △0(0b) = ∅

△0(0c) = ∅ △0(0d) = {motorLeft}

∆0
lo(q, x) as∆0

lo(x), the off-line (high-level) control data due
to G0

lo ⊓ S0
lo is computed and listed in Table I(c).

With the essential components of the architecture in
place, the control implementation of theHI-manager,
MID-manager and LO-manager is immediate (respec-

tively from Figs. 4 to 6). It is easy to deduce that Assumption
1 holds. Hence the resultant control implementation is optimal
and nonblocking.

To illustrate how the implementation mechanism works,
we refer to Fig. 8 and Tables I and II. Suppose the
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system is in state(2h, 1d, vlc, 0c), at which ∆2(2h) =
{drop}, virtually disabling eventdrop at level 2; ∆1(1d) =
{open}, disabling eventopen at level 1; and∆0

lo(vlc, 0c) ∪
∆0(0c) = {motorLeft}, disabling eventmotorLeft at level
0. When, say, the enabledextend at level 0 occurs, the
state [vlc, 0c] is updated to[vld, 0d], and ∆0

lo(vld, 0d) ∪
∆0(0d) = {motorLeft}, disablingmotorLeft with state0d
vocalizingtodrop which is sent up to level1. Upon receiving
todrop, state1d is updated to1e, following which∆1(1e) =
{contracted}, virtually disabling eventcontracted at level1.
With Σcomdat

2 := {drop} since∆2(2h) = {drop}, condat
∆21

lo := com({drop}, G1
lo, 1e), which returns{open}, dis-

ablingopen at level1. Now,Σcomdat
1 := {contracted}, which

is sent down to level0. Upon receiving the updatedΣcomdat
1

from level 1, condat∆10
lo := com({contracted}, G0

lo, 0d),
which returns{contract}, disablingcontract at level 0. In
this instance, the clear chain of command and control informs
us that the control decisions to disableopen at level 1 and
contract at level0 are because of the command decisions to
disabledrop at level2 andcontracted at level1, respectively.
The decisions in state(2h, 1d, vlc, 0c) and the new decisions
in state (2h, 1e, vld, 0d) upon executing eventextend are
summarized in Table II.

TABLE II

COMMAND AND CONTROL DECISIONS AT TWO DIFFERENT SYSTEM STATES

❳
❳
❳
❳
❳
❳❳

Level
State

(2h, 1d, vlc, 0c) (2h, 1e, vld, 0d)

2 drop drop

1 open open, contracted
0 motorleft motorLeft, contract

Note: Commands (or disabled virtual events) are underlined.

VII. C ONCLUSION

In this paper, we have introduced, formulated and addressed
nonblocking multi-world control for a class of multi-level
hierarchical DES’s in an organizational control architecture.
Based on Theorem 1 and the ensuing discussion, our approach
applies incremental synthesis of HCM, formalizing a common
design practice of structuring the control of a DEO (2)
bottom-up into a consistent and multi-world control hierarchy.
Under command fairness and standard structural conditions,
an optimal and nonblocking control lawfh that can govern
this hierarchy top-down exists, by Theorem 2, as a dynamic
programming recursion (6), over which an organizational
control algorithm (Figs. 4 to 6) is obtained. By incremental
synthesis of HCM and partial on-line computation of control
[throughµh of fh (6)] incurring only linear time complexity,
the approach can be of use in mitigating the complexity of
off-line control synthesis along with increasing the on-line
transparency of control operations. An example illustrates the
bottom-up design modeling required of this approach and the
on-line transparent control operations of the organizational
control algorithm.

In conclusion, based on a standard hierarchical control
theory [3], [5], [20], this research has laid a dynamic pro-
gramming foundation of organizational control for a class of

multi-level hierarchical DES’s. A recent development presents
a system decomposition method [28] that can be applied to
an OCC DESGh

lo for computingµh of control law fh (6)
even more efficiently. Many other issues of complexity for
organizational control can be investigated in future, using ad-
vanced synthesis tools and incorporating architectural features
such as modularity and decentralization, as well as structural
formulation such as DES flexible marking [29].
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