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Performance of Multiagent Taxi-Dispatch on
Extended-Runtime Taxi Availability: A

Simulation Study

Kiam Tian Seow and Der-Horng Lee

Abstract— An empirical and comparative evaluation of multi-
agent taxi-dispatch with extended (E) runtime taxi availability is
presented. A taxi in operation is said to be E-runtime available
if it has a passenger alighting in δx > 0 minutes’ time or is
empty, but has no new committed taxi request to service next.
In a multiagent architecture, we consider a new operation policy
that agents of E-runtime available taxis are allowed to negotiate
in individual groups of size N for new taxi requests. The main
objective is to present an evaluation of the multiagent system
performance gains provided by different times-to-arrival of δx,
under a discrete range of demand rates for severalN -group sizes,
as compared with the base case whenδx = 0. It is shown that
the proposed policy can effectively reduce customer waiting time
and empty taxi cruising time, and respectively by up to about
60% and 96% when the service demand is high for a 1000-strong
taxi fleet. It is observed that the value selection for the policy
parameter δx is an important aspect for improving the general
performance of multiagent taxi-dispatch.

I. I NTRODUCTION

In passenger land transport-service, taxis are a convenient
means in many countries that fills the gap between mass transit
and other modes of land transport such as buses [1]. To match
customer service requests and taxis, whose respective arrival
and availability might be sporadic or not known a priori, a
taxi dispatch system is required. As customers are sensitive
to service-time efficiency, just as human taxi drivers are to
service-cost productivity, an efficient dispatch system must be
able to quickly dispatch available taxis to customer pick-up
locations.

The promise of multiagent-based approaches has been
demonstrated in several areas of intelligent service transporta-
tion (e.g., transport logistics [2] and route guidance [3],[4]).
These approaches are due particularly to the attractiveness
of negotiation [5] as a powerful metaphor for developing
active software entities called agents, and motivated by the
availability of multiagent technologies such as JADE [6] that
vastly simplifies their implementation. Aimed at improving
operational efficiency, recent work [7], [8] proposes a novel
multiagent approach to dispatch taxis in a distributed manner.
A taxi agent is an active software entity residing in an in-
vehicle computing unit of a taxi. The proposed multiagent
architecture (Fig. 1) would invariably provide a set-up to har-
ness the existing power of multiple intelligent transportation
technologies, such as vehicle routing [9] and route guidance
[10], automatic vehicle location [11], mobile phone location
determination [12], and palmtop-based navigation [13].

In this approach, collaborative taxi agents acting on behalf
of taxi drivers can cooperatively negotiate to decide among
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themselves their different requests to service. By cooper-
ative negotiation, several taxi agents collaboratively search
and jointly arrive at an agreed (request-to-taxi) assignment
solution. Empirical results show that the multiagent dispatch
approach [7] can dispatch taxis with significant improvement
in operational efficiency over a centralized approach.

In the base multiagent taxi-dispatch architecture proposed
[7], a taxi in operation is (runtime) available provided it is
empty with no new committed taxi request to service next. In
this multiagent operation, the policy is that only the agents of
available taxis are allowed to negotiate for new taxi requests.

In this paper, we extend the notion of taxi runtime avail-
ability to taxi extended (E) runtime availability. A taxi in
operation is said to be E-runtime available if it has a passenger
alighting inδx > 0 minutes’ time or is empty, but has no new
committed taxi request to service next. Herein, we propose a
new operation policy that agents of E-runtime available taxis
are allowed to negotiate for new taxi requests. Intuitively, this
should result in more taxis being available for negotiation
at any one time to handle the service demand, providing an
important avenue for performance improvement. The extent
that the proposed policy lends to improving fleet performance
over the base case whenδx = 0 is investigated empirically
by simulation for a discreteδx range of times-to-arrival (of a
taxi at its passenger’s destination).

The performance of multiagent taxi-dispatch in terms of
operational efficiency boils down to assessing customer wait-
ing and empty taxi cruising times. Customer waiting time is
measured from the moment a customer raises a request to the
moment an assigned taxi arrives to pick up the customer; and
generalizing that defined in [7], empty taxi cruising time is
measured from the moment it becomes empty, forward to the
moment it accepts (or commits to service) a new negotiated
assignment, and is otherwise0 if it has accepted the new
assignment before it becomes empty.

The rest of this paper is organized as follows. Section II
reviews the multiagent architecture of the proposed taxi dis-
patch system. Section III presents and discusses a microscopic
simulation study evaluating the performance of multiagent
dispatch for different times-to-arrival ofδx under a discrete
range of demand rates for severalN -group sizes, and in
comparison with the base case [7] whenδx = 0. Section IV
concludes the paper and points to some future work.

II. M ULTIAGENT TAXI -DISPATCH SYSTEM

A. Collaborative Taxi Dispatch: A Review

Fig. 1 shows the multiagent architecture calledNTuCab
dispatch proposed to support distributed taxi dispatch [7]. It
is populated with taxi agents that negotiate through a decen-
tralized mechanism calledMA3-LM [14], efficiently assigning
every taxi agent with a different taxi request - essentiallya
linear assignment problem (LAP) [15] - but addressed in a
collaborative fashion among the agents in individual groups
of size N ≥ 2. In a dispatch cycle, the dispatch center and
the taxi agents interact and perform essential tasks that help
organize the available taxis and incoming service requestsinto
differentN -groups for intra-group negotiation and request-to-
taxi assignment, the details of which can be found in [7].
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Fig. 1. ProposedNTuCab dispatch system

Below, we briefly review the core issue of collaborative LAP
in this multiagent taxi-dispatch system:

Consider an ad hoc group of agentsA =
{a0, a1, · · · , aN−1} of size N tasked with a group of
different taxi service-requestsO = {r0, r1, · · · , rN−1} of
size N . Initially, agent a ∈ A only has knowledge of the
A-QoS (application quality-of-service) it can offer for each
request, defined byd[a, r] for all r ∈ O. In taxi dispatch, we
formulate A-QoSd[a, r] < 0 as the negation of the expected
shortest travel time for a taxi (represented by an agenta ∈ A)
to move from its designated or current location to the pick-up
location of a customer (who initiated the pending request
r ∈ O). The expected shortest travel time by the taxi for
every request is computed using real-time traffic information
as proposed in [16].

Formally, our core objective of taxi dispatch is to find, for
everyN ×N LAP, the particular (total) assignmentΠ : A →
O, a one-to-one mapping of agents to requests [17], [18] that
attempts to maximize the total A-QoS

∑
N−1

i=0
d[ai,Π(ai)].

The taxi agents negotiate usingMA3-LM [14] in a finite
number of negotiation rounds, to compute and leverage on
the possible overall A-QoS increments achievable through
reassigning requests among themselves. Agents usingMA3-
LM will always reach a solution that is often highly efficient,
though not necessarily optimal [17], [18]. Relevant details
of their collaborative reasoning per negotiation round in a
decentralized manner [14] are reviewed in [7, p. 1049-50,
Appendix].

As first noted in [17], a related mechanism that applies
auctioning [19] for theN × N LAP exists. However, using
this auction mechanism would inevitably involve taxi agents
having to negotiate with customer (request) agents, and this,
at the outset, does not map onto the proposed multiagent

architecture that entails taxi agents negotiatingonly among
themselves for requests.

B. New Multiagent Operation Policy

In the original operation policy, the moment an agent
announces the availability of its taxi in a new area of operation
to the dispatch center, its taxi is or has become empty with no
new committed taxi request to service next. In the new policy
(of E-runtime taxi availability as defined in the introduction),
the moment it announces its taxi availability, the taxi has a
passenger alighting inδx > 0 minutes’ time or is empty, but
has no new committed taxi request to service next. This policy
subsumes an agent announcing its taxi availability immediately
upon a customer boarding the taxi at a pick-up location, if the
taxi’s (shortest) travel time remaining to reach the customer’s
destination is less than the specifiedδx minutes.

The new policy is feasible in an ITS-enabled communication
infrastructure, where each taxi is equipped with some GPS-
based real-time routing and guidance system [10]. Assistedby
such a system, a computer taxi agent can predict when the taxi
is δx > 0 minutes from reaching the passenger’s destination.

Under this policy, the A-QoSd[a, r] < 0 for a taxi
(represented by an agenta ∈ A) to move from its current
location to the pick-up location of a customer (who initiated
the pending requestr ∈ O) is redefined as the negation of the
sum of the following two time-components:

1) the remaining time for the taxi, if servicing a committed
request, to move from its current location to its passen-
ger’s destination (on an already defined road path), and

2) the shortest time from the passenger’s destination to the
pick-up location of the customer requestr ∈ O.

As an explicit service measure, the redefined A-QoS is logi-
cally understood. Note, however, that the first time-component
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Fig. 2. The TM2S-MITSIMLab simulation model [7]

for each agenta ∈ A is the same for every requestr ∈ O.
As a result, using only the second time-component as their
A-QoS for negotiation suffices, since the taxi agents onMA3-
LM can (be shown to) reach the same assignment solution as
that using the redefined A-QoS.

III. S IMULATIONS & PERFORMANCEEVALUATION

Fig. 3. The urban road network model used

A. Experimental Scope & Investigation

To study the operational performance of the proposed
NTuCab dispatch system under E-runtime taxi availability, we
conducted microscopic computer simulations on MITSIMLab
[20], [21] (http://web.mit.edu/its/mitsimlab.html), simulating taxi
operations in a selected ITS-managed urban road network of
reasonable complexity, as shown in Fig. 3. The network model
covers a physical area of about15km × 10km. Different
δx times-to-arrival, including the base case (δx = 0), were

TABLE I

NTUCAB DISPATCH: BASE CASE(δx = 0)

(a) Customer waiting time (in s)

Demand rate
N 1 1.5 2 2.5 3 3.5 4
5 128.1 127.0 135.9 165.7 189.0 281.2 479.9

10 109.9 111.4 116.1 141.0 161.3 225.6 371.8
15 110.1 106.6 113.5 136.6 155.5 222.1 352.8
20 112.0 112.9 120.8 144.1 168.6 255.9 422.9

(b) Empty cruising time (in s)

Demand rate
N 1 1.5 2 2.5 3 3.5 4
5 2780.7 1973.9 1572.4 885.2 495.1 408.9 303.9

10 2305.5 1544.0 1235.6 697.2 389.2 333.2 247.1
15 2221.3 1519.8 1184.5 688.1 389.2 324.8 239.3
20 2332.6 1487.5 1227.6 709.8 412.7 325.3 250.9

simulated to assess their performance gains as compared to
the base case.

For our simulations performed on MITSIMLab [20], [21]
through a Taxi Management Microscopic Simulator (TM2S)
that we developed (see overall software architecture1 in Fig. 2),
a taxi fleet size of1000 was simulated for a one-hour duration.
The TM2S module assumes that the taxi agents negotiate over
a high speed wireless communication network. In calculating
the multiagent negotiation time, the module estimates the total
negotiation time based on the number of negotiation rounds
taken and a conservative estimate of0.2N seconds per round
when an ad hocN -group of taxi agents negotiate.

The 1000-strong taxi fleet is about 30% of the traffic volume
that can be simulated on MITSIMLab, and constitutes a
reasonable traffic composition in the urban setting considered.
The expected shortest travel time [16] for a taxi to reach a
customer’s pick-up location (the negation of which determines
an A-QoS data) was calculated using the route choice model
provided by the traffic flow simulator module of MITSIMLab
[21].

In the same experimental settings as [7], we carried out
simulations for a range of hourly demand rates (defined by taxi
bookings per taxi per hour). For each demand rate, simulated
with incoming requests generated by the request manager,
the customer waiting time (CWT) and empty taxi cruising
time (ECT) were recorded for collaborative agent dispatch for
several group sizesN ∈ {5, 10, 15, 20}, under different time-
to-arrival (ToA) values (in minutes) ofδx ∈ {1, 2, 3, 4, 5},
with the simulation data (raw customer waiting and empty
cruising times) collected from the simulated dispatch operator
and taxi agents for off line performance analysis.

B. Analysis of Numerical Results

Table I shows the numerical results for the base case when
ToA δx = 0. The reductions (in percent) depicted in all
the figures are computed with respect to these base (average)
values.

Customer Waiting Time: For 1 ≤ δx ≤ 4, the CWT
reduction is found to be always positive:

1Note that the MITSIMLab part [21] in Fig. 2 is intentionally blurred.
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Fig. 4. Customer waiting time: Reduction versus demand rate under different ToAδx

• Figs. 4(a) to 4(d) show that the reduction increases for
δx ≤ 2, and when the demand rate exceeds 2.5 forδx =
3. The relatively lowδx at relatively high demand rates
can often result in a taxi being assigned a new request
whose customer pick-up location is nearer to its current
passenger’s destination, and more so for a biggerN that
thus effectively enjoys a higher CWT reduction.

• Figs. 4(a) to 4(d) also show that the reduction decreases
starting fromδx = 3, when the demand rate does not
exceed 2.5, although still larger than that atδx = 1. The
relatively higherδx, or when the demand rate is relatively
low at δx = 3, can often result in a taxi being assigned a
new request whose customer pick-up location is further
away from its current passenger’s destination, and more
so for a smallerN that thus effectively receives a lower
CWT reduction.

At δx = 5, there is at best no CWT reduction and often
an increase in CWT. The relatively highδx can often result

in a taxi being assigned a new request (following anN -
group multiagent negotiation), when the taxi itself is still
quite far from reaching its current passenger’s destination.
This contributes significantly towards the increase in CWT,
since the taxi must necessarily travel to its current passenger’s
destination en route to the pick-up location of the newly
assigned request.

The best CWT reduction of about 60% occurs atδx = 3,
when the demand rate exceeds 3 forN = 20 [see Fig. 4(d)].
For δx ≥ 5, the policy of E-runtime taxi availability becomes
ineffective. Following, we infer that the proposed policy is
especially effective in reducing CWT when theN -grouping is
large and the service demand is high relative to the taxi fleet
size. Besides, there is a non-zero ToA threshold value forδx

below which a significant reduction in CWT is achievable.
Empty Cruising Time: Using E-runtime taxi availability,

the ECT can be reduced since a taxi agent can often start
negotiating for a new request in the duration of servicing a
current request, and in so doing can often proceed to servicing
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Fig. 5. Empty cruising time: Reduction versus demand rate underdifferent ToA δx

a new one shortly or immediately after its current passenger
has alighted. Figs. 5(a) to 5(d) show that the ECT reduction
increases with the demand rate for eachN considered, and is
higher for a higherδx (not exceeding 4) and a higher demand
rate in the range considered. However, Figs. 5(a) to 5(d) also
show that the reduction is bounded byδx = 4: At δx = 5,
the supply of E-runtime available taxi agents in excess of the
demand volume in a dispatch cycle becomes more significant.
This can explain why the reduction becomes smaller than that
at δx = 4.

The best ECT reduction of about 96% occurs whenδx = 4
at demand rate 4 forN = 15 [see Fig. 5(c)]. In fact, the
lowest reduction recorded is about 76% for demand rate 4, at
N = 5 [see Fig. 5(a)]. Following, we infer that the proposed
E-runtime taxi availability policy is very effective in reducing
ECT when the service demand is high relative to the taxi fleet
size.

Finally, a clear observation is that the reduction in CWT
and ECT depends on the proper value selection for ToA
parameterδx. From the simulation results, the best CWT
and ECT reductions are found to occur atδx = 2 or 3
minutes depending on the demand rate, andδx = 4 minutes,
respectively.

IV. CONCLUSION

TM2S-MITSIMLab simulations on an urban road network
model were run for theNTuCab dispatch system under the
operation policy of E-runtime taxi availability, a new notion
introduced and studied in this paper. The results show that
significant reduction in CWT and ECT can be achieved. Given
a taxi fleet size, this depends on the proper value selection for
the policy ToA parameterδx, which is an important aspect
for improving the operational efficiency of multiagent taxi-
dispatch in general.
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In conclusion, leveraging on the shortest-time paths com-
puted using real-time traffic information, the proposedNTuCab
dispatch system has been shown empirically in [7] to achieve
higher efficiency in terms of CWT and ECT, when compared
to a commonly adopted centralized dispatch approach. Im-
portantly, this paper has demonstrated the effectiveness of E-
runtime taxi availability in raising further this standardtime-
criterion efficiency, which is based essentially on the taxi-
proximity (of a customer pick-up location) as modelled by
the current A-QoS formula. Future work will consider mixed-
criteria efficiency. Towards this end, we will investigate anew
A-QoS formula that combines taxi-utilization level with taxi-
proximity level in a fuzzy rule formulation - an approach that
has been investigated in [22], [23], albeit only for centralized
taxi dispatch.
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