
1

On Specification Transparency: Towards A Formal
Framework for Designer Comprehensibility of
Discrete-Event Control Specifications in Finite

Automata
Manh Tung Pham, Amrith Dhananjayan and Kiam Tian Seow

Abstract— In control of discrete-event systems (DES’s),
specifying control requirements in automata is not a trivial
task. For many DES applications, designers are often
confronted with the long-standing problem of uncertainty
in specification, namely: how do we know that a specifica-
tion automaton does indeed model the intended control
requirement? Towards a formal framework that helps
mitigate this uncertainty for designer comprehensibility, in
this paper, we introduce and develop a new specification
concept of automaton transparency, and investigate the
problem of maximizing the transparency of specification
automata for DES’s. In a transparent specification au-
tomaton, events that are irrelevant to the specification
but can occur in the system are ‘hidden’ in self-loops.
Different automata of the same specification on a DES
can be associated with different sets of such irrelevant
events; and any such automaton is said to be the most
transparent if it has an irrelevant event set of maximal
cardinality. The transparency maximization problem is
theoretically formulated and a provably correct solution
algorithm is obtained. Given a specification automaton for
a DES, the transparent specification automaton produced
by the algorithm is a more comprehensible structure,
essentially showing the precedence ordering among events
from a minimal cardinality set that is relevant in modeling
some requirement for the DES, and should aid designers
in clarifying if the requirement prescribed is the one
intended.

Index Terms— Discrete event systems, specification au-
tomata, language relevance, transparency.

I. INTRODUCTION

Supervisory control of discrete-event systems
(DES’s) presents a formal and effective framework

A preliminary conference version of this paper appeared in [1].
This research is funded by the Singapore Ministry of Education,

under NTU-AcRF Tier 1 Grant No: RG65/07.
The authors are with the Division of Computing

Systems, School of Computer Engineering, Nanyang
Technological University, Republic of Singapore 639798.
{Pham0028,Amri0005,asktseow}@ntu.edu.sg

[2]–[4] to model and control complex systems. In
this framework, a system to be controlled and a
control specification are often modeled as finite-
state automata [5], following which a supervisor can
be automatically synthesized to control the system
in conformance to the specification.

In practice, an automaton is often manually pre-
scribed by a system designer following a linguis-
tic description (verbal or textual) of some control
requirement; or it may be automatically translated
from a requirement already expressed as some tem-
poral logic specification [6]. Deciding if a specifica-
tion automaton actually reflects the intended control
requirement correctly and completely lacks formal
theoretical support, and is a challenging task, espe-
cially for large DES’s. The uncertainty of whether or
not an intended requirement is correctly modeled by
an automaton has often been encountered in many
applications of the automata-based DES framework
(e.g., in robotics [7], automated manufacturing [8]–
[10], and intelligent service transportation [11]).

In this paper, such uncertainty is resolved as the
problem of maximizing the transparency of control
specifications prescribed in finite automata. In what
we call a transparent specification automaton, events
that are irrelevant to the specification but can occur
in the system are ‘hidden’ in self-loops; while events
that are relevant to the specification are highlighted
in diligent transitions (i.e., those connecting dis-
tinctly different states). Different automata of the
same specification on a DES can be associated
with different sets of relevant events. The most
(or maximally) transparent specification automaton
essentially shows the precedence ordering among
events from a minimal cardinality set that is rele-
vant to the requirement. Conversely, it hides events
from the irrelevant event set of maximal cardinality.

2

Such transparency could more readily highlight the
linguistic expression of the specification; and should
help towards resolving the long-standing problem
in specification, namely: how do we know that
a specification in automata does indeed capture
the intended control requirement? For an intuitive
example, the reader might want to skip ahead to
Section VI for a maximally transparent specification
automaton [see Fig. 1(d)] of a first come, first
served control requirement for a resource allocation
system.

Our work falls within the research scope of sys-
tem designer comprehensibility, which is a current
major concern in industrial applications of supervi-
sory control [12]. Unlike in this paper which seeks
to provide support for understanding design specifi-
cations (i.e., on “what to control”), past and existing
research seeks to provide support for achieving su-
pervisor clarity, and at the control-action level (i.e.,
on “how to control”). For example, a temporal logic
framework is proposed in [13] to compute individual
controls on (controllable) events as readable tem-
poral logic formulas for the temporal-safety class
of specifications. In [14], techniques are developed
to generate and attach propositional formulae called
guards to a given supervisor automaton, which are
also believed to comprehensibly model the logi-
cal conditions under which individual events are
enabled or disabled. In contrast, the transparency
maximization problem proposed and investigated in
this paper is to recast a specification in automata
into a more comprehensible structure. The prob-
lem solution can be used to support the control
design framework [2], by assisting designers at the
outset to ascertain the correctness of specification
automata prior to supervisor synthesis. As a good
engineering practice, it is important for designers
to understand the formal specifications prescribed
and assess their correctness first. Once this is done,
supervisor comprehensibility, in our opinion, may
be optional in some DES applications as long as
provably correct algorithms (e.g., [2]) are applied
in supervisor synthesis.

Technically related research includes works (e.g.,
[15], [16]) that focus on minimizing or reducing
the number of states in a supervisor automaton to
achieve economy of implementation. The proce-
dures developed might lead to transparent automata
in certain cases. However, our problem is different
as it focuses on maximizing transparency of specifi-

cation automata. In so doing, we attempt to render a
specification automaton more understandable for a
system designer, as opposed to state reduction in
a supervisor. Computing a maximally transparent
specification automaton may, as a byproduct, mini-
mize or reduce the number of states in it.

The rest of this paper is organized as follows.
In Section II, we review preliminary concepts in
languages and automata theory that are most rele-
vant to this paper. We then define the concepts of a
transparent automaton and a relevant specification
language (Section III-A), and formally state the
problem of finding a maximally transparent spec-
ification automaton (Section III-B). In Section IV,
we provide the detailed problem analysis. Our first
main result (Theorem 1) establishes the connection
between the two defined concepts, motivating the
development of a formal language relevance veri-
fication procedure (Section V-A, Theorem 2) and
a procedure to compute a set of relevant events
of minimal cardinality for a given specification
language (Section V-B). Based on the two developed
procedures, a provably correct solution algorithm
(Algorithm 1, Theorem 3) for the problem of finding
a maximally transparent specification automaton is
then presented in Section V-C. In Section VI, il-
lustrative examples are provided to demonstrate the
concept of a transparent specification synthesized
using Algorithm 1. Finally, Section VII concludes
the paper and points to some future work.

II. PRELIMINARIES: LANGUAGES AND

AUTOMATA

Let Σ be a finite alphabet of symbols representing
individual events. A string is a finite sequence of
events fromΣ. DenoteΣ∗ as the set of all strings
from Σ including the empty stringε. A string s′ is
a prefix of s if (∃t ∈ Σ∗) s′t = s, wheres′t is the
string obtained by catenatingt to s′.

A languageL overΣ is a subset ofΣ∗. SayL1 is
a sublanguage ofL2 if L1 ⊆ L2. The prefix closure
L̄ of a languageL is the language consisting of all
prefixes of its strings. ClearlyL ⊆ L̄, because any
string s in Σ∗ is a prefix of itself. A languageL is
prefixed-closed ifL = L̄.

Given Σ1 ⊆ Σ2, the natural projectionPΣ2,Σ1 :
(Σ2)∗ → (Σ1)∗, which erases from a strings ∈
(Σ2)∗ every eventσ ∈ (Σ2 − Σ1), is defined
recursively as follows:PΣ2,Σ1(ε) = ε, and (∀s ∈

3

(Σ2)∗)(∀σ ∈ Σ2), PΣ2,Σ1(sσ) = PΣ2,Σ1(s)σ if σ ∈
Σ1, andPΣ2,Σ1(sσ) = PΣ2,Σ1(s), otherwise.

For L ⊆ (Σ2)∗, PΣ2,Σ1(L) ⊆ (Σ1)∗ denotes the
language{PΣ2,Σ1(s) | s ∈ L}.

If a language is regular [5], then it can be gener-
ated by an automaton. An automatonG is a 5-tuple
(Q,Σ, δ, q0, Qm), whereQ is the finite set of states,
Σ is the finite set of events,δ : Σ ×Q → Q is the
(partial) transition function,q0 is the initial state and
Qm ⊆ Q is the subset of marker states.

In this paper, a language is assumed to be regular.
Write δ(σ, q)! to denote thatδ(σ, q) is defined,

and¬δ(σ, q)! to denote thatδ(σ, q) is not defined.
The definition ofδ can be extended to(Σ)∗ × Q

as follows: δ(ε, q) = q, and (∀σ ∈ Σ)(∀s ∈
(Σ)∗)δ(sσ, q) = δ(σ, δ(s, q)).

The behaviors of automatonG can then be de-
scribed by the prefix-closed languageL(G) and the
marked languageLm(G). Formally,L(G) = {s ∈
(Σ)∗ | δ(s, q0)!} and Lm(G) = {s ∈ L(G) |
δ(s, q0) ∈ Qm}.

A state q ∈ Q is reachable if(∃s ∈ (Σ)∗)
δ(s, q0) = q, and coreachable if(∃s ∈ (Σ)∗)
δ(s, q) ∈ Qm. AutomatonG is reachable if all
its states are reachable, and coreachable if all its
states are coreachable and soLm(G) = L(G). G
is then said to be trim if it is both reachable and
coreachable. IfG is not reachable, then a reachable
automaton, denoted byAc(G), can be computed by
deleting fromG every state that is not reachable.
Thus,Ac(G) generates the same prefix-closed and
marked languages asG. If G is not trim, then a trim
automaton, denoted byTrim(G), can be computed
by deleting fromG every state that is either not
reachable or not coreachable. Therefore,Trim(G)
has no unreachable states and no uncoreachable
states, and generates the same marked language as
G.

III. PROBLEM CONCEPTS ANDDESCRIPTION

A. Automaton Transparency and Language Rele-
vance

Definition 1: Given a DES G =
(Q,Σ, δ, q0, Qm), and a language L such
that L = Lm(A), where automaton
A = (X,E, ξ, x0, Xm). If A is said to be a
specification automaton (ofL for DES G), then 1)
E = Σ, 2) Lm(A) ∩ Lm(G) = L(A) ∩ L(G), and
3) A is trim.

Intuitively, a well-defined specification automaton
for DES G models a task (marked) sublanguage
of G over event setΣ. The sublanguageLm(A) ∩
Lm(G) is well modeled in that every common prefix
string inL(A)∩L(G) can be extended to a marked
string inLm(A)∩Lm(G), thereby specifying an un-
inhibited sequence of event executions to complete
some task1.

Definition 2: A specification automatonA (for
DES G) is said to beΣirr-transparent ifΣirr ⊆ Σ
is a set of strictly self-loop events inA, i.e., (∀σ ∈
Σirr)(∀x ∈ X)(ξ(σ, x)! ⇒ ξ(σ, x) = x).

A Σirr-transparent specification automatonA has
all the events inΣirr ⊆ Σ ‘hidden’ in self-loops,
thus showing more explicitly the precedence order-
ing of the rest of the events deemed relevant to
the intended requirement that it specifies. In other
words, those events inΣirr can be considered irrel-
evant to the specification, although they can occur
in the DESG. We postulate that for the most (or
maximally) transparent automatonA, the irrelevant
event setΣirr must be of maximal cardinality.

Definition 3: A languageK ⊆ Lm(G) is said
to be Σrel-relevant with respect to (w.r.t)G if
(∀s, s′ ∈ (Σ)∗) for which PΣ,Σrel

(s) = PΣ,Σrel
(s′),

the following two conditions are satisfied:

1) (∀σ ∈ Σ)[(sσ ∈ K ands′ ∈ K ands′σ ∈
L(G)) ⇒ s′σ ∈ K].

2) [s ∈ K ands′ ∈ K ∩ Lm(G)] ⇒ s′ ∈ K.
Informally, Condition 1 asserts that the projected

language ofK onto events fromΣrel is sufficient to
highlight the relevant precedence ordering of events
as specified. Condition 2 asserts that the projected
language ofK can sufficiently highlight the relevant
marking as specified forG. Thus, when a language
K ⊆ Lm(G) is Σrel-relevant w.r.tG, it means
that the precedence order among events fromΣrel

contains the essence of the specification forG that
K embodies.Σrel is called a relevant event set of
such aK.

Remark 1:Note that language relevance w.r.t a
set of relevant events and language observability
[17] w.r.t a set of observable events may share
identical mathematical conditions, but their concepts

1In this work, following the standard treatment in supervisory
control theory, we consider a DESG as given. In practice,G is
often constructed by system designers through an iterativeprocess
of modeling and re-modeling. How to constructG to correctly and
completely model a system of interest is an open design problem that
is beyond the scope of this paper.

4

are fundamentally different: events in a relevant
event set need not be observable in the control-
theoretic sense, but are identified as a collective set
that can prescribe the essence of a specification in
an automaton.

B. Problem Statement

We now formally state the problem of finding
a maximally transparent specification automatonA

that models a given languageK ⊆ Lm(G) on DES
G, i.e.,Lm(A) ∩ Lm(G) = K.

Problem 1: Given DES G = (Q,Σ, δ, q0, Qm)
and a specification languageK ⊆ Lm(G), construct
a specification automatonA (according to Definition
1) so that:

1) A is Σirr-transparent andLm(A) ∩ Lm(G) =
K;

2) (∀Σ′ ⊆ Σ, |Σ′| > |Σirr|), there is noΣ′-
transparent specification automatonA′ such
thatLm(A

′) ∩ Lm(G) = K.
For the languageK under DESG, Condition 1

specifies theΣirr-transparency ofA and Condition
2 specifies the maximal cardinality of the irrelevant
event setΣirr ⊆ Σ associated withA.

IV. PROBLEM ANALYSIS

In what follows, if a languageK ⊆ Lm(G) is
Σrel-relevant, then a specification automatonA that
is (Σ − Σrel)-transparent can be synthesized such
that Lm(A) ∩ Lm(G) = K. This is formally stated
in Theorem 1. The proof of this fundamental result
requires a procedure calledTrans.

ProcedureTrans computes and returns aEirr-
transparent automatonA from a given automaton
H and an event subsetEirr. For Erel = E − Eirr,
Step 1 and Step 2 ofTrans involve computing
an automatonA′′ that is due to the projection of
the languages ofH onto E∗

rel, i.e., Lm(A
′′) =

PE,Erel
(Lm(H)) and L(A′′) = PE,Erel

(L(H)); and
Step 3 adds additional self-loop transitions of events
in Eirr to A′′ to obtain the resulting automaton
A. As a result, the procedure has exponential time
complexity of O(2|Y |), where |Y | is the state size
of the input automatonH. This exponential time
complexity, however, can be avoided ifH has some
special structure w.r.tErel, which will be discussed
later in Section V-C.

The following lemma summarizes important
properties of the computed automatonA.

Procedure Trans(H,Eirr)
Input : AutomatonH = (Y,E, ζ, y0, Ym) and an event subset

Eirr ⊆ E;
Output : An automatonA = (X,E, ξ, x0, Xm) that is

Eirr-transparent;
begin

Let π : X ′ → 2Y − {∅} be a bijective mapping and
Erel = E − Eirr;
Step 1: ComputeA′ = (X ′, Erel, ξ

′, x′
0, X

′
m):

• x′
0 ∈ X ′ with

π(x′
0) = {ζ(s, y0) | PE,Erel

(s) = ε};
• X ′

m = {x′ ∈ X ′ | (∃s ∈ Lm(H))ζ(s, y0) ∈ π(x′)};
• (∀σ ∈ Erel)(∀x

′ ∈ X ′) (ξ′(σ, x′)! if and only if
(∃sσ ∈ L(H))ζ(s, y0) ∈ π(x′));
When defined,ξ′(σ, x′) = x′′ with
π(x′′) = {ζ(s′, y) | y ∈ π(x′), PE,Erel

(s′) = σ};
Step 2: Trim A′ to getA′′ = (X,Erel, ξ, x0, Xm):
A′′ = Trim(A′);
Step 3: ComputeA from A′′:

• (∀σ ∈ Eirr)(∀x ∈ X) if (∃y ∈ π(x))ζ(σ, y)! then
add a self-loop transition forσ at statex: ξ(σ, x) = x;

• The resulting automaton is the output automaton
A = (X,E, ξ, x0, Xm);

ReturnA;

Lemma 1:Let H = (Y,E, ζ, y0, Ym), Eirr ⊆ E,
Erel = E − Eirr andA = Trans(H,Eirr). Then:

1) A is Eirr-transparent.
2) (∀s ∈ E∗)(∀σ ∈ E)[sσ ∈ L(A) ⇒

(∃s′ ∈ L(H))(s′σ ∈ L(H) and PE,Erel
(s′) =

PE,Erel
(s))].

3) (∀s ∈ Lm(A))(∃s
′ ∈ Lm(H))[PE,Erel

(s′) =
PE,Erel

(s)].
4) Lm(A) ⊇ Lm(H) andL(A) ⊇ L(H).

Proof: To begin with, let A′′ be the au-
tomaton generated in Step 2 ofTrans. It is clear
that Lm(A

′′) = PE,Erel
(Lm(H)) and L(A′′) =

PE,Erel
(L(H)). SinceA is constructed fromA′′ in

Step 3 ofTrans by adding self-loop transitions for
events inEirr, it is also clear that(∀s ∈ L(A))
PE,Erel

(s) ∈ L(A′′) andPE,Erel
(s) ∈ L(A).

The statements of the lemma can now be proved
as follows.

1) Since every event inEirr is only added to the
transition structure ofA in Step 3 ofTrans as
a strictly self-loop event, it is clear thatA is
Eirr-transparent.

2) Let s ∈ E∗ and σ ∈ E such thatsσ ∈ L(A).
Then,PE,Erel

(sσ) ∈ L(A′′). Let t = PE,Erel
(s).

We need to show that there existss′ ∈ L(H)
such thats′σ ∈ L(H) andPE,Erel

(s′) = t, as
follows.
• If σ ∈ Erel, PE,Erel

(sσ) = tσ ∈ L(A′′).

5

Therefore, sinceL(A′′) = PE,Erel
(L(H)),

there exists t′ ∈ L(H) such that
PE,Erel

(t′) = tσ. Sinceσ ∈ Erel, t′ must end
with σ, i.e., t′ = s′σ for somes′ ∈ L(H).
In other words,PE,Erel

(s′) = t. Hence the
statement.

• On the other hand, ifσ ∈ Eirr then, by Step
3 of Trans, there exitss′ ∈ L(H) such that
PE,Erel

(s′) = t and s′σ ∈ L(H). Hence the
statement.

3) Let s ∈ Lm(A) and t = PE,Erel
(s). An argu-

ment similar to that in the proof of the previous
statement leads tot ∈ Lm(A

′′) and therefore,
there exitss′ ∈ Lm(H) such thatPE,Erel

(s′) =
t, sinceLm(A

′′) = PE,Erel
(Lm(H)). Hence the

statement.
4) • Proof ofL(A) ⊇ L(H):

Assume thats ∈ L(H). We need to show
that s ∈ L(A), as follows.
– Sinces ∈ E∗, s = s0t0s1t1...sntn, where
(∀0 ≤ i ≤ n) si ∈ E∗

rel and ti ∈ E∗
irr for

some integern ≥ 0.
– Let u = s0s1...sn, then u ∈ L(A). Let
yi = ξ(s0s1...si, x0) be the state ofA
after the execution of strings0s1...si, 0 ≤
i ≤ n.

– Since s0 ∈ L(A), t0 ∈ E∗
irr, by Step

3 of Trans, ξ(t0, y0) = y0. Therefore
s0t0 ∈ L(A) and ξ(s0t0, x0) = y0. Sim-
ilar arguments lead tos0t0s1t1...siti ∈
L(A) and ξ(s0t0s1t1...siti, x0) = yi for
all 0 ≤ i ≤ n. Therefores ∈ L(A).

HenceL(A) ⊇ L(H).
• Proof ofLm(A) ⊇ Lm(H):

Assume thats ∈ Lm(H). We need to show
that s ∈ Lm(A), as follows.
– Since s ∈ Lm(H), s ∈ L(H), which

implies s ∈ L(A) sinceL(H) ⊆ L(A).
– Let x = ξ(s, x0) be the state ofA after

the execution ofs. Let t = PE,Erel
(s).

Sinces ∈ Lm(H), we havet ∈ Lm(A
′′).

– Furthermore, by Step 3 ofTrans, we
also haveξ(t, x0) = x. Thereforex is
a marker state inA, which implies that
s ∈ Lm(A).

HenceLm(A) ⊇ Lm(H).

We may now state our first main result.
Theorem 1:Given a DESG = (Q,Σ, δ, q0, Qm),

a languageK ⊆ Lm(G) and an event subsetΣirr ⊆
Σ. There exists a specification automatonA that
is Σirr-transparent forG such thatK = Lm(A) ∩
Lm(G) if and only if K is (Σ−Σirr)-relevant w.r.t
G.

Proof: Let Σrel = Σ − Σirr. For economy of
notation, letP denote the natural projectionPΣ,Σrel

.
(If:) AssumeK is Σrel-relevant w.r.tG. We

present a constructive proof to show that aΣirr-
transparent specification automatonA for DES G
(according to Definitions 1 and 2) exists such that
K = Lm(A) ∩ Lm(G).

Let H be a trim automaton such thatL(H) = K
and Lm(H) = K. We then construct the specifi-
cation automatonA from H using Trans: A =
Trans(H,Σirr).

By Lemma 1,A is Σirr-transparent. To show our
construction works, we need to show thatA can be
a specification automaton of Definition 1 modeling
K onG, i.e.,K = L(A)∩L(G) andK = Lm(A)∩
Lm(G).

By Lemma 1,K ⊆ Lm(A) and K ⊆ L(A).
Therefore, sinceK ⊆ Lm(G), K ⊆ L(A) ∩ L(G)
andK ⊆ Lm(A) ∩ Lm(G).

It remains to show thatL(A) ∩ L(G) ⊆ K and
Lm(A) ∩ Lm(G) ⊆ K.

• Proof ofL(A) ∩ L(G) ⊆ K.
We show the inclusionL(A) ∩ L(G) ⊆ K by
induction on the length of strings.
– Base: It is obvious thatε ∈ (L(A)∩L(G))∩

K.
– Inductive Hypothesis: Assume that(∀s ∈

Σ∗), |s| = n for somen ≥ 0, s ∈ L(A) ∩
L(G) ⇒ s ∈ K. Now, we must show that
(∀σ ∈ Σ) and (∀s ∈ Σ∗), |s| = n, sσ ∈
L(A) ∩ L(G) ⇒ sσ ∈ K. We proceed as
follows:
∗ Let t = P (s). By Lemma 1, sincesσ ∈

L(A), there existss′ ∈ K such thats′σ ∈
K andP (s′) = t.

∗ Since K is Σrel-relevant w.r.t G, by
Definition 3, the conditionsP (s) =
P (s′), s′σ ∈ K, s ∈ K andsσ ∈ L(G)
together imply thatsσ ∈ K, validating
the inductive hypothesis.

ThusL(A)∩L(G) ⊆ K and thereforeL(A)∩
L(G) = K.

• Proof ofLm(A) ∩ Lm(G) ⊆ K.
Assume thats ∈ Lm(A)∩Lm(G). We need to

6

show thats ∈ K, as follows.
– SinceLm(A) ∩ Lm(G) ⊆ L(A) ∩ Lm(G),

s ∈ L(A) ∩ L(G) = K or s ∈ K ∩ Lm(G).
– Let t = P (s). By Lemma 1, sinces ∈

Lm(A), there existss′ ∈ K such that
P (s′) = t.

– SinceK is Σrel-relevant w.r.tG, by Defi-
nition 3, the conditionsP (s) = P (s′), s′ ∈
K ands ∈ K ∩ Lm(G) together imply that
s ∈ K.

Thus Lm(A) ∩ Lm(G) ⊆ K and therefore
Lm(A) ∩ Lm(G) = K.

(Only If:) Let A = (X,E, ξ, x0, Xm) be a speci-
fication automaton of Definition 1 forG that isΣirr-
transparent. It follows thatE = Σ, and modelingK
onG, L(A)∩L(G) = K andLm(A)∩Lm(G) = K.
We must then show thatK is Σrel-relevant w.r.tG
by establishing the two conditions of Definition 3.

Let s, s′ ∈ Σ∗ such thatP (s) = P (s′).
1) Proof of Condition 1: Let σ be an event inΣ

such thatsσ ∈ K, s′σ ∈ L(G) ands′ ∈ K. We
then need to show thats′σ ∈ K, as follows:
• Becauses, s′ ∈ K ⊆ L(A) and P (s) =
P (s′) and A is Σirr-transparent,A will be
in the same statex after the execution ofs
ands′, i.e., ξ(s, x0) = ξ(s′, x0) = x.

• Sincesσ ∈ K ⊆ L(A), ξ(σ, x)!. Therefore
s′σ ∈ L(A). Thus,s′σ ∈ L(A)∩L(G) = K.
Hence Condition 1 of Definition 3.

2) Proof of Condition 2: Assume thats ∈ K and
s′ ∈ K ∩ Lm(G). We then need to show that
s′ ∈ K, as follows:
• Similar to the proof of Condition 1 above,

becauses, s′ ∈ K ⊆ L(A) and P (s) =
P (s′) and A is Σirr-transparent,A will be
in the same statex after the execution ofs
ands′, i.e., ξ(s, x0) = ξ(s′, x0) = x.

• Furthermore, sinces ∈ K ⊆ Lm(A), x ∈
Xm. Thus, s′ ∈ Lm(A). Therefore,s′ ∈
Lm(A) ∩ Lm(G) = K. Hence Condition 2
of Definition 3.

Thus by Definition 3,K is Σrel-relevant w.r.tG.

Corollary 1: Given a DES G =
(Q,Σ, δ, q0, Qm), an automatonH representing
a languageK ⊆ Lm(G), and an event subset
Σirr ⊆ Σ. If K is (Σ− Σirr)-relevant w.r.tG, then
A = Trans(H,Σirr) is a specification automaton
for G that is Σirr-transparent and that modelsK

on G, i.e.,Lm(A) ∩ Lm(G) = K.
Proof: Immediate from the proof of theIf

statement in Theorem 1.

V. PROCEDURES ANDSOLUTION ALGORITHM

Theorem 1 has established an important connec-
tion between the concepts of a transparent spec-
ification automaton and a relevant specification
language. From this theorem, it is clear that a
maximally transparent specification automatonA
modeling a specification languageK for G can
be synthesized from a relevant event subsetΣrel

for K of minimal cardinality (among all the event
subsets that are relevant forK w.r.tG). A procedure
to compute a minimal relevant event subset for
K is, therefore, essential for computing a solution
for Problem 1. Such a procedure is presented in
this section (Section V-B). The procedure utilizes
another procedure (Section V-A) to check for lan-
guage relevance. In Section V-C, a provably correct
solution algorithm for the main problem (Problem
1) is then presented.

A. Verification of Language Relevance

We first present a procedure to verify whether a
languageK ⊆ Lm(G) is Σrel-relevant w.r.t a given
DESG. Let A be a trim automaton that represents
K, i.e., Lm(A) = K. ProcedureCheckRelevance
returnsTrue if Lm(A) is Σrel-relevant w.r.tG and
False, otherwise.

Intuitively, CheckRelevance builds automaton
RelTest(A,G) to track pairs of stringss and s′

in L(A), with PΣ,Σrel
(s) = PΣ,Σrel

(s′), and to
determine the state ofG reached after the execution
of s′. Therefore, each state ofRelTest(A,G) is
represented by a triple(x, x′, q) ∈ (X × X × Q),
wherex, x′ ∈ X are the states reached inA from
x0 after the execution ofs ands′, andq ∈ Q is the
state reached inG from q0 after the execution ofs′.
Moreover, automatonRelTest(A,G) also includes
a special state calleddump 6∈ X × X × Q and a
special event calledγ 6∈ Σ that are used to capture
all violations ofΣrel-relevance.

At any state(x, x′, q) of RelTest(A,G), if the
occurrence of an eventσ ∈ Σ creates a violation of
Condition 1 ofΣrel-relevance (Definition 3), then
a σ-transition from(x, x′, q) to dump is added to
RelTest(A,G). Furthermore, if the reach of a state
(x, x′, q) of RelTest(A,G) creates a violation of

7

Condition 2 ofΣrel-relevance, then aγ-transition
from (x, x′, q) to dump is added toRelTest(A,G).
It is clear from the pseudo-code and the foregoing
discussion thatCheckRelevance has polynomial
time complexity ofO(|X|2|Q|) where |X| and |Q|
are the state size ofA andG, respectively.

Procedure CheckRelevance(A,G,Σrel)
Input : DESG = (Q,Σ, δ, q0, Qm), specification

automatonA = (X,Σ, ξ, x0, Xm) with
Lm(A) ⊆ Lm(G) and an event subsetΣrel ⊆ Σ;

Output : True, if Lm(A) is Σrel-relevant w.r.tG;
False, otherwise;

begin
Let Σirr = Σ− Σrel andγ be an event not inΣ;
Step 1: Construct automatonRelTest(A,G) = Ac((X ×
X ×Q) ∪ {dump},Σ ∪ {γ}, f, (x0, x0, q0), {dump})
from A andG with the transition functionf defined as
follows:
(∀(x, x′, q) ∈ X ×X ×Q):
1) (∀σ ∈ Σrel)

• f(σ, (x, x′, q)) = (ξ(σ, x), ξ(σ, x′), δ(σ, q))
if ξ(σ, x)!, ξ(σ, x′)! andδ(σ, q)!; and

• f(σ, (x, x′, q)) = dump
if ξ(σ, x)!, ¬ξ(σ, x′)! andδ(σ, q)!

2) (∀σ ∈ Σirr)

• f(σ, (x, x′, q)) = (ξ(σ, x), x′, q)
if ξ(σ, x)!, ¬ξ(σ, x′)! and¬δ(σ, q)!; and

• f(σ, (x, x′, q)) = (x, ξ(σ, x′), δ(σ, q))
if ¬ξ(σ, x)!, ξ(σ, x′)! andδ(σ, q)!; and

• f(σ, (x, x′, q)) = dump
if ξ(σ, x)!, ¬ξ(σ, x′)! andδ(σ, q)!

3) f(γ, (x, x′, q)) = dump if x ∈ Xm, x′ 6∈ Xm and
q ∈ Qm.
Step 2: Determine whetherLm(A) is Σrel-relevant w.r.t
G:

• If Lm(RelTest(A,G)) 6= ∅, i.e., dump
is encountered during the construction of
RelTest(A,G) in Step 1, returnFalse;

• Otherwise, returnTrue;

Theorem 2:Given DESG = (Q,Σ, δ, q0, Qm),
specification automatonA = (X,Σ, ξ, x0, Xm) with
Lm(A) ⊆ Lm(G) and an event subsetΣrel ⊆ Σ.
ThenLm(A) is Σrel-relevant w.r.tG if and only if
CheckRelevance(A,G,Σrel) = True.

Proof: Let RelTest(A,G) be the automa-
ton constructed in Step 1 ofCheckRelevance.
We will prove this theorem by showing that
Lm(A) is Σrel-relevant w.r.t G if and only if
Lm(RelTest(A,G)) = ∅.

To begin with, by construction ofRelTest(A,G)
in Step 1 ofCheckRelevance, it can be seen that
a state triple(x, x′, q) ∈ X ×X ×Q is reachable in
automatonRelTest(A,G) if and only if there exists

a pair of strings(s, s′) ∈ K ×K such that:

1) ξ(s, x0) = x, ξ(s′, x0) = x′ andδ(s′, q0) = q.
2) PΣ,Σrel

(s) = PΣ,Σrel
(s′).

(If:) Assume thatLm(RelTest(A,G)) 6= ∅, i.e.,
statedump is reached by aσ-transition (σ ∈ Σ) or
a γ-transition from some reachable state(x, x′, q) ∈
X×X×Q of RelTest(A,G), we show thatLm(A)
is notΣrel-relevant w.r.tG, as follows.

Let s, s′ ∈ K be any two strings with (1)
ξ(s, x0) = x, ξ(s′, x0) = x′ and δ(s′, q0) = q;
and (2)PΣ,Σrel

(s) = PΣ,Σrel
(s′). By construction of

RelTest(A,G), we have:

• If dump is reached from(x, x′, q) by a σ-
transition for someσ ∈ Σ, then sσ ∈ K,
s′σ ∈ L(G) and s′σ 6∈ K, i.e., Condition 1
of Definition 3 is violated.

• If dump is reached from(x, x′, q) by a γ-
transition, thens ∈ K, s′ ∈ K ∩ Lm(G) and
s′ 6∈ K, i.e., Condition 2 of Definition 3 is
violated.

Thus, in either case,Lm(A) is not Σrel-relevant
w.r.t G.

(Only if:) Conversely, if Lm(A) is not Σrel-
relevant w.r.tG, there exists two stringss, s′ ∈ K

with PΣ,Σrel
(s) = PΣ,Σrel

(s′) such that:

1) (∃σ ∈ Σ) sσ ∈ K, s′σ ∈ L(G) and s′σ 6∈ K;
or

2) s ∈ K, s′ ∈ K ∩ Lm(G) ands′ 6∈ K.

Let x = ξ(s, x0), x′ = ξ(s′, x0) andq = δ(s′, q0).
Then(x, x′, q) ∈ X ×X ×Q is a reachable state of
RelTest(A,G).

By the construction ofRelTest(A,G) in Step 1
of CheckRelevance, if (∃σ ∈ Σ) sσ ∈ K, s′σ ∈
L(G) and s′σ 6∈ K, statedump will be reached
from (x, x′, q) via a σ-transition.

On the other hand, ifs ∈ K, s′ ∈ K∩Lm(G) and
s′ 6∈ K, statedump will be reached from(x, x′, q)
via a γ-transition.

Thus, in either case, statedump is reach-
able in automaton RelTest(A,G). Therefore
Lm(RelTest(A,G)) 6= ∅.

Remark 2:Note that Trans and
CheckRelevance are algorithmically similar
to the respective procedures for computing a
partially observable supervisor and checking
language observability [18]. This similarity is not
unexpected due to Remark 1.

8

B. Minimal Cardinality of Relevant Event Set

Lemma 2:Given DESG = (Q,Σ, δ, q0, Qm), a
languageK ⊆ Lm(G) and an event subsetΣrel ⊆
Σ. If K is not Σrel-relevant w.r.tG then (∀Σ′

rel ⊆
Σrel) K is notΣ′

rel-relevant w.r.tG.
Proof: By contradiction, assume that there

exists some event subsetΣ′
rel ⊆ Σrel such thatK

is Σ′
rel-relevant w.r.tG. Then, since(∀s, s′ ∈ Σ∗)

PΣ,Σrel
(s) = PΣ,Σrel

(s′) ⇒ PΣ,Σ′
rel
(s) = PΣ,Σ′

rel
(s′),

it is easy to see thatK is alsoΣrel-relevant w.r.tG,
violating the assumption thatK is notΣrel-relevant
w.r.t G.

A relevant event set of minimal cardinality would
result in making as many irrelevant events transpar-
ent as possible. Following our previous arguments,
such an automaton should be the most preferable
for better understandability among all available au-
tomata representing the same specification for a
given DES.

Given DESG and a specification automatonA,
a procedure calledMinRelevantSet is developed
to compute a minimal (cardinality) event subset
Σrel,min ⊆ Σ such thatLm(A) is Σrel,min-relevant
w.r.t G. In essence, the procedure considers all
subsets ofΣ and selects from them a minimal subset
Σrel,min for which the relevance ofLm(A) w.r.t G
holds.

Procedure MinRelevantSet uses a variable
calledΣrel,min to store the minimal cardinality sub-
set that has been found so far. It also uses a variable
calledIrrelevantSets to store all the event subsets
that are not qualified as relevant event subsets (for
Lm(A) w.r.t G).

Initially, Σrel,min = Σ and IrrelevantSets = ∅.
MinRelevantSet starts by setting an index variable
n to |Σ| − 1 and generating all subsets ofΣ that
have the cardinality ofn. It then performs relevance
checks for these generated event subsets by calling
CheckRelevance.

Because of Lemma 2, upon determining that
Lm(A) is not Σ′-relevant,MinRelevantSet adds
all subsets ofΣ′ to the set of irrelevant event subsets
IrrelevantSets, to avoid checking these subsets in
future steps.

After checking all event subsets of cardinalityn,
the procedure decreasesn by 1 and continues to
generate and check all event subsets of cardinality
n−1, to search for relevant event subsets of smaller
cardinality and updateΣrel,min accordingly. Dur-
ing its search process, ProcedureMinRelevantSet

Procedure MinRelevantSet(G,A)
Input : DESG = (Q,Σ, δ, q0, Qm) and specification

automatonA = (X,Σ, ξ, x0, Xm) with
Lm(A) ⊆ Lm(G);

Output : A minimal cardinality event subset
Σrel,min ⊆ Σ such thatLm(A) is
Σrel,min-relevant w.r.tG;

begin
IrrelevantSets← ∅;
Σrel,min ← Σ;
n← |Σ| − 1; OK = True;
while OK = True and n ≥ 0 do

count← 0;
foreach Σ′ ⊆ Σ and |Σ′| = n do

if Σ′ ∈ IrrelevantSets then
count← count+ 1;

else ifCheckRelevance(G,A,Σ′) = False
then

count← count+ 1;
Add Σ′ and all of its subsets to
IrrelevantSets;

else
Σrel,min ← Σ′;

if count =
(

|Σ|
n

)

then OK = false;
n← n− 1;

ReturnΣrel,min;

maintains a variable calledcount to count the
number of event subsets of cardinalityn that are
not qualified as relevant event subsets. Whenever
count =

(

|Σ|
n

)

, i.e., all the subsets of cardinalityn
or smaller are not qualified as relevant event subsets,
or n reaches0, the procedure stops and returns the
relevant event subset of minimal cardinality that has
been found.

In the worst case,MinRelevantSet has to
examine all the (strict) subsets ofΣ for lan-
guage relevance, and as a result, it has to
call CheckRelevance 2|Σ| − 1 times. Therefore,
MinRelevantSet has exponential time complex-
ity of O(2|Σ||X|2|Q|), where |X| and |Q| are the
state size ofA and G, respectively. To speed up
MinRelevantSet, a pruning technique based on
Lemma 2 can be used. Specifically, after discov-
ering that Lm(A) is not relevant w.r.tΣ′ ⊆ Σ,
MinRelevantSet can store all the subsets ofΣ′ into
a data structure, and avoid checking for language
relevance w.r.t these subsets in future steps.

When computational time is expensive, however,
an algorithm of polynomial time complexity is of
practical interest. To avoid searching all the subsets
of Σ, and hence reduce the computational time, such

9

an algorithm may compute and return a relevant
event set with reasonably small (but not necessary
minimal) cardinality forLm(A) w.r.t G. However,
the development of such an algorithm is beyond the
scope of this paper.

C. Solution Algorithm

In what follows, Algorithm 1 is proposed for
computing a specification automaton as a solution
for Problem 1. The algorithm has two main steps:
(1) it computes a maximal set of irrelevant events
using MinRelevantSet; and (2) it uses the com-
puted event set to synthesize the solution specifica-
tion automaton usingTrans.

Let |Y | and |Q| be the state size ofH and
G, respectively. Since Algorithm 1 is built on the
foundation of the two proceduresMinRelevantSet

and Trans, it has time complexity ofO((2|Σ| −
1)|Y |2|Q|+2|Y |), which is the “summation” of their
time complexities.

In practice, the computational complexity of Al-
gorithm 1 might need to be reduced to deal with
large systems. In doing so, the complexities of the
individual proceduresMinRelevantSet andTrans
would need to be mitigated. An approach to reduce
the computational complexity ofMinRelevantSet

has been discussed in Section V-B. In what follows,
we discuss how the computational complexity of
ProcedureTrans can be reduced. In Step 2 of Algo-
rithm 1, Trans is invoked to compute specification
automatonA = Trans(H,Σirr,max). As pointed
out in Section IV, the exponential complexity of
Trans is due to the projection of automatonH
onto event subsetΣrel,min = Σ − Σirr,max. This
exponential complexity can be avoided ifH has
some special structure w.r.tΣrel,min. For instance,
if the natural projectionPΣ,Σrel,min

is an observer of
Lm(H) [19], i.e., (∀t ∈ PΣ,Σrel,min

(Lm(H)))(∀s ∈
L(H)) [PΣ,Σrel,min

(s) is a prefix of t] ⇒ (∃u ∈
Σ∗)[su ∈ Lm(H) and PΣ,Σrel,min

(su) = t], then
the projected image ofH onto Σrel,min can be
computed in polynomial time [19]; and it would
follow that Trans has polynomial time complexity.
Thus, to reduce the computational complexity of
Trans, event subsetΣrel,min could be enlarged, if
necessary, to satisfy the observer condition [19]. By
Lemma 2, this set enlargement does not violate the
relevance property ofLm(H) w.r.t G. However, one
should note that enlargingΣrel,min this way means

that the maximal cardinality of irrelevant event set
Σirr,max = Σ−Σrel,min is no longer guaranteed, and
for this reason, the output automatonA may not be
maximally transparent.

Algorithm 1: Maximally transparent specifica-
tion automaton synthesis

Input : DESG = (Q,Σ, δ, q0, Qm) and an automatonH with
Lm(H) = K ⊆ Lm(G);

Output : Specification automatonA that modelsK on G and
has a maximal cardinality set of irrelevant events;

begin
Step 1: Compute a maximal cardinality set of irrelevant
events:

• Step 1.a: Σrel,min = MinRelevantSet(G,H);
• Step 1.b: Σirr,max = Σ− Σrel,min;

Step 2: Compute aΣirr,max-transparent automatonA
that modelsK on G: A = Trans(H,Σirr,max);
ReturnA;

Theorem 3:With Lm(H) = K, Algorithm 1
returns a solution automaton for the transparency
maximization Problem 1.

Proof: Let Σrel,min andΣirr,max = Σ−Σrel,min

be the event subsets generated in Steps 1.a and 1.b
of Algorithm 1, andA = Trans(H,Σirr,max) be the
automaton generated in Step 2 of Algorithm 1. It is
clear thatK is Σrel,min-relevant w.r.tG. Therefore,
according to Corollary 1,A is a specification au-
tomaton that isΣirr,max-transparent and that models
K on G.

Also, sinceΣrel,min is a minimal relevant event
set forK w.r.tG, there is no specification automaton
that modelsK on G and has a set of irrelevant
events with a greater cardinality than|Σirr,max|: if
there is such aΣ′-transparent specification automa-
ton with |Σ′| > |Σirr,max|, then|Σ−Σ′| < |Σrel,min|,
and according to Theorem 1,K is (Σ−Σ′)-relevant
w.r.t G, contradicting the fact thatΣrel,min is a
relevant event set with minimal cardinality forK
w.r.t G.

Thus, Algorithm 1 generates specification au-
tomatonA that modelsK on G and has a maximal
set of irrelevant events, i.e., Algorithm 1 synthesizes
a solution automaton for Problem 1.

VI. I LLUSTRATIVE EXAMPLES

We now present two examples to illustrate the
concept of a maximally transparent specification
automaton. In the illustration, every automaton is

10

shown as a directed graph with the initial state
represented by a node with an entering arrow, and
every marker state represented by a darkened node.

1request 1release

1access

(a) USER1

2request 2release

2access

(b) USER2

1release

1request

1request

2access1request

2access

2release

2request 1access

1access 2request
1release

2release

2request

(c) FCFS specification automatonH

1release

1request 2request

2release

1access 2access

2request 1request

1access 2access

1release 2release

(d) Maximally transparent FCFS specification

Fig. 1. Illustrative example 1: Resource allocation system

Example 1 (Resource allocation):The first ex-
ample is a first come, first served (FCFS) con-
trol requirement for a resource allocation system.
The example system model, denoted byG, is a
synchronous product [18] of two users,USER1

[Fig. 1(a)] andUSER2 [Fig. 1(b)]. The automaton
USERi, i ∈ {1, 2}, is modeled to request, access
and release a resource; and the systemG models
their asynchronous operations to share the single
resource.

A specification automatonH of the FCFS re-
quirement forG is shown in Fig. 1(c). It is due to
some specification automatonP prescribed by a sys-
tem designer such thatLm(P) ∩ Lm(G) = Lm(H).
Applying Algorithm 1 toH, we obtain a maximally
transparent specification automaton as shown in Fig.
1(d), with Σirr,max = {1access, 2access}.

Observe that the events inΣirr,max appear only
in self-loops. Importantly, fori, j ∈ {1, 2}, that
irelease precedes jrelease whenever irequest pre-
cedes jrequest - the essence of FCFS forG - is
quite clearly highlighted in the resulting automaton
of Fig. 1(d), but may not be as obvious in Fig. 1(c)
or some other specification automatonP prescribed
by the system designer.

Buffer B2

Dispatcher D

Outgoing Link 1

Outgoing Link 2

dispatch1

dispatch2
Incoming Link

Interface I2

Buffer B1 Interface I1

(a) System layout

pktdrop, dispatch1, dispatch2

pktarrive

(b) DispatcherD

dispatch1

1send
1down

1repair

(c) InterfaceI1

dispatch2

2send
2down

2repair

(d) InterfaceI2

Fig. 2. Illustrative example 2: Network switching system

Example 2 (Computer network switch):The
second example is a computer network switching
system. In this simplified system, a network switch
is modeled to have one incoming link and two
outgoing links [Fig. 2(a)]. The example system
model, denoted byS, is a synchronous product
of a dispatcherD [Fig. 2(b)] and two network
interfaces I1 [Fig 2(c)] and I2 [Fig. 2(d)]. The
system works as follows. When a data packet
arrives at the incoming link, the dispatcher either
drops the packet or deposits it into one of the
two buffersB1 andB2 for the respective outgoing
interfaces. When a packet is deposited into a
buffer, the corresponding network interface can
send the packet to the outgoing link connected to
it unless it breaks down, in which case it would
need to be repaired. Upon repairing and resuming
operation from a breakdown, a network interface’s
buffer becomes empty, meaning that every packet
deposited into the buffer before the interface broke
down is lost.

Consider a network switch (NS) control require-
ment, informally stated as follows: The buffers
must never overflow or underflow, and if both
the interfaces break down, interfaceI1 must be

11

pktarrive

pktdrop

2repair

2send

1send

1repair

dispatch1
1send

1repair

dispatch2

2send

2repair

2repair

2send

1down pktdrop

pktarrive

2down

pktdrop

pktarrive

1send

1repair

2send

pktdroppktarrive

dispatch2

2repair

2send1down

2down

1send

1repair

dispatch1

pktarrive

pktdrop
1repair

dispatch2
2send

2down

pktdrop

pktarrive

1down

dispatch1

1send

1repair

2down

pktdrop

pktarrive

2down

1down

1send
pktarrive

pktdrop

1down

pktarrive

pktdrop

2down

1down

Fig. 3. NS specification automatonH

repaired first. Assume thatB1 andB2 are one-slot
buffers. Then more formally, fori ∈ {1, 2}, the
NS specification requiresdispatchi to be executed
first, and isend (or irepair) and dispatchi to be
executed alternately thereafter; and if1down occurs,
then 2repair cannot be executed until1repair is.
This requirement can be modeled by a specification
automatonH as shown in Fig. 3. This automaton is
prescribed by carefully considering every possible
event string generated by the synchronous product
of the three automata in Figs. 2(b)-2(d) that form the
system modelS, and excluding every of those that
violate the control requirement. Nevertheless, when
presented with this specification automaton, it is
hard for a designer to comprehend the specification
and readily ascertain if the automaton models the
intended requirement.

Applying Algorithm 1, we obtain a maximally
transparent specification automaton as shown in Fig.
4, with Σirr,max = {pktarrive, pktdrop, 2down}.
Clearly, the essence of the NS specification for the
systemS is expressed more evidently in Fig. 4 than
in Fig. 3, demonstrating the utility of our algorithm.

VII. CONCLUSION

We have motivated and developed the notion of
transparency of automata as specifications for DES.
We have formalized the transparency maximization
problem and developed an algorithm to construct a
maximally transparent specification automaton. Two
illustrative examples show that such a specification

1r
ep

ai
r

dispatch11send

dispatch2

2send, 2repair

dispatch2

1send

2send, 2repair

dispatch1
1down

2send

dispatch2

1down

1r
ep

ai
r

pktarrive
pktdrop

pktarrive
pktdrop

pktdrop

2down

2down

pktdrop
pktdrop

2down
pktdrop

pktarrive

pktarrive

pktarrive

pktarrive

Fig. 4. Maximally transparent NS specification

automaton can improve designer comprehensibility
by better highlighting the essential precedence or-
der of only those relevant events that collectively
constitute the essence of the specification.

To harness the specifiability and readability of
temporal logic in an automata-based DES frame-
work, previous work [6] has proposed an algorithm
that translates a (finitary) temporal logic specifica-
tion to a specification automatonH generating a
sublanguage ofLm(G) for a given DESG. An inter-
esting avenue for future research is to translate such
a temporal logic specification directly to a max-
imally transparent specification automatonA for
whichLm(H) = Lm(A)∩Lm(G), without explicitly
constructingH. Together, this could promote a more
effective specification-synthesis paradigm, where
the natural language readability of a temporal logic
specification and the transparency of the translated
automatonA could render higher confidence that

12

the specification automaton - a mandatory input for
control synthesis of DES using automata-based tools
- does indeed capture the intended requirement.

To deal with large control systems, it is also
worthwhile to develop complexity reduction strate-
gies for Algorithm 1 that leverage on recent ad-
vancement in finite automata.

Finally, beyond the DES domain, our research
may be applicable in other domains where automata
are used for modeling and specification.

REFERENCES

[1] M. T. Pham, A. Dhananjayan, and K. T. Seow, “On the trans-
parency of automata as discrete-event control specifications,” in
Proceedings of the IEEE International Conference on Robotics
and Automation, Anchorage, Alaska, USA, May 2010, pp.
1474–1479.

[2] P. J. Ramadge and W. M. Wonham, “Supervisory control of a
class of discrete event processes,”SIAM Journal of Control and
Optimization, vol. 25, no. 1, pp. 206–230, January 1987.

[3] E. Roszkowska, “Supervisory control for deadlock avoidance
in compound processes,”IEEE Transactions on Systems, Man,
and Cybernetics Part A: Systems and Humans, vol. 34, no. 1,
pp. 52–64, 2004.

[4] J. Huang and R. Kumar, “An optimal directed control frame-
work for discrete event systems,”IEEE Transactions on Sys-
tems, Man, and Cybernetics Part A: Systems and Humans,
vol. 37, no. 5, pp. 780 – 791, 2007.

[5] J. E. Hopcroft and J. D. Ullman,Introduction to Automata
Theory, Languages and Computation. Reading, MA : Addison-
Wesley, 1979.

[6] K. T. Seow, “Integrating temporal logic as a state-basedspec-
ification language for discrete-event control design in finite
automata,” IEEE Transactions on Automation Science and
Engineering, vol. 4, no. 3, pp. 451–464, July 2007.

[7] S. L. Ricker, N. Sarkar, and K. Rudie, “A discrete event sys-
tems approach to modeling dextrous manipulation,”Robotica,
vol. 14, no. 5, pp. 515–525, 1996.

[8] S. C. Lauzon, A. K. L. Ma, J. K. Mills, and B. Benhabib,
“Application of discrete event system theory to flexible manu-
facturing,” IEEE Control Systems Magazine, vol. 16, no. 1, pp.
41–48, February 1996.

[9] R. G. Qiu and S. B. Joshi, “A structured adaptive supervisory
control methodology for modeling the control of a discrete
event manufacturing system,”IEEE Transactions on Systems,
Man, and Cybernetics Part A: Systems and Humans, vol. 29,
no. 6, pp. 573 – 586, 1999.

[10] S. Wang, S. F. Chew, and M. A. Lawley, “Using shared-resource
capacity for robust control of failure-prone manufacturing sys-
tems,” IEEE Transactions on Systems, Man, and Cybernetics
Part A: Systems and Humans, vol. 38, no. 3, pp. 605 – 627,
2008.

[11] K. T. Seow and M. Pasquier, “Supervising passenger land-
transport systems,”IEEE Transactions on Intelligent Trans-
portation Systems, vol. 5, no. 3, pp. 165–176, September 2004.

[12] W. M. Wonham, “Supervisory control theory: Models and
method,” inProceedings of the 24th International Conference
on Application Theory of Petri Nets, Eindhoven, The Nether-
lands, June 2003, pp. 1–14.

[13] K. T. Seow and R. Devanathan, “A temporal logic approachto
discrete event control for the safety canonical class,”Systems
and Control Letters, vol. 28, no. 4, pp. 205–217, 1996.

[14] S. Miremadi, K. Akesson, and B. Lennartson, “Extraction and
representation of a supervisor using guards in extended finite
automata,” inProceedings of the 9th International Workshop on
Discrete Event Systems, Gothenburg, Sweden, May 2008, pp.
193–199.

[15] R. Su and W. M. Wonham, “Supervisor reduction for discrete-
event systems,”Discrete Event Dynamic Systems : Theory and
Applications, vol. 14, no. 1, pp. 31–53, 2004.

[16] S.-J. Whittaker and K. Rudie, “Lose fat, not muscle: An
examination of supervisor reduction in discrete-event systems,”
Discrete Event Dynamic Systems, vol. 18, no. 3, pp. 285–321,
2008.

[17] F. Lin and W. M. Wonham, “On observability of discrete event
systems,”Information Sciences, vol. 44, no. 3, pp. 173–198,
1988.

[18] C. G. Cassandras and S. Lafortune,Introduction to Discrete
Event Systems. Springer, 2008.

[19] L. Feng and W. M. Wonham, “Supervisory control architecture
for discrete-event systems,”IEEE Transactions on Automatic
Control, vol. 53, no. 6, pp. 1449–1461, July 2008.

