
1

A Metric Temporal Logic Specification Interface for Real-Time
Discrete-Event Control

Amrith Dhananjayan and Kiam Tian Seow

Abstract—In supervisory control of timed discrete-event sys-
tems (TDES’s), a conceptually well-founded finitary control
synthesis framework is developed, and it requires specifications
to be prescribed as finite (-trace) automata in the form of
timed transition graphs (TTG’s). However, prescribing real-
time specifications as TTG’s is a non-trivial task that must be
resolved before the formal framework could expect to become
widely used. In addressing this specification problem, metric
temporal logic (MTL) is proposed in this paper as a control
specification language for use with the TTG-based control syn-
thesis framework. MTL is a designer-friendly formalism due to
its human or natural language expressiveness and readability,
and is well-suited for specifying real-time control specifications.
In automating TTG prescription, this paper proposes an MTL
interface to the control synthesis framework. The interface is
proved to be a correct and complete translation algorithm that
converts finitary control specifications written in state-based
MTL formulae for a given TDES model into deterministic finite
TTG’s. Integrated, the MTL interface and the control synthesis
framework combine the human expressiveness and readability of
MTL with the algorithmic computability of TTG’s, and together
provide a new and convenient MTL specification-based design
tool for automated prescription of TTG’s and real-time control
synthesis. Illustrative examples demonstrate the utility of the
MTL interface.

Index Terms—Timed discrete-event systems, timed transition
graph, metric temporal logic, formal specification, supervisory
control

I. INTRODUCTION

Supervisory control of discrete-event systems proposed by
Ramadge and Wonham [1], [2], along with its many extensions
[3], [4], [5], [6], provides an effective formal framework to
model and control complex systems. The logical framework
has been applied to a wide variety of applications such as
manufacturing systems [7], [8], [9] and intelligent transporta-
tion [10], to name a few. For handling real-time systems,
Brandin and Wonham [11] have augmented the framework
with timing features for supervisory control of timed discrete-
event systems (TDES’s), providing an effective framework
for real-time control synthesis that has found applicationin
domains such as task scheduling [12], [13], multiprocessor
resource allocation [14] and transformer voltage control [15].

In the Brandin-Wonham framework [11], [16], [17], a TDES
to be controlled is modeled as a finite (-trace) automaton in
the form of a timed transition graph (TTG) that encompasses
all the possible timed execution sequences of the system.
The TTG control system model formulation is useful as it
is able to capture the time urgency of control with the control

This work was supported by the Singapore Ministry of Education, under
NTU-AcRF Tier 1 Grant No: RG65/07.

The authors are with the School of Computer Engineering,
Nanyang Technological University, Republic of Singapore 639798.
{amri0005,asktseow}@ntu.edu.sg

concept of forcible events [11], and a rich set of control-
theoretic results [16], [17] has been developed for the model
with control synthesis tool support (e.g., TTCT [18]). As
a design paradigm, the automated control-theoretic tool is
attractive as the supervisor (or controller) for a TDES thatit
synthesizes is guaranteed to conform to a given control spec-
ification in a nonblocking and maximally permissive fashion.
By nonblockingness, every initiated task is allowed to run to
completion; and by maximal permissiveness, the largest setof
feasible TDES execution sequences within the specification
are allowed. Besides, research is being actively pursued to
evolve TTG-based control synthesis into a practical foundation
of greater realism (e.g., [19], [20], [21], [22], [23], [24]).
Essentially, the synthesis also requires the specificationto be
given as a TTG.

In practice, control requirements are initially described
in natural language statements; human designers understand
these statements and prescribe TTG specifications accordingly.
However the task of prescribing in finite automata that TTG’s
are is non-trivial [25], and must be resolved before the
supervisory control framework [11] could expect to become
widely used, motivating the use of alternative specification
languages that are more human or natural language expressive
and readable [4]. Language expressiveness refers to the ease of
description and readability refers to the fluency of expression
for clarity that aids in understanding a given specification
described in the language. Moreover, most designers would
find it easier to write and understand a specification in a
descriptive language such astemporal logic, rather than in a
prescriptive one thatautomatais [26]. Adding a temporal logic
translation interface to the TTG control synthesis framework
can mitigate the difficulty of specifying directly in TTG’s,as
it would support the alternate writing of a class of control
requirements as temporal logic formulae that the interface
can convert to TTG specifications for algorithmic control
synthesis. That writing in temporal logic is generally easier
and clearer is due to the natural language readability and
expressiveness of temporal logic furnished by its temporal
operators that define a fragment of the English language
[27]. This practical utility of temporal logic as a designer
specification language is intuitively evident, and is supported
by the experience of the temporal logic research community
[28], [29]. However, to the best of our knowledge, there is
relatively little or no prior research work that, in the context of
a finite-state TDES model, translates temporal logic formulae
to TTG’s to harness the specification benefit of temporal logic
for TTG control synthesis.

Metric temporal logic (MTL) [30] is well recognized as
a human designer-friendly formalism for writing real-time
specifications [31]. In this paper, this version of temporallogic

2

is proposed as the real-time specification language for use with
the TTG-based control synthesis framework [11], [3]. MTL is
chosen because its underlying timing semantics can be readily
adapted to match the TTG model in terms of qualitatively
defining the passage of time as ticks of the global clock. Apart
from offering simple syntax and semantics for descriptively
writing qualitative specifications that are paraphrastic in natu-
ral language, MTL also allows timing constraints to be concur-
rently specified using its time-bounded temporal operators. In
automating TTG prescription for TTG-based control synthesis,
an MTL interface is proposed. This interface is a correct
and complete translation algorithm which converts finitary
control specifications, easily expressed in state-based MTL
formulae, to deterministic (finite) TTG specifications. State-
based MTL formulae express control requirements in terms of
the state information of TDES’s. Integrated, the MTL interface
and the real-time control synthesis framework combine the
expressiveness and readability of MTL with the computability
of TTG’s, and provide a convenient MTL specification-based
design tool for automated prescription of TTG’s for real-time
control synthesis. Importantly, while the TTG-based control
synthesis tool guarantees producing supervisors that synthesize
“the specifications right”, the interface fills the gap of assisting
designers to prescribe “the right specifications”. It helpsthat
recent research efforts [32], [33] allow MTL specificationsof
common real-time requirements to be obtained directly from
descriptions given in structured natural language (English).
These techniques, which have been successfully applied in
several real-world applications [34], [35], [36], have made
it possible even for non-specialist designers to write MTL
specifications for realistic systems [37].

In a related work [31], an algorithm is proposed to directly
translate control requirements given as MTL formulae to
automata that realize controllers satisfying these requirements.
However, the control setting considered therein is fundamen-
tally different from that of the Brandin-Wonham framework
that our MTL interface is developed for. In that setting [31],
control concepts such as controllability and observability do
not arise naturally, uncontrollable events are characterized
by nondeterminism, and the output controller may not be
maximally permissive.

In some early [38], [39] efforts, timed automata [40] is used
to model TDES’s for supervisory control. Timed automata is
a popular dense time model for real-time systems [40] and
unlike TTG’s [9], the notion of time used is continuous and
not discrete-event. It should be noted that with the notion of
time as tick events, a TTG (system) model is directly amenable
to supervisory control since supervisory control actions are
event-based. In real-time system modeling and analysis, some
researchers prefer to use timed automata over their purely
discrete-event counterparts such as TTG’s. However, being
time continuous, the more general timed automaton model is
not amenable to supervisory control without time eventization
[38], which entails the problem of converting timed automata
to finite transition systems that is PSPACE-hard [40], [41].

The theoretical and algorithmic development of the pro-
posed MTL interface for automated prescription of TTG’s is
decidedly a contribution to the TTG-based control systems

literature. We believe that the MTL interface for TTG-based
control synthesis would add value to the design framework as
it adapts to the common background of TDES control theorists
and practitioners by not making too many changes in their
traditional research and practice of designing controllers; for
example, the TTG modeling formalism that they are familiar
with is not changed. Motivated as it is by the specification
needs of control designers, the translation ability of the MTL
interface could in turn influence the control designers’ think-
ing.

The rest of the paper is organized as follows. Section II
reviews the relevant background in TDES’s and MTL. Section
III presents the new MTL translation algorithm, and estab-
lishes its correctness and completeness. Section IV demon-
strates the utility of the translation algorithm as a specification
interface with three examples. Section V concludes the paper.

II. BACKGROUND

A. Timed Discrete-Event Systems (TDES’s)

We review the TDES control framework proposed by
Brandin and Wonham [11]. In this framework, a TDES is
modeled as a timed transition graph (TTG), which is a finite
automaton displayed as an edge-labeled directed graph such
that its nodes denote states of the TDES and edges denote
timed transitions.

The base model of a TTG is a finite automatonGact =
(Aact,Σact, δact, a0, Am) called anactivity transition graph
(ATG). The ATG describes the untimed behavior of a TTG.
In ATG Gact, Aact is the finite set of activities,Σact is the
finite alphabet of events,δact : Σact × Aact → Aact is the
(partial) activity transition function,a0 ∈ Aact is the initial
activity andAm ⊆ Aact is the set of marked activities.

Let N represent the set of nonnegative integers. Each event
σ ∈ Σact is associated with alower time boundlσ ∈ N and an
upper time bounduσ ∈ N ∪ {∞} such thatlσ ≤ uσ. Σact is
partitioned into two subsets, the setΣspe = {σ ∈ Σact | uσ ∈
N} of prospective events and the setΣrem = {σ ∈ Σact |
uσ = ∞} of remote events. The upper time bounds of remote
events are infinite while that of prospective events are finite.
For modeling purposeslσ would typically denote a delay and
uσ, a hard deadline.

For σ ∈ Σact let

Tσ =

{

[0, uσ] , if σ ∈ Σspe

[0, lσ] , if σ ∈ Σrem
.

Tσ is said to be thetimer interval for σ.
Formally, a transition system

G
def
= [Ψ, Gact]

is an ATG with state information incorporated. HereΨ denotes
the finite set of propositional state symbols ofG such that
the domainRange(u) over which eachu ∈ Ψ ranges is
{true, false}. The activity setAact is the Cartesian prod-
uct of the ranges of the state symbols inΨ (i.e., Aact

def
=

∏

u∈ΨRange(u)), so that for any activitya ∈ Aact, we denote
the value ofu ∈ Ψ assigned bya to bea[u] over its domain.
The state information ina ∈ Aact is uniquely characterized

3

by the formula
∏

u∈Ψ(u = a[u]). Henceforth in this paper,
for notational convenience,Ψ is implicitly assumed and we
simply use symbolGact to refer to the ATG of any TTG with
state information.

A TTG G = (Q,Σ, δ, q0, Qm) models a TDES. The model
has the lower and upper time bounds of events incorporated
into its transition structure. The state setQ is defined asQ =
Aact ×

∏

{Tσ | σ ∈ Σact}, such that a stateq ∈ Q is an
element of the formq = (a, {tσ | σ ∈ Σact}), wherea ∈ Aact

and tσ ∈ Tσ. For eachq ∈ Q, the componenttσ is called the
timer of σ in q. Intuitively, each system state is characterized
by an activity and a timer value for each event inΣact. Let
Act(q) denote the activity of stateq, i.e., for q = (a, {tσ |
σ ∈ Σact}), Act(q) = a. The set of eventsΣ is defined as
Σ = Σact ∪ {tick}, where the additional eventtick is used
to represent the advancement of one unit of time. The initial
stateq0 ∈ Q is defined asq0 := (a0, {tσ,0 | σ ∈ Σact}),

such thattσ,0 =

{

uσ, if σ ∈ Σspe

lσ, if σ ∈ Σrem
. The setQm ⊆ Q

of marked states is given by a subset ofAm ×
∏

{Tσ | σ ∈
Σact}, comprising a marked activity with suitable assignment
of the timers. The state transition functionδ : Σ × Q → Q

is defined as follows.δ(σ, q) is defined for anyq = (a, {tσ |
σ ∈ Σact}) ∈ Q and σ ∈ Σ, written δ(σ, q)!, if and only if
any of the following three conditions holds.

1) σ = tick and (∀τ ∈ Σspe)tτ > 0;
2) σ ∈ Σspe, δact(σ, a)!, and0 ≤ tσ ≤ uσ − lσ;
3) σ ∈ Σrem, δact(σ, a)!, andtσ = 0.

We write¬δ(σ, q)! to denote thatδ(σ, q)! is not defined.
Wheneverδ(σ, q)!, an entrance stateq′ = (a′, {t′τ | τ ∈

Σact}) such thatδ(σ, q) = q′ is defined as follows:
• whenσ = tick, a′ = a and∀τ ∈ Σact,

t′τ =

{

tτ − 1, if δact(τ, a)! and tτ > 0
tτ , otherwise

;

• whenσ ∈ Σact, a′ = δact(σ, a), t′σ = tσ,0 and∀τ ∈ Σact

such thatτ 6= σ,

t′τ =

{

tτ , if δact(τ, a
′)!

tτ,0, otherwise
.

Note that the functionδ is deterministic in the sense that for
σ1, σ2 ∈ Σ defined at any given stateq ∈ Q (i.e.,δ(σ1, q)! and
δ(σ2, q)!), σ1 = σ2 implies δ(σ1, q) = δ(σ2, q). Consequently
TTG G is said to be deterministic.

In TTG’s, the eventtick is used to represent timing behav-
ior. Denoting the duration of an eventσ ∈ Σ as ϕ(σ), we
have

ϕ(σ) =

{

0, if σ ∈ Σact

1, if σ = tick
.

Let Σ∗ be the set containing all finite strings of events in
Σ, including the empty stringε. A string t′ is considered a
prefix of t′′, if there exists some strings such thatt′s = t′′.
A languageL over Σ is a subset ofΣ∗. A languageL1 is
said to be asublanguageof languageL2 if L1 ⊆ L2. The
prefix closureof a languageL, denoted bȳL, is the language
consisting of all prefixes of its strings. As each strings in
Σ∗ is a prefix of itself, we haveL ⊆ L̄. A languageL is
prefix-closedif L = L̄.

We describe the behavior ofG by its prefix-closed language
L(G) and marked languageLm(G). Formally,

L(G) = {s ∈ (Σ)∗ | δ(s, q0)!},

Lm(G) = {s ∈ L(G) | δ(s, q0) ∈ Qm}.

By definition, Lm(G) ⊆ L(G) is the subset of strings in
L(G) which end in any of the states inQm, and is a
distinguished subset or sublanguage. By designer choice, the
set Qm represents completed tasks (or sequences of tasks)
carried out by the system that the modelG is intended to
represent.

A state q ∈ Q is said to bereachable if (∃s ∈ (Σ)∗)
δ(s, q0) = q, andcoreachableif (∃s ∈ (Σ)∗) δ(s, q) ∈ Qm. G
is consideredreachableif all its states are reachable, andcore-
achableif all its states are coreachable, i.e.,Lm(G) = L(G).
G is said to betrim if it is both reachable and coreachable. If
G is not trim, then a trim automaton, denoted byTrim(G),
can be computed by deleting fromG every state that is either
not reachable or not coreachable.

B. Metric Temporal Logic (MTL)

The control specification language adopted in this paper is
MTL [30], [31]. In MTL, temporal operators have timing con-
straints associated with them, supporting the specification of
quantitative temporal requirements that impose time deadlines
on the behavior of TDES’s.

1) Syntax:MTL formulae are constructed from a finite set
of propositional symbolsP; the Boolean connectives¬ (not)
and∧ (and); and the temporal connectives©∼t (next), �∼t

(always) andU∼t (until), where∼ denotes<, ≤, > or ≥ and
t is a non-negative integer. The following formula formation
rules apply.

1) every propositional symbolp ∈ P is an MTL formula;
2) if ω, ω1 andω2 are MTL formulae, so are¬ω, ©∼tω,

�∼tω, ω1U∼tω2 andω1 ∧ ω2.
The following equivalences(≡) are also used in addition
to these basic rules to define related connectives∨ (or), →
(implies), and operator♦∼t (eventually):

ω1 ∨ ω2 ≡ ¬(¬ω1 ∧ ¬ω2), (1)

ω1 → ω2 ≡ ¬ω1 ∨ ω2, (2)

♦∼tω ≡ true U∼t ω. (3)

Propositional constantstrue andfalse are defined, respec-
tively, by the equivalences

true ≡ ¬ω ∨ ω,

false ≡ ¬ω ∧ ω.

If a timing constraint∼ t is associated with a temporal
connective, then the modal formula should hold within a time
period that is satisfied by the relation∼ t. For example, an
MTL formula �≤t ω is read as “alwaysω in the closed time
interval [0, t]”.

2) Semantics:A finite string of events over an event setΣ
can be considered as a mapping

e : {0, 1, · · · , j, · · · , · · · } → Σ

4

such that

e
def
= e(0)e(1) · · · e(j) · · · , e(j) ∈ Σ.

Then, we can say thate is an event string generated byG if
there is a “labeling”ρ of the string by states ofG

ρ : {0, 1, · · · , j, · · · , · · · } → Q

such that

ρ
def
= ρ(0)ρ(1) · · · ρ(j) · · · , ρ(j) ∈ Q

for which

1) ρ(0) = q0;
2) ρ(j + 1) = δ(e(j), ρ(j)).

Such a finite labelingρ is called a state trajectory ofG. The
j-suffix of ρ, denoted byρ(j), is a finite trajectory

ρ(j)ρ(j + 1) · · · ρ(i) · · · , j ≥ 0.

We haveρ(0) = ρ. The j-prefix of ρ, denoted byρj , is the
finite state trajectory

ρ(0)ρ(1) · · · ρ(j), j ≥ 0.

The state trajectoryρj is marked ifρ(j) ∈ Qm.
MTL formulae expressed over a given TDESG are inter-

preted over models of the form(ρ, π, T), where

π : {0, 1, · · · , j, · · · , · · · } × P → {false, true}

is a binary function evaluating propositional symbolp ∈ P in
j-th stateρ(j), i.e.,

π(j, p) =

{

true, if p holds inAct(ρ(j))
false, otherwise

,

and T : {0, 1, · · · , j, · · · , · · · } → {0, 1, · · · , j, · · · , · · · } is
a monotonic function which assigns the time stampT (j) to
position j.

If a propositional symbolp holds (i.e., is evaluated to
be true) at ρ(j), we simply write�ρ(j) p, with the model
(ρ, π, T) considered to be understood. Ifρ(j) satisfies an MTL
formula ω, we write �ρ(j)

ω. Note that the evaluations of a
propositional symbolp in the j-th state and over aj-suffix ρj

are logically equivalent, i.e.,�ρ(j) p ≡ �ρ(j)

p.
Along with the standard rules for Boolean connectives,

MTL uses the following rules for temporal operators to
establish the satisfaction of a suffix state trajectory overan
MTL formula. Given MTL formulaeω, ω1 and ω2, a state
index j, and a propositional symbolp, we have

• �ρ(j)

p iff π(j, p) = true;
• �ρ(j)

©∼tω iff T (j + 1) ∼ T (j) + t and�ρ(j+1)

ω;
• �ρ(j)

�∼tω iff for all k, k ≥ j, �ρ(k)

ω wheneverT (k) ∼
T (j) + t;

• �ρ(j)

ω1U∼tω2 iff there existsk, k ≥ j, such thatT (k) ∼

T (j) + t and�ρ(k)

ω2 and for all l, j ≤ l ≤ k, �ρ(l)

ω1

wheneverT (l) ∼ T (j) + t.

3) Expansion Rules:An MTL formula can be assessed
over a state trajectory as apresent condition that holds in
the current state of the trajectory and afuture condition that
must hold in the next state of the trajectory. This is formalized

using the©d-formula, whered represents the time elapsed
when a state transition occurs in a state trajectory and has a
strictly non-negative real value. More formally, a subformula
in the expansion having©d as the main operator is afuture
condition that should hold in the next state occurringd units
of time later. The semantics of this formula is

�ρ(j)

©dω iff T (j + 1)− T (j) = d and �ρ(j+1)

ω.

The expansion of MTL formulae is based on the equiva-
lences (4) through (8).

4) Disjunctive Expanded Form:An MTL formula is said
to be in disjunctive expanded form (DEF) if it is expressed
by a disjunction of a finite number of subformulae, i.e., of
the form

∨

j(presentj ∧ ©dfuturej), wherepresentj is a
conjunction of literals1 andfuturej a conjunction of literals
and formulae having©, � or U as the main connective. An
MTL formula is transformed to its equivalent DEF by apply-
ing equivalences (4)-(8), the usual distributive laws between
Boolean connectives and the following equivalence:

©d(ω1 ∧ ω2) ≡ (©dω1 ∧©dω2). (9)

Subsequently in this paper, we will note the expansion of
a formulaω with respect to (w.r.t) a state transition of time
durationd as

∨

j

f j ∧ ©dω
j .

Let Pre(ω, d) denote the set containing thef j terms in
the expansion of an MTL formulaω w.r.t a state transition
of time durationd andFut(f j) denote thefuture condition
corresponding tof j , i.e., for a DEF

∨

j f
j ∧ ©dω

j , we have
Fut(f j) = ωj .

5) Finitary Control Requirements:Clearly, an MTL spec-
ification ω for a TDESG (for finitary nonblocking control)
is to restrict the behavior ofG to a marked sublanguage [4].
In other words,ω “selects” marked finite state trajectoriesρm
of G such that�ρm ω (read asρm satisfiesω). Essentially,
this would require removing those (finite) state trajectories
of G that violateω. Such a formula belongs to the bounded
response class [42], [43] of MTL. In other words, a control
requirement that we specify in MTL for finitary control of a
TDES is necessarily a bounded response formula.

Remark 1. The apparent restriction to finitary control re-
quirements, which represents a large part of what designers
are interested in [42], is not as constraining as one would
imagine [44], especially in the case of real-time systems [43].
Liveness or infinitary control requirements, specified for non-
terminating behaviors, would typically require that something
should “eventually” occur without stating an upper time bound
for the occurrence. Consider, for example, a requirement that
some process should terminate eventually. This would also
include situations where process termination occurs aftera
limitless (and impractical) period of time. While this is a
liveness requirement, specifying that the termination should
occur within (say) 100 units of time is a more relevant
(finitary) control requirement.

1A literal is a propositional symbol or its negation.

5

©∼tω ≡

{

©d ω, if d ∼ t

false, otherwise
(4)

�≤tω ≡

{

ω ∧©d�≤t−d ω, if d ≤ t

ω, otherwise
(5)

�≥tω ≡







©d�≥t−d ω, if d ≤ t and t 6= 0
©d�≥0 ω, if d ≥ t and t 6= 0
ω ∧©d�≥0 ω, if t = 0

(6)

ω1U≤tω2 ≡

{

ω2 ∨ (ω1 ∧ ¬ω2 ∧©d ω1 U≤t−d ω2), if d ≤ t

ω2, otherwise
(7)

ω1U≥tω2 ≡







©d ω1 U≥t−d ω2, if d ≤ t and t 6= 0
©d ω1 U≥0 ω2, if d > t and t 6= 0
ω2 ∨ (ω1 ∧ ¬ω2 ∧©d ω1 U≥0 ω2), if t = 0

(8)

6) Conjunctive Normal Form:An MTL formula is said to
be in normal form, if every constituent subformula (within the
scope of their outermost temporal operator) in its DEF does
not contain liveness modalities [45]. It is said to be positive if
only its propositional symbols are negated. Any MTL formula
can be transformed to its equivalent positive form by using De
Morgan’s laws and the following equivalences:

¬(ω1U∼tω2) ≡ (�∼t¬ω2) ∨ (¬ω2U∼t(¬ω1 ∧ ω2)), (10)

¬(�∼tω) ≡ ♦∼t¬ω, (11)

¬©∼t ω ≡ (©∼t¬ω) ∨©∼ttrue, (12)

where ∼ is used to denote the converse2 of the ordering
relation∼ [45].

The positive normal form is a conveniently recognizable
structure of a bounded response MTL formula and is expressed
using temporal modalities©∼t, �∼t, U<t or U≤t. Finally,
an MTL formula in positive normal form with�∼t as its
outermost operator is said to be in invariance normal form.

In what follows, we consider a class of MTL formulae
representing (finitary) control requirements in conjunctive nor-
mal form (CNF). A CNF is defined as a conjunction ofj
subformulae,j ≥ 1, where each subformula is in positive
normal form. Because the bounded response class is closed
under conjunction [46], a CNF is a bounded response formula.
Also, a CNF is said to be in invariance normal form if all its
subformulae are in invariance normal form.

III. TRANSLATION AND ANALYSIS

In this section, we present the development and analysis
of a translation algorithm as a specification interface to the
real-time (TTG) control synthesis framework. The algorithm
automatically prescribes a TTG specificationH for a TDES
G from an MTL specificationω in CNF specifying a finitary
control requirement. The basic operation in the algorithm is to
compute a trim TTG that generates a marked sublanguage of

2The converse of a relation is obtained by switching the orderof the
elements in the relation. The converse of ordering relations≤, <, >, and ≥

are≥, >, <, and ≤, respectively

TDES G, obtained by retaining all strings inLm(G) whose
corresponding state trajectories satisfyω.

A. ProcedureExpand

For an input MTL specificationω in CNF, Procedure
Expand returns the expansion ofω in DEF w.r.t a state
transition of time durationd.

ProcedureExpand(ω, d)
Input : An MTL formula ω (in CNF) and time durationd;
Output : An expansion ofω w.r.t d (in DEF);

1 begin
2 Expandω w.r.t d using equivalences given in Section

II-B3. Do logic arithmetic on the expanded formula
to reduce it to a finite number of terms of the form
f j ∧ ©dω

j , wheref j is a state formula such that
the conjunction of any two such formulae isfalse
andωj is an MTL formula;

3 return
∨

j f
j ∧ ©dω

j ;

A CNF has the following property.

Property 1. Given an MTL formulaω in CNF and time
duration d. For f i, f j ∈ Pre(ω, d) such thatf i 6= f j , we
havef i ∧ f j = false.

The satisfaction of this property is facilitated by logic
arithmetic (including the use of appropriate validity assertions)
and expansion rules given in Section II-B3.

B. Translation Algorithm

We now present our translation algorithm that trans-
lates an MTL specificationω in CNF for a TDESG =
(Q,Σ, δ, q0, Qm) to a TTG specificationH.

The MTL specificationω expanded w.r.t a state transition of
time durationd into DEF

∨

j(f
j ∧©dω

j) can be intuitively
interpreted as apresent condition f j that is to be satisfied
immediately and a correspondingfuture condition ωj that

6

should be satisfied in future,d unit of time later, whered is
0 or 1.

The algorithm begins by obtaining the DEF
∨

j f
j ∧ ©dω

j

of ω w.r.t d = 0 using ProcedureExpand3. If any f j holds
at q0, then its correspondingfuture conditionωj should be
satisfied by all state trajectories starting fromq0, prompting
the algorithm to associateωj with q0, by assigning(q0, ωj)
as the initial state ofH.

Formally, satisfaction of an MTL formulaωi at qi over a
state trajectoryqi

σ
→ qi+1 · · · is established by evaluating a

present condition atqi and postponing afuture condition to
be evaluated atqi+1, ϕ(σ) unit of time later.H is computed
by:

1) recursively applying MTL expansion rules (given in Sec-
tion II-B3) on ωi w.r.t d = ϕ(σ) and transforming it into
DEF

∨

j(f
j ∧©dω

j);
2) selecting a disjunctf j ∧ ©dω

j such that itspresent
conditionf j is satisfied by the state transitionqi

σ
→ qi+1

(i.e., f j holds atqi+1) and associating the corresponding
future conditionωj with qi+1 by assigning(qi+1, ω

j)
as a state ofH; and

3) defining state transitionζ(σ, (qi, ωi)) = (qi+1, ω
j).

We now present our algorithm.

Theorem 1. Given an input MTL specificationω in CNF
for a TDESG = (Q,Σ, δ, q0, Qm), the outputTrim(H) of
Algorithm 1 is deterministic.

Proof. Let H = (Y,Σ, ζ, y0, Ym). Consider an arbitrary state
(q, ω) ∈ Y and eventσ ∈ Σ of H. By Property 1, for
ω expanded w.r.t the time durationϕ(σ) of σ into equiv-
alent DEF

∨

j f
j ∧ ©dω

j , we have for two nonidentical
f j1 , f j2 ∈ Pre(ω, ϕ(σ)) that f j1 ∧ f j2 = false. As a result
(and asG is also deterministic), for eachσ ∈ Σ at most one
f j ∈ Pre(ω, ϕ(σ)) holds atδ(σ, q). Hence, there exists at
most one state ofH, defined as(δ(σ, q), Fut(f j)) such that
ζ(σ, (q, ω)) = (δ(σ, q), Fut(f j)). It follows thatTrim(H) is
deterministic. �

Definition 1. Let ρm =
(q0, ω

0)(q1, ω
1) · · · (qi, ω

i) · · · (qm, ωm) be a marked finite
state trajectory ofH, for which there exists a corresponding
string em−1 = e(0)e(1) · · · e(i) · · · e(m − 1) ∈ Lm(H) such
that for all i, 0 < i ≤ m, (qi+1, ω

i+1) = ζ(e(i), (qi, ω
i))

and qi+1 = δ(e(i), qi). Then,Trim(H) is said to be correct
w.r.t CNFω if

1) ∃f0 ∈ Pre(ω, 0),�q0 f0 and (q0, ω
0) ∈ Y is the initial

statey0 of H;
2) for everyem−1 ∈ Lm(H), there exists a state trajectory

(q0, ω
0)(q1, ω

1) · · · (qm, ωm) such that�qi f i for some
f i ∈ Pre(ωi−1, ϕ(e(i− 1))), for all i, 0 < i ≤ m;

whereωi = Fut(f i).

Definition 2. Let ρm = q0q1 · · · qi · · · qm be a marked finite
state trajectory of TDESG, for which there exists a corre-
sponding stringem−1 = e(0)e(1) · · · e(m−1) ∈ Lm(G) such
that for all i, 0 < i ≤ m, qi+1 = δ(e(i), qi). Then,Trim(H)
is said to be complete w.r.t TDESG if

3d = 0 because the initial time stampT (0) = 0.

Algorithm 1: A CNF-to-TTG Translation
Input : An MTL specificationω (in CNF) for TDES

G = (Q,Σ, δ, q0, Qm);
Output : A trim TTG specification of

H = (Y,Σ, ζ, y0, Ym) on G;
1 begin
2 Y = ∅;
3 Ym = ∅;
4 Let

∨

j f
j ∧ ©dω

j = Expand(ω, 0);
5 if any f j holds atq0 then
6 y0 := {(q0, ω

j)};
7 Y := Y ∪ {y0};
8 if q0 ∈ Qm ∧ ωj is in invariance normal form

then
9 Ym := Ym ∪ {y0};

10 Y ′ = ∅;
11 while Y − Y ′ 6= ∅ do
12 Select any(q1, ω1) ∈ Y ;
13 foreach σ ∈ Σ such thatδ(σ, q1)! do
14

∨

j f
j ∧ ©dω

j = Expand(ω1, ϕ(σ));
15 if any f j holds atδ(σ, q1) then
16 Let (q2, ω2) = (δ(σ, q1), ω

j);
17 Y := Y ∪ {(q2, ω2)};
18 Defineζ(σ, (q1, ω1)) = (q2, ω2);
19 if δ(σ, q1) ∈ Qm ∧ ωj is in invariance

normal formthen
20 Ym := Ym ∪ {(q2, ω2)};

21 Y ′ := Y ′ ∪ {(q1, ω1)};

22 return Trim(H) whereH = (Y,Σ, ζ, y0, Ym);

1) ∃f0 ∈ Pre(ω, 0),�q0 f0 and (q0, ω
0) ∈ Y is the initial

statey0 of H;
2) for every ρm of G with qm ∈ Qm, if there exists

a state trajectory(q0, ω0) (q1, ω
1) · · · (qm, ωm) of H

such that for all i, 0 < i ≤ m, �qi f i for some
f i ∈ Pre(ωi−1, ϕ(e(i− 1))), thenem−1 ∈ Lm(H);

whereωi = Fut(f i).

Theorem 2. The outputTrim(H) of Algorithm 1 is correct
w.r.t an input CNF specificationω and complete w.r.t the given
TDESG.

Proof. Given an input CNF specificationω for a TDESG, it
follows from Definitions 1 and 2 that the outputTrim(H) of
Algorithm 1 is correct w.r.tω and complete w.r.tG. �

C. Computational Complexity

The number of different subformulae that can be pro-
duced using equivalences (4)-(8) for an MTL formulaω is
2|closure(ω)|, whereclosure(ω) denotes the set containing all
its subformulae. It can be easily shown that|closure(ω)| ≤
2N [31], where N denotes the number of Boolean and
temporal connectives inω. Let T be the maximum value
that occurs as a timing constraint associated with the temporal

7

connectives ofω. Then there can be at mostT + 1 different
time arguments. Hence, withinH, there can be at most
|Q|22N(T +1) states, where|Q| denotes the cardinality of set
Q. It follows that the worst case complexity of Algorithm 1
is exponential inN andT .

Although our algorithm is of exponential complexity in the
worst case, its translation complexity is expected to be much
lower in practice. It has been empirically shown that in the
very large majority of cases encountered, the inherent expo-
nential nature of translation algorithms of this kind may be
of little practical significance [47], [48], [31]. For a temporal
logic formula that a system designer could think of for a
system specification, it is almost always very short and so the
translated automaton obtained (or TTG in the TDES context
considered) incurs a reasonable time complexity [26].

IV. SPECIFICATION INTERFACE AND
APPLICATION EXAMPLES

A. A Specification Interface for TTG-based Control Synthesis

MTL Interface

Real-Time Control Synthesis

Machine

MTL

specification ω

G

Supervisor TTG

Control TTG

Specification

TTG Model

of TDESH

TDES with state

information G

Fig. 1. MTL Interface to a TTG-based Control Synthesis Machine

Real-time supervisor synthesis engines or machines such as
TTCT [18] have been developed to automatically synthesize
supervisors from TTG specifications. Our translation algorithm
can be implemented as an MTL interface for use with a TTG-
based control synthesis machine, integrated as depicted inFig.
1.

B. Application Examples

We now present three examples to demonstrate the utility of
our MTL interface. Using the first example, we also explain
the workings of the translation algorithm. In all the examples,
every activity of each ATG model formulated is characterized
by a unique propositional symbol, i.e., the symbol istrue only
at the activity it defines and isfalse elsewhere. In the TTG
models of these examples shown in Figs. 2, 3 and 4, the event
timer value defined for each state is implicitly understood
and not shown. The ATG and TTG models are graphically
represented by edge-labeled directed graphs, with a node
denoting an activity or state and an edge denoting an event-
labeled transition. The initial activity or state is represented
by a node with an entering arrow, and a marked activity or
state is represented by a double-concentric circle.

TABLE I
PROPOSITIONALSYMBOL DEFINITIONS FORTASK SCHEDULING

Propositional symbol Activity
Dormant Task is dormant
Arrived Task has arrived
Pending Task is pending execution
Ending Task is ending execution

1) Example 1: Task Scheduling:Recent work [12] has pro-
posed a preemptive scheduling scheme that uses the Brandin-
Wonham framework for supervisory control of TDES’s to
automatically synthesize schedulers for systems with sporadic
tasks. Herewith, a scheduler accepts a newly arrived instance
of a sporadic task only if the task instance can be completed
without missing the deadline for the task and other previously
accepted tasks. The synthesis procedure requires a deadline
specification TTG for each task. Such a TTG specification,
which has to be prescribed by a designer, should include all
possible (timed) execution sequences of the task that meet
its deadline. Later in this example, we will show how our
MTL interface can automate the prescription of deadline
specification TTG’s, making the interface-integrated control
framework more human designer-friendly.

We consider a sporadic task, modeled as TDESG, that
can arrive at any arbitrary time. Once an instance of the
task has arrived, a scheduler canaccept or reject the task
instance. While modeling, the task is divided into segments
such that each segment takes one unit of time to execute. In
the Brandin-Wonham framework, this can be represented in a
TTG by a transition of eventtick following each instantaneous
segment. Once a task instance is accepted, each segment of
the task is executed one by one, until finally the task instance
is complete. For simplicity and without loss of generality, in
this example we consider the case where the task has only
one execution segment. The ATG model ofG along with
time bounds of events is given in Fig. 2(a). Table I defines
a unique propositional symbol for every activity of this ATG.
The TTGG having timing constraints explicitly represented
using transitions oftick is given in Fig. 2(b).

A deadline specification for a task asserts that once an
instance of the task is accepted, it should complete execution
within a certain period of time. Considering 2 time units as
the deadline for the task under consideration, this specification
can be easily written in MTL as a CNF

ω = �≥0[Pending → ♦≤2 Dormant].

This MTL formula can be paraphrased as “whenever an
instance of the task isPending execution, it must return to
Dormant (after completing execution) within 2 time units”.
The deadline specification TTGH, obtained fromω and G

by applying Algorithm 1, is given in Fig. 2(c). Note that we
representtrue U≤t Dormant asφt for brevity.

The computational workings to produceH by Algo-
rithm 1 are explained as follows. Initially, the algorithm
uses ProcedureExpand to expand the MTL specification
ω = �≥0[Pending → ♦≤2 Dormant] for G into its
DEF (¬Pending ∨ Dormant) ∧ ©d(ω) ∨ (Pending ∧

8

arrive: [0,∞)

Arrived Pending

accept: [0,0]

complete: [1,1]

Ending

segment: [0,∞)

Dormant

reject: [0,0]

(a) Task ATG

arrive

Arrived, _ Pending, _

accept

complete

Ending, _

segment

tick

Ending, _

tick

Dormant, _

reject

tick

(b) Task TTG

arrive

Arrived, _ , ω Pending, _ , ω˄ϕ2

accept

complete

Ending, _ , ω˄ϕ2

segment

tick

Ending, _ , ω˄ϕ1

tick

Dormant, _ , ω

reject

Pending, _ , ω˄ϕ1 Ending, _ , ω˄ϕ1

segment

Ending, _ , ω˄ϕ0

tick

tick

complete

(c) Deadline Specification TTG

Pending, _ , ω˄ϕ2

accept

complete

Ending, _ , ω˄ϕ2

segment

Ending, _ , ω˄ϕ1

tick

Pending, _ , ω˄ϕ1

Ending, _ , ω˄ϕ1

segment

Ending, _ , ω˄ϕ0

tick

tick

complete

� ∧ �2 ≡ ��	
��
 ∧ ⃝� ��� �
	�� ∧ ¬ ��	
��

∧ ⃝� �� ∧
	�� �≤ 2−� ��	
��
�

� ∧ �2 ≡ ��	
��
 ∧ ⃝� ��� �
	�� ∧ ¬ ��	
��

∧ ⃝� �� ∧
	�� �≤ 2−� ��	
��
� true ∧ ¬ ��	
��
 ∧ ⃝1�� ∧ �1�

[��	
��
 ∧ ⃝0���]
[��	
��
 ∧ ⃝0���]

[true ∧ ¬ ��	
��
 ∧ ⃝0�� ∧ �2�]

[true ∧ ¬ ��	
��
 ∧ ⃝1�� ∧ �1�]

[true ∧ ¬ ��	
��
 ∧ ⃝0�� ∧ �1�]

[true ∧ ¬ ��	
��
 ∧ ⃝1�� ∧ �0�]

tick

Dormant, _ ,ω

arrive

Arrived, _ , ω

reject[¬������� ∨ ��	
��
 ∧ ⃝0���]

(Dormant, _ , ω) is a marked state as (Dormant, _) is a marked state and ω is in invariance normal form

� ∧ �1 ≡ ��	
��
 ∧ ⃝� ��� �
	�� ∧ ¬ ��	
��

∧ ⃝� �� ∧
	�� �≤ 1−� ��	
��
�

� = □≥0[������� →
	�� �≤ 2 ��	
��
]

� ∧ �0
≡ .��	
��
 ∧ ⃝� ��� �
	�� ∧ ¬ ��	
��
 ∧ ⃝� �� ∧
	�� �≤ 0 ��	
��
� if � = 0

��	
��
 ∧ ⃝� ��� if � = 1

� = 0�1� = 20 if 1 ∈ Σ�5
1 if 1 =
�56 � ≡ ¬������� ∨ ��	
��
 ∧ ⃝���� � ������� ∧
	�� ∧ ¬ ��	
��
 ∧ ⃝� �� ∧
	�� �≤
−� ��	
��
�

[¬������� ∨ ��	
��
 ∧ ⃝0���]

[������� ∧
	�� ∧ ¬ ��	
��
 ∧ ⃝0�� ∧
	�� �≤ 2 ��	
��
�]

� ≡ ¬������� ∨ ��	
��
 ∧ ⃝���� � ������� ∧
	�� ∧ ¬ ��	
��

∧ ⃝��� ∧
	�� �≤
−� ��	
��
�

� ∧ �1 ≡ ��	
��
 ∧ ⃝� ��� �
	�� ∧ ¬ ��	
��

∧ ⃝� �� ∧
	�� �≤ 1−� ��	
��
�

� ∧ �1 ≡ ��	
��
 ∧ ⃝� ��� �
	�� ∧ ¬ ��	
��

∧ ⃝� �� ∧
	�� �≤ 1−� ��	
��
�

(d) Computation of Deadline Specification TTG

Fig. 2. Task Scheduling

9

REDG

RED

request: [0,∞)

GREEN

turn_green: [0,∞)

turn_red: [1,∞)

(a) Traffic Light ATG

REDG ,_RED,_
request

GREEN,_
turn_green

turn_red

GREEN,_
tick

tick tick tick

(b) Traffic Light TTG

REDG , _ ,

ω1˄ω2˄
1
ϕ2

request

REDG , _ ,

ω1˄ω2˄
1
ϕ1

tick

turn_red

REDG , _ ,
ω1˄ω2˄

1ϕ0
tick

tick

GREEN, _ ,

ω1˄ω2˄
2ϕ1

turn_green

GREEN, _ ,

ω1˄ω2˄
2
ϕ0

tick

turn_green

turn_green

RED, _ ,

ω1˄ω2

(c) TTG Specification

Fig. 3. Pedestrian Traffic Light

true ∧ ¬Dormant) ∧ ©d(ω ∧ true U≤t−d Dormant),
for d = 0. The procedure accomplishes the expansion
using equivalences (4)-(9) and the usual distributive laws
between Boolean connectives as described in Section II-B4.
As ¬Pending ∨ Dormant ∈ Pre(ω, 0) holds at the initial
state q0 = (Dormant,) of G (line 5), the algorithm
associatesFut(¬Pending ∨ Dormant) = ω with q0 to
compute the initial statey0 = (Dormant, , ω) of H (line
6). As q0 ∈ Qm and ω is in invariance normal form (line
8), y0 = (Dormant, , ω) is identified as a marked state
(line 9). For each computed state(q1, ω1) of H (lines 11-12)
and each event such that a TDES transition is defined from
the associated TDES stateq1 (line 13), the algorithm uses
ProcedureExpand to expand the associated MTL formula
ω1 (line 14) w.r.t d = 1 if the event under consideration is
tick, and otherwise setsd = 0. If any present condition of
the expansion is satisfied by the destination TDES state of the
transition (line 15), then the correspondingfuture condition
is associated with the TDES state to compute a new state of
H (line 17). A transition of the event under consideration is
defined from(q1, ω1) to the newly computed state (line 18),
which is assigned as marked (line 20) if its associated TDES
state is a marked state of the TDES and its associated MTL
formula is in invariance normal form (line 19). These steps are
repeated until no new state is computed. These computational
steps produce the TTGH given in Fig. 2(c), and are depicted
in Fig. 2(d) where, beside each state, the expansion of its
associated MTL formula is given and beside each defined
transition, thepresent condition of the expansion that the state
transition satisfies is given.

2) Example 2: Pedestrian Traffic Light:The second exam-
ple is that of a traffic light for pedestrians. The traffic light,
modeled as a TDESG, can turn red (turn red) or green
(turn green), and can accept request to turn green (request).
The ATG model ofG along with time bounds of events is
given in Fig. 3(a). Table II defines a unique propositional
symbol for every activity of this ATG. The TTGG having
timing constraints explicitly represented using transitions of
tick is given in Fig. 3(b).

A real-time control requirement forG asserts that the traffic

TABLE II
PROPOSITIONALSYMBOL DEFINITIONS FORTRAFFIC L IGHT

Propositional symbol Activity
RED Traffic light is red
REDG Traffic light is red after a

request to turn green
GREEN Traffic light is green

light must turn green within2 time units following a request to
turn green. To prevent the system from indefinitely displaying
green, it is also required that a traffic light that has turned
green should not remain so for more than1 time unit. These
statements can easily be translated into MTL as a CNFω =
�≥0[REDG → REDG U≤2 GREEN] ∧�≥0[GREEN →
♦≤1¬GREEN].

This MTL formula can be paraphrased as “whenever there
is a request to turn the traffic light green when it is red
(i.e., REDG = true), the light should remain so until it
turns green (i.e.,GREEN = true) within 2 time units
and whenever the traffic light is green (i.e.,GREEN =
true), it should stop being green (i.e.,GREEN = false)
within 1 time unit”. By equivalence (3), the MTL formula
is equivalent to�≥0 [REDG → REDG U≤2 GREEN] ∧
�≥0[GREEN → true U≤1¬GREEN]. The TTG specifica-
tion obtained by applying Algorithm 1 is given in Fig. 3(c).
Note that we representREDG U≤t GREEN as 1φt and
true U≤t ¬GREEN as 2φt for brevity.

TABLE III
PROPOSITIONALSYMBOL DEFINITIONS FORMULTIPROCESSOR

RESOURCEALLOCATION

Propositional symbol Activity
iPUj Processing unitPUi, i ∈

{1, 2} has executedj task
segments

iTI Task i is dormant
iTA Task i has arrived
iTj j segments of Taski have

been executed
iTF Taski has finished execu-

tion

10

e11, e21, c11, c21
1PU0 1PU1

tick

tick

(a) Processing Unit TTG,PU1

e11, e21, c11, c21
2PU0 2PU1

tick

tick

2PU2

e11, e21, c11, c21

(b) Processing Unit TTG,PU2

a1
1TA

tick, a2,

e21, e22,

c21, c21

1T1

e11, e12
1T2 1TF1TI

tick, a2,

e21, e22,

c21, c21

tick, a2,

e21, e22,

c21, c21

tick, a2,

e21, e22,

c21, c21

tick, a2,

e21, e22,

c21, c21

e11, e12 c11, c12

(c) Task TTG,T1

a2
2TA

tick, a1,

e11, e12,

c11, c11

2T1

e21, e22
2TI

tick, a1,

e11, e12,

c11, c11

tick, a1,

e11, e12,

c11, c11

tick, a1,

e11, e12,

c11, c11

c21, c22
2TF

(d) Task TTG,T2

tick

tick

tick

tick

a1

a2

e11

e12

a2

a1

e21

e22

tick

e12

a2

e11

e12

a2

e11

e12

tick

c22

e22 c22

tick

c21

tick

a1

e11

e12
e11

e12

e12

c12

c11

tick

tick
tick

c12

a2

e12

c11

a2

e11

e12

tick

a2

c12

c11

a2

tick

tick

e21

e22

e22

tick

c22

c22

c21

(e) TTG Specification

Fig. 4. Multiprocessor Resource Allocation

3) Example 3: Multiprocessor Resource Allocation:We
now consider the example of resource allocation in a multi-
processor having two or more processing units (adapted from
[14]). A controller that allocates tasks to the processing units
of the multiprocessor such that all the given real-time con-
straints on task executions are satisfied can be automatically
generated once a TDES of the processing units in the multipro-
cessor interacting with a set of tasks and a control specification
of the real-time constraints are modeled as TTG’s.

In this example, we consider the case where two tasks are
to be allocated on a multiprocessor with two processing units.
Each processing unit has its own computing capacity and a
task executing on a processing unit having computing capacity
b for τ time units completesbτ units of execution.

In this example, we consider a TDESG consisting of

two processing units modeled by TTG’sPU1 andPU2, and
two tasks modeled by TTG’sT1 and T2. Table III defines a
unique propositional symbol for every activity of the respective
ATG’s. These ATG’s are structurally similar to their TTG’s and
not shown.

PU1 andPU2 have computing capacity of 1 and 2, respec-
tively. This means thatPU1 can execute 1 segment of a task in
one time unit, whilePU2 can execute 2 segments. The TTG
models ofPU1 and PU2 are given in Figs. 4(a) and 4(b),
respectively.

Each task TTGTi, i ∈ {1, 2}, is modeled as follows. Arrival
of an instance of taskTi is denoted by an eventai, and each
Ti is divided into vi segments, where each segment has an
execution time of one time unit. The execution of segment
k ∈ [1, vk) of taskTi in processing unitPUj is denoted by

11

event symboleij . We use an event symbolcij to denote the
execution of the last segment of a taskTi in PUj . In this
example, we consider a case wherev1 = 3 and v2 = 2. The
TTG models ofT1 and T2 are given in Figs. 4(c) and 4(d),
respectively.

The TDESG is formed by the composition [11] of TTG’s
T1, T2, PU1 andPU2.

The real-time controller has to allocate the two tasks to the
two processing units such that the deadline for each taskTi,
denoted byDi is not violated. In this example, we consider the
case whereD1 = 1 andD2 = 2. This deadline requirement
can be easily given as an MTL formulaω ≡ �≥0[1TA →
♦≤1 1TF] ∧�≥0[2TA → ♦≤2 2TF]. The TTG specification
H obtained by translatingω using Algorithm 1 is given in
Fig. 4(e).

In summary, by the three examples, it should be clear that
without the MTL interface, attempting to prescribe by hand
the translated specification TTG’s (or their equivalents) could
be tedious and error-prone. Unlike reading an MTL formula,
it is often not easy to interpret the control meaning of a
given TTG against the specification statement in English that
it supposedly formalizes without a structural understanding of
the given TDES model as well, and so there is less confidence
of the correctness and completeness of the TTG prescribed
by hand. The examples demonstrate that MTL formulas for
control requirements are often easy to write and read, and
this supports clear interpretation and give more confidenceto
control designers in determining if the written formulas do
reflect the specification statements. Once an MTL formula is
determined as specifying the right specification, the proposed
MTL interface converts it to a TTG that is guaranteed to be
correct and complete, underlining the significant utility of the
interface.

V. CONCLUSION

In this paper, we have proposed an MTL specification trans-
lation interface for finitary control of TDES’s. The interface
can translate MTL specifications from the bounded response
class into TTG’s. The translation is made within the context
of the TDES model defined in the conceptually well-founded
control framework initiated by Brandin and Wonham [11], and
is proved to be correct and complete. Importantly, it enables
automated TTG prescription based on writing specifications
in MTL that is practically expressive and readable, and this
should mitigate, if not solve, the difficult problem of speci-
fying real-time control requirements directly as TTG models
in the Brandin-Wonham control framework. Three examples
presented illustrate the utility of the interface.

The output TTG specification of the proposed interface
represents the full nonblocking behavior of TDESG, and
a human designer who wants to further ascertain that the
translated TTG models the intended requirement may find it
difficult to comprehend and intuitively validate it againstthe
MTL counterpart. Recent work has proposed the concept of
specification transparency to facilitate human comprehension
of graphical specifications [49], [50], [51]. In particular, a
framework to automatically restructure TTG specificationsinto

transparent TTG specifications that are easier to comprehend
has been proposed in [52]. Our interface, in conjunction with
the TTG specification transparency framework [52], should
lead to a more effective specification-synthesis paradigm,
where the ease of specification in MTL combined with the
comprehensibility of transparent TTG’s should inspire even
more confidence that a control specification in TTG - a
mandatory real-time computational model for control synthesis
in the Brandin-Wonham framework - does indeed capture the
intended requirement.

To experimentally ascertain the usefulness of the proposed
MTL interface, future work includes conducting an observa-
tional study on TDES control design by human designers, with
and without the interface. Developing complexity mitigation
techniques for the proposed translation algorithm is also a
significant subject for future research.

REFERENCES

[1] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,”SIAM Journal of Control and Optimization,
vol. 25, no. 1, pp. 206–230, January 1987.

[2] P. J. Ramadge and W. M. Wonham, “The control of discrete event
systems,”Proceedings of the IEEE, vol. 77, no. 1, pp. 81 – 98, January
1989.

[3] W. M. Wonham, “Supervisory control of discrete-event systems,”
Systems Control Group, Department of Electrical and Computer
Engineering, University of Toronto, Toronto, Ontario, Canada, Tech.
Rep., 2013. [Online]. Available: http://www.control.toronto.edu/cgi-
bin/dldes.cgi

[4] C. G. Cassandras and S. Lafortune,Introduction to Discrete Event
Systems. Springer, 2008.

[5] S. Takai and R. Kumar, “Decentralized diagnosis for nonfailures of
discrete event systems using inference-based ambiguity management,”
IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems
and Humans, vol. 40, no. 2, pp. 406 –412, March 2010.

[6] K. T. Seow, “Organizational control of discrete-event systems: A hier-
archical multiworld supervisor design,”IEEE Transactions on Control
Systems Technology, 2013, Accepted.

[7] W. M. Wonham, “Supervisory control theory: Models and methods,”
in Workshop on Discrete Event Systems Control, 24th International
Conference on Application and Theory of Petri Nets (ATPN 2003),
Eindhoven, The Netherlands, June 2003, pp. 1–14.

[8] M. P. Fanti and M. Zhou, “Deadlock control methods in automated
manufacturing systems,”IEEE Transactions on Systems, Man and Cy-
bernetics, Part A: Systems and Humans, vol. 34, no. 1, pp. 5 – 22,
January 2004.

[9] H. R. Golmakani, J. K. Mills, and B. Benhabib, “Deadlock-free schedul-
ing and control of flexible manufacturing cells using automatatheory,”
IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems
and Humans, vol. 36, no. 2, pp. 327 – 337, March 2006.

[10] K. T. Seow and M. Pasquier, “Supervising passenger land-transport
systems,” IEEE Transactions on Intelligent Transportation Systems,
vol. 5, no. 3, pp. 165–176, September 2004.

[11] B. A. Brandin and W. M. Wonham, “Supervisory control of timed
discrete-event systems,”IEEE Transactions on Automatic Control,
vol. 39, no. 2, pp. 329–342, 1994.

[12] Seong-Jin Park and Kwang-Hyun Cho, “Real-time preemptive schedul-
ing of sporadic tasks based on supervisory control of discrete event
systems,”Information Sciences, vol. 178, pp. 3393–3401, 2008.

[13] P. C. Y. Chen and W. M. Wonham, “Real-time supervisory control of
a processor for non-preemptive execution of periodic tasks,” Real-Time
Systems, vol. 23, no. 3, pp. 183–208, 2002.

[14] V. Janarthanan and P. Gohari, “Multiprocessor scheduling in supervisory
control of discrete-event systems framework,”Control and Intelligent
Systems, vol. 35, no. 4, pp. 360–366, September 2007.

[15] A. A. Afzalian, S. M. Noorbakhsh, and W. M. Wonham, “Discrete-event
supervisory control for under-load tap-changing transformers (ultc):
from synthesis to plc implementation,”Discrete Event Simulations, pp.
285–310, 2010.

12

[16] F. Lin and W. M. Wonham, “Supervisory control of timed discrete-event
systems under partial observation,”IEEE Transactions on Automatic
Control, vol. 40, no. 3, pp. 558 – 562, 1995.

[17] K. C. Wong and W. M. Wonham, “Hierarchical control of timeddiscrete-
event systems,”Discrete Event Dynamic Systems, vol. 6, pp. 275–306,
1996.

[18] “TTCT,” http://www.control.utoronto.ca/people/profs/wonham/.
[19] R. Zhang, K. Cai, Y. Gan, Z. Wang, and W. M. Wonham, “Supervi-

sion localization of timed discrete-event systems,”Automatica, 2013,
Accepted.

[20] M. Nomura and S. Takai, “A synthesis method for decentralized su-
pervisors for timed discrete event systems,”IEICE TRANSACTIONS on
Fundamentals of Electronics, Communications and ComputerSciences,
vol. 96, no. 4, pp. 835–839, 2013.

[21] S.-J. Park and K.-H. Cho, “Nonblocking supervisory control of timed
discrete event systems under communication delays: The existence
conditions,”Automatica, vol. 44, no. 4, pp. 1011–1019, 2008.

[22] T.-J. Ho, “Controller synthesis for some control problems in timed
discrete-event systems,” inProceedings of the 36th IEEE Conference
on Decision and Control, vol. 5, 1997, pp. 4613–4618.

[23] P. Gohari and W. M. Wonham, “Reduced supervisors for timeddiscrete-
event systems,”IEEE Transactions on Automatic Control, vol. 48, no. 7,
pp. 1187–1198, 2003.

[24] A. Saadatpoor and W. M. Wonham, “State based control of timed
discrete event systems using binary decision diagrams,”Systems &
control letters, vol. 56, no. 1, pp. 62–74, 2007.

[25] J.-M. Roussel and A. Giua, “Designing dependable logiccontrollers
using the supervisory control theory,” inProceedings of the 16th IFAC
World Congress, 2005.

[26] K. T. Seow, “Integrating temporal logic as a state-basedspecification
language for discrete-event control design in finite automata,” IEEE
Transactions on Automation Science and Engineering, vol. 4, no. 3,
pp. 451–464, July 2007.

[27] J. Thistle and W.M.Wonham, “Control problems in a temporallogic
framework,” International Journal of Control, vol. 44, no. 4, pp. 943–
976, 1986.

[28] R. Gotzhein, “Temporal logic and applications : A tutorial,” Computer
Networks and ISDN systems, vol. 24, no. 3, pp. 203–218, 1992.

[29] V. Goranko, “Temporal logics for specification and verification,” Pro-
ceedings of the European Summer School in Logic, Language and
Information (ESSLI’09), 2009.

[30] R. Koymans, “Specifying real-time properties with metrictemporal
logic,” Real-Time Systems, vol. 2, pp. 255–299, 1990.

[31] M. Barbeau, F. Kabanza, and R. St.-Denis, “A method for the synthesis
of controllers to handle safety, liveness, and real-time constraints,”IEEE
Transactions on Automatic Control, vol. 43, pp. 1543–1559, 1998.

[32] S. Konrad and B. H. C. Cheng, “Real-time specification patterns,” in
Proceedings of the 27th International Conference on Software Engi-
neering, St. Louis, MO, USA, 2005, pp. 372–381.

[33] P. Bellini, P. Nesi, and D. Rogai, “Expressing and organizing real-
time specification patterns via temporal logics,”Journal of Systems and
Software, vol. 82, no. 2, pp. 183 – 196, 2009.

[34] A. Post and J. Hoenicke, “Formalization and analysis of real-time
requirements: A feasibility study at BOSCH,” inVerified Software:
Theories, Tools, Experiments. Springer Berlin / Heidelberg, 2012, vol.
7152, pp. 225–240.

[35] C. Zhou, R. Kumar, D. Bhatt, K. Schloegel, and D. Cofer, “Aframework
of hierarchical requirements patterns for specifying systems of inter-
connected simulink/stateflow modules,” inSoftware Engineering and
Knowledge Engineering, Boston, Massachusetts, USA, July 2007, pp.
179–184.

[36] L. Grunske, K. Winter, and R. Colvin, “Timed behavior trees and
their application to verifying real-time systems,” inProceedings of
the Australian Software Engineering Conference, Melbourne, Victoria,
Australia, 2007, pp. 211–222.

[37] N. Abid, S. D. Zilio, and D. L. Botlan, “A Real-Time Specification
Patterns Language,” Laboratoire d’analyse et d’architecture des systèmes
- LAAS, Tech. Rep., 2011. [Online]. Available: http://hal.archives-
ouvertes.fr/hal-00593965

[38] H. Wong-Toi and G. Hoffmann, “The control of dense real-time discrete
event systems,” inProceedings of the 30th IEEE Conference on Decision
and Control, 1991, pp. 1527–1528.

[39] A. Khoumsi and M. Nourelfath, “An efficient method for the supervisory
control of dense real-time discrete event systems,” inProceedings of
the 8th International Conference on Real-Time Computing Systems
(RTCSA), 2002.

[40] R. Alur and D. L. Dill, “A theory of timed automata,”Theoretical
computer science, vol. 126, no. 2, pp. 183–235, 1994.

[41] A. Dubey, “A discussion on supervisory control theory in real-time
discrete event systems,” Institute for Software IntegratedSystems, Van-
derbilt University,” Technical Report, 2009.

[42] O. Maler, D. Nickovic, and A. Pnueli, “On synthesizing controllers from
bounded-response properties,” inComputer Aided Verification, 2007,
vol. 4590, pp. 95–107.

[43] W. Kuijper and J. van de Pol, “Compositional control synthesis for
partially observable systems,” inCONCUR 2009 - Concurrency Theory,
2009, vol. 5710, pp. 431–447.

[44] Z. Manna and A. Pnueli, “Clocked transition systems,” Stanford Uni-
versity, Stanford, CA, USA, Tech. Rep., 1996.

[45] F. Kabanza, M. Barbeau, and R. St.-Denis, “Planning control rules for
reactive agents,”Artificial Intelligence, vol. 95, no. 1, pp. 67 – 113,
1997.

[46] T. A. Henzinger, “It’s about time: Real-time logics reviewed,” in CON-
CUR’98 Concurrency Theory, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 1998, vol. 1466, pp. 439–454.

[47] P. Wolper, “Constructing automata from temporal logic formulas: A
tutorial,” in Lectures on Formal Methods and Performance Analysis,
2001, vol. 2090, pp. 261–277.

[48] E. A. Emerson, T. Sadler, and J. Srinivasan, “Efficient temporal reason-
ing (extended abstract),” inProceedings of the 16th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Austin,
Texas, United States, 1989, pp. 166–178.

[49] M. T. Pham, A. Dhananjayan, and K. T. Seow, “On the transparency
of automata as discrete-event control specifications,” inProceedings of
the 2010 IEEE International Conference on Robotics and Automation,
Anchorage, Alaska, USA, May 2010, pp. 1474–1479.

[50] M. T. Pham, A. Dhananjayan, and K. T. Seow, “On specification
transparency: Towards a formal framework for designer comprehensi-
bility of discrete-event control specifications in finite automata,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 43, no. 1,
pp. 139 – 148, 2013.

[51] A. Dhananjayan and K. T. Seow, “On specification informatics in
discrete-event systems: State-transparency for clarity offinite automata
as control specifications,” inProceedings of the 9th International Confer-
ence on Informatics in Control, Automation and Robotics, Rome, Italy,
July 2012, pp. 357 – 367.

[52] A. Dhananjayan and K. T. Seow, “Automating timed specification trans-
parency for human designer validation of real-time discrete-event control
requirements,” inProceedings of the IEEE International Conference on
Automation Science and Engineering, Seoul, South Korea, August 2012,
pp. 908 – 913.

