
1

Supervisory Control of Blockchain Networks
Kiam Tian Seow,Senior Member, IEEE

Abstract—Blockchain is an open distributed ledger technology
that enables ledger-maintainers on a network to collaboratively
synchronize and update their own distributed copies of a single
global ledger, with the goal of keeping the ledger copies consistent.
This paper presents a theoretical control-model formulation of
the founding Satoshi Nakamoto blockchain, aimed at enhancing
our operational understanding and development of blockchain
systems. The control model is generic of every honest ledger-
maintainer’s local operations on a blockchain network. The
presented research is a logical systematization of operational
knowledge that is understandable and explainable for blockchain
system engineering and research. Using a software tool support-
ing a supervisory control theory applied in the formulation, the
control model is synthesized and logically validated.

Index Terms—Discrete-event systems, distributed systems and
consensus, formal languages and automata, operational modeling,
Satoshi Nakamoto blockchain, supervisory control.

I. I NTRODUCTION

Consensus to achieve or maintain some form of data con-
sistency1 is a foundational idea of distributed systems. The
problem of consensus search or determination and its local ac-
tivation under operational control by consistency maintenance
software agents, or simply maintainers, has been extensively
studied and formalized in the distributed systems literature for
the past three decades. However, the literature till then was
almost all anchored in classical network settings - settings
which are private or permissioned. As noted in [1], a departure
from classical settings originated with the design of public
peer-to-peer systems such asNapster and Gnutella for file
sharing. This paper studies an important, but different, class
of public peer-to-peer systems that record transactions between
peers onto virtually a single global ledger - the shared system
of transaction records. Specifically, it develops and examines
a formal systematization of the operational control around
a different form of consensus determination in a distributed
ledger system called a blockchain [2], a disruptive peer-to-
peer system that has been touted to ‘change the world’ [3] by
revolutionizing contracts and human interactions on an Internet
scale. In a public or permissionless network setting that is
unlike any before it, the ledger-distributed and operation-
decentralized system is realized with anonymous ledger-
maintainers, whose participation to synchronize and update
their own distributed copies of a single global blockchain
ledger, to keep them consistent, is not knowna priori. Main-
tainers, each as a node of the network, can dynamically join
and leave the system network without seeking permission
from a centralized or distributed authority. Their consensus

K.T. Seow is with the Robot Intelligence Technology Laboratory, School
of Electrical Engineering, KAIST, Daejeon 305-701, South Korea. E-mail:
ktseow@rit.kaist.ac.kr

1The strictest of which is the status that all nodes in the network have the
latest data history at the same time.

on whose newly assembled block of transactions to add next
to update and maintain consistency among their ledger copies
is determined with honest maintainers forming some majority.
Fundamentally new in thought as expounded in the founding
work [2] is the workable idea of honest majority - a notion
defined by a decisive percentage of the total computational
resources held by honest maintainers, and not by their decisive
population size. This honest power-majority also has to be
made effective, by way of auto-setting mathematical races for
winning (and thus determining) consensus to be computation-
ally harder for dishonest maintainers (in the power-minority)
to consistently finish sooner than honest ones. In practice,
each maintainer node runs on purpose-built machines packed
with custom chips [3] that contribute unbeknown to their
side of the collective computing power, honest or otherwise.
In what follows, to underline the importance of blockchain
research, the rest of this introduction section first explains
what a founding blockchain does and how it works, as well as
the ledger features it possesses by design and the problems
these features could solve that together make blockchain
potentially so disruptive. It then points out an ultimate goal of
blockchain research, before presenting the research motivation
and the formal approach of this paper - that of systematizing
blockchain operational control.

The founding blockchain, in the style of Satoshi Nakamoto,
is the open foundational ledger technology underlying Bitcoin
[2], a digital currency created in 2009, and is adopted by al-
most all other contemporary digital currencies (e.g., Ethereum,
Litecoin, and Dogecoin) and related services [4]. Depending
on context, ‘blockchain’ refers to either the distributed system
or a distributed copy of the single global ledger locally owned
and updatable by a maintainer of the system. A peer-to-
peer network, blockchain operates on the IP protocol on
the Internet, requiring neither pre-established trust between
peers nor a ‘trusted’ third party as middleman whose service
integrity cannot be scientifically guaranteed. As claimed,it
allows peers as transaction makers on a network to securely
transact ownership transfers between themselves, with dis-
tributed ledger-maintainers continually validating and serially
ordering new transactions when assembling new transaction
blocks, and updating their own ledger copies each time with a
common new block. Appending block by block, to regularly
extend and form the longest chain of blocks which is the only
chain mandated as correct for every maintainer in their ledger
copy, the goal of such update synchronization is to maintain
consistency among the longest chains locally formed in their
ledger copies. This is carried out by an innovative consensus-
based protocol designed to work with no middleman involve-
ment, such that the distributively shared ledger cannot be
tampered with without detection. Under this operationally
decentralized protocol, it is necessary for honest (computer)

2

maintainers to be in the effective power-majority; and the
consensus, on whose assembled transaction block to append
next in every maintainer’s distributed ledger copy, is decided
by who succeeds first in completing a computational race.
This race is costly and entails solving a mathematical puzzle
based on a cryptographic hash function [5] to obtain a solution
as some verifiable proof of work (PoW). PoW is presented
as evidence of spent resources by which the human owner
of the successful maintainer may be subsequently rewarded
financially for its block contribution.

To utilize it as a critical infrastructure, a blockchain system
needs to be secure against dishonest ledger-maintainers adding
consecutive blocks containing fraudulent transactions ina
new branch or ‘fork’, ‘lengthening’ it to successfully form
the longest ledger chain in the process and thus corrupting
the ledger. By design, the application promise of blockchain
technology in delivering optimistic use-value is facilitated by
the following three features built into the ledger:

1) Authenticability - whether or not a thing, including a
person, is what it says it is, is publicly checkable.

2) Transparency - validated transaction records in the
blockchain are publicly viewable.

3) Auditability - validated transaction records are indepen-
dently verifiable.

However, this promise makes sense provided hash-chaining
the timestamped blocks that validated transactions are serially
assembled into, as done under the blockchain protocol to
successively append blocks in a chain, can secure or tamper-
proof the blocks (against ledger corruption) once the blocks are
confirmed in the ledger. Making good on the promise would
open up an exciting world of potentially disruptive blockchain
applications for business, government and society where trust,
transactions and contracts2 are their underpinnings, to deal
with the inherent uncertainty in identity management, asset
tracking and reneging on deals, all without entrusted thirdpar-
ties or central authorities. These parties or authorities include
governments, banks, accountants, notaries, and paper monies -
potentially central points of failure that have happened before,
but which businesses continue to rely on heavily to mitigate
such uncertainty in real-world environments.

To elaborate in more detail [6], identity managementfaces
the uncertainty problem of not knowing who or what things we
(the buyer or seller, or more generally the ownership transferor
or transferee of assets3) are dealing with;asset trackingfaces
the problem of us not having the visibility of transaction
executions that move assets around - for example, how did
a product get to us, and as a result, is the product we ordered
the same as the one we received?; andreneging on dealsfaces
the problem of us not having recourse if things go wrong - for
example, can we get our money back if we do not receive our
ordered goods or receive them on time? How well blockchain
technology can address these mutually dependent problems of
transaction uncertainty depends on how securely the following

2For Bitcoin, a contract specifies conditions to be fulfilled for executing
transactions.

3An asset refers to anything of value, including a vote, a patentable idea,
a digital right, etc., besides money.

can be realized in the blockchain network to, respectively,
address them:

1) Providing a cryptographic proof of identity for authen-
tication purposes, as a digital signature for checking by
individual network users based on public key cryptogra-
phy, whereby each user is assigned with a private key
and the matching public key is made known to all other
users in the network.4

2) Generating a ‘shared reality’ (or consensus) of transaction
records for transparent monitoring and verification by
individual network users.

3) Allowing application developers to write codes to bind
contracts of deals as transactions between network users
for auditable self-execution.

Distilled from the Bitcoin application that it is moti-
vated by as a no-middleman solution to tackle the problems
of transaction uncertainty between users, blockchain builds
what are hereby called Decentrally Affirmed, Ownership-
Transfer Transactions Networks (DAO-T2Nets), to highlight
blockchain’s core operational purpose. An ultimate research
goal is then to make DAO-T2Nets scientifically secure so
as to be reliable or entrustable in mitigating the uncertainty
problems in business and social transactions. To achieve
this research goal, there is a range of challenging security
and privacy issues in blockchain technology that needs to
be comprehensively uncovered and adequately addressed in
the presence of possible adversaries - the dishonest ledger-
maintainers. A known number of these issues have been
surveyed and discussed in the literature [7], [8], [9]. These
issues span across and blend various research disciplines
including cryptography, distributed systems and consensus,
and the economics of incentives. A DAO-T2Net system may
be confounded by these issues at different operational stages -
from transaction creation to block addition in the blockchain.
As a coherent guide to blockchain research including and
beyond the founding version [2], a useful six-layer reference
framework is recently proposed in the literature [10].

Focusing on foundation, this research posits that before we
could, as a research community, more holistically understand
and effectively address security and privacy issues to securely
realize the application promise of blockchain technology,we
need to qualitatively model local blockchain operations atan
honest ledger-maintainer or miner node of the network in a
systematic way. As perhaps the first efforts in this direction,
this paper focuses on modeling the Satoshi Nakamoto style
of blockchain operation [2] for DAO-T2Net systems. The
modeling is of how an honest maintainer operates gener-
ically, regardless of whether or not dishonest maintainers
are present in the same network environment. The purpose
is to distil the basic operational characteristics as well as
related update-synchronization and collaboration concepts in
an implementation-independent fashion, to foster a common
understanding of how honest maintainers collaboratively op-
erate the blockchain in a possibly adversarial environment.

4In blockchain identity authentication, the only check performed is whether
or not a transaction was signed by the correct private key. Anyone who has
access to the private key is assumed the transaction initiator and sender, and
the exact identity of the initiator is deemed irrelevant.

3

To do so, a supervisory control theory of discrete-event
systems (DES’s) [11], [12], [13] is applied. The term ‘discrete
event’, or simply ‘event’, defines a qualitative change signaling
what distinctly changed (and not how much of it changed) that
evolves a system from one to another (possibly unchanged)
set of distinct conditions called a state. An event can be
a specific action taken (e.g., button pressed), a spontaneous
occurrence dictated by nature (e.g., sensor failed), or an abrupt
fulfillment of some defined condition (e.g., buffer filled). A
DES in control engineering is an event-driven system whose
state evolution over time starting from an initial state depends
entirely on the asynchronous occurrence of events. Originally
founded on a mathematically rigorous foundation of formal
languages and finite automata [14], the control theory helps
to conceptualize a problem neatly into a system part and a
system requirement specifications part, and is supported by
design software tools to automatically synthesize and validate
an appropriate solution, which is the control part supervising
the system part to meet the specifications.

In outlining the approach, this research identifies and models
the local operational tasks of an honest blockchain ledger-
maintainer as generic interleaving discrete-event processes
constituting the system part. The research then shows that
these processes are behaviorally controlled by a supervisory
process - the maintainer operational model constituting the
control part in conjunction with the system part, that guar-
antees proper ledger-update synchronization as specified.All
modeled in finite automata, as we shall see, the solution model
is understandable and explainable in terms of surprisingly
simple constituent parts, namely the modeled processes of
the blockchain system and the ledger-update synchronization
specifications.

The rest of this paper is organized as follows. Section
II reviews the relevant DES terminology and results of su-
pervisory control in formal languages and finite automata.
Section III provides an operational overview of the Satoshi
Nakamoto blockchain. Basing and expanding on the overview
description, SectionIV proposes DES models for the system
and the specification parts for designing an honest blockchain
ledger-maintainer. SectionV then presents the design synthesis
of the ledger-maintainer as a control model based on the
proposed models, and a validation of the control model.
SectionVI discusses the potential impact of the control model
in the context of related work. SectionVII concludes this
paper.

II. SUPERVISORYCONTROL THEORY

This section provides the relevant background on supervi-
sory control of discrete-event systems (DES’s) [11], [15], [16],
[17] founded on formal languages and finite automata [14].
The material is taken primarily from the monograph [12].

A. DES Modeling in Formal languages & Finite Automata

Let Σ be a finite set of symbols representing events, andΣ∗

be the set of strings overΣ, including the empty stringε (a
sequence with no events), where a string is a finite sequence

of events. Given a strings ∈ Σ∗, a strings′ is a prefix ofs,
denoted bys′ ≤ s, if (∃t ∈ Σ∗)s′t = s.

Defined overΣ, a formal languageK is a subset ofΣ∗.
The prefix closure ofK, denoted byK, is K = {s′ | (∃s ∈
K)s′ ≤ s}, the language of all prefixes of strings ofK. Note
thatK ⊆ K, andK 6= ∅ providedε ∈ K. The languageK is
said to be prefix-closed ifK = K. For K1,K2 ⊆ Σ∗, K1 is
said to be a sublanguage ofK2 if K1 ⊆ K2. K1 andK2 are
said to be nonconflicting [12] if K1 ∩K2 = K1 ∩K2.

A language is said to be regular provided it can be generated
by a finite (-state) automaton [14] or simply an automaton. An
automatonG is a 5-tuple(Q,Σ, δ, q0, Qm), whereQ is the
finite state set,Σ is the finite event set,δ : Σ×Q → Q is the
(partial and deterministic) transition function,q0 is the initial
state, andQm ⊆ Q is the subset that contains the marked
states. The transition functionδ can be extended toΣ∗ as
follows: δ(ε, q) = q, and (∀σ ∈ Σ)(∀s ∈ Σ∗)δ(sσ, q) =
δ(σ, δ(s, q)), which is defined ifq′ = δ(s, q) andδ(σ, q′) are
both defined.

The behavior of automatonG is described by two languages,
namely the prefix-closed languageL(G) = {s ∈ Σ∗ |
δ(s, q0) is defined} and the marked languageLm(G) = {s ∈
L(G) | δ(s, q0) ∈ Qm}. By definition,Lm(G) ⊆ L(G), and
is the sublanguage modeling strings that have some specified
purpose, such as the completion of a task.

A state q ∈ Q is reachable (from the initial stateq0) if
(∃s ∈ Σ∗)δ(s, q0) = q, and coreachable if(∃s ∈ Σ∗)δ(s, q) ∈
Qm. AutomatonG is said to be reachable if all its states
are reachable, coreachable if all its states are coreachable, by
which Lm(G) = L(G), and trim if it is both reachable and
coreachable.

An automatonG that is not trim can be trimmed to one
computed asTrim(G) [12], whereL(G) ⊇ L(Trim(G)) if
G is not trim, butLm(G) = Lm(Trim(G)), i.e., the marked
language ofG is preserved byTrim. AutomatonTrim(G)
is said to correctly modelLm(G). Therefore, forG to model
a regularK ⊆ Σ∗ asK = Lm(G), G is necessarily trim.

The projection functionP that masks out or erases all the
occurrences of every event in a specified subsetMASK ⊆ Σ
from a string s ∈ Σ∗ is defined as follows:P : Σ∗ →
(Σ − MASK)∗, whereP (ε) = ε, and (∀s ∈ Σ∗)(∀σ ∈ Σ)
P (sσ) = P (s)σ if σ ∈ Σ − MASK, andP (s) otherwise.
This functionP is called the natural projection ofΣ∗ onto
(Σ−MASK)∗. It follows that the projection or abstraction of
an automatonG, with events inKEEP = (Σ−MASK) re-
tained, is an automatonA computed asProject(G,KEEP)
[12], i.e., A = Project(G,KEEP), such thatL(A) =
{P (s) | s ∈ L(G)} andLm(A) = {P (s) | s ∈ Lm(G)}.

Graphically, an automatonG is an edge-labeled directed
graph represented as follows: A graphical node denotes an
automaton state. Aσ-labeled edge, directed from a node
denoting a stateq to a node denoting a stateq′, represents
δ(σ, q) = q′, the transition of eventσ from q to q′. A node
with an entering arrow denotes the initial stateq0, and a node
that is darkened denotes a marked state.

An automatonG = (Q,Σ, δ, q0, Qm) is often modularly
formed byn component automataG1, G2, · · · , Gn, n ≥ 2,
with Gi = (Qi,Σi, δi, qi,0, Qi,m) (1 ≤ i ≤ n), whose inter-

4

actions among them is modeled on the synchronous operator
‖ [18]; and is denoted byG = G1 ‖ G2 ‖ · · · ‖ Gn, called
the synchronous product. Forn = 2, the synchronous product
G = G1 ‖ G2 modelsG1 andG2 interacting by interleaving
events generated byG1 and G2, with synchronization of
shared events inΣ1 ∩ Σ2, and is constructed as follows:
Q = Q1 × Q2, Qm = Q1,m × Q2,m, Σ = Σ1 ∪ Σ2,
q0 = (q1,0, q2,0) andδ(σ, (q1, q2)) is defined by

(δ1(σ, q1), δ2(σ, q2)), if σ ∈ Σ1 ∩ Σ2 & both
δ1(σ, q1) & δ2(σ, q2) are defined

(δ1(σ, q1), q2), if δ1(σ, q1) is defined &σ 6∈ Σ2

(q1, δ2(σ, q2)), if δ2(σ, q2) is defined &σ 6∈ Σ1

undefined, otherwise.

By the associativity of‖ [18], the modular automatonG for
n > 2 can be recursively constructed as defined above.

If Σ1 = Σ2, the synchronous productG = G1 ‖ G2 reduces
to the (reachable) Cartesian product [18], modeled on the
Cartesian operator⊓ and denoted byG = G1⊓G2, for which
L(G) = L(G1) ∩ L(G2) andLm(G) = Lm(G1) ∩ Lm(G2).

Finally, note thatG1 = G2, i.e.,G1 andG2 are equivalent,
providedL(G1) = L(G2) andLm(G1) = Lm(G2).

B. Basic Control Problem, Solution Synthesis & Support

Let a reachable automatonG = (Q,Σ, δ, q0, Qm) model a
DES5, with the event setΣ partitioned into the controllable
event setΣc and the uncontrollable event setΣu. By definition,
a controllable event can be prevented from occurring, while
an uncontrollable event cannot be. A specification language
K ⊆ Σ∗ is said to be controllable with respect to DESG
if KΣu ∩ L(G) ⊆ K [11]. Intuitively, thatK is controllable
(with respect toG) means that following an arbitrary string
s ∈ K ∩ L(G), the DESG does not slip out (ofK ∩ L(G),
and henceK) on an uncontrollable event.

Let an arbitrary reachable automatonS be a supervisor for a
DESG, with S andG sharing the same event setΣ. By S⊓G,
we may think of⊓ as a control operator that abstracts away
the communication of the event feedback from DESG and
the control by supervisorS. Then a problem of fundamental
interest is to find a nonblocking supervisorS that can control
DES G to meet a given specification languageK ⊆ Σ∗, by
enabling and disabling events inΣc while always allowing
events inΣu to occur in the DES. Now:

1) By a nonblocking supervisorS for DESG, it means

Lm(S ⊓G) = L(S) ∩ L(G),

noting thatLm(S⊓G) = Lm(S)∩Lm(G). Intuitively, S
nonblocking means every string generated under control
can be extended to a common marked string between
S and G, indicating no task in DESG identified by
S is blocked from completion by the control action
of S. It is always possible and the practice to find a
nonblockingS (out of possible candidate automata) that
is also coreachable (and hence trim) with less or no

5The design practice, however, is to begin with a DES modelG that is trim
or made trim.

unnecessary states for exerting the same control actions,
and is therefore more concise.

2) By S controllingG to meetK, it means

L(S ⊓G) ∩K = Lm(S ⊓G) ⊆ K ∩ Lm(G).

Stating more generally the solvability of the fundamental
problem proved in [11], there exists such a nonblocking and
K-meeting supervisorS, for whichLm(S⊓G) = K∩Lm(G),
if and only if K is controllable andK ∩ Lm(G) = K∩L(G).

A languageK ⊆ Σ∗ may not be controllable. How-
ever, the supremal (or largest) controllable marked sublan-
guage of the DESG that lies within K exists [15]. This
sublanguage can be generated by a trim automaton com-
puted asSupcon(G,K)6 [12], [15] for which an arbitrary
S such thatS ⊓ G = Supcon(G,K) is a solution su-
pervisor, and is exactlyK ∩ Lm(G) provided K is con-
trollable andK ∩ Lm(G) = K ∩ L(G). The algorithmic
procedure [15] ‘ gets the solution right’, in that it constructs
the solution automatonSupcon(G,K) that meetsK, since
L(Supcon(G,K)) = Lm(Supcon(G,K)) - meaning DES
G under the control of a nonblocking solutionS will be
kept withinLm(Supcon(G,K)), andLm(Supcon(G,K)) ⊆
K ∩ Lm(G) - ‘target’ of the specificationK of interest. We
may selectS = Supcon(G,K) as the nonblocking supervisor
(for DESG to meetK).

The automatonSupcon(G,K) represents the ‘full’ solution
because it has ‘embedded’ in it all thea priori transitional
constraints of DESG. As a result, it can be a lot larger
in state size than is necessary to achieve the same control
actions. A state reduced and trim automaton may be obtained
asSupreduce(G,A) [16] for S, whereA = Supcon(G,K).
AutomatonSupreduce(A,G) has thea priori constraints of
DES G relaxed as much as possible. Often greatly state
reduced,S = Supreduce(G,A), together with DESG in
(synchronous) modular formG1 ‖ G2 ‖ · · · ‖ Gn (n ≥ 2),
contributes to presentingS ⊓ G as a more understandable
solution thanSupcon(G,K) is.

Whether reduced or otherwise, because the supervisorS

in S ⊓ G = Supcon(G,K) generates the largest controllable
sublanguage ofK with respect to DESG, it is said to be
optimal or maximally permissive (with respect toG underK
conformance).

As a specification, languageK ⊆ Σ∗ is often practically
expressed in a (conjunctive) modular formK1∩K2∩· · ·∩Kp

(p ≥ 2) - an intersection of two or more languages (with
each over the same event setΣ). For p = 2, the following
basic result presents a sufficient condition for the existence
of a corresponding modular solution. It is a useful guide to
developing a modular solution that is more insightful (if not
more understandable) than the equivalent monolithic supervi-
sor version, especially if its constituents, each computedusing
Supreduce, are simple and intuitive.

6Note that the language of specification interest for controlsynthesis is
K∩Lm(G), which is a regular language because automatonG is finite-state,
and can thus be modeled by an automaton. In the procedural computation [12]
of Supcon(G,K), K can be practically specified as a regular language by
an automaton (which is necessarily trim).

5

Theorem 1 (On Modularity of Supervision [12]): Consider
K1,K2 ⊆ Σ∗, and K = K1 ∩ K2 for a DES G (over
event setΣ). SupposeS ⊓ G = Supcon(G,K), S1 ⊓ G =
Supcon(G,K1), andS2⊓G = Supcon(G,K2), whereS, S1

andS2 are (nonblocking) supervisors for DESG, each with
the same event setΣ. Then

S ⊓G = (S1 ⊓ S2) ⊓G

if Lm(S1 ⊓G) andLm(S2 ⊓G) are nonconflicting.
A software tool TCT [19] is available for design, synthesis

and validation, in finite automata, of systems applying the
control theory. The tool is a formal methods library of al-
gorithmic procedures. BesidesTrim, Project, Supcon, and
Supreduce7, the library includesNonconflict, Sync, Meet,
and Condat. Nonconflict is for testing if two (regular)
languages modeled by trim automata are nonconflicting;Sync

implements the synchronous operator‖; Meet implements
the Cartesian operator⊓; Condat is for use in testing the
controllability of the prefix-closed language of an automaton.
As listed online [20], other control design software tools are
also available. TCT is developed by the founding group whose
basic control theory is reviewed in this background section. In
this paper, TCT is used to construct and validate the logical
design of the Satoshi Nakamoto blockchain system [2].

As briefly described in the introduction, anonymous ledger-
maintainers on a DAO-T2Net continually synchronize and
update their own distributed ledger copies, and maintaining
the consistency among their ledger copies hinges on honest
maintainers being able to consistently contribute the trans-
action block-updates. In the next section, a more detailed
operational description of the blockchain is first provided. In
the description, eight events are identified and placed in brack-
ets. From the description, the key operational processes and
collaborative ledger-update synchronization requirements, by
which an arbitrary ledger-maintainer asynchronously operates,
are then modeled as (discrete-event) automata in SectionIV;
the state activities and conditions associated with every event
are detailed as required to complete the modeling for an honest
maintainer.

III. D ESCRIPTION OFBLOCKCHAIN OPERATIONS

The blockchain operates in a totally decentralized fashionto
cryptographically validate and record peer-to-peer transactions
in a distributed (public) ledger of a transactions network.In
the most basic case, a transaction records an ownership trans-
fer. In a DAO-T2Net or blockchain network are anonymous
nodes denoting two types of participating members - users
(i.e., transaction makers or creators) and blockchain ledger-
maintainers, who may, as in an open distributed system, join
and leave the network. As users transact, every corresponding
transaction message or simply transaction8 is also sent to

7Note: Based on the original conception [16], Supreduce has been imple-
mented to find a state reduced (trim)S such thatS ⊓G = Supcon(G,K)
for a givenK modeled and input as a trim automaton, along with stating if
theS found is state minimal. The latest version of the TCT software includes
a ‘clean-up’ option of finding one such thatS ‖ G = Supcon(G,K). This
paper adheres to the original conception.

8Typically, a transaction consists of date and time of transaction, partici-
pating users, and assets for ownership transfer.

inform each maintainer. Blockchain ledger-maintainers work
individually as miners that, supposedly as honest maintain-
ers would, continually take from their incoming transaction
message queue (new tx rcd) and validate the transactions
(tx vdx dn) for integrity, and then assemble them serially
in a new block, within which a Merkle Tree [21] is then
constructed. The construction of a Merkle tree is done with
the validated and serially ordered transactions placed at its
base, and connected to their corresponding hashes (used as
transaction identifiers) placed in the same order at the level
immediately above the base. These ordered hashes are then
consecutively paired and hashed, with no identifier considered
in more than one pair, to form hashes at the next higher
level that each corresponding pair is graphically connected
to in the tree. This is followed by similarly forming hashes
of consecutive pairings of the resultant ordered hashes at
each subsequent higher level, until the root hash of the tree
is formed. When forming the ordered hashes at each level
in the tree for subsequent pairing and hashing, excluding
the root, the last hash is duplicated whenever there is an
odd number of hashes. Being uniquely dependent on what
validated transactions are in the block and in what order, the
root hash furnishes a cryptographic proof of no-tampering.
The miners, including possibly dishonest ones, upon finishing
their own new block assembly (nxt svblk rdy), possibly at
different times, then begin to race. The race is by way of each
miner computationally solving a block-dependent mathemati-
cal puzzle [5] of some difficulty level. This difficulty level is
calibrated once everyN blocks added by ledger-maintainers
in the network to their ledger copy; the calibration is done by
some external process based primarily on the network hash
rate, i.e., the time duration ledger-maintainers last tookto add
N blocks to their ledger copy. Through this race, the miners
arrive at a consensus (cp solved) by which the winner’s block
of validated and serially ordered transactions is affirmed as the
next block to append and broadcast (vblk broadcasted, with
appending of the self-assembled-and-validated block by the
winner in its own ledger copy subsumed).

The mathematical puzzle [5] is set based on the previous
block identifier (ID) and the (current) candidate block of
validated and serially ordered transactions, and is solved
by Bernoulli trial and error (random search). The puzzle is
outlined as follows: Given a puzzle difficulty levelp, find x

such that

H(previous block ID, candidate block, x) ≤ target(p),

whereH is a cryptographic hash function andtarget(p) is the
puzzle-difficulty threshold generated and set accordingly, such
that the probability of a guessx (called a nonce) satisfying
the inequality, i.e., making the resultant hash equal to or
below the given target, isp, also called mining or puzzle
hardness, or PoW difficulty9. For Bitcoin [2], H is the SHA-
256 hash function modeled as a random oracle - a completely
unpredictable pseudorandom function, and that is why the only
way to find a noncex satisfying the inequality is by trial

9Note that a lowerp (0 < p < 1) indicates a higher PoW difficulty realized
by a smaller threshold valuetarget(p), and conversely.

6

TABLE I
STRUCTURE OF A TRANSACTION BLOCK[2].

Block
identifier:
Hash code

of the
block

Block
Header Body

Previous
block

identifier

Consensus
puzzle

solution as
‘proof of

work’ (PoW),
a nonce that is

a correct
guess

Root hash of
Merkle tree

(of the
validated

transaction
block)

Merkle tree of
(interior) hashes of

validated
transactions, with

root hash in header

Block of validated
transactions

(at base of Merkle
tree)

Timestamp:
Approx.
block

creation time

Puzzle-
difficulty
threshold
target(p),
where p

indicates the
level of PoW
difficulty set
for the block

Block size &
number of

transactions in block

and error, repeatedly incrementingx and seeing if the new
hash value matches. To an honest maintainer, the previous
block ID is a block hash code obtained by hashing the header
of the block (see TableI depicting the block structure in
tabulated form) at the top of currently the longest chain of
blocks first formed in the maintainer’s ledger copy. Note that,
on the condition that honest maintainers form and preserve
the power-majority, the calibration of the consensus-puzzle
difficulty p is aimed at allowing only honest maintainers to
consistently win the computational race. Winning the race is
about a ledger-maintainer finding a puzzle solutionx before
any other maintainer does. This should occur in a reasonably
short time duration (once about every 10 min on the average
for Bitcoin, achieved by readjustingp accordingly, once every
2016 blocks). But the race winner is to emerge only after the
puzzle computation time duration has exceeded the maximum
network time delay, since it is by which time that the previous
affirmed block broadcasted would have been received by every
maintainer [1], [2]. In general, based on the network hash
rate measured, the longer the network time delay and the
more ledger-maintainers there currently are in the network,
the higher it is that the PoW difficulty level determined may
need to be adjusted for the sake of ledger consistency [1].

In what follows, all ledger-maintainers in the network are to
append the winner’s newly assembled block (vblk chained)
to, normally, the longest chain10 in their individual ledger
copies. This is after they have individually received and
verified the puzzle solution as PoW obtained in the race, also
sent along together with the affirmed block by the consensus
race winner for block validation (new blk rcvd). For each
time validating and affirming its assembled transaction block
as the next block to be appended in the distributed ledger,
the computer ledger-maintainer that won the consensus race
has its human owner’s digital pocket or wallet subsequently
deposited with a financial reward once the block is con-

10The ‘length’ of a chain is counted in terms of the amount of (block)
mining work put into the chain. Practically, it is measured by the sum total
of the PoW difficulty for every block already added in the chain.

firmed11 in the ledger. In this manner, the distributed ledger-
updating work proceeds asynchronously among maintainers
upon their every individual start of processing their next block
(nxt blkp started), with the goal that such constant update
synchronization under an effective honest power-majoritycan
keep the entire peer-to-peer network’s transaction history con-
sistent in each maintainer’s ledger copy. Every ledger copy
as a result is a cryptographically-sealed chain of transaction
blocks that is chronologically-ordered as mutually agreedby
PoW-based consensus.

As discussed in [2], a weaker notion referred to asT -
consistency [1] between ledger copies is actually used for
blockchain. It is defined as two chains, the longest in the
respective current ledger copies of two arbitrary maintainers,
each differing from the other in at most their last(T − 1)
consecutive blocks, whereT ≥ 1 is a relatively small number.

IV. M ODELING BLOCKCHAIN PROCESSES&
REQUIREMENTS

The blockchain operational description and identified events
are mapped onto the supervisory control framework in finite
automata. The ‘mapping’ is localized to operations within
an arbitrary ledger-maintainer node of a DAO-T2Net, with
the node infrastructure conceptualized as depicted in Fig.1.
The purpose is to construct the ledger-maintainer model as
a supervisor of a system resident in the network node. The
logical design mapping uncovers the local system at the node
as a modular DES of four discrete-event processes, along
with two system requirement specifications prescribing how
the maintainer should collaboratively synchronize the block-
by-block transaction updates of its ledger copy (with the
other maintainers’ in the network). In a top-down fashion,
the underlying details of the events, including what activities
accompany their occurrence or execution, are also added to
refine the logical system model into one pertaining to an
honest maintainer’s. Using the models of the system and
specifications formulated in this section, the ledger-maintainer
operational model is then synthesized as a nonblocking and
specifications-meeting supervisor of the system, and shownto
be valid in the next section.

A. The Preliminaries

Referring to Fig.1, the self-block buffer at every ledger-
maintainer node is used for holding validated transactions
when assembling a transaction block, and has a capacity set to
the size that defines an admissible block. The received-block
buffer is used for holding new, validated blocks received from
the network, and has a finite capacity of multiple blocks.

11 A transaction block is said to be confirmed, once and only whenit
is adjudged to be stochastically infeasible to reverse or modify any of the
transactions recorded therein, and that is when the block isstochastically
assured of always remaining in any longest chain of the ledger. In other
words, block confirmation usually occurs when the block is further back in
the chain, since any transaction in a block further back is computationally
harder or stochastically more infeasible to reverse by the only ponderable way
- that of attempting to form the longest chain by creating andlengthening a
branch or fork of transaction blocks to extend a chain’s prefix that only just
excludes the block.

7

Blockchain Node

Self-
Block
Buffer

Received-
Block
Buffer

Incoming
Transaction Queue

�

�

Block 2

Block 1

Block 0
(Genesis)

Distributed
Ledger

Ledger-Maintainer

PoW
Difficulty
Value

From an
external
process

PoW Computation

Get next
nonce

�

?

No

Yes

Use solution
as PoW

Initiate
or abort

Transaction Validation Rules

Fig. 1. The ledger-maintainer node infrastructure.

The same genesis block is created in the ledger copy at
every maintainer node when a DAO-T2Net first comes alive.
A maintainer node that subsequently joins or rejoins the
network will inherit the latest ledger copy as proof of what
has happened to begin with.

The start of processing a new block means that a computer
ledger-maintainer has created and deposited in its self-block
buffer the block’s first transaction stating a financial reward,
calculated based on some reward policy, that is to be deposited
into the digital pocket of the maintainer’s human owner if the
block could be added in the ledger copy and subsequently
confirmed. Transaction processors, including the reward pay-
ment processor, can publicly view and search any maintainer’s
ledger copy; and subject to their own execution policy, each
processor can decide when to execute the transactions in a
block added in the ledger copy that are under its jurisdiction,
after the block has been confirmed.

B. The System Model

The local system at a ledger-maintainer node of a DAO-
T2Net is modeled by the DESG,

G = G1 ‖ G2 ‖ G3 ‖ G4, (1)

where each trim component process modelGi (1 ≤ i ≤ 4),
along with their defined events, is shown in Fig.2.

Referring to Fig.2, TX VALIDATION G1 performs trans-
action validation; BLK INPUT G2 takes a new validated
transaction block as the next update input for the local ledger
copy (i.e., the copy at the node), with the block either self-
assembled or received from (another ledger-maintainer in)the
network; and before starting the next local block-processing
cycle, LEDGERBLKUPDATE G3 updates the ledger copy,
each time with a block while CONSENSUSFIND G4 per-
forms PoW computation in an attempt to win the next block-
update consensus race, or signals that a block received from
the network is ready for chaining to the ledger copy.

Table II lists all the events in the setΣ of the blockchain
DESG (1), specifies whether each event is controllable (i.e.,
in Σc) or uncontrollable (i.e., inΣu), and indicates every
constituent process the event is defined in. In what follows,
these events and associated activities in a maintainer nodeare
described, with reference to the node infrastructure depicted
in Fig. 1 and their respective process models shown in Fig.
2. In the description, it is deemed as understood and so not
explicitly stated that an event occurrence or execution is from a
system state reached where the event is simultaneously defined
at a state of every process model that it belongs to.

1) Event new tx rcd: Underlying, the incoming transac-
tion queue continually stores incoming transaction mes-
sages (also concurrently received by the other maintainer
nodes). This event is executed whenever a new transaction
in the queue is fetched for validation.

2) Eventtx vdx dn: Underlying, every transaction message
fetched from the queue has been attached with a unique
electronic signature. A single (-user) signature is the
most basic, formed by hashing a transaction message
and encrypting the hashed message using the single-
user sender’s private key at a sender node, where the
transaction is initiated. This event is executed when the
transaction validation is done (cryptographically), along
with depositing the transaction into the self-block bufferif
it is found to be valid, to gradually assemble the next self-
validated block, and discarding the transaction otherwise.
Transaction validation is done to check for transaction
integrity, and this includes checking all the following:

• That the transaction in the received message is original
(i.e., not tampered with) and is indeed from the claimed
sender. This entails a digital signature-based check12,
of which the most basic case is to verify a single-
signature transaction, done by hashing the transaction

12Note that the Bitcoin application (of the founding blockchain) can
support more complex transactions that require multiple signatures; the multi-
signature-based check is formally specified in [22].

8

(a) TX VALIDATION G1.

,

,

,

(c) LEDGER BLKUPDATE G3.

,

(b) BLK INPUT G2.

,

(d) CONSENSUSFIND G4.

Fig. 2. Models of the blockchain operational processes.

TABLE II
BLOCKCHAIN EVENTS AND THE PROCESS MODELS(SEEFIG. 2) THEY ARE DEFINED IN.

Events -c: controllable;u: uncontrollable

TX VALIDATION BLK INPUT LEDGER BLKUPDATE CONSENSUSFIND
G1 G2 G3 G4

new tx rcd c
√

tx vdx dn c
√ √

nxt svblk rdy u
√ √

new blk rcvd u
√ √ √

vblk broadcasted c
√

vblk chained c
√

cp solved c
√

nxt blkp started c
√ √

message received, decrypting the attached signature us-
ing the anonymous sender’s public key, and comparing
the hashed message with the decrypted signature for
identity.

• That the transaction satisfies all the transaction vali-
dation rules defined, including rules for checking that
the transaction is not the same as or not in conflict13

with any transaction already recorded in currently the
longest chain first formed in the ledger copy.

Depending on the application, this validation could also
involve a request to an ‘oracle’, some supporting service
that exists outside the blockchain - to verify application-
dependent details associated with the transaction.

3) Eventnxt svblk rdy: The self-block buffer is globally
set to a block size limit (which is 1 MB for Bitcoin14),
and a validated block is assembled once the validated
transactions fill up the buffer and are sorted in serial
order by their creation times. This event is executed when
the self-block buffer, where the validated transactions are
continually deposited, reaches some locally set level not
exceeding the block size limit, and has the validated
transactions sorted. The execution signals that the self-
validated block assembly is ready for consideration as
the next update for the local ledger copy and broadcast

13In the case of Bitcoin, there is a ‘no double spending’ conflict-checking
rule that stops the same Bitcoin from being spent more than once.

14Note that increasing the size limit of the transaction blockhas been a
subject of much debate [23].

to the network.
4) Event new blk rcvd: Underlying, the received-block

buffer continually stores each block received from the
network if the block is found to be valid. The block is
discarded otherwise. Block validation is done to check
for block integrity, and this includes checking all the
following:

• That the block is original (in content and sender) by a
digital signature-based check.

• That the block’s size does not exceed the limit set.
• That the block has the provided puzzle solution placed

in its header verified to be correct for the consensus
puzzle, set with a difficulty threshold given by that
also stored in its header.

• That the timestamp of the block is valid.

Before executing the event, it is determined whether each
new block in the received-block buffer is ‘hash-chainable’
to a block in the local ledger copy, i.e., whether a block
in the ledger copy can be found that the received block
can be hash-chained to. The block in the ledger copy is
found for a received block provided the block ID, a hash
code generated based on its block header, is equal to the
previous block ID stored in the received block’s header
(making the block the received block’s ‘previous block’
in the ledger copy once the received block is chained to
it).

A block in the received-block buffer is said to be a

9

winning block of the current consensus race, if a chain
in the current ledger copy remains or becomes solely the
longest after it is appended with the block. Following,
the event occurs if the received-block buffer contains a
block that is ready for transfer to the local ledger copy,
in that the buffer contains either a winning block of the
current consensus race and a hash-chainable block, or a
hash-chainable block while the self-block buffer has not
accumulated enough validated transactions to create the
next self-validated block.

5) Event vblk broadcasted: This event is executed when
a self-assembled-and-validated block is broadcasted
through some gossip protocol. Prior to broadcast, the
following activities are completed in the following order:

• Taking the end block of currently the longest chain
first formed in the ledger copy (as it is the block to
chain the assembled block to), the hash code of this
end block’s header is generated as the previous block
ID, and placed in the block header along with the block
timestamp and Merkle root.

• The rest of the Merkle tree along with the block of
transactions and auxiliary data (block size and number
of transactions) are placed in the block body.

• The block is chained to the local ledger copy.
• The block is attached with a digital signature (gener-

ated herewith).

Immediately upon the event execution, the self-block
buffer is emptied (for next self-block processing).

6) Eventvblk chained: This event is executed when a block
stored in the received-block buffer that has been found
to be hash-chainable is appended in the ledger copy.
Its execution also implies that, along with discarding
the appended block from the received-block buffer, if
the appended block is a winning block of the current
consensus race, the validated (user-initiated) transactions
in the self-block buffer are all put back in order at
the output end of the incoming message queue (for
revalidation as needed in next self-block processing), and
the self-block buffer is emptied.

7) Eventcp solved: This event occurs every time a consen-
sus puzzle is solved, affirming a self-validated block as
the next block to add to the ledger and to broadcast to the
network next. The event occurrence also implies that the
puzzle solution found as PoW for the self-validated block
and the predetermined difficulty thresholdtarget(p) used
are both placed in the block header.

8) Eventnxt blkp started: This event is executed to signal
the start of processing a new block (for ledger-update
consideration as the next block to be placed) on top
of currently the longest chain of blocks first formed
in the ledger copy. If the chain extended by the last
block addition is (solely) the longest, then the event
execution also implies the confirmation (see Footnote11),
under ledgerT -consistency, of the first of the lastT

consecutive blocks15 in the longest chain formed. (For
Bitcoin, T = 6.)

Note that, over a blockchain network, an honest maintainer
broadcasts a validated block by executing its own event
vblk broadcasted. However, a new block that it receives
and validates, for transfer to its ledger copy when it asyn-
chronously executes its own eventnew blk rcvd, is broad-
casted by another maintainer that may be honest or dishonest.

C. The Specification Models

Over the local system DESG (1) in a network node,
the collaborative ledger-update synchronization requirements
that an honest maintainer needs to meet may now be for-
mally specified. In essence, the overall specification prescribes
temporally the orderly but competitive collaboration of the
maintainer with other maintainers in the network, directing the
local operations of when to append the block self-assembled
and when to instead append the block received from another
maintainer to its ledger copy, to keep it synchronized block
by block with the ledger copies of all the other maintainers in
the network. The competition for ledger block-update in every
local block-processing cycle is between two events:cp solved

andnew blk rcvd. This ledger-update synchronization spec-
ification is prescribed by a modular languageK = K1 ∩K2.
The (regular) constituent languagesK1,K2 ⊆ Σ∗ are mod-
eled, respectively, by trim automataR1 andR2 as shown in
Fig. 3. Each of the specification automata is defined with
the same event setΣ as the blockchain DES. Below, the
specifications,K1 andK2, are informally described.

1) ‘Take-My-Block’ Specification,K1 = Lm(R1): Mod-
eled as shown in Fig.3(a), K1 requires that whenever the next
self-assembled-and-validated block is ready, only then must a
consensus puzzle be set and solved next, unless a new and
validated block received (from some other maintainer in the
network) is ready for transfer to the local ledger copy, in which
case any initiated consensus puzzle solving is aborted. Andif
the puzzle set could be solved, then the self-assembled block
will be appended to the local ledger copy and broadcasted (to
all the other maintainers in the network) next, before the next
block processing starts.

2) ‘Take-Your-Block’ Specification,K2 = Lm(R2): Mod-
eled as shown in Fig.3(b), K2 requires that whenever a new
block is received (from some other maintainer in the network),
validated, and ready for transfer, the local ledger copy must
next be updated with this new validated block chained to it,
before the next block processing starts.

SpecificationsK1 andK2 can also be thought of as jointly
directing the intended flow of events in DESG (1) to stream-
line the underlying activities of the blockchain operations.

V. SUPERVISORSYNTHESIS & VALIDATION

Given DESG (1) and specificationK = K1 ∩ K2 (see
Fig. 3), the control synthesis and validation of an honest

15Under honest power-majority, the PoW difficulty level can becalibrated
to maintain ledgerT -consistency at a feasible, relatively constant average
rate of ledger block-update. At any juncture then when the last block addition
extended a chain making it the longest chain (mandated as correct) to exist
again in the local ledger copy, the longest chain’s suffix, whose prefix’s end
block is where the latest forkings originated, is at most(T − 1) blocks long.

10

(a) AutomatonR1 for ‘Take-My-Block’ specificationK1. (b) AutomatonR2 for ‘Take-Your-Block’ specificationK2.

Fig. 3. Specification models of blockchain update synchronization.

ledger-maintainer operational model is done using TCT [19].
In the discussions that follow, only the key TCT procedures
are mentioned; auxiliary procedures used are omitted.

A. Model Synthesis

Using Sync, the blockchain DESG is created monolith-
ically as a synchronous product of the constituent process
modelsG1, G2, G3, andG4 (shown in Fig.2). The computed
monolithicG (not shown) has 24 states and 76 transitions, and
is trim.

Fig. 4. State reduced model of monolithic supervisorS for specification
K = Lm(R1) ∩ Lm(R2).

Expressed in conjunction with the constituent process mod-
els of the blockchain DESG (1), the full operational model ob-
tained of an honest ledger-maintainer in monolithic-supervisor
form is given by

S ⊓ (G1 ‖ G2 ‖ G3 ‖ G4), (2)

where the monolithic supervisorS therein is shown in Fig.4
and can be obtained as follows: UsingMeet, the Cartesian
product R of R1 and R2 is computed, with no trimming
required. The computed trim automatonR = R1 ⊓ R2 (not
shown) is input as the model forK = Lm(R1) ∩ Lm(R2).
UsingSupcon andSupreduce, the state reducedS, for which
S ⊓ G = Supcon(G,K), is obtained and found in fact to be
state minimal.

Now, usingSupcon andSupreduce, each of state reduced
Si for Si ⊓ G = Supcon(G,Ki), i = 1, 2, can also be
computed and both are found to be state minimal, as shown
in Fig. 5. This is an interesting case demonstrating that,
althoughK1 = Lm(R1) and K2 = Lm(R2) can be tested
using Condat to be controllable with respect to DESG,
it turns out thatS2 ⊓ G is equivalent toR2 ⊓ G (i.e.,
S2 ⊓ G = R2 ⊓ G) but S1 ⊓ G is not equivalent toR1 ⊓ G

- the latter being counter-intuitive to a control nonspecialist.
The fact is, for such equivalence to hold, the conditions are
language controllability, which holds forK1 andK2, and a

��

,

(a) SupervisorS1 for ‘Take-My-Block’ specificationK1 = Lm(R1).

(b) SupervisorS2 for ‘Take-Your-Block’ specificationK2 = Lm(R2).

Fig. 5. State reduced models of constituent supervisors forK = K1 ∩K2,
the specification of blockchain update synchronization.

positiveNonconflict test outcome, which is so betweenR2

andG, but not so betweenR1 andG.
Using theNonconflict test onS1 ⊓G andS2 ⊓G - both

trim because the respectiveSupon(G,Ki), i = 1, 2, to which
each reachable automaton is equivalent, is trim,Lm(S1 ⊓G)
andLm(S2⊓G) are proved to be nonconflicting. It follows by
Theorem1 that, equivalent to Control Model (2), an alternative
model in modular-supervisor form is given by

(S1 ⊓ S2) ⊓ (G1 ‖ G2 ‖ G3 ‖ G4), (3)

with S1 andS2 of Fig. 5 constituting the modular supervisor.

B. Model Validation

The foregoing control synthesis got thedesign of the model
right, in that the marked language the ledger-maintainer model
generates without blocking is guaranteed by construction using
TCT to be within K ∩ Lm(G), whereK = Lm(R), with
R = R1 ⊓R2. What remains is to validate the design, i.e., to
show that it is alsologically the right model.

As textually described in [2], the blockchain’s operational
purpose is to have all maintainers on a DAO-T2Net doing
ledger updating that is synchronizing to keep their ledger
copies consistent. This is on the supposition that only honest
ledger-maintainers consistently win the consensus race tohave
their newly assembled and validated blocks appended in the
distributed global ledger. In determining if the model of an

11

honest maintainer is logically valid for that purpose, under
the stated supposition, the following questions are asked:

Q1) Can an honest maintainer properly assemble every block
(of transactions) for ledger update?

Q2) Does an honest maintainer compete with other maintain-
ers in the network in the way intended of the protocol, to
win consensus for its block to be taken as the common
block for the next ledger update?

Q3) Do the ledger-update actions of an honest maintainer
follow the consensus?

Fig. 6. BLK-PASM.

Fig. 7. NXT-BLKASM.

Q1 raises two behavioral aspects that an honest maintainer
needs to abide by. These two aspects are formalized by
automaton models BLK-PASM and NXT-BLKASM, as shown
in Figs.6 and7, respectively. Abiding by BLK-PASM means
that, from the initial state,tx vdx dn always occurs at least
once beforenxt svblk rdy can. This is necessary for at least
one transaction from a network user to be stored in the self-
block buffer, which holds the next self-validated block for
ledger-update consideration when the block in the buffer is
signaled as assembled and ready. Besides, the self-block buffer
is never prevented from being filled with transactions, until
a proper block assembly is signaled as ready in the buffer,
with the process of fetching and validating a transaction (i.e.,
executingnew tx rcd followed by tx vdx dn) permitted
for as long as it is needed to assemble and get a block
ready. Abiding by NXT-BLKASM means that, if an honest
maintainer’s block assembly is ready for update consideration
(i.e., if nxt svblk rdy is executed), no further transaction
will be validated and deposited in the self-block buffer (i.e.,
tx vdx dn is disabled), until after the next (new) block
processing starts (i.e., untilnxt blkp started is executed).
Abiding by these two models together means that every block
can be properly assembled according to a specified block
size, with no loss of transaction record due to overflow of
transactions in the self-block buffer.

Q2 raises one behavioral aspect to abide by, which is
formalized by automaton model CR4-MYBLK, as shown in
Fig. 8. Abiding by CR4-MYBLK means that the competition
to seek consensus is as intended: An honest maintainer can

�

Fig. 8. CR4-MYBLK.

start solving a consensus puzzle (i.e.,cp solved is defined)
only after its block is ready (i.e., only afternxt svblk rdy

has occurred). By design, whoever in the network that solves
a consensus puzzle first16 wins the block-update consensus.
Abiding by the model CR4-MYBLK, either the maintainer
or some other from the network can win it, as signaled by
cp solved or new blk rcvd, respectively.

Fig. 9. WIA-MYBLK.

Fig. 10. LOA-YRBLK.

Q3 raises two behavioral aspects to abide by, which are
formalized by automaton models WIA-MYBLK and LOA-
YRBLK, as shown in Figs.9 and10, respectively. Abiding by
WIA-MYBLK means that an honest maintainer will always
update its own ledger copy next with its self-assembled
block along with broadcasting the block to the network (i.e.,
vblk broadcasted will be executed next), only if it has won
the consensus (i.e., only ifcp solved is executed). Abiding by
LOA-YRBLK means that the maintainer will always update
its own ledger copy next with a block received from the
network (i.e.,vblk chained will be executed next), only if
it finds the received block valid and ready for transfer (i.e.,
only if new blk rcvd has occurred, indicating that some other
maintainer in the network has won the consensus). Abiding by
these two models together means that the ledger update by an
honest maintainer follows the consensus reached each time.

The operational design space of the honest maintainer model
is effectively modeled by automatonGS = Supcon(G,K),
whereK = Lm(R1 ⊓ R2). The computedGS (not shown)
has 14 states and 22 transitions. It then follows that answering
‘Yes’ to each of Qs.1 to 3 regarding the honest maintainer
model is about formally showing that every aspect raised by

16It is appropriate at this juncture to clarify thatbeing first in solving a
consensus puzzleis a local, not global notion. A maintainer is deemed to have
solved a consensus puzzle first if it does so before it receives and validates
a new block from the network for transfer to its ledger copy. It is possible,
though not intended, that two or more maintainers solve their puzzle at about
the same time.

12

the question is correctly matched by a projection of the trim
automatonGS, usingProject, that retains the design space
containing only the subset of events relevant to the aspect.The
affirmative answers are stated in Theorems2 to 4.

Theorem 2:Q1 - Yes, i.e., an honest maintainer can properly
assemble every block for ledger update.

Proof: Project(GS,H1) = BLK-PASM (in Fig. 6),
where H1 = {new tx rcd, tx vdx dn, nxt svblk rdy}.
Project(GS,H2) = NXT-BLKASM (in Fig. 7), whereH2 =
{tx vdx dn, nxt svblk rdy, nxt blkp started}.

Theorem 3:Q2 - Yes, i.e., an honest maintainer competes
with other maintainers in the network to win consensus in the
way intended.

Proof: Project(GS,H3) = CR4-MYBLK (in Fig. 8),
whereH3 = {nxt svblk rdy, new blk rcvd, cp solved}.

Theorem 4:Q3 - Yes, i.e., the ledger-update actions of an
honest maintainer do follow the consensus.

Proof: Project(GS,H4) = WIA-MYBLK (in Fig. 9),
whereH4 = {cp solved, vblk broadcasted, vblk chained}.
Project(GS,H5) = LOA-YRBLK (in Fig. 10), whereH5 =
{new blk rcvd, vblk chained, vblk broadcasted}.

By Theorems2 to 4, the validity of the honest maintainer
model designed is determined. This means that it is the right
logical model - one that fulfills the working order intended of
an arbitrary honest ledger-maintainer on a DAO-T2Net.

With hindsight, one might find the validation results to be
obvious and expected. However, as with any formal approach,
it is essential to formally confirm these, to ensure that no
unintended constraint imposition or relaxation is inadvertently
introduced in the system and specification modeling stages.

VI. D ISCUSSION WITHRELATED WORK

A Universal Composition (UC) model [1], [24], a Script-
abstracted transactions model [22], and a Markov decision
process (MDP) model [4] are among the analysis models
that have been developed for studying various performance
aspects of the Satoshi Nakamoto blockchain with regard to its
desired properties and security. Several security risks (against
attacks) have also been identified, assessed, and mitigatedor
rationalized [25], [26], [27], [28]. In contrast, the contribution
of this paper is a new logical, operational control model of
an honest ledger-maintainer resident in a distributed node
of the Satoshi Nakamoto blockchain network. This model
is provably assured of correct blockchain operations against
qualitative ledger-update synchronization specifications, and is
validated. Existing performance analysis models attempt to, in
one way or another, represent and evaluate the overall runtime
operational behavior of the blockchain in a possibly adversarial
network environment. This runtime behavior, in turn, is the
collective outcome of every honest ledger-maintainer working
continually alongside transaction network users and adver-
saries (i.e., dishonest ledger-maintainers). The local working
of an honest maintainer is, hitherto, not formally modeled with
explicit structural information that can be readily captured by
the system concept - that of events in an event-based model. In
the opinion of this paper, the formally derived operationalcon-
trol model from the proposed discrete-event control-theoretic

formulation fills this gap, providing an unprecedented logi-
cal systematization of operational knowledge of the Satoshi
Nakamoto blockchain. In essence, the nonblocking subspace
defined by the logical model is operationally invariant and
holistic. Decidedly, the role that the event-based structure of
this model plays is in blockchain system engineering and
research, where simplicity and clarity dominate over accuracy
and detail, and are facilitated by model determinism, in the
sense that from every model state, a transition by the same
event always leads to the same state.

Importantly, the potential impact of the logical model liesin
its being able to unify the foundational aspects of the Satoshi
Nakamoto blockchain, exhibited by Figs.6 through10, into
an implementation-independent reference that is understand-
able and explainable for system engineering and research of
blockchains. For systems and control specialists, the common
intellectual understanding it could foster should direct amore
unified research of security and performance issues underlying
the logical blockchain operations. This should bring about
high confidence development of and more consistent security
risk identification, assessment, and mitigation across themany
emerging real-world decentralized applications of blockchain
technology, i.e., the application DAO-T2Nets. These appli-
cation DAO-T2Nets, for decentralized business and service
management, are either new or could displace or transform
their legacy counterparts that require middleman involvement.
Besides finance, credentials, and supply chain logistics, the
applications could include personalized healthcare [29], intel-
ligent robots and drones as Internet-of-Things [10] to provide
autonomous transport services such as package delivery [30],
and a lot more.

VII. C ONCLUSION

This paper has systematically developed and validated an
operational discrete-event control model, in either monolithic
form (2) or modular form (3), that is generic of every honest
ledger-maintainer whose role is central in blockchain technol-
ogy based on the PoW-based consensus [2]. In the process, it
has introduced and demonstrated an effective use of formal
methods from supervisory control theory [12] in guiding
model design synthesis and validation, geared towards a con-
trol science of blockchains. In ‘extracting’ logical simplicity,
of blockchain operations as local control of a system resident
in a network node, in turn, it is hoped that the formal model
would be widely adopted as a system engineering and research
reference by the blockchain community, to help bring about
the secure and consistent development of many application
DAO-T2Nets. For supervisory control theorists, it is hoped
that this novel application of the theory would inspire new
decentralized control ideas for discrete-event control synthesis
of asynchronous Internet systems in general.

This paper has developed models rendering blockchain net-
works amenable todiscrete-event systems and controlthinking
and methods. Along this fresh direction, one future work of
theoretical interest is evolving and augmenting the maintainer
control model developed in this paper with critical timing
features using a real-time version of supervisory control theory

13

[31]. Another is discrete-event control modeling of blockchain
ledger-maintainers on markedly different consensus protocols
[8] for building DAO-T2Nets, such as those based on proof
of stake [32], [33].

REFERENCES

[1] R. Pass, L. Seeman, and A. Shelat, “Analysis of the blockchain protocol
in asynchronous networks,” inLecture Notes in Computer Science:
Advances in Cryptology - EUROCRYPT 2017, Vol. 10211, J.-S. Coron
and J. B. Nielsen, Eds. Springer, Cham, 2017, pp. 643–673.

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[Online]. Available: http://bitcoin.org/bitcoin.pdf

[3] IEEE Spectrum, “Blockchain world,” October 2017. [Online]. Available:
https://spectrum.ieee.org/static/special-report-blockchain-world

[4] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf,
and S.Čapkun, “On the security and performance of proof of work
blockchains,” inProceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (CCS 2016), Vienna, Austria,
October 2016, pp. 3–16.

[5] C. Dwork and M. Naor, “Pricing via processing or combatting junk
mail,” in Lecture Notes in Computer Science: Advances in Cryptology
CRYPTO 1992, Vol. 740, E. F. Brickell, Ed. Springer, Berlin, Heidel-
berg, 1993, pp. 139–147.

[6] B. Warburg, “How the blockchain will radically transform the economy,”
June 2016. [Online TED Lecture]. Available:https://www.ted.com/talks

[7] M. Conti, S. Kumar E, C. Lal, and S. Ruj, “A survey on
security and privacy issues of bitcoin,” 2017. [Online]. Available:
https://arxiv.org/abs/1706.00916

[8] F. Tschorsch and B. Scheuermann, “Bitcoin and beyond: A technical
survey on decentralized digital currencies,”IEEE Communications Sur-
veys & Tutorials, vol. 18, no. 3, pp. 2084–2123, March 2016.

[9] Nomura Research Institute, “Survey on blockchain technologies and
related services,” Japan’s Ministry of Economy, Trade and Industry
(METI), FY2015 Report of Contract Survey, March 2016. [Online].
Available: http://www.meti.go.jp/english/press/2016/pdf/053101f.pdf

[10] Y. Yuan and F.-Y. Wang, “Blockchain and cryptocurrencies: Model,
techniques, and applications,”IEEE Transactions on Systems, Man and
Cybernetics: Systems, vol. 48, no. 9, pp. 1421–1428, September 2018.

[11] P. J. Ramadge and W. M. Wonham, “Supervisory control of aclass of
discrete event processes,”SIAM Journal of Control and Optimization,
vol. 25, no. 1, pp. 206–230, January 1987.

[12] W. M. Wonham and K. Cai,Supervisory Control of Discrete-Event
Systems, A. Isidori, J. H. van Schuppen, E. D. Sontag, and M. Krstic,
Eds. Springer International Publishing, 2019.

[13] C. G. Cassandras and S. Lafortune,Introduction to Discrete Event
Systems, 2nd ed. Springer, 2008.

[14] J. E. Hopcroft and J. D. Ullman,Introduction to Automata Theory,
Languages and Computation. Reading, MA : Addison-Wesley, 1979.

[15] W. M. Wonham and P. J. Ramadge, “On the supremal controllable
sublanguage of a given language,”SIAM Journal of Control and Op-
timization, vol. 25, no. 3, pp. 637–659, May 1987.

[16] R. Su and W. M. Wonham, “Supervisor reduction for discrete-event
systems,”Discrete Event Dynamic Systems : Theory and Applications,
vol. 14, no. 1, pp. 31–53, 2004.

[17] W. M. Wonham and P. J. Ramadge, “Modular supervisory control of
discrete-event systems,”Mathematics of Control, Signals and Systems,
vol. 1, no. 1, pp. 13–30, January 1988.

[18] C. G. Cassandras and S. Lafortune, “Ch 2 : Languages and Automata,”
in Introduction to Discrete Event Systems, 2nd ed. Springer-Verlag,
New York, 2008, pp. 53–132.

[19] W. M. Wonham, Control Design Software Tool: TCT.
Developed by Systems Control Group, University of Toronto,
Toronto, ON, Canada, May 2017. [Online]. Available:
http://www.control.utoronto.ca/DES/Research.html

[20] Technical Committee on Discrete Event Systems (DESTC), “List
of software tools for discrete-event control design.” [Online].
Available: http://discrete-event-systems.ieeecss.org/tc-discrete/resources
(As of November 2017).

[21] R. C. Merkle, “A digital signature based on a conventional encryption
function,” in Lecture Notes in Computer Science: Advances in Cryptol-
ogy CRYPTO 1987, Vol. 293, C. Pomerance, Ed. Springer, Berlin,
Heidelberg, 1988, pp. 369–378.

[22] N. Atzei, M. Bartoletti, S. Lande, and R. Zunino, “A formal
model of bitcoin transactions,” Proceedings of the 22nd International
Conference on Financial Cryptography and Data Security (FC2018),
Santa Barbara Beach Resort, Curaçao, 2018. [Online]. Available:
https://fc18.ifca.ai/preproceedings/92.pdf

[23] G. Andresen, “Block size limit controversy.” [Online]. Avail-
able: https://en.bitcoin.it/wiki/Blocksize limit controversy (Accessed
November 2017).

[24] R. Pass and E. Shi, “Hybrid consensus: Efficient consensus in the per-
missionless model,” inProceedings of the 31st International Symposium
on Distributed Computing (DISC 2017), ser. Leibniz International Pro-
ceedings in Informatics (LIPIcs), A. W. Richa, Ed., vol. 91.Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017, pp.
39:1–39:16.

[25] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoinmining is
vulnerable,” in Proceedings of the 18th International Conference on
Financial Cryptography and Data Security (FC 2014), ser. Lecture
Notes in Computer Science, N. Christin and R. Safavi-Naini,Eds., vol.
8437. Christ Church, Barbados: Springer, Berlin, Heidelberg, March
2014, pp. 436–454.

[26] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks
on bitcoin’s peer-to-peer network,” inProceedings of the 24th USENIX
Security Symposium (USENIX Security 15). Washington, D.C., USA:
USENIX Association, August 2015, pp. 129–144.

[27] I. Eyal, “The miner’s dilemma,” inProceedings of the 36th IEEE
Symposium on Security and Privacy (S&P 2015), San Jose, CA, USA,
May 2015, pp. 89–103.

[28] K. Nayak, S. Kumar, A. Miller, and E. Shi, “Stubborn mining: Generaliz-
ing selfish mining and combining with an eclipse attack,” inProceedings
of the 1st IEEE European Symposium on Security and Privacy (Euro
S&P 2016), Saarbrücken, Germany, March 2016, pp. 305–320.

[29] P. Yang, D. Stankevicius, V. Marozas, Z. Deng, E. Liu, A.Lukosevicius,
F. Dong, L. Xu, and G. Min, “Lifelogging data validation model for
Internet of Things enabled personalized healthcare,”IEEE Transactions
on Systems, Man and Cybernetics: Systems, vol. 48, no. 1, pp. 50–64,
January 2018.

[30] K. Dorling, J. Heinrichs, G. G. Messier, and S. Magierowski, “Vehicle
routing problems for drone delivery,”IEEE Transactions on Systems,
Man and Cybernetics: Systems, vol. 47, no. 1, pp. 70–85, January 2017.

[31] B. A. Brandin and W. M. Wonham, “Supervisory control of timed
discrete-event systems,”IEEE Transactions on Automatic Control,
vol. 39, no. 2, pp. 329–341, February 1994.

[32] I. Bentov, A. Gabizon, and A. Mizrah, “Cryptocurrencies without proof
of work,” in Lecture Notes in Computer Science: Financial Cryptogra-
phy and Data Security FC 2016, Vol. 9604, J. Clark, S. Meiklejohn,
P. Y. Ryan, D. Wallach, M. Brenner, and K. Rohloff, Eds. Springer,
Berlin, Heidelberg, 2016, pp. 142–157.

[33] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A
provably secure proof-of-stake blockchain protocol,” inLecture Notes in
Computer Science: Advances in Cryptology CRYPTO 2017, Vol.10401,
J. Katz and H. Shacham, Eds. Springer, Cham, 2017, pp. 357–388.

http://bitcoin.org/bitcoin.pdf
https://spectrum.ieee.org/static/special-report-blockchain-world
https://www.ted.com/talks/bettina_warburg_how_the_blockchain_will_radically_transform_the_economy
https://arxiv.org/abs/1706.00916
http://www.meti.go.jp/english/press/2016/pdf/0531_01f.pdf
http://www.control.utoronto.ca/DES/Research.html
http://discrete-event-systems.ieeecss.org/tc-discrete/resources
https://fc18.ifca.ai/preproceedings/92.pdf
https://en.bitcoin.it/wiki/Block_size_limit_controversy

	Introduction
	Supervisory Control Theory
	DES Modeling in Formal languages & Finite Automata
	Basic Control Problem, Solution Synthesis & Support

	Description of Blockchain Operations
	Modeling Blockchain Processes & Requirements
	The Preliminaries
	The System Model
	The Specification Models
	`Take-My-Block' Specification, K1 = Lm(R1)
	`Take-Your-Block' Specification, K2 = Lm(R2)

	Supervisor Synthesis & Validation
	Model Synthesis
	Model Validation

	Discussion with Related Work
	Conclusion
	References

