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This paper introduces the notion of attention-from-motion in which the objective is to identify, from an
image sequence, only those object in motions that capture visual attention (VA). Following the important
concept in film production, viz, the tracking shot, we define the attention object in motion (AOM) as those
that are tracked by the camera. Three components are proposed to form an attention-from-motion
framework: (i) a new factorization form of the measurement matrix to describe dynamic geometry of
moving object observed by moving camera; (ii) determination of single AOM based on the analysis of cer-
tain structure on the motion matrix; (iii) an iterative framework for detecting multiple AOMs. The pro-
posed analysis of structure from factorization enables the detection of AOMs even when only partial data
is available due to occlusion and over-segmentation. Without recovering the motion of either object or
camera, the proposed method can detect AOM robustly from any combination of camera motion and
object motion and even for degenerate motion.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction visual attention. Similarly, an object with low motion energy can
Research in cognition and neuroscience has shown that the pri-
mate visual system can selectively focus attention on some specific
motion pattern in a scene, while ignoring other motion patterns in
it [1,2]. Detection of motion that captures visual attention is useful
in several applications like video surveillance [3], video summari-
zation [4], and video editing [5].

Previous research on detecting motion patterns that capture vi-
sual attention use heuristic notions of salient motion. Williams and
Draper [6] studied the effect of motion on visual attention by add-
ing the motion channel to a saliency map that encodes the attention
value of every pixel. They concluded that motion contrast cannot
improve the performance of saliency-based selective attention. This
shows that using information about contrast that appears as a re-
sult of motion is not a good cue to find the ‘‘interesting” object in
the video sequence. Ma et al. [4] used motion vector fields to com-
pute the motion energy to identify salient motion regions. Tian and
Hampapur [7] discriminated salient motion from unimportant mo-
tion using a consistency measure. Wixson [8] also used a consis-
tency measure to detect interesting motion by accumulating
directionally consistent flow. In all the above, regions that attract
visual attention due to motion are defined heuristically, e.g., based
on features like motion energy and motion consistency. Such defi-
nitions are not applicable in many instances, for example, even if
motions of all objects are consistent, only one of them might invite
ll rights reserved.
also be the one on which visual attention is centered. Moreover,
these features are also not robust to noise. In [9], Horaud et al.
developed a framework in which a static camera is cooperated with
an active camera to detect all moving objects. Here, there is no dis-
crimination among detected objects in terms of visual attention. In
[10], López et al. extracted motion features like motion presence,
module and angle of velocity to segment the moving objects and
the user is invited to specify the objects that capture visual atten-
tion. The extraction of interesting object in this case is not auto-
matic. Other motion analysis algorithms like [11,12] ignore the
concept of visual attention. In this paper, we describe an automatic
method to extract the interesting moving object which is defined
according to what the cameraman wishes the viewer to focus on.
We call this problem as Attention-from-Motion.

1.1. Attention-from-Motion

Video production manuals provide insight into the procedures
used during video creation and editing. One of the most important
shots is the ‘‘tracking shot” in which the camera follows one or more
moving objects [13]. Naturally, the intention of the cameraman is to
focus the viewer’s attention on the object(s) which he is following.
Thus, we define an Attention Object in Motion (AOM) as an object
that is followed by the camera. As illustrated in Fig. 1, although there
are two cars in the field of view of the camera, it follows only one of
them, so that the car on the top-left is an AOM while the one on the
bottom-right is not. The notion of ‘‘camera following an object” em-
beds the subjective attention of the cameraman and will eventually
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Fig. 1. Illustration of attention object in motion (the dashed square indicates the field of view of the camera). The camera follows the car on the top-left (AOM) while ignoring
the car on the bottom-right (not AOM).
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Fig. 2. The reference coordinate system used in the factorization of dynamic scene.
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guide the attention of the viewers. This definition of AOM is applica-
ble for videos produced professionally as well as for videos taken by
general consumers of hand-held video cameras. We define the prob-
lem of attention-from-motion as detecting AOMs from the motion
information in a video sequence. The motion information is pro-
vided as a measurement matrix of P feature points across F frames.
The definition of AOM embeds the ‘‘following” relationship between
camera motion and object motion.

In this paper, we develop an algorithm to detect AOMs based
on factorization of a measurement matrix, under the assumption
of orthographic projection and rigid body motion. When the cam-
era tracks an AOM, the factorization relating to the motion matrix
attains a special structure as described in Section 2. We describe
the method to identify this structure without carrying out the com-
plete factorization (Section 3). Finally, an iterative framework is
proposed to robustly extract more than one AOM (Section 4).
The proposed solution to the attention-from-motion problem is
not constrained by the type of camera/object motion including
degenerate as well as dependent motion. Furthermore, the algo-
rithm can detect AOMs even when only partial data is available,
e.g., due to occlusion.

2. Factorization method for AOM

Factorization methods have been used in [14,15] to solve the
structure-from-motion problem. In [15], a moving object is ob-
served by a static camera while in [14] a static object is observed
by a moving camera. We generalize the above two methods to
consider the case of a moving camera observing an object in mo-
tion under the assumptions of orthographic projection and rigid
body motion. The factorization results in a motion matrix and a
shape matrix such that the motion matrix corresponding to an
AOM has a special structure.

2.1. Dynamic scene factorization

The measurement matrix W consists of a F � P submatrix X of
horizontal feature coordinates xfp, with F being the number of
frames and P being the number of feature points and a similar
F � P submatrix Y of vertical coordinates yfp. Thus W ¼ X

Y

� �
. Accord-

ing to rigid-body motion assumption, the 3-D coordinates of the
pth feature point on an object at the f th frame is

sfp ¼ Ro;f s1p þ To;f ; p ¼ 1; . . . ; P and f ¼ 1; . . . ; F; ð1Þ

where Ro;f is the rotation matrix and To;f is the translation vector of
the object at the f th frame with respect to the world coordinates. By
placing the origin of the world coordinates at the centroid of object
feature points at the 1st frame, we have
1
P

XP

p¼1

s1p ¼ 0: ð2Þ

Combining (2) with (1), we get

1
P

XP

p¼1

sfp ¼
1
P

XP

p¼1

ðRo;f s1p þ To;f Þ ¼ To;f : ð3Þ

Under orthography, the image feature position ðxfp; yfpÞ of point
sfp at frame f is given by the equations [14]

xfp ¼ iT
f ðsfp � Tc;f Þ; yfp ¼ jT

f ðsfp � Tc;f Þ; ð4Þ

where, if and jf are the unit vectors in frame f pointing along the
rows and columns, respectively, of the image and defined w.r.t
the world reference system, and Tc;f is the translation vector of
the camera w.r.t the world coordinates. If Rc;f is the rotation matrix
of the camera w.r.t. the world coordinates, then

if ¼ Rc;f i0 þ Tc;f � Tc;f ¼ Rc;f i0

jf ¼ Rc;f j0 þ Tc;f � Tc;f ¼ Rc;f j0; ð5Þ

where i0 ¼ ½1;0;0�T and j0 ¼ ½0;1; 0�
T are the two axes of the canon-

ical world coordinate system as shown in Fig. 2. Any other represen-
tation of i0 and j0 will not affect the subsequent analysis.

Using (1) and (5), the entries of X can be derived as

xfp ¼iT
f ðsfp � Tc;f Þ

¼iT
0RT

c;f Ro;f s1p þ iT
0RT

c;f ðTo;f � Tc;f Þ: ð6Þ

Similarly, the entries of Y can also be derived as

yfp ¼ jT
0RT

c;f Ro;f s1p þ jT
0RT

c;f ðTo;f � Tc;f Þ: ð7Þ
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The above two sets of F � P Eqs. ((6) and (7)) form the unregis-
tered measurement matrix W for the case of a moving camera
observing a moving object. The matrix W can be factorized into
W ¼ M � S as

ð8Þ

The matrix M in (8) contains the motion of both camera and ob-
ject while in [15] and [14], M contains only object motion and only
camera motion, respectively. Since M is 2F � 4 and S is 4� P, (8)
yields the Rank Theorem that states that without noise, the mea-
surement matrix W of a moving object observed by a moving camera
is at most of rank four.

2.2. Factorization of AOM

Recall that we define an AOM as an object in motion that is
followed by a moving camera. The fact that the moving object
is followed by the moving camera implies that, in the absence
of noise,

1
P

XP

p¼1

xfp ¼
1
P

XP

p¼1

x1p 8f 2 f1; . . . ; Fg ð9Þ

and

1
P

XP

p¼1

yfp ¼
1
P

XP

p¼1

y1p 8f 2 f1; . . . ; Fg: ð10Þ

If this condition is true over a small number of frames, but not
true in the long term, then according to our definition, the feature
points belong to an AOM initially, but it is no longer an AOM when
the conditions in (9) and (10) fail. Using Eqs. (1), (4) and (5), (9) can
be rewritten as

1
P

XP

p¼1

iT
f ðsfp�Tc;f Þ¼

1
P

XP

p¼1

iT
1ðs1p�Tc;1Þ

)1
P

XP

p¼1

iT
f ðRo;f s1pþTo;f �Tc;f Þ¼

1
P

XP

p¼1

iT
1ðs1p�Tc;1Þ

)1
P

XP

p¼1

iT
0RT

c;f ðRo;f s1pþTo;f �Tc;f Þ¼
1
P

XP

p¼1

iT
0RT

c;1ðs1p�Tc;1Þ

) iT
0RT

c;f Ro;f
1
P

XP

p¼1
s1p|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

¼0

þiT
0RT

c;f ðTo;f �Tc;f Þ¼ iT
0RT

c;1
1
P

XP

p¼1
s1p|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

¼0

�iT
0RT

c;1Tc;1

) iT
0RT

c;f ðTo;f �Tc;f Þ¼�iT
0RT

c;1Tc;1 8f 2f1; . . . ;Fg ð11Þ

Similarly, it can be shown that

jT
0RT

c;f ðTo;f � Tc;f Þ ¼ �jT
0RT

c;1Tc;1 8f 2 f1; . . . ; Fg ð12Þ

Interestingly, the left sides of (11) and (12) are the entries in the
last column of M in (8). Hence, for an AOM, the motion matrix M
can be represented as:
ð13Þ

In the above 2F � 4 matrix, the first 3 columns relate to the
rotation component and the 4th column relates to the translation
component of the dynamic scene. This structure allows us to im-
pose the following motion constraints:

� Rotation constraint: Each pair of rows in the first 3 columns of M
are the rotations of two reference orthonormal basis (e.g.
½1;0;0�T and ½0;1;0�T) of M since RT

c;f Ro;f is a rotation matrix such
that iT

0RT
c;f Ro;f and jT

0RT
c;f Ro;f are the rotations of i0 and j0,

respectively.
� Translation constraint: The elements of the first half of the last

column of M are constants and so also are the elements of the
second half of the last column.
2.3. Why not simply check for stationary centroid?

Since the special structure of M is derived from the property of a
stable centroid of all the feature points belonging to an AOM, it
would seem that checking for the stationarity of the centroid
would suffice to identify the AOM. However, this would imply that
all the feature points are available to cover the whole object, other-
wise the centroid would not be stable. This is a very strong con-
straint because feature points could be lost for a variety of
reasons like occlusion and change in appearance of the object
due to motion or change in illumination. Moreover, the limitations
of the feature detection algorithm itself may cause only some of
the feature points on an object to be detected resulting in the
tracking of an erroneous centroid. Fig. 3 illustrates this problem
in which four frames of a sequence show a rotating rectangle
whose four corners are the feature points. Since the centroid of
the feature points indicated by the black cross is at the same loca-
tion, the rectangle is an AOM. However, if the feature detection
algorithm returns only two feature points (red and yellow) then
its centroid as indicated by the pink cross is not stationary.

Another case when checking for the stationarity of the centroid
of feature points fails is that of an object revolving about a point. In
this case, the cameraman will most likely wish to capture the en-
tire circular motion by focusing on the centroid of the motion
rather than on the centroid of the feature points on the object.
Fig. 4 shows a few frames of this type of motion in which the ball
is revolving about the point marked +; here the centroid of the fea-
ture points changes across all frames, but the camera will focus on
the +. Furthermore, one would recognize the motion of the object
as a circular motion about a point only if all the frames of at least
one cycle are observable. If only some of the frames of the entire
cycle are available, as shown in Fig. 4, it is not possible to recognize
the circular motion because the centroid of the motion will not be
the point about which the object rotates.

The structure of M is valid in all of the above cases. For the case
when only partial feature points are available, only a subset of fea-
ture points are required to calculate M and to analyze its structure
to determine if they belong to an AOM. This is because it is enough
to obtain the matrix M from the measurement matrix correspond-
ing to a subset of feature points as long as its rank is equal to the
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rank of the measurement matrix corresponding to the full set of
feature points. Also, in our analysis, the requirement that the last
column of M is constant is valid independent of the number of
frames observed. This makes the proposed method robust to occlu-
sion and avoids the propagation of tracking error over long inter-
vals. The structure of M is valid, even when the centroid of the
moving object is not stationary (e.g., in Fig. 4) because the AOM
can be considered as a part of another object whose centroid is
the centroid of motion. Thus, the proposed method works even if
only partial data is available.

3. Attention-from-motion for a single AOM

In [14], it is shown that the factorization of the measurement
matrix W using singular value decomposition (SVD) gives

W ¼ URVT ¼ ðUR
1
2Þ � ðR

1
2VTÞ ¼ M̂Ŝ: ð14Þ

This factorization is not unique since for any 4� 4 invertible
matrix Q, the matrices M̂Q and Q�1Ŝ are also a valid factorization
of W, i.e.,

ðM̂QÞðQ�1ŜÞ ¼ M̂ðQQ�1ÞŜ ¼ M̂Ŝ ¼W : ð15Þ

In the following, we describe a linear method to determine the
existance and singularity of Q only from the affine version M̂ of M.
If there exists a Q that transforms M̂ to M (of Eq. (13)), then the fea-
ture points in the measurement matrix W belong to an AOM. The re-
sult is then used to define an attention measure to identify an AOM.

3.1. Constraints on M̂ and Q

By denoting the matrix Q as Q ¼ ½QRjQ T � where QR contains the
first 3 columns of Q, and QT contains the last column of Q, M can be
represented as

M ¼ M̂Q ¼ ½M̂QRjM̂Q T �: ð16Þ

M̂QR corresponds to the first 3 columns of M which satisfies the
rotation constraint and M̂QT corresponds to the last column of M
which satisfies the translation constraint.

3.1.1. Rotation constraint on M̂ and Q
Each of the 2F rows of matrix M̂Q R is a unit norm vector and the

first and second set of F rows are pairwise orthogonal. This ortho-
normality can be represented as
Fig. 3. An example of unstable centroid of AOM where o

Fig. 4. Another example of unstable centroid of AOM where the cent
M̂iQ RQ T
RM̂T

i ¼1;

M̂jQ RQ T
RM̂T

j ¼1;

M̂iQ RQ T
RM̂T

j ¼0; ð17Þ

for i ¼ 1 . . . F, j ¼ F þ i and M̂i denotes row i of M̂. The set of Equa-
tions in (17) can be solved for QR by adding the additional con-
straints of the reference coordinate system (e.g., i0 ¼ ½1;0;0�T and
j0 ¼ ½0;1;0�

T) to it. Instead, we solve for the entries of QRQT
R, repre-

sented as

Q RQ T
R ¼

Q1 Q5 Q6 Q7

Q5 Q2 Q8 Q9

Q6 Q8 Q3 Q10

Q7 Q9 Q10 Q4

2
6664

3
7775

and whose elements are

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Q10

2
6666666666666666664

3
7777777777777777775

¼

Q 2
11 þ Q2

12 þ Q 2
13

Q 2
21 þ Q2

22 þ Q 2
23

Q 2
31 þ Q2

32 þ Q 2
33

Q 2
41 þ Q2

42 þ Q 2
43

Q 11Q 21 þ Q 12Q 22 þ Q13Q23

Q 11Q 31 þ Q 12Q 32 þ Q13Q33

Q 11Q 41 þ Q 12Q 42 þ Q13Q43

Q 21Q 31 þ Q 22Q 32 þ Q23Q33

Q 21Q 41 þ Q 22Q 42 þ Q23Q43

Q 31Q 41 þ Q 32Q 42 þ Q33Q43

2
66666666666666666664

3
77777777777777777775

ð18Þ

by regarding (17) as a linear system about the 10 unique entries of
QRQT

R. If the linear system of (17) has a unique solution, we can di-
rectly obtain Q (the left hand side of (18)) using least squares tech-
nique. Note that unlike in [15,14] where Q is reconstructed after
solving for QRQT

R in (17), we do not need to reconstruct Q for carrying
out attention analysis, as shown below.

3.1.2. Translation constraint on M̂ and Q
The fact that two halves of the last column of M are constants

implies that M̂1Q T ¼ M̂2QT ¼ � � � ¼ M̂F QT and ^MFþ1QT ¼
^MFþ2QT ¼ � � � ¼ M̂2FQ T . This constraint can be further transformed

into a homogeneous linear system as
nly partial feature points on an AOM are observed.

roid of motion is followed and only partial frames are observed.
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ð19Þ

For the existence of a non-zero QT , the rank of PT should be
smaller than 4 such that its null space is not empty. If
rankðPTÞ ¼ 3, we can uniquely obtain a normalized version �Q T of
Q T by setting �Q1;4 ¼ 1. If rankðPTÞ < 3, then there is no unique solu-
tion. As we will see in the next section, the singularity of Q will
have to be measured to determine a final attention measure for
an AOM. This singularity is based on the linear dependence of
rows/columns of Q. Since linear dependence is invariant to scale,
the normalized version �QT is enough to check for the singularity
of Q. The trivial solution ½0;0;0;0�T is invalid because it corre-
sponds to constant 0 of the last column of Q which is not allowable
because that would make Q non-invertible and therefore, singular.

3.2. Attention measure from �QT and Q

Whether a group of feature points belongs to an AOM depends
on whether there exists an invertible Q that satisfies the two con-
straints described in the previous section. We show that both the
existence and singularity of Q can be analyzed from �Q T and Q, with-
out calculating Q. In fact, for degenerate cases such as pure transla-
tion and pure rotation, it is not possible to calculate Q.

3.2.1. Existence of Q from �QT

In the absence of noise, if the feature points belong to an AOM,
then there exists a solution for the system of equations in (19)
implying the existence of a �Q T that transforms M̂ to a column con-
sisting of two constant parts. However, it is not assured that the
column will indeed be the last column of (16). If the column is
one of the first 3 columns of Q, �QT will be linearly dependent with
one column of Q R and, consequently, Q will be singular, in which
case we need to check for the singularity of Q. In the case of noisy
data, a solution �Q T of (19) always exists in the least square sense.
Due to its sensitivity to noise, use of the smallest SVD value of PT

in (19) to measure the existence of �QT is not robust.
To overcome this problem, we propose a measure to check for

the existence of �Q T based on the variance of ~Q T ¼ M̂ � �Q T . This
measure consists of two factors. The first factor measures the vari-
ances of the first F rows and the last F rows of ~Q T , i.e.,

McðiÞ ¼ varð~Q i
TÞ; i ¼ 1;2; ð20Þ

where ~Q1
T and ~Q2

T are the first and second halves of ~QT , respectively.
The second factor is related to the randomness in the change of ~QT .
The change can be caused due to unstable following of the object by
the camera or due to the feature points moving in a particular direc-
tion not being followed. The former causes more randomness in the
values of ~QT than the latter; this trait is captured in the following
measure

RcðiÞ ¼
maxð~Q i

TÞ �minð~Q i
TÞ

1þ
PF
k¼2
j~Q i

TðkÞ � ~Qi
Tðk� 1Þj

: ð21Þ

Rc is closer to 1 when the randomness of the variation in ~Q T is
small. These two factors are combined to obtain the final measure
Sq computed as
Sq ¼maxðRcð1Þ �Mcð1Þ;Rcð2Þ �Mcð2ÞÞ: ð22Þ

If Sq is small, then ~QT is more close to constant. Otherwise, it is
more possible that ~Q T is not constant column.

3.2.2. Singularity of Q from �QT and Q

The singularity of Q can be indicated by the linear dependence
in either its rows or its columns. In this section, we show that
the linear dependency can be established by analyzing only �Q T

and Q.
In the case of linear dependence in rows or in columns of Q, we

have

rankð½Q Rj�Q T �Þ ¼ rankðQÞ < 4: ð23Þ

Since ½Q Rj�Q T �T has the same rank as ½Q Rj�Q T �, it is also true that

rankð½Q Rj�Q T �½Q Rj�Q T �TÞ ¼ rankð½Q Rj�Q T �Þ < 4 ð24Þ

The matrix ½QRj�Q T �½Q Rj�Q T �T can be calculated directly from Q

and �Q T without knowing Q, since

½Q Rj�Q T �½Q Rj�Q T �T ¼ QRQ T
R þ �Q T

�Q T
T ¼

Q1 Q5 Q6 Q7

Q5 Q2 Q8 Q9

Q6 Q8 Q3 Q10

Q7 Q9 Q10 Q4

2
666664

3
777775
þ �Q T

�Q T
T

ð25Þ

A measure of linear dependence of Q, denoted by Lq, can then be
determined as Lq ¼ rmin where rmin is the smallest singular value of
½QRj�QT �½QRj�Q T �T. For noisy case, we improve the robustness of this
measure by considering the ratio of the two smallest singular
values.

3.2.3. Degenerate cases
Here, we analyze the existence and singularity of Q for degener-

ate cases, i.e., the case in which the rank of the measurement ma-
trix is less than 4. Examples of degenerate motions are pure
rotation and pure translation. Eq. (18) can be divided into 6 homo-
geneous linear systems in the following form:

Q 2
i1 þ Q2

i2 þ Q2
i3

Q 2
j1 þ Q 2

j2 þ Q 2
j3

Q i1Q j1 þ Q i2Q j2 þ Q i3Q j3

2
64

3
75 ¼

C1

C2

C3

2
64

3
75 ð26Þ

where i–j 2 f1;2;3;4g and C1,C2 and C3 are corresponding entities
in Q, e.g., Q1, Q2 and Q5 form one such linear system. Each linear sys-
tem relates 2 of the 4 rows of QR. For degenerate cases, only some of
the rows of QR can be determined. The singularity of Q can still be
indicated by the linear dependence among the available rows. We
detect such linear dependence in degenerate cases by analyzing
only �QT and Q. For example, if only 3 rows of QR can be determined
for degenerate motion, then the rotation constraint on M̂ gives

Q1

Q2

Q3

Q4

Q5

Q6

2
666666664

3
777777775
¼

Q 2
11 þ Q 2

12 þ Q2
13

Q 2
21 þ Q 2

22 þ Q2
23

Q 2
31 þ Q 2

32 þ Q2
33

Q11Q21 þ Q 12Q 22 þ Q 13Q 23

Q11Q31 þ Q 12Q 32 þ Q 13Q 33

Q21Q31 þ Q 22Q 32 þ Q 23Q 33

2
6666666664

3
7777777775

ð27Þ

If we denote the matrix containing 3 rows of QR as Q A and the
corresponding three entries of �QT as �QTA, we have the following
property for singular Q:

rankð½Q Aj�Q TA�½Q Aj�Q TA�TÞ ¼ rankð½Q Aj�Q TA�Þ < 3 ð28Þ
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As before, the matrix ½Q Aj�Q TA�½QAj�QTA�T can be calculated from
available Qi in (27) and the corresponding entries in �QT . So the lin-
ear dependence of Q can still be measured from the singular values
of ½QAj�QTA�½Q Aj�Q TA�T.

3.3. Integrated attention measure

Finally, we combine both measures Sq and Lq to obtain an inte-
grated measure to determine if a collection of feature points be-
longs to an AOM. We estimate the attention of a moving object as

Attention ¼ Lq=Sq: ð29Þ

Since Sq measures the variance as well as the randomness of
the last column of M, a small value of Sq indicates how constant
the last column of M is. Lq is the smallest singular value of
½QRj�QT �½QRj�QT �T that indirectly indicates the singularity of Q. If
Lq is close to 0, the matrix Q is singular (non-invertible). When
Lq is large and Sq is small, the feature points are more likely
to belong to AOM(s) and their attention values should be large.
Hence, we use the ratio Lq=Sq as the measure of attention. If
Attention is greater than a threshold, then the feature points
whose coordinates form the measurement matrix W belong to
an AOM. In this paper, the threshold value is decided by Otsu
thresholding method [16] for all experiments. Other advanced
measures can also be designed based on Sq and Lq. If there are
multiple solutions for Q T in (19) or for Q RQ T

R in (17), then we ap-
ply the above analysis individually on X and Y. If there are still
multiple solutions, then we can conclude that the feature points
belong to an AOM.

4. Attention-from-motion for multiple AOMs

In the previous section, we have presented the theory for
detecting a single AOM in the video sequence. Clearly, in some sit-
uations, there could be multiple moving objects and the measure-
ment matrix would contain feature points from all of them. We
develop an iterative framework to detect multiple AOMs, in which
motion segmentation is performed. Since the proposed method to
detect single AOM can handle partial data, we allow over-segmen-
tation of the object, i.e., feature points can be belong to two or
more groups. The proposed framework can robustly detect multi-
ple AOM(s) for partial dependent motion [17] as well as for degen-
erate motion.

4.1. Shape space initialization

As noted in (14), the SVD of W is carried out as W ¼ URVT. We
denote the space formed by the basis of V as shape space. It encodes
the information in the row space of the measurement matrix W. In
[15], multibody segmentation is performed through the shape
interaction matrix A ¼ VVT.

In our algorithm, initially, each feature point constitutes a group
and the interaction of each point with all the other points are com-
puted as follows. At each iteration, the feature point with the max-
imum interaction, computed as the sum of interaction with the
points already in the group, is appended to the group. This proce-
dure is continued till all the feature points are included in a group.
The above process of expanding a group is performed on all the P
groups. This means that every group will have all the feature points
in decreasing order of interaction. Based on the ordering, we hope
that points having strong interaction belong to the same object.
But, such sorting could be erroneous since two points i and j might
belong to the same object even if Ai;j ¼ 0. However, it is very likely
that the first 4 points on a majority of the sorted groups belong to
the same object. The group is expanded further based on motion
information (next section) to determine if there are other feature
points belonging to this group. Instead of relying on the block-
diagonal structure of canonical A for segmentation [15], which
could degrade when there is even small amount of noise or when
there is partial dependent motion [17], we only extract the first 4
points from every sorted list according to the rank theorem of dy-
namic scene.

Although we cannot determine whether two points with small
interaction belong to same object or not, if there is large interac-
tion between them, it is very likely that they belong to the same
object. That is the reason why majority of the 4-tuple are correct.
However, some of the 4-tuple may be still erroneous due to acci-
dental interaction between points on different objects. A voting
scheme will select the most reliable grouping with maximum sup-
port in the final stage, making the framework robust to such error
in grouping.

4.2. Motion space expansion

For grouping feature points having similar motion, it is imper-
ative to use motion information in addition to using shape infor-
mation. Indeed, if two points have similar motion, they must be
grouped together irrespective of their 3D coordinates. In this sec-
tion, we expand the list of feature points previously obtained
using shape information by adding points that have similar
motion.

The similarity of motion among feature points is computed as
follows. The matrix U obtained from the SVD decomposition of
the measurement matrix W forms a basis for the column space
of W, which is called the motion space. From the factorization
analysis in Section 2.1, we know that the motion space of a mov-
ing object observed by a moving camera is of at most rank 4.
Hence, we carry out the SVD on the measurement matrix W of
the 4-tuple (obtained from the previous section) to determine
the motion space of the corresponding object. We compute the
projection of every column of W (there are P columns) onto the
basis of this motion space (projection denoted as L) as well as
orthogonal to it (projection denoted as H). The ratio H

L indicates
the similarity between the feature point for that column and
the 4-tuple. If the two motions are similar, H

L will be small; in
the absence of noise, it will be 0 if the motions are exactly the
same. The initial 4-tuple is expanded by appending to it, in
increasing H

L ratios, those feature points that satisfy the rank the-
orem of Section 2.1. The expanded list is then split into two,
based on a thresholding mechanism such that the feature points
on the top of the list are retained as candidates for voting. The
threshold is chosen as that feature point which has the maximum
difference of the ratio H

L from its neighbor.
All the 4-tuples from the shape space initialization are ex-

panded according to the above procedure. In order to ensure that,
for each group, the measurement matrix corresponding to the ex-
panded list of feature points is not rank deficient, we develop an
iterative technique by which the list is expanded. Specifically, we
repeat the same process as above starting from the SVD of the mea-
surement matrix up to finding a new list of feature points after
thresholding. If the new group is the same as the old one, iteration
is stopped, otherwise a new measurement matrix for the new
group is formed and the process is repeated.

In order to accommodate for possible errors in the groups, we
assign a confidence measure to each of them. The confidence mea-
sure for a group G is defined as

CG ¼
min

iRG
ðHðiÞ=LðiÞÞ

P
j2G
ðHðjÞ=LðjÞÞ ; ð30Þ
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where LðiÞ and HðiÞ are the projections of the column in the mea-
surement matrix W corresponding to feature point i, onto the mo-
tion space and orthogonal to it, respectively. When there is no
clear difference among all H

L ratios, it is not possible to obtain a good
threshold. This could possibly lead to an erroneous group, whose
confidence measure CG will be small. Large confidence measure
CG indicates that the threshold can be easily found and the group
is more likely to be correct.

By combining both shape space as well as motion space, the
proposed method for motion segmentation is more robust to pre-
vious methods, which either consider shape space or motion
space. Compared to the methods using shape space only
[15,18], and the cluster-and-test approaches using motion space
only [11,12], forming the 4-tuple from shape space and relying
on motion space expansion, provides a systematic way to define
the motion space, overcoming major disadvantages of previous
methods. First, the 4-tuple with largest interaction values has
more confidence to belong to the same object than random selec-
tion of a 4-tuple. The incorporation of confidence measure in-
creases the accuracy of the motion space and allows errors in
the shape interaction matrix. Second, the iterative motion space
expansion and voting scheme (introduced in next section) can
improve the robustness of motion segmentation when some
groups of feature points are erroneous. Third, we iteratively ex-
tract the most reliable grouping one by one and avoid estimating
the number of objects. Note that the degenerate motion space
(e.g., low-rank subspace of motion space) does not affect the pro-
posed method since we allow for over-segmentation of the object.
Interestingly, the case of partially dependent motion as enunci-
ated in [17] is also handled efficiently using the proposed meth-
od. For two objects o1 and o2 having partially dependent motion,
the trajectory of o1 has only some components lying on the mo-
tion space of o2 so that the orthogonal component H for o1 will
be larger than that for o2. It follows that the above process will
separate the two objects.

4.3. Iterative AOM extraction by confidence voting

At this point, we have P candidate groups and their associated
confidence measures from which only the most reliable group is
selected based on a voting scheme on the confidence measures.
We first refine these candidate groups by combining those groups
that contain any common feature points. Beginning with the first
candidate group as the only existing group, we iteratively add a
new candidate group Gnew. Specifically, if Gnew contains any com-
mon feature point with some existing group Gexist, we combine it
with Gexist, i.e.,

Gexist ¼ Gexist [ Gnew ð31Þ

and update the corresponding confidence measure as

CGexist
¼ CGexist

þ jGexist \ Gnewj
jGnewj

� CGnew ð32Þ

where [ denotes the union operator, \ denotes the intersection
operator and j � j indicates the size of the set. If Gnew does not overlap
with any existing group, it is formed as a new group with the asso-
ciated confidence measure. After combination, the group with the
maximum confidence measure is chosen as the most reliable mo-
tion group. This group is analyzed using the method described in
Section 3 for a single AOM and a value of Attention is assigned to
it. The measurement matrix W is updated by removing the columns
corresponding to the points in the most reliable group and the en-
tire process is repeated. The complete algorithm is summarized in
Algorithm 1.
Algorithm 1. Recursive Multiple AOM(s) Detection Require:
measurement matrix W

While W is not empty do

Calculate A from SVD of W (Eq. (14));
for each feature point i

Obtain its 4-tuple from shape space (Section 4.1);
Expand the 4-tuple from motion space to obtain the can-
didate group Gi (Section 4.2);
for each existing candidate group Gexist do
if Gi overlaps with Gexist then
update Gexist as well as CGexist

according to Eq. (32);
else

add Gi as a new existing group and associate its
confidence measure as CGi

;
end if

end for
end for
Calculate Attention for the group with maximum confidence,
say GCMax, which is one of the existing groups with the max-
imum confidence measure CMax (Eq. (29)); Update W by
removing the corresponding columns of those feature points
in GCMax;

end while
Threshold Attention to detect AOM(s)

The reliability of a group depends not only on the number of in-
stances of that group but also on their confidence measures. The
confidence measure of every instance of a group may be different
because of the difference in the initial motion space. The proposed
scoring mechanism takes both these factors into account. More-
over, once the most reliable motion group is obtained, it is re-
moved from further analysis so that the remaining groups can be
determined more confidently one by one.

The failure to detect feature points occurs due to two reasons:
occlusion (or out-of-view) and errors in tracking. Fig. 5 shows an
example in which both these phenomena occur. They introduce
two types of errors in the measurement matrix W either an entry
is missing due to occlusion or the entry is wrong due to tracking
error. In the former case, since the proposed algorithm can handle
partial data, we simply remove all columns in W corresponding to
the occluded points even if they were available in other frames. In
the case of missing data, if feature points are missing in a majority
of the frames, only the available data is analyzed without degrad-
ing performance. On the other hand, if feature points are missing in
only few frames, SVD in the above procedure can be replaced by
the PowerFactorization method [19] to utilize the additional infor-
mation that is available. However, the PowerFactorization method
requires the rank of the matrix as the prior knowledge, which is
not available when there are multiple objects. Hence, for the entire
sequence, we remove all the feature points that have been oc-
cluded. For example, the points within the green ellipse of Fig. 5
are removed from W. Since the proposed algorithm can handle par-
tial data, it can still detect an AOM if, despite occlusion, sufficient
number of points on it is available. The proposed algorithm can de-
tect AOM in a very short interval because of its large discriminating
power as well as the ability to handle partial period of motion.
Hence, for occlusion changing over time, we can detect AOM with-
out occlusion in some interval, then detect AOM when the object is
partially occluded and only miss it when it is fully occluded. How-
ever, when the object re-appears and there are sufficient feature
points on it, the analysis resumes. In the case of tracking error,
the proposed algorithm will be inevitably affected by the failure
of feature point detection/tracking (e.g., the tracking error in red
ellipse of Fig. 5). For moderate error in W, the proposed method



Fig. 5. An example of the failure to detect feature points (indicated by small blue circles). There are two types of errors introduced: 1, out-of-view/occlusion error (area
indicated by green ellipse); 2, tracking error (area indicated by red ellipse). (For interpretation of color mentioned in this figure the reader is referred to the web version of the
article.)
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can still correctly detect AOM due to its large discriminant power.
But the performance will degrade when the output of tracking
algorithm is too erroneous to correctly reflect motion information.
The large discriminant power and the robustness to error in W of
the proposed algorithm will be evaluated in the experiment
section.

5. Experimental results

The performance of the proposed method for attention-from-
motion problem was tested on synthetic and real image sequences.
The algorithm was tested to evaluate its ability to handle arbitrary
number of objects, different types of motion and the case of partial
data.

5.1. Synthetic data

We consider image sequences containing synthetic objects like
cube, sphere and pyramid and a static background. We choose 7
feature points from the pyramid, 12 from the cube, 30 from the
sphere and 20 from the background. The object motions are syn-
thesized and the camera motion is synthesized to follow one or
more objects. The 2D image coordinates of the feature points in
each frame are calculated with round-off errors to form the mea-
surement matrix W. The synthetic sequences incorporate a combi-
nation of the following characteristics—(i) different number of
AOMs, (ii) different object motion and camera motion including
degenerate and dependent cases, (iii) AOM with all feature points
and, (iv) AOM with partial feature points.

The top row in Fig. 6(a) shows a sequence containing a cube and
a pyramid as well as some background points in which the cube
undergoes a 3D motion including both rotation and translation.
The camera motion is also synthesized to undergo a different 3D
motion but to follow the cube. Hence, from our definition of
AOM, the cube has been detected as AOM and marked in red in
the bottom row. Since the pyramid undergoes different motion
so that the camera does not follow it, it is not an AOM. In Fig. 6
(b), the two objects undergo different 3D motions–rotation and
translation for the cube and translation only for the truncated pyr-
amid. Both objects are followed by a moving camera. We can see
the proposed algorithm detected both of them as AOMs and they
are marked in red in the bottom row. The sequence in Fig. 6(c) con-
sists of a sphere in addition to the cube and pyramid. However,
only half of the sphere is observable and only feature points from
this half are included in W. In the sequence, the camera undergoes
only translation, i.e., this is a case of degenerate camera motion.
The pyramid and the sphere undergo different rotations and the
same translation as the camera, while the cube has a different
translation. The bottom row shows that the two AOMs—sphere
and pyramid—are correctly identified in red.

We also test the robustness of the proposed algorithm to errors
in the measurement matrix W. Gaussian noise with standard devi-
ation varying from 0.5 to 10 was added to W of the synthetic data
to introduce the errors in the trajectories of feature points. Such
noise perturbs the image coordinates of feature points. Table 1
shows the average offset as well as the maximum offset in the im-
age coordinates of the feature points. To measure the performance
of AOM detection, we calculate the precision and recall of the
detection based on 10 trials at each noise level. Here, the precision
is defined as the ratio between the number of correctly detected
AOM points and the number of total detected points. Similarly,
the recall is defined as the ratio between the number of correctly
detected AOM points and the number of all AOM points. Each trial
generates a new synthetic sequence where motions are different
and the number of AOMs is different. As shown in Fig. 7, high pre-
cision and recall rates are obtained for small noise level indicating
that the proposed algorithm is robust to moderate errors in W.
When the noise level is very high, the performance of the proposed
algorithm degrades because of the incorrect motion information of
W. Even so, we note that at a noise level of 10 when the average
offset is about 2 pixels and the maximum error is about 11 pixels,
the precision is still very high and the recall is reasonably good at
about 77%. We pushed the noise level further to standard devia-
tions of 25 and 30 to obtain a recall of 38% and 12%, respectively,
while maintaining a precision of close to 1. This shows that the
proposed algorithm never identifies an incorrect AOM, but will
miss a true AOM when noise in the measurement matrix is very
high, resulting in erroneous motion information.

5.2. Real image sequences

Next, we apply the proposed AOM detection method on real vi-
deo sequences shown in Figs. 8 and 9. The top row shows the fea-
ture points used to form W, while the second row shows feature
points belonging only to the AOMs (different AOMs are indicated
by different colors). The feature points are detected as follows:
The corner points in the first frame are detected and tracked in
the subsequent frames using [20]. Only the feature points which
are correctly tracked are used to form W. For some sequence, the
AOM(s) do not have enough corner points, we manually label min-
imum points to cover them. Fig. 8 shows the results of AOM detec-
tion on three sequences. In Fig. 8(a), the top row contains 70



Fig. 6. (a–c) Top row: Objects in synthetic image sequences. Bottom row: Detected AOMs in red. (For interpretation of color mentioned in this figure the reader is referred to
the web version of the article.)

Table 1
Average and maximum error of image coordinates in W under different noise level

Std dev. of noise 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Ave offset (pixel) 0.80 1.12 1.36 1.59 1.78 1.95 2.13 2.24 2.36 2.53
Max offset (pixel) 3.62 4.89 6.00 6.78 8.29 8.77 9.79 10.07 10.34 11.03
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feature points. The bottom row shows that the moving car as well
as the time stamp have been correctly identified as AOM, while the
points in the background have been removed. The yellow car
undergoes a full 3D motion and is detected as an AOM. The time
stamp is also identified as another AOM since it is fixed on the
screen. The sequence in Fig. 8(b) contains two moving cars of
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Fig. 7. Precision and recall of feature points of AOM(s) w.r.t noise level.

Fig. 8. Top row: All feature points. Bottom row: Detected AOMs for (a) Seq 1, (b) Seq 2, (c
than that outside the AOM (figure best viewed in color). (For interpretation of color me
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which only one is followed by the camera. This is also a challenging
sequence since the cluttered background results in numerous
tracking errors resulting in a very noisy measurement matrix W.
As the bottom row shows, the tracked moving car has been identi-
fied as the AOM. In Fig. 8(c), the crane in the foreground and the
duck in the background are being followed by the camera and
the algorithm correctly identifies them as AOMs. Note that the
duck gets partially occluded by the crane so that there is missing
data in the measurement matrix. However, the algorithm succeeds
in identifying the AOMs, without explicitly interpolating for the
missing data. Fig. 9 shows the results of AOM detection on three
more sequences. The sequence in Fig. 9(a) is the ‘‘mobile-and-cal-
endar” in which there are 3 objects—ball, train and calendar—and a
stationary background. The ball and train are followed by the cam-
era and hence they are the two AOMs. Although the ball and train
are close to each other and their motions are degenerate and par-
tially dependent, the proposed method succeeds in separating
them and identifying both of them as AOMs from a small number
of points, e.g., only 6 on ball. The sequence shown in Fig. 9(b) is a
cluttered one with many persons. Fifty-eight feature points par-
) Seq 3. In the top row, the number of feature points on an AOM need not be larger
ntioned in this figure the reader is referred to the web version of the article.)



Fig. 9. Top row: All feature points. Bottom row: Detected AOMs for (a) Seq 4, (b) Seq 5 and (c) Seq 6. In the top row, the number of feature points on an AOM need not be larger
than that outside the AOM (figure best viewed in color). (For interpretation of color mentioned in this figure the reader is referred to the web version of the article.)

Table 2
Comparison with simply checking for stationary centroid

Seq 4 (Fig. 9(a)) Seq 5 (Fig. 9(b)) Seq 6 (Fig. 9(c))

object Sc Lq=Sq object Sc Lq=Sq object Sc Lq=Sq

Ball 6.49 383.64 Person 1 28.38 0.24 Head 5.73 5.26
Train 1.59 103.57 Person 2 25.35 0.004 Arm 13.65 5.40
Calendar 10.80 0.26 Person 3 22.20 0.04 Leg 13.58 2.93
Bg 11.71 4.28 Person 4 8.06 3.14 Bg 18.48 0.04
/ / / Person 5 9.44 0.37 / / /

We calculate the proposed attention measure Lq=Sq and Sc of (33) on the objects for the 3 sequences in Fig. 9. The ground truth AOM(s) are highlighted in bold.
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tially cover five persons. The proposed method again succeeds to
separate them and identify the person followed by the camera.
Although the assumption in this paper was of rigid body motion,
we also experimented the proposed method on articulated motion.
For the walking sideview sequence in Fig. 9(c), the centroids of the
arm and the leg and also the centroids of their motion are not sta-
tionary. Here the joints of the shoulder and the knee are followed
by camera and the rotation motions around them satisfy the spe-
cial structure of the motion matrix M. The algorithm returned three
AOMs corresponding to the three ‘‘rigid body motions” of the head
(red), an arm (green) and a leg (yellow). All three AOMs cover the
whole walking person followed by the camera.

To compare the proposed AOM detection method with the sim-
ple check for stationary centroid, we compare the proposed mea-
sure Lq=Sq and the following measure for the stationary of object
centroid.

ScðX; YÞ ¼ stdðXÞ þ stdðYÞ ð33Þ

where std denotes the standard deviation. From Table 2, we can see
the proposed method is much more discriminant than the simple



Fig. 10. Detection of AOM with partial occlusion over a very short interval (6 frames). First row shows 3 frames with all feature points and second row shows the detected
feature points belonging to AOM.
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check for stationary of centroid. Although the Sc of AOM(s) are
smaller than that of other objects which are not AOM, the fact that
there is no optimal threshold to separate AOM(s) from others will
degrade the AOM detection. For example, only the train will be de-
tected as an AOM while the ball will be missed for Seq 4. Similarly,
both arm and leg part will be missed in Seq 6. For Seq 5, another
person (person 5—the lady in left bottom part) which is not an
AOM will be wrongly detected as an AOM. However, it is clear that
the proposed method can well separate AOM from others according
to the attention values of Lq=Sq for all these 3 sequences.

We also conduct an experiment to evaluate the ability of the
proposed method to detect AOM in a very short time interval
and to handle partial occlusion that changes over time. In Fig. 10,
we show 3 frames from a short sequence of only 6 frames where
the body of the monkey (which is the AOM) is partially occluded.
The occlusion changes over time. Due to the discriminating power
of the algorithm, the AOM can be detected over such very small
intervals. From the results, we can see that the proposed algorithm
can detect the feature points on the monkey’s head as part of the
AOM, while ignoring those in the occluded parts and in the
background.

6. Conclusion

In this paper, we have introduced the concept of attention ob-
ject in motion, which is the object that the cameraman wishes to
focus on. Then we define the problem of attention-from-motion
that extracts AOMs from an image sequence. We propose the fac-
torization of measurement matrix to describe a dynamic scene
where a moving camera observes a moving object. Based on this
factorization, we analyze the special structure in the motion matrix
of single AOM and propose a method to estimate the existence of
such structure without complete factorization. Finally, we describe
an iterative framework to detect multiple AOMs by integrating
shape space and motion space as well as voting scheme.

The proposed algorithm provides a robust framework for iden-
tifying multiple AOMs. The analysis of structure in the motion ma-
trix of an AOM from factorization enables the detection of AOM(s)
when only partial data is available due to occlusion and over-seg-
mentation, a partial observation of complete object motion, or a
special following pattern where the centroid of object is not sta-
tionary. Without recovering the motion of either object or camera,
the proposed method can detect AOM robustly from any combina-
tion of camera motion and object motion, even for degenerate mo-
tion. For multiple AOMs, partial groups of individual objects can be
robustly extracted. This framework can be extended to the entire
family of affine camera models.
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