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Abstract

We formulate the problem of salient region detection in
images as Markov random walks performed on images rep-
resented as graphs. While the global properties of the image
are extracted from the random walk on a complete graph,
the local properties are extracted from a k-regular graph.
The most salient node is selected as the one which is glob-
ally most isolated but falls on a compact object. The equi-
librium hitting times of the ergodic Markov chain holds the
key for identifying the most salient node. The background
nodes which are farthest from the most salient node are
also identified based on the hitting times calculated from
the random walk. Finally, a seeded salient region identifi-
cation mechanism is developed to identify the salient parts
of the image. The robustness of the proposed algorithm is
objectively demonstrated with experiments carried out on a
large image database annotated with ’ground-truth’ salient
regions.

1. Introduction
Visual attention is the mechanism by which a vision sys-

tem picks out relevant parts of a scene. In the case of the hu-
man visual system (HVS), the brain and the vision system
work in tandem to identify the relevant regions. Such re-
gions are indeed the salient regions in the image. Detection
of salient regions can be effectively utilized to automatic
zooming into ‘interesting’ regions [3] or for automatic crop-
ping of ‘important’ regions in an image [14, 15]. Object
recognition algorithms can use the results of saliency detec-
tion, which identifies the location of the object as a pop-out
from other regions in the image. Salient region detection
also reduces the influence of cluttered background and en-
hances the performance of image retrieval systems [17].

One of the early attempts made towards detecting visual
attention regions in images is the bottom-up method pro-
posed by Itti et al [10] focusing on the role of color and
orientation. Itti et al. use a center-surround difference oper-
ator on Red-Green and Blue-Yellow colors that imitate the

color double opponent property of the neurons in receptive
fields of human visual cortex to compute the color saliency
map. The orientation saliency map is obtained by consid-
ering the local orientation contrast between centre and sur-
round scales in a multiresolution framework. Walther and
Koch extended Itti’s model to infer the extent of a proto-
object from the feature maps in [16], leading to the creation
of a saliency toolbox.

Researchers have also attempted to define saliency based
on information theory. A self-information measure based
on local contrast is used to compute saliency in [2]. In [5], a
top-down method is described in which saliency is equated
to discrimination. Those features of a class that discrimi-
nate it from other classes in the same scene are defined as
salient features. Gao et al. extend the concept of discrim-
inant saliency to bottom-up methods inspired by ‘center-
surround’ mechanisms in pre-attentive biological vision [6].
Liu et al. locate salient regions with a bounding box ob-
tained by learning local, regional and global features using
conditional random fields [12]. They define a multi-scale
contrast as the local feature, center-surround histogram as
the regional feature and color spatial variance as the global
feature.

The role of spectral components in an image to detect
saliency has been explored in [18] in which the gist of the
scene is represented with the averaged Fourier envelope
and the differential spectral components are used to extract
salient regions. This method works satisfactorily for small
salient objects but fails for larger objects since the algorithm
interprets the large salient object as part of the gist of the
scene and consequently fails to identify it. In [8], Guo et al.
argue that the phase spectrum of the Fourier transform of the
image is more effective and computationally more efficient
than the spectral residue (SR) method of [18]. In [11], Kadir
et al. consider the local entropy as a clue to saliency by
assuming that flatter histograms of a local descriptor corre-
spond to higher complexity (measured in terms of entropy)
and hence, higher saliency. This assumption is not always
true since an image with a small smooth region (low com-
plexity) surrounded by a highly textured region (high com-
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plexity) will erroneously result in the larger textured region
as the salient one.

In this paper, we consider the properties of random walks
on image graphs and its relationship to saliency in images.
Previous works on detecting salient regions from images
represented as graphs include [4] and [9]. In [4], Costa
presents two models in which random walks on graphs en-
able the identification of salient regions by determining the
frequency of visits to each node at equilibrium. While some
results are presented on only two synthetic images, there
is no evaluation of how the method will work on real im-
ages. A similar approach in [9] uses edge strengths to rep-
resent the dissimilarity between two nodes; the strength be-
tween two nodes decreases as the distance between them in-
creases. Here, the most frequently visited node will be most
dissimilar in a local context. A major problem when look-
ing for local dissimilarities of features is that cluttered back-
grounds will yield higher saliencies as such backgrounds
possess high local contrasts. The proposed method differs
from that in [9] in the following way. We evaluate the ‘iso-
lation’ of nodes in a global sense and identify nodes cor-
responding to ‘compact’ regions in a local sense. A robust
feature set based on color and orientation is used to create
a fully connected graph and a k-regular graph to model the
global and local characteristics, respectively, of the random
walks. The behavior of random walks on the two separate
graphs are used to identify the most salient node of the im-
age along with some background nodes. The final stage of
seeded salient region identification uses information about
the salient and the background nodes in an accurate extrac-
tion of the salient part in the image. Lastly, it is to be noted
that the main objective in [9] is to predict human fixations
on natural images as opposed to identifying salient regions
that correspond to objects, as illustrated in this paper.

The remainder of the paper is organized as follows.
Section 2 reviews some fundamental properties of ergodic
Markov chains. Section 3 details the feature set used to cre-
ate the graphs and presents the analysis of random walks on
global and k-regular graphs. Further in Section 4 we de-
scribe the method of finding the most salient node and the
background nodes based on Markov random walks. Section
5 describes the method for seeded salient region extraction.
Experimental results are presented in Section 6 and conclu-
sions are given in Section 7.

2. Ergodic Markov chain fundamentals
In this section, we review some of the fundamental re-

sults from the theory of Markov chains [1], [7], [13].
A Markov chain having N states is completely specified

by theN×N transition matrix P, where pij is the probabil-
ity of moving from state i to state j and an initial probability
distribution on the states. An ergodic Markov chain is one
in which it is possible to go from every state to every state,

not necessarily in a single step. A Markov chain is called a
regular chain if some power of the transition matrix has only
positive elements. Hence every regular chain is ergodic but
the converse is not true. In this paper, the Markov chains
are modeled as ergodic but not necessarily regular.

A random walk starting at any given state of an ergodic
Markov chain reaches equilibrium after a certain time; this
means that the probability of reaching a particular state from
any state is the same. This equilibrium condition is char-
acterized by the equilibrium probability distribution of the
states, π , which satisfies the relation

π.P = π (1)
where π is the 1×N row vector of the equilibrium probabil-
ity distribution ofN states in the Markov chain. In fact, π is
the left eigen vector of the stochastic matrix P correspond-
ing to the eigenvalue one and hence is easy to compute.

The matrix W is defined as the N × N matrix obtained
by stacking the row vector π, N times. For regular Markov
chains, W is the limiting case of the matrix Pn as n tends
to infinity. The fundamental matrix Z of an ergodic Markov
chain is defined as

Z = (I− P + W)−1 (2)

where I is theN ×N identity matrix. The fundamental ma-
trix Z can be used to derive a number of interesting quan-
tities involving ergodic chains including the hitting times.
We define Ei(Ti) as the expected number of steps taken to
return to state i if the Markov chain is started in state i at
time t = 0. Similarly, Ei(Tj) is the expected number of
steps taken to reach state j if the Markov chain is started in
state i at time t = 0. Ei(Tj) is known as the hitting time
to state j from state i. Eπ(Ti) is the expected number of
steps taken to reach state i if the Markov chain is started in
the equilibrium distribution π at time t = 0, i.e., the hitting
time to state i from the equilibrium condition is Eπ(Ti).

The three quantities Ei(Ti), Ei(Tj) and Eπ(Ti) can be
derived from the equilibrium distribution π and the funda-
mental matrix Z as [1]

Ei(Ti) =
1
πi

Ei(Tj) = Ej(Tj)× (Zjj − Zij)
Eπ(Ti) = Ei(Ti)× Zii (3)

where πi is the ith element of the row vector π and Zii, Zjj ,
Zij are the respective elements of the fundamental matrix Z.
For detailed proofs of the results in eq. (3), please refer to
[1].

3. Graph representation
We represent the image as a graph G(V,E), where V is

the set of vertices or nodes and E is the set of edges. The
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vertices (nodes), v ∈ V , are patches of size 8 × 8 on the
image while the edges, e ∈ E, represent the connection
between the nodes. An edge between node i and node j is
represented as eij , while w(eij) or simply wij represents
the weight assigned to the edge eij based on the similarity
between the feature set defined on node i and node j.

The important roles played by color and orientation in
deciding the salient regions in an image has been well doc-
umented [10]. Hence, we consider these two features to be
defined on each node. The image is represented in YCbCr
domain and the Cb and Cr values on each node are taken
as the color feature. The motivation for choosing YCbCr is
that is perceptually uniform and is a better approximation
of the color processing in the human visual system. As for
orientation, we consider the complexity of orientations in
a patch than the orientations itself. As stated in section 1,
a salient region can be highly textured or smooth and the
saliency is indicated by how its complexity is different with
respect to the rest of the image. Hence, it is more useful
to consider the contrast in complexity of orientations and to
this end, we propose a novel feature derived from the orien-
tation histogram entropy at different scales. Recall that in
[11], only the local entropy is computed. We calculate the
orientation histogram of the local patch and the complexity
of the patch is calculated as the entropy of histogram. The
orientation entropy EP of the patch (or node in the graph)
P having the orientation histogram HP is calculated as

EP = −
∑
i

HP (θi) logHP (θi) (4)

where HP (θi) is the histogram value of the ith orienta-
tion bin corresponding to the orientation θi. We calcu-
lated the orientation entropy at five different scales ρi ∈
{0.5, 1, 1.5, 2, 2.5} to capture the multi-scale structures in
the image. The scale space is generated by convolving the
image with Gaussian masks derived from the five scales.
When we consider the orientation complexity at different
scales, the dependency of the feature set on the selected
patch size is reduced. Hence, the seven dimensional vector
x = [Cb,Cr,Eρ1...ρ5 ] represents the feature vector associ-
ated with a node on the graph. Here Cb and Cr are calcu-
lated as the average values over the 8 × 8 image patch and
Eρi represents the orientation entropy calculated at scale ρi.

The weight wij of the edge connecting node i and node
j is

wij = e
−||(xi−xj ||

2

σ2 . (5)

where xi and xj are the feature vectors attributed to node i
and node j respectively. The value of σ is fixed to unity in
our experiments.

In the proposed framework, the detection of salient re-
gions is initiated by the identification of the most ‘salient’
node in the graph. In doing so, we wish to incorporate both

global as well as local information into salient node identifi-
cation mechansim. Clearly, such a technique is better com-
pared to considering either global or local information only.
The image is represented as a fully connected (complete)
graph and a k-regular graph to capture the global and local
characteristics, respectiely, of the random walk. In the com-
plete graph, every node is connected to every other node so
that there is no restriction on the movement of the random
walker as long as the strength of the edge allows it. Hence, it
is possible for the random walker to move from one corner
of the image to the other corner in one step depending on
the strength of the edge strength between the nodes. Spatial
neighborhood of the nodes is given no preference and this
manifests the global aspect of features in the image. The
N ×N affinity matrix, Ag , that captures the global aspects
of the image features is defined as

Agij =
{
wij , i 6= j
0, i = j.

(6)

The degree dgi of a node i, is defined as the sum of all
weights connected to node i and the degree matrix Dg is
defined as the diagonal matrix with the degrees of the node
in its main diagonal, i.e.,

dgi =
∑
j

wij ,

Dg = diag {dg1, d
g
2...d

g
N} . (7)

The transition matrix for the random walk on the fully
connected graph, Pg , is given as

Pg = Dg−1
Ag. (8)

The equilibrium distribution πg and the fundamental matrix
Zg can be obtained from the transition matrix Pgaccording
to equations (1) and (2). This leads to the computation
of the hitting times of the complete graph, viz., Egi (Ti),
Egi (Tj) and Egπ(Ti), according to equation (3).

The characteristics of the features in a local area in the
image are encoded into the k-regular graph where every
node is connected to k other nodes. We choose a particular
patch and the 8 patches in its spatial neighborhood to study
the local properties of the random walk so that k = 8. Thus,
the random walker is restricted to a local region in the image
while its path is determined by the features in that region. In
this configuration, therefore, a random walker at one corner
of the image cannot make jump to the opposite corner, but
has to traverse through the image according to the strengths
of the edges. Such random walks capture the properties of
the local features of the image. The N ×N affinity matrix,
Al, that captures the local aspects of the image features is
defined as

Alij =
{
wij , j ∈ N(i)
0, otherwise

(9)
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where N(i) denotes the nodes in the spatial neighborhood of
node i. The degree matrix Dl and the transition matrix Pl
of the k-regular graph can be obtained from the affinity ma-
trix Al similar to equations(7) and (8). Further we calculate
the equilibrium distribution πl, fundamental matrix Zl and
the hitting times Eli(Ti), Eli(Tj), Elπ(Ti) for the k-regular
graph in a similar manner as that for the complete graph.

4. Node selection
Having represented the image as a graph, the next task

is to identify the node that corresponds to a patch that most
likely belongs to the salient region of the image - this node
is called the most salient node. The selection of the most
salient node is based on the hitting times of the random
walker computed on both the complete graph as well as the
k-regular graph. This is followed by identification of a few
nodes that correspond to the background of the image. The
most salient node and the background nodes together enable
a seeded extraction of the salient region.

4.1. Most salient node

The most salient node in the image should globally pop-
out in the image when compared to other competing nodes.
At the same time it should fall on a compact object in the
image in some local sense. The global pop-out and com-
pactness properties are reflected in the random walks per-
formed on the complete graph and the k-regular graph, re-
spectively. When a node is globally a pop-out node, what it
essentially means is that it is isolated from the other nodes
so that a random walker takes more time to reach such a
node. On the other hand, if a node is to lie on a compact
object, a random walker should take less time to reach it on
a k-regular graph. We now elaborate on these concepts.

We calculate the global isolation of a node by the time
taken to access the node when the Markov chain is in equi-
librium. In [9], Harel et al. identify the most frequently
visited node as the most salient node. This is directly mea-
sured from πi or from the first return time Ei(Ti) and it
characterizes the dissimilarity of the node in a local sense,
i.e., their activation map encodes how different a particu-
lar location in the image is, compared to its neighborhood.
As mentioned earlier, we believe that the isolation of a node
should be computed in the global sense and hence, the mea-
sure in [9] will not characterize the global isolation of node
i. A better characterization will be by the sum of hitting
times from all other nodes to node i on a complete graph,
i.e.,

Hi = ΣjE
g
j (Ti). (10)

Since the edge strengths represent the similarity between
nodes, a higher value of Hi indicates higher global isola-
tion of the node. However, in the computation of Hi, the
hitting times from all the other nodes to node i are given

equal preference. The measure can be further improved if
the hitting times from the most frequently visited nodes are
given priority over hitting times from less frequently visited
nodes. This property is inherent in Egπ(Ti), which is the
time taken to access the node iwhen the Markov chain starts
from equilibrium. The equilibrium distribution directly de-
pends on the frequency of access to different nodes, and
hence Egπ(Ti) gives priority to hitting times from most fre-
quently visited nodes over hitting time from less frequently
visited nodes. Hence, the gloal isolation of a node is mea-
sured by Egπ(Ti).

Next, we ensure that the most isolated node falls on a
compact object by looking at the equilibrium access time of
nodes in the k-regular graph. The local random walk un-
der Markov equilibrium will reach the nodes corresponding
to compact structures faster as it is guided by strong edge
strengths from the neighborhoods. Hence a low value of lo-
cal random walk equilibrium access time, Elπ(Ti) ensures
that the respective node falls on a compact surface. Consid-
ering both the global and local aspects, saliency of node i,
NSali, is defined as

NSali =
Egπ(Ti)
Elπ(Ti)

. (11)

The most salient node can be identified as the node that
maximizes NSali, i.e.,

Ns = arg maxi NSali. (12)

Figure 1 compares the detection of the most salient node be-
tween [9] and the proposed method.While the method in [9]
generates fixations produced on the image by the algorithm,
for comparison with our method, we use their definition of
the least visited node indicated by the first return time of
the random walk as the most salient node. However, it must
be noted that in [9], the edge strengths represent the dissim-
ilarity between nodes as opposed to similarity in our case.
Hence, it turns out that the random walker’s most frequently
visited node in [9] is actually the least frequently visited
node using our definition of edge strength. Figures 2(a) and
2(c) show some more example images from the database
and figures 2(b) and 2(d) show the most salient node marked
with a red region in the respective images.

4.2. Background nodes

After identifying the most salient node in the image we
move on to identify certain nodes in the background. This
is to facilitate the extraction of the salient regions using the
most salient node and the background nodes as seeds. The
most important feature of a background node is obviously
the less saliency of the node as calculated from equation
(11). Moreover, the background nodes have the property
that it is at a large distance from the most salient node, Ns.
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(a) (b) (c)
Figure 1. Comparison of [9] and proposed method for detection
of most salient node. (a) Original images, (b) most salient node
detected by proposed method and (c) most salient node detected
by [9].

(a) (b) (c) (d)
Figure 2. Detection of the most salient node. (a, c) Original images
and (b, d) Most salient node spotted with the red region.

The distance from node Ns to some node j is measured as
the hitting time, EgNs(Tj), which is the average time taken
to reach node j if the random walk starts from nodeNs. We
use the complete graph to calculate the hitting times since a
global view of the image has to be taken in order to identify
the background. Hence the first background node, Nb1, is
calculated as

Nb1 = arg maxj
EgNs(Tj)
NSalj

(13)

The background in an image is, more often than not, in-
homogeneous, e.g. due to clutter or due to regions hav-
ing different feature values. In the cat image in figure 2(c),
for example, the background consists of regions with differ-
ent colors. Our goal is to capture as much of these varia-
tions as possilbe by locating at least one background node
in each of such regions. Hence, while maximizing the dis-
tance of a node to the maximum salient node, we impose
an additional condition of maximizing the distance to all
background nodes identified so far. This will ensure that
the newly found background node falls on a new region.
Even if there are no multiple backgrounds, i.e. the back-
ground is relatively homogeneous, the algorithm will only

place the new node in the same background region. This
does not affect the performance of the algorithm. Thus, the
nth background node, Nbn, is identified as

Nbn = arg maxj
EgNs(Tj).E

g
Nb1

(Tj)....E
g
Nb(n−1)

(Tj)

(NSalj)n
(14)

The above equation can be viewed as a product of n terms,
where each term is of the form Egα(Tj)

NSalj
. In our experiments

the value of n is fixed to 4 but it can be increased to im-
prove the accuracy of the algorithm at the cost of increased
computational complexity.

(a) (b) (c) (d)

Figure 3. Detection of the background nodes. (a, c) Original im-
ages and (b, d) background node spotted with the green region.

Figure 3 shows examples of the background nodes as
green spots extracted using the proposed method. The most
salient node is also marked by the red spot. As expected, the
background nodes are pushed away from the most salient
node as well as from the previous background nodes that
are detected. We note that the background nodes are placed
such that they represent as much of the inhomogeneity in
the background as possible. For example in the first row of
Figure 3(d), the background nodes are placed in the fore-
ground water area, the tree and the sky regions in the orig-
inal image shown in the first row of figure 3(c). Similar
observations can be made for the rest of the images.

5. Seeded salient region extraction
The identification of the most salient node and the back-

ground nodes enables the extraction of the salient regions.
The most salient node and the background nodes act as
seeds and the problem now is to find the most probable seed
that can be reached for a random walk starting from a par-
ticular node. In other words, we need to determine the seed
with the least hitting time when the random walker starts
from a particular node. If the hitting time from a node to
the most salient node is less compared to hitting times to all
the background nodes, then that node is deemed to be part
of the salient object. This process is repeated for the rest of
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the nodes in the graph so that at the end of the process, the
salient region is extracted.

In the above process, it might seem obvious that the ran-
dom walk should be performed at a global level. However,
in a global random walk it may turn out that a node that is
far from a salient node in the spatial domain, but close to
it in the feature domain (as indicated by the edge weights)
may be erroneously classified as belonging to the salient re-
gion. On the other hand, a local random walk may treat a
background region that is spatially close to a salient node as
part of the salient object, since the random walk is restricted
to a smaller area. Hence, we propose a linear combination
of the global and local attributes of a random walk by defin-
ing a new affinity matrix for the image given by

Ac = λ×Ag +Al. (15)

where Ac is the combined affinity matrix and λ is a con-
stant that decides the mixing ratio of global and local matri-
ces. The values of the equilibrium distribution πc, the fun-
damental matrix Zc, the hitting times Eci (Ti), Eci (Tj), and
Ecπ(Ti), follow from the definition of the combined affin-
ity matrix as described in section 3. A particular node k
is regarded as part of the salient region if the hitting time,
Eck(TNs) to the most salient node Ns is less than the hitting
times to other background nodes Nb1 ,Nb2,...and Nbn. We
fix the value of λ to 0.05 in our experiments.

6. Experimental results
The experiments are conducted on a database of about

5,000 images available from [12]. The database used in this
work contains the ground truth of the salient region marked
as bounding boxes by nine different users. The median of
the nine boxes is selected as the final salient region.

We have shown some results of identifying the most
salient node in Figure 2. In order to evaluate the robustness
of the detection of the most salient node, we calculate the
percentage of images in which it falls on the user annotated
salient object. On a database of 5000 images, we obtained
an accuracy of 89.6%.

Figure 4 shows examples of the saliency map extracted
using the proposed algorithm. Figure 4(a) shows the orig-
inal images and figure 4(b) shows the most salient node
marked as the red region in the respective images. The re-
sult of the seeded salient region extraction is shown in figure
4(c). Note that we directly obtain a binary saliency map un-
like previous methods like [10],[12] and [18], in which a
saliency map has to be thresholded to obtain the bounding
box. In our case, since the saliency map is already binary,
the bounding box to denote the salient region can be easily
obtained.

In Figure 5, we show further examples of the proposed
salient region extraction algorithm with the salient image

marked with a red bounding box. The original images are in
figures 5(a) and 5(c) and the corresponding salient regions
are marked in figures 5(b) and 5(d). The final bounding
box over the salient region can be used in applications like
cropping and zooming for display on small screen devices.

(a) (b) (c)
Figure 4. Results of seeded salient region extraction. (a) Original
image (b) Most salient node marked with a red spot (c) The final
binary saliency map.

We also show some failure examples of the proposed
method for salient region detection in Figure 6. The un-
derlying reason for the failures seem to be the similarity of
features on the salient object with the background which af-
fects the random walk, e.g., the branches and the bird in
the first row and the fish and the rock in the second row.
However, as noted earlier, the general framework of the al-
gorithm allows for more robust features to be utilized. In
the third row, the features caused the building in the back-
ground to be detected as the salient region; however, this
failure has opened up the question of what effect, if any,
does depth have on sailency since it is evident that there is
a large variation in the depth field of the image.

6.1. Comparison with other saliency detection
methods

We have compared the saliency map of the proposed
random walk based method with the saliency maps gener-
ated by the saliency toolbox (STB)[10], the spectral resid-
ual method based on [18] and the phase spectrum based on
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(a) (b) (c) (d)
Figure 5. Bounding box on salient region. (a, c) Original images
and (b, d) Red bounding box over the salient region.

(a) (b) (c)
Figure 6. Failure examples. (a) Original image, (b) most salient
node and (c) the corresponding bounding box.

[8]. The evaluation of the algorithms is carried out based
on Precision, Recall and F-Measure. Precision is calcu-
lated as ratio of the total saliency, i.e., sum of intensities
in the saliency map captured inside the user annotated rect-
angle to the total saliency computed for the image. Recall
is calculated as the ratio of the total saliency captured inside
the user annotated window to the area of the user annotated
window. F-Measure is the overall performance measure-
ment and is computed as the weighted harmonic mean be-

tween the precision and recall values. It is defined as

F -Measureα =
(1 + α).P recision.Recall
(α.Precision+Recall)

, (16)

where α is real and positive and decides the importance of
precision over recall. While absolute value of precision di-
rectly indicates the performance of the algorithms compared
to ground truth, the same cannot be said for recall. In com-
puting recall, we compare the saliency on the area of the
salient object inside the user bounding box to the area of the
user bounding box. However, the salient object need not al-
ways fill the user annotated bounding box completely. Even
so, the calculation of recall allows us to compare our algo-
rithm with other algorithms. Under these circumstances, the
improvement in precision is of primary importance. There-
fore, while computing the F-measure, we weight precision
more than recall by assigning α = 0.3.

As noted, the intensities of the saliency map are used in
the computation of precision and recall, The final saliency
maps obtained in our case and in the salient tool box are
binary; however, in the spectral residue method and in the
phase method, the saliency maps are not binary. We com-
pare the proposed method with the other methods in two
ways - in the first method, we do not binarize the saliency
maps of the spectral residue and phase methods. Figure 7(a)
shows the precision, recall and F-measure marked as 1, 2
and 3 on the x-axis, respectively, for the proposed method
as well as for the other methods. In the second method, we
binarize the saliency maps of the spectral residue and phase
spectrum method using Otsu’s thresholding technique, so
that the effect of intensity values is applied equally on all
the saliency maps. Figure 7(b)shows the results in this lat-
ter case. The precision and recall values and hence the f-
measure of the spectral residue and phase spectrum methods
have increased although the proposed method still outper-
forms the rest. In any case, the advantage of our approach
is that we directly obtain the binary saliency map without
requiring a thresholding stage. The recall of all the methods
has low values due to the reason explained in the previous
paragraph.

7. Discussion and Conclusion
It is observed that the detection of the most salient node

in the proposed random walk is quite robust. This could
be effectively used for zooming, where the co-ordinate of
the zoom fixation is directly available from the most salient
node. The background node detection also performs quite
well unless the image has a complex background consisting
of many regions. In such cases a consensus on salient region
is in any case difficult. The main limitation of the proposed
work is in determining the mixing ratio of the local and the
global affinity matrices to facilitate seeded salient region ex-
traction. Currently, the ratio is empirically decided to give
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(a) (b)
Figure 7. Comparison of precision, recall and f-Measure values of Spectral Residual Method [18], Saliency Tool Box [10], Phase spectrum
method [8] and the proposed method. Horizontal axis shows 1) Precision 2) Recall 3) F-Measure. (a) Without binarizing (b) After
binarizing saliency maps of [18] and [8].

best results on the test data base. However, a more reliable
way would be to employ image-specific mixing ratios based
on certain properties of the random walk.

We have presented an algorithm to extract salient regions
in images through random walks on a graph. It provides a
generic framework that can be enriched with more robust
feature sets. The proposed method captures saliency us-
ing both global and local properties of a region by carry-
ing out random walks on a complete graph and a k-regular
graph, respectively. This also allows computations for both
types of features to be similar in the later stages. The ro-
bustness of the proposed framework has been objectively
demonstrated with the help of a large image data base and
comparisons with existing popular salient region detection
methods demonstrate its effectiveness.
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