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ABSTRACT
We propose a new algorithm called the ZGPCA algorithm for
subspace estimation based on the GPCA (Generalized Princi-
pal Component Analysis) algorithm. It is formulated within
an FIR filter framework so that the norm vectors of the sub-
spaces correspond to filter coefficients. It is shown that such
an approach leads to a more accurate and computationally ef-
ficient method compared to the GPCA algorithm. We extend
the ZGPCA algorithm to make it recursive so that subspaces
with possibly different dimensions can be obtained. We also
propose a new distance measure that can be used for k-means
clustering of sample points within a subspace. Experimen-
tal results on synthetic data and applications on face cluster-
ing and sports video clustering show good performance of the
proposed algorithm.

1. INTRODUCTION

Subspace estimation is a useful tool in many applications such
as face recognition [1] and object tracking [2]. Several algo-
rithms to estimate the underlying subspace from data have
been proposed recently, e.g. K-subspace estimation [3] and
EM algorithms for probabilistic principal component analysis
[4]. The iterative nature of these algorithms lead to very high
computational complexity when the data set is large. More-
over, the performance of these algorithms depend largely on
their initialization parameters. Poor initialization could cause
the optimization process to get trapped in a local optimum
and result in slow convergence.

Vidal et al. [5] propose an algebraic geometric approach
to subspace estimation called GPCA. The linear subspaces
are represented as a set of polynomials and an iterative poly-
nomial factorization algorithm (PFA) is developed to compute
the norms of the subspaces. In [6], they propose another al-
gorithm to compute the norm vectors which are derived by
evaluating the polynomial derivatives at samples in the sub-
spaces.

In this paper, we propose a new subspace estimation algo-
rithm, called ZGPCA, based on GPCA by recasting the prob-
lem within an FIR filter framework. In doing so, we reduce
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the problem to determining the filter coefficients, which in-
deed turn out to be the norm vectors of the subspaces. This is
shown to be computationally more efficient and also more ac-
curate in the presence of noise. We extend the FIR filter based
ZGPCA algorithm to achieve the same objective as in [6], i.e.,
to estimate multiple subspaces of unknown and possibly dif-
ferent dimensions. However, it is done in a very simple and
intuitive manner using a process of recursion that provides
explicit control of the dimensionality of the subspaces to be
extracted.

The paper is organized as follows. In section 2, we review
the GPCA algorithm. The proposed ZGPCA algorithm is de-
scribed in section 3. The recursive extension of the ZGPCA
algorithm and a new distance measure for k-means cluster-
ing are described in section 4. The experimental results are
presented in section 5 and section 6 presents conclusions.

2. REVIEW OF GPCA ALGORITHM

In this section, we review the GPCA algorithm as described in
[5]. Consider sample data points {xj ∈ RK}, j = 1, 2, . . . , N ,
drawn from m k-dimensional (k < K) linear subspaces of
RK , {Si}, i = 1, . . . , m. When the subspace has dimension-
ality of k = K − 1, every (K − 1) dimensional space Si

in RK can be represented by a nonzero normal vector {bi}
in RK as Si = {x ∈ RK : bT

i x = 0}. Since the sub-
spaces Si are all distinct from each other, the norm vectors
{bi}, i = 1, · · · , m, are pairwise linearly independent. If
every sample point x in RK lies on one of the subspaces
Si, they satisfy the homogeneous polynomial of degree m
in x with real coefficients pm(x) =

∏m
i=1(b

T
i x) = 0. This

nonlinear equation can be linearized according to pm(x) =
νm(x)T c =

∑
Cn1,n2,··· ,nK xn1

1 xn2
2 · · ·xnK

K = 0 where ν :
[x1, · · · , xK ]T −→ [· · · , xn1

1 xn2
2 · · ·xnK

K , · · · ]T , is called a
Veronese map and xn1

1 xn2
2 · · ·xnK

K is a monomial with ni’s
arranged in degree-lexicographicorder. Also, n1+· · ·+nK =
m, nj ≥ 0, j = 1, · · · , K . The coefficients Cn1,n2,··· ,nK

are functions of the entries in {bi}, i = 1, · · · , m and they
form the coefficient vector c. The nonlinear Veronese map
maps the original data {xp}, p = 1, 2, · · · , N of dimension
K into an embedded data space of higher dimension Mm =



(
m + K − 1

K − 1

)
. The problem of GPCA is then to recover

{bi}, given the coefficient vector c of the polynomial pm(x).
The unknown number of subspaces can be determined

from the rank of the Veronese map matrix Lm of the form
[νm(x1)T

, νm(x2)T
, · · · , νm(xN)T ]T . Given the sample points

xp, c is obtained by solving the set of linear equations [5],
Lmc = [νm(x1)T νm(x2)T · · · νm(xN )T ]T c = 0, where
N is the number of sample points. The remaining problem
is to factorize the polynomial pm(x) with coefficient vector c
to determine the subspace norm vectors {bi}, i = 1, · · · , m.
The authors describe a polynomial factorization algorithm in
which the norm vectors are factorized out from the Veronese
map coefficient vector in an iterative manner.

3. THE ZGPCA ALGORITHM

The main thrust of the proposed ZGPCA algorithm is on an
efficient and accurate computation of the norm vectors bi

from the Veronese map coefficient vector c.
We note that the number of degrees of freedom (DoF) for

c is

(
m + K − 1

m

)
, while that for bi is m(K − 1) + 1,

where K is the dimension of the space and m is the number
of subspaces. For a 6D video signal (x, y, t, r, g, b), to ex-
tract m = 3 subspaces, there are 56 DoF for c and 16 for b.
Hence, it is not suitable to compute bi from c directly. We
consider bi to be FIR filter coefficients that need to be de-
termined. Rewriting pm(x) as

∏m
i=1(bi,0x0 + bi,1x1 + · · · +

bi,K−1xK−1) = 0 leads to the linear filter system shown in
Figure 1. The transfer function H(z) of the filter is obtained
as H(z) =

∏m
i=1(bi,0 + bi,1z

−1 + · · · + bi,K−1z
−(K−1)).

If the input x(n) to the filter is a Dirac delta function, the
output vector y is of length 1 + m(K − 1), which is same
as the number of DoF for bi. We now show that y is re-
lated to the Veronese map coefficient vector c of size cm,
through a sparse transformation matrix R, i.e., y = R × c.
The elements of the matrix denote whether a particular co-
efficient Cn1,n2,··· ,nK contributes to the output y(n). This
can be ascertained through the product [n1 n2 . . . nK ] ×
[0 1 . . . K−1]T , i.e., for every column j in R, R(i, j) = 1 if
i = [n1 n2 . . . nK ] × [0 1 . . . K − 1]T and is 0, otherwise.

To illustrate the above idea, consider the example shown
in Figure 2 in which two subspaces are represented by the
vectors b1 = 1√

62
[6,−5, 1]T , b2 = 1√

3
[1,−1, 1]T . The

polynomial is obtained as p(x) = 1√
62

1√
3
(6x2

1 − 11x1x2 +
5x2

2 + 7x1x3 − 6x2x3 + x2
3). The coefficient vector c =

[c200, c110, c020, c010, c011, c002]T and R is shown in the
figure, e.g., for column 3, i = [0 2 0] × [0 1 2]T = 2, and
hence R2,2 = 1.

For delta input, y(z) =
∏m

i=1 bi(z) and the zeros of y(z)
and bi are the same. The number of zeros for y(z) is m(K −
1) since y(n) is of length 1 + m(K − 1). Similarly, each
arm of the FIR filter bi (which corresponds to a subspace)
has K taps requiring it to have K − 1 zeros. Hence, the total
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Fig. 1. FIR filter formulation for subspace estimation.

number of zeros for the FIR filter with m arms is m(K − 1),
which is the same as that for y(z). Therefore, factoring out
the subspaces bi, it is more prudent to use y(z) rather than
the Veronese coefficient map vector c.

Since the FIR filter with m arms shares the zeros with
y(z) exactly, we can solve for the norm vector bi by finding
an optimal grouping of the zeros of y(z) into m groups of
(K − 1) zeros each such that an error function is minimum
over all possible groupings. In the current implementation,
we use full search to determine the optimal grouping of ze-
ros since the dimension of the space (K) and the number of
subspaces (m) are much smaller than the number of sample
points (N ). The computational cost of grouping zeros is neg-
ligible compared to the cost of solving the large linear system,
Lmc = 0, for the Veronese coefficient map vector c. In addi-
tion to the fact that the transformation of c into y(z) facilitates
the recovery of bi from a space with the same number of free
parameters as bi, it also eliminates the problem of error prop-
agation in the PFA algorithm, thus making the estimates more
accurate and reliable.

We return to Figure 2 to illustrate the working of the pro-
posed ZGPCA algorithm in its entirety. Here K = 3 and m =
2. The transformation of c with 5 degrees of freedom into y
with 4 degrees of freedom matches y with y1 and y2 together
having a total of 4 degrees of freedom. The zeros of y(z)
are grouped into two pairs, viz., (3, 2), (1

2 +
√

3
2 i, 12 −

√
3

2 i).
The estimate of the norm vector b′

1 corresponding to the pair
(3, 2) is obtained from (z − 3)(z − 2) = z2 − 5z + 6 as [6 -5
1]. Similarly, the estimate of the vector b′

2 is obtained from
the conjugate pair of zeros.
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Fig. 2. Example illustration of the ZGPCA algorithm.

4. RECURSIVE ZGPCA

The ZGPCA algorithm determines a set of K − 1 dimen-
sion subspaces in K dimension space. In [6], Vidal et al.,
describe the polynomial differentiation algorithm (PDA) to
extract an unknown number of possibly different dimensions
of subspaces. We achieve the same objective through a re-
cursive ZGPCA algorithm in which the ZGPCA algorithm is
recursively applied to lower dimensional subspaces. The first
step is to find m number of K − 1 dimension subspaces in K
dimensions. Subsequently, each of the K − 1 dimension sub-
spaces is probed for any K−2 dimension subspaces using the
ZGPCA algorithm. In doing so, we evaluate the error in fitting
a K−2 dimension subspace using the following cost function:
ErrK(b1, · · · ,bm) = 1

m·N
∑m

i=1

∑N
j=1 log(bi

T xj). The
sample points are projected onto the closest K − 1 dimension
subspace and the ZGPCA algorithm is used to estimate a set
of K − 2 dimension subspace embedded in the K − 1 dimen-
sion subspace. If the fitting error ErrK−2 − ErrK−1 ≤ α,
the K − 2 dimension subspaces are accepted. α controls the
trade off between the fitting error and the dimension of the
subspaces such that large α favors more subspaces of lower
dimension. In our experiment, α is set to be 1. This recur-
sive decomposition is continued until the fitting error is too
large, which implies that the underlying subspaces have been
found. The proposed recursive ZPGCA algorithm is simpler
and more intuitive than the PDA algorithm described in [6].
Moreover, the dimensionality of the subspaces to be extracted
can be controlled by α.

A synthetic example to extract subspaces using recursive
ZGPCA algorithm is shown in Figure 3. The sample points
lie along two coplanar lines in three dimension (Figure 3(a)).
The Recursive ZGPCA algorithm estimates a plane in 2D sub-
spaces (Figure 3(b)), which is further decomposed into two
lines comprising two 1D subspaces (Figure 3(c)).

Data clustering

Clustering is an unsupervised classification mechanism that
has a variety of applications. In the absence of little or no
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Fig. 3. Illustration of RZGPCA algorithm: (a) Two lines in
3D, (b) extracted 2D subspace and (c,d) extracted 1D sub-
spaces.

prior information about the data, an estimate of the underly-
ing subspace, if any, becomes an effective initialization point
for subsequent clustering. It is important to include the global
configuration of the sample points so that contextual informa-
tion is also incorporated into the clustering procedure. In this
section, we present a new distance measure for data clustering
which incorporates such a fusion of local and global informa-
tion.

After obtaining the set bi of subspaces using the proposed
recursive ZPGCA algorithm, each sample point’s member-
ship in every bi is calculated using a membership function
memj(bi) = exp {−d(xj ,bi)} where d(xj ,bi) is the dis-
tance of the sample xj to the subspace bi calculated by pro-
jecting xj onto bi. The membership values for xj is col-
lected into a membership vector memj and normalized to
unit length. The pairwise distance between samples xi and xj

is then defined using a weighted distance function d(xi,xj) =
(memi −memj)T ·W · (memi −memj) where W is the
weight matrix such that Wij is the principal angle between
subspace i and subspace j. The pairwise distances are used to
perform k-means clustering of all the sample points.

5. EXPERIMENTAL RESULTS

The synthetc data consists of two dimensional points drawn
from R3. We consider m = 2, 3, 4 number of subspaces with
each subspace containing 200 points. Zero mean Gaussian
noise with variance ranging from 1% to 10% of the maxi-
mum signal value is added to the sample points. The estima-
tion of the subspaces is carried out 30 times for each noise
level.Figure 4 shows the variation of average error in estima-
tion as the noise level increases. We compare the ZGPCA al-



0 1 2 3 4 5 6 7 8 9 10
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

PFA
ZGPCA

0 1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

PFA
ZGPCA

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

PFA
ZGPCA

(a) (b) (c)

Fig. 4. Comparison of ZGPCA and PFA algorithms in terms
of error in norm angles v/s noise level for (a) 2, (b) 3, and (c)
4 subspaces in R3.

Table 1. Classification accuracy (%) of face images.
Method F1 F3 F5 F8 F10
PFA 71.9 68.7 89.1 73.4 85.9
ZGPCA 75.0 71.8 92.1 79.7 84.4
ZGPCA+clustering 89.1 81.3 100 84.4 100

gorithm with the PFA algorithm of [7]. For n = 2 subspaces,
the error in estimates at noise level of 10% for the former is
about 0.72 degrees while that for the latter is about 2.57 de-
grees (the y-axis in Figure 4 is in radians). In Figure 4(c), we
see that for n = 3 subspaces, the error of the PFA algorithm
increased dramatically around noise level of 7%, while the er-
ror from the proposed ZGPCA algorithm remains consistent.

Next, we consider the problem of clustering faces under
varying illumination so that each cluster contains faces of the
same person. Since the images of different faces lie on dif-
ferent subspaces [3], we can estimate the basis for each sub-
space using the proposed ZGPCA algorithm. The face im-
ages are chosen from the Yale face database B. There are 320
frontal face images of 5 subjects (1, 3, 5, 8, 10) under 64 dif-
ferent lighting conditions. The face images are rescaled to
size 30 × 40, and projected on to the first 3 principal com-
ponents using PCA, since the number of pixels is large com-
pared to the dimension of the subspaces. We extract five sub-
spaces of two dimensions each. We compare the ZGPCA and
the PFA algorithms by classifying faces to the nearest sub-
space found by the two methods. From Table 1 we see that
the ZGPCA provides higher classification accruacy than the
PFA algorithm for all faces except subject 10. The distance
measure is evaluated by clustering the membership values of
the sample points in each subspace obtained by the ZGPCA
algorithm. The third row in Table 1 shows even higher classi-
fication rate and perfect classification for subjects 5 and 10.

The last experiment considers the problem of sports video
frame clustering with the objective of obtaining a temporal
segmentation of a video sequence. Each frame in a one minute
long sequence of 1500 frames is reduced to size 16 × 16.
The 256 dimension feature vectors are projected into the first
two principal component by PCA. Figure 5(a) shows the 2D

(a) (b)

Fig. 5. (a) Subspaces extracted from video sequence; (b)
Temporal segmentation with representative frames.

plot of the estimated subspaces with corresponding exemplar
frames. The temporal segmentation of the sequence is shown
in Figure 5(b) and the representative frame (the one nearest to
the cluster center) from each segment is also shown.

6. CONCLUSIONS

In this paper, we have proposed an FIR filter based subspace
estimation algorithm based on the GPCA algorithm in which
the filter coefficients are the norm vectors of the subspaces.
Such a framework results in a more accurate and robust es-
timation of subspaces than the GPCA algorithm. Moreover,
the subspaces are estimated directly rather than in an iterative
fashion. We also propose a recursive form of the algorithm to
estimate subspaces with possibly different dimensions. The
experimental results demonstrate the utility of the proposed
algorithms.
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