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Abstract

This paper describes a fully automatic content-based approach for browsing and retrieval of MPEG-2 compressed
video. The first step of the approach is the detection of shot boundaries based on motion vectors available from the
compressed video stream. The next step involves the construction of a scene tree from the shots obtained earlier. The scene
tree is shown to capture some semantic information as well as to provide a construct for hierarchical browsing of
compressed videos. Finally, we build a new model for video similarity based on global as well as local motion associated
with each node in the scene tree. To this end, we propose new approaches to camera motion and object motion estimation.
The experimental results demonstrate that the integration of the above techniques results in an efficient framework for

browsing and searching large video databases.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

State of the art video compression and commu-
nication technologies have enabled a large amount
of digital video to be available online. Storage and
transmission technologies have advanced to a stage
so that they can accommodate the demanding
volume of video data. Encoding technologies such
as MPEG, H.263 and H.264 [1-4] provide for access
to digital videos within the constraints of current
communications infrastructure and technology.
Even production of digital videos has become
available to the masses with introduction of high
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performance, low-cost digital capture and recording
devices. As a result, a huge volume of digital video
content is available in digital archives on the World
Wide Web, in broadcast data streams, and in
personal and professional databases. Such a vast
amount of content information calls for effective
and efficient techniques for finding, accessing,
filtering and managing video data. While search
engines and database management systems suffice
for text documents, they simply cannot handle the
relatively unstructured, albeit information rich,
video content. Hence, building a content-based
video indexing system turns out to be a difficult
problem. However, we can identify three tasks that
are fundamental to building an efficient video
management system: (i) the entire video sequence
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must be segmented into shots, where a shot is
defined as a collection of frames recorded from a
single camera operation. This is akin to a tuple
which is the basic structural element for retrieval in
conventional text-based database management sys-
tem; (ii) even though a shot determines a physical
boundary in a video sequence, it does not convey
any meaningful semantics within it. Hence, shots
that are related to each other must be grouped
together into a scene [5-7]; (iii) finally, a robust
retrieval method depends on a model that captures
similarity in the semantics of video content.

In this paper, we address the above fundamental
tasks to provide an integrated approach for managing
compressed video content. Since video is mostly
available in compressed form, there is a need to
develop algorithms to process compressed video
directly without paying for overheads to decode them
before processing. Tasks such as restoration, resolu-
tion enhancement, tracking, etc. in compressed videos
have been reported recently [8—11]. Our objective is to
develop a fully automatic technique for content-based
organization and management of MPEG-compressed
videos. To this end, the paper

1. describes a novel shot boundary detection (SBD)
algorithm that is capable of detecting both
abrupt and gradual shot changes like dissolve,
fade-in/fade-out;

2. describes a scene tree that acts as an efficient
structure to facilitate browsing;

3. presents a video similarity measure that enables
efficient indexing of video content based on
motion and which is shown to be useful in video
retrieval.

As noted earlier, these three tasks provide for an
integrated approach to browsing and retrieval in
large video databases.

The remainder of this paper is organized as
follows. In Section 2, we describe a novel SBD
algorithm in the compressed domain. The procedure
for building an adaptive scene tree is described in
Section 3. In Section 4, the motion-based indexing
and retrieval techniques are discussed. The experi-
mental results are presented in Section 5. Finally, we
give concluding remarks in Section 6.

2. Shot boundary detection algorithm

SBD is the first fundamental step to video content
analysis. It segments video data into the basic unit,

shot, for indexing and retrieval. A shot in a video
sequence refers to a contiguous recording of one or
more video frames depicting a continuous action in
time and space. In a video database, the isolation of
shots is of interest because the shot level organiza-
tion of video sequences is considered to be the basic
unit in video indexing and is appropriate for video
browsing and content-based video retrieval [12]. In
general, there are two types of shot changes: (1)
abrupt change or hard cut, and (2) gradual change
due to the various video editing effects, such as
fade-in, fade-out, dissolve and wipe. There is a rich
literature of algorithms for detecting video shot
boundaries [13—15]. In the initial phase of research
in SBD, the data mostly consisted of uncompressed
video [13,16]. They can be broadly classified into
methods that use one or more of the following
features extracted from the video frames: (i) pixel
differences [16], (ii) statistical differences [17], (ii1)
histogram [18], (iv) compression differences [19], (V)
edge tracking [20,21], and (vi) motion vectors [22],
etc. With the emergence of the MPEG compression
standard, most of the videos are stored using the
MPEG compression standard now. While the above
approaches work in the spatial domain, it is prudent
to develop algorithms in the compressed domain so
as to save time in fully decoding the sequence. Some
algorithms have been proposed to parse a video
sequence directly from the compressed data
[19,23,24]. Most of these methods use either the
DC information [19] or the bit-rate of different
MPEG picture types [24] in their algorithms; the
methods using DC coefficients involve significant
decoding of the MPEG-compressed video, while the
methods using bit-rate do not yield satisfactory
detection. Moreover, these methods are incapable of
detecting gradual transitions. Recently, many re-
searchers also address the problem of gradual
transition detection [25]. In [26], the authors
proposed a rule-based refinement postprocessing
scheme to detect gradual transitions in digital video.
However, these algorithms cannot detect all types of
shot changes. They are incapable of handling both
hard cuts and gradual transitions (i.e. fade, dissolve,
etc.) simultaneously [25]. Lastly, most of them
involve tight thresholds that are largely dependent
on the video sequence [15]. In this section, we
describe a method of detecting not only hard cuts
but also gradual transitions [27]. Our algorithm
requires only partially decoding of the video stream.
Without the need to perform inverse DCT, our
algorithm works fast. We exploit the number of
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macroblock (MB) types in each of the I-, P-, and B-
frames to derive the SBD algorithm.

2.1. Abrupt shot change detection

We note that not all the MBs in a P-frame are
forward motion predicted and not all the MBs in a
B-frame are bidirectionally predicted [24]. Each MB
in the P-frame is either forward predicted, skipped
or intracoded. Similarly, each MB in the B-frame is
either forward predicted, backward predicted, bi-
directionally predicted, skipped or intracoded.
However, a skipped MB is encoded in the same
way as the first MB in the slice to which it belongs
[28]. Hence, we are left with basically four types of
MBs which we abbreviate as In, Fw, Bk and Bi for
intracoded, forward predicted, backward predicted
and bidirectionally predicted, respectively.

The number of each type of MBs in a frame is an
indication of the similarity/dissimilarity of that
frame with its neighboring frames. Since only the
B-frame has all the four types of MBs, we use it to
compare the dissimilarity through a frame dissim-
ilarity ratio (FDR), which is defined as

Fw,_
w./,, ! for reference frame,
Bln—l
o= b Bk, for B-frame
X -
Bi,’ Bi, ’

(1
where the reference frame refers to either an I-frame
or a P-frame and the index n denotes the frame
number. If a shot change takes place at a reference
frame, most of the MBs in the previous frame
(which has to be a B-frame) are predicted from the
previous reference frame. In other words, Fw in the
previous frame will be high resulting in a high FDR.
On the other hand, if the shot change takes place in
a B-frame, all the frames lying between the previous
and the following reference frames are either
forward predicted or backward predicted. If the
number of bi-directionally predicted MBs is small, it
once again results in a high FDR for these B-
frames. The advantage of using only the B-frames
for comparison is that we can avoid the need for
normalizing the FDR as well as choosing a different
threshold on the FDR for each type of frame.
However, we observe that if a shot change takes
place at a B-frame, all the B-frames lying between
the previous and the next reference frames will have
high FDRs. Consider the following frame structure

in an MPEG bit stream:
...I'\BoB3B4PsBsB7BgPy . .. .

If the shot change takes place at B3, FDRs for B,
B; and B4 will be very high. In order to determine
the exact location of the shot boundary, we observe
that B, is mostly forward predicted while B; and By
are mostly backward predicted. Thus, at the shot
boundary there is a change in the dominant MB
type of the B-frame. So, we define a dominant MB
change (DMBC) for frame n as

DMBC,
1

={ 0, if (Bk,— Fw,)(Bk,_y — Fw,_1)>0, )
I, lf (Bkn - Fwn)(Bkn—l - FWn—l)<0,

where the first line in the above equation applies to
the reference frames and the other two lines apply to
the B-frames. The modified FDR (MFDR) for
frame n is then defined as

MFDR,, = FDR, x DMBC,,. 3)

While the MFDR is the same as the FDR for a
reference frame, there will be one or two consecutive
high MFDRs for a shot change in a B-frame. If
there is only one high MFDR, the corresponding
frame indicates the beginning of a new shot. If there
are two consecutive high MFDRs, the former
indicates the end of a shot and the latter indicates
the beginning of a new shot. In the example frame
structure considered earlier, the MFDR is retained
for frames B, and Bj, while it drops to zero for
frame By.

An adaptive threshold mechanism based on a
sliding window as proposed in [19] is used to detect
hard cuts from the MFDR. The MFDR values are
compared over a window whose length / is set to be
less than the duration of a shot, typically 10 frames.
The presence of an abrupt change is detected at each
window position, in the middle of the window, using
the following adaptive threshold:

B max(MFEDR,, ..., MFDR,,;)
~ max(7Ty, submax(MFDR,, ..., MFDR,)))
=o. 4)

Here, max and submax refer to the largest and the
third largest values, respectively, of their arguments,
the parameter o can be thought of as a shape
parameter of the boundary pattern characterized by
an isolated sharp peak in a series of discontinuity
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values [29] and T, is a global threshold which
prevents the detected MFDR to be very small. At
first glance, it would appear that the presence of «
and T, imposes a tight constraint diluting the
adaptive nature of the thresholding process. It is
interesting to note, though, that an accurate choice
of o and T, is not crucial to the success of the
algorithm. We have observed that an empirical
choice of « = 5 and T, = 1 works well with a wide
variety of video sequences.

2.2. Detection of gradual transitions

We consider two types of gradual transitions, viz.,
fade and dissolve. A fade is characterized by a
gradual darkening of a frame and its replacement by
another image which appears either gradually or
abruptly [30]. A fade-in occurs when the image
gradually appears from a blank screen and a fade-out
occurs when the image disappears gradually, leaving
a blank screen. A dissolve occurs when one image
fades away while another image appears. It can be
viewed upon as a linear transition from the ending
frame in one shot to the starting frame in the next
shot with pictures from both the shots occupying the
region of transition. From this perspective, fade-in
and fade-out can be considered as special instances of
a dissolve in which case, the former is a dissolve that
begins with a blank frame and the latter is a dissolve
that ends in a blank frame.

We use the DMBC defined in (2) to detect
dissolves. Consider the following frame structure
from an MPEG video: ... I B,B3P4BsBsP; ... . Ifa
dissolve takes place in this sequence, the dominant
MB type in frame B, will be Fw since B, is nearer to
the reference frame I, and that in frame B3 will be
Bk because it is nearer to P4. Thus, we observe that
during a dissolve the DMBC changes rapidly during
a dissolve and consequently a high local sum of the
DMBC indicates the presence of a dissolve. If w is
the length of a window centered around frame n,
then the local sum of the DMBC for that frame is
given by

n+w
F, = Z DMBC,. (5)

n—w

If F, is greater than a threshold 7, then frame n
belongs to the set of frames that makes up the
dissolve. It is heuristically found that the value of t
can be chosen to be 0.8 times the width of the

window for several kinds of video sequences (news,
movie, cartoon, sports). This choice is a tradeoff
between the precision (the ratio of the number of
shot changes detected correctly over the total
number of shot changes detected) and recall (the
ratio of the number of shot changes detected
correctly over the actual number of shot changes).
If we lower the threshold, we are able to increase the
recall but the precision decreases. On the other
hand, if we increase the threshold, the precision
increases but the recall decreases. The width of the
window is taken to be slightly less than the width of
a dissolve, which is typically 10 frames. We choose
our threshold to be about 80% of the window
length. If the dissolve lasts longer than the window,
the algorithm is still capable of detecting the high
plateau as shown in Fig. 6 in Section 5. If the
dissolve lasts only a few frames, for example 34
frames, it would be missed by Eq. (5). But it might
result in a high MFDR in Eq. (3) due to the
relatively large amount of changes between frames,
which would then be potentially detected by Eq. (4).
We do not set the window size too narrow, which
would cause many false detections. Thus, we note
that the presence of the threshold t does not render
the algorithm inflexible over different types of
sequences, as we show in our experiments. A further
refinement of the detected gradual transitions can be
achieved by merging those transitions whose tem-
poral distance is less than the width of a typical
dissolve.

3. Scene tree

The objective of content-based indexing of videos
is to facilitate easy browsing and retrieval. Ideally, a
non-linear browsing capability is desirable as
opposed to standard techniques like fast forward
or fast reverse. This can be achieved, preferably,
using a structure that represents video information
as a hierarchy of various semantic levels. Such a
multilayer abstraction makes it not only more
convenient to reference video information but also
simplifies video indexing and storage organization.
Several multilevel structures have been proposed in
the literature [6,7,12,31,32]. However, their tree
structure is not adaptive. The underlying theme is
to group together frames that are ‘similar’ to each
other where similarity could be defined in such
primitive terms as temporal adjacency [33] or in
terms of video content. The latter results in the
entity called scene, which should convey semantic
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information in the video being viewed. Hence, our
objective is to build a browsing hierarchy whose
shape and size are determined only by the semantic
complexity of the video. We call such a hierarchical
structure as an adaptive scene tree. The scene tree
algorithm described in this section is motivated by
the work of Oh and Hua [34] who build a scene tree
for uncompressed videos. Our algorithm described
in Section 3.1 is an extension and an improvement
over [34] that works for compressed videos. Section
3.2 provides an illustrative example of the scene
tree, which helps the reader to understand the scene
tree construction algorithm. Section 3.3 describes
the representation of the scene tree as an MPEG-7
compliant XML document.

3.1. Scene tree building algorithm

The main idea of the scene tree building
algorithm is to sequentially compare the similarity
of the key frame from the current shot to the key
frames from the previous w shots. Based on a
measure of similarity, the current shot is either
appended to the parent node of the previous shot or
appended to a newly created node. The result of the
scene tree building algorithm is a browsing tree
whose structure is adaptive, i.e. the number of levels
of the tree is larger for complex content and smaller
for simple content. The details of the algorithm,
which takes in a sequence of video shots and
outputs the scene tree are shown below:

1. Initialization: Create a scene node SN at the
lowest level (i.e., level 0) of the scene tree for each
shot;. The subscript indicates the shot (or scene)
from which the scene node is derived and the
superscript denotes the level of the scene node in
the scene tree.

2. Initialize i < 3 (since the current shot has to be
compared with at least two previous shots).

3. Check if shot; is similar to shots shoti_i,...,
shot;_,, (in descending order) using a function
isSimilar(), which will be described later. The
comparisons stop when a similar shot, say shot;,
is found. If no related shot is found, a new empty
node is created and connected to SNV as its
parent node; then proceed to Step 5.

4. For scene nodes SN? | and SNJQ,

(a) If SN?_] and SN? do not currently have a

parent node, we connect all scene nodes, SN ?

through SN](-J to a new empty node as their
parent node.

(b) If SN ?_1 and SNJQ share an ancestor node, we
connect SN to this ancestor node.

(c) If SN ?_1 and SN? do not currently share an
ancestor node, we connect SN? to the current
oldest ancestor of SNY |, and then create a

new empty node and connect the oldest

ancestor of all nodes from SN? to SN?_] to

it as its children.

5. If there are more shots, we set i < i+ 1, and go
to Step 3. Otherwise, connect all the nodes
currently without a parent to a new empty node
as their parent.

6. For each scene node at the bottom of the scene
tree (it represents a shot), we select the key frame
as its representative frame by choosing the I-
frame in a shot whose DC value is closest to the
average of the DC values of all the I-frames in
the shot. Since we do not desire to decode all the
frames in the video sequence (recall that we
would like to process in the compressed domain),
we choose the DC value of the I-frame to make
the algorithm more efficient. We then traverse all
the nodes in the scene tree from the bottom to the
top. For each empty node visited, we identify the
child node which contains the largest number of
frames and assign its representative frame as the
representative frame for this node.

We now return to the function isSimilar() used in
Step 3 to compute the similarity between key
frames. The computation of the similarity involves
dividing the frames into background area and
foreground area. Instead of using a fixed back-
ground and a fixed object area as in [34], we use a
byproduct of the camera motion estimation algo-
rithm described in Section 4. This byproduct, which
we call a “Block Rejection Map (BRM)” consists of
those MBs which corresponds to moving fore-
ground object region in the scene. The reason for
such a nomenclature will be evident in Section 4;
however, for the moment, it will suffice to under-
stand the BRM as a partition of the frame into
foreground and background areas. Fig. 4 shows an
example of a BRM. Operating on the HSV color
space, we compute the color histograms of the
foreground and background area of two key frames
k1 and k;. The Hue(H) and Saturation(S) values are
quantized into eight bins and four bins, respectively,
while we ignore the Illumination(V) component.
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The similarity measure is defined as

Sim = wy X |histy(k1, k)| 4+ wa x |histo(k1,k2),  (6)

where |histy(.)] and |hist,(.)] are the Euclidean
distances of histograms of the background and
object areas, respectively, between frames k| and k;
and wi,w, are weights for the background and
object areas, respectively. We choose wy = 0.7 and
wy, = 0.3 so as to give more weight to the back-
ground since a change in background area is a
stronger indication of a change in the scene. The
value of Sim in Eq. (6) is compared with a threshold
to determine if two key frames are similar.

Although the above adaptive scene tree building
algorithm is motivated by Oh and Hua [34], there
are some important differences, which we highlight
now. As mentioned earlier, our algorithm works
directly on MPEG-2 compressed video in the sense
that we need only partially decode the video to
extract the motion vectors and DC images. More-
over, a full decoding is required only for one frame
per shot that represents the key frame. Secondly, the
similarity between shots is ascertained through a
meaningful predefined window, w, as opposed to all
the shots from the beginning of the video. We now
compare the computational complexity of our
algorithm to [34]. The shot similarity determination
can be done in O(w * s), where w is the length of the
window and s is the number of shots. Generally, the
number of frames in a shot, f'is much larger than s
and s is larger than w(f>s>w). The scene tree
construction algorithm involves traversal in Step 4
and Step 6. The computational complexity of
transverse a tree is of O(log(s)). Therefore, the
worst-case computational complexity of building
the tree is of O(s * log(s)). Thus, the total computa-
tional complexity of our algorithm is of
O(s * log(s)), while that in [34] is O(s * f*). Finally,
we partition the frame into background and fore-
ground areas using BRM dynamically, while the
frame is partitioned into fixed background/object
area partition in [34]. The usage of BRM gives more
accurate partition of object and background areas,
hence results more accurate scene similarity calcula-
tion.

3.2. Example of a scene tree

In this section, we walk through the steps leading
to the construction of a scene tree, using a symbolic
video sequence consisting of 10 shots. The shots

denoted by the same gray color in Fig. 1(a) are
regarded as similar by the isSimilar() function.

The scene tree construction algorithm is initia-
lized by attaching a scene node, SN ; for each shot
i,i=1,...,10 (Step 1) as in Fig. 1(a). The shots are
scanned to check the similarity between scene node
pairs. SN 4 is found to be similar to SNy . Since the

;9 088 6

A2|BS|A3|D1|D2|

A1

A1 -A3(ClassA) |:| :B1-B3(ClassB)

C1 -C2(ClassC) |:| :D1-D2(ClassD)
(a)

(b)

Fig. 1. Illustration of scene tree construction algorithm.
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previous node SNy 3 and SNy, do not have a parent
node, SN;; is created in the upper level and all
scene nodes from SNj, to SNy4 are connected to
SN, (condition (a) of Step 4). Next, SN s is found
to be similar to SNy 3. Since the previous SNo4 and
SNy 3 share a common ancestor node, SN 1, SNy
is connected to SN, as the child node (condition
(b) of Step 4). Fig. 1(b) shows the constructed scene
tree at this stage. Since SN is not similar to any of
the previous three shots, SN, is created as its
parent. However, SNy 7 is similar to SNo4 and since
SNy and SNo4 do not share a common parent, a
new node SN, is created with children SNg;, SN
and SN, (condition (c) of Step 4). Next, SNz is
similar to SNy and since SNy and SN 7 share the
same parent node, SNo3 is also connected as their
sibling. The scene tree at this stage is illustrated in
Fig. 1(c). We observe that if the comparison of the
scene nodes are not restricted to within a window,
SNy would be deemed similar to SNy causing loss
of the inherent semantic information in the tree.
SNoo and SNy o are found to be different from
all other shots considered so far and a new pa-
rent node SN,3 is created for them. Finally, the
scene node SN,; and SN,3 are connected to the
root node SN3; of the scene tree, which is shown in
Fig. 1(d).

3.3. Scene tree representation

The algorithm in Section 3.1 outputs a description
for the video content in the form of a tree structure
called ‘Scene Tree’. It is an important tool for video
content management. Here, we address the issue of
representing the ‘Scene Tree’. If the ‘Scene Tree’ is
stored in different ways, it would not be possible to
access content across several repositories to enable
content exchange using different description methods.
These are interoperability issues. We can define a
standardized description to solve the interoperability
issue so that the scene tree information can be shared
and reused. The MPEG-7 standard is aimed at
addressing this problem. Formally known as ‘“Multi-
media Content Description Interface”, it provides a
set of “Descriptors” and “Description Schemes”,
along with a “Description Definition Language”, to
describe multimedia content [35]. The scope of the
standard covers various forms of media including
audio, video and images, both in digital and analog
format, although most applications involve only
digital content. MPEG-7 allows a standard descrip-
tion scheme of various aspects of multimedia material

that can be used by MPEG-7 enabled applications
aimed at end user, or automatic systems. Thus, we
choose to represent the ‘scene tree’ information in
MPEG-7 compliant XML document.

XML (eXtensible Markup Language) [36] is a
simple and flexible text format derived from SGML(I-
SO 8879). It is designed to improve the functionality
of the Web by providing more flexible and adaptable
information identification introduced by the World
Wide Web Consortium (W3C). XML schema has
been widely used as a schema language for constrain-
ing the structure and content of XML document.
After a detailed evaluation of XML and XML
schema, MPEG-7 chose to adopt and extend XML
and XML schema as the description definition
language (DDL) for MPEG-7 document. Thus the
MPEG-7 documents are XML documents that con-
form to particular MPEG-7 schemas (expressed in
DDL) and that describe audiovisual content. In
MPEG-7, there are a collection of schemas called
“Multimedia Description Schema (MDS)”. The
MDS provides a set of standardized tools to facilitate
multimedia content description. In MDS, there is a
specific schema for temporal video decomposition,
which matches our scene tree-based video description.

An example of an MPEG-7 compliant XML
document is shown in Fig. 2. The XML document
starts with <Mpeg7> as the root node. This node
has two children: <DescriptionMetadata> and
< Description>. The < DescriptionMetadata> is
used to describe the metadata information about the
XML document, such as author, confidence,
version, etc. and the < Description>, which is of
ContentEntityType, is used for multimedia content
description. The scene tree information is contained
in the <TemporalDecompostion> node under
“Mpeg7/Description/MultimediaContent/Video/”.
Since there is no gap in the scene tree decomposition
and parent scene nodes are overlapped with child
scene nodes, the gap and overlap attributes of
< TemporalDecompostion> are set to false and
true, respectively. Each node in the scene tree is
represented by a < VideoSegment >, which contains
a <StartFrame>, a <EndFrame> and one or
more < VideoSegment>(s) depending on number
of child scene nodes that the current scene node has.
Note that other MPEG-7 visual descriptors such as
color, texture, motion, etc. can be inserted to the
< VideoSegment > too.

We will illustrate an XML representation of an
actual scene tree derived from a video sequence in
Section 5.
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<?xml version="1.0" encoding="iso-8859-1"7>

<Mpeg7>
<DescriptionMetadata>

</DescriptionMetadata>

<Description xsi:type="ContentEntityType">
<MultimediaContent xsi:type="VideoType">

<Video>
<Medialocator>

<MediaUri>file:///c:/example.mpg</Medialri>

</Medialocator>

<TemporalDecomposition gap="false" overlap="true">

<VideoSegment>

<StartFrame>0</StartFrame>
<EndFrame>2999</EndFrame>
<Keyframe>1020</Keyframe>

<VideoSegment>

<VideoSegment>

</VideoSegment>

</VideoSegment>

. </VideoSegment>

</TemporalDecomposition>

</Video>
</MultimediaContent>
</Description>
</Mpeg7>

Fig. 2. Example of XML representation for scene tree.

4. Motion-based indexing and retrieval

Video retrieval and browsing can be envisioned as
an integrated and interactive process. This process
can be seen to be analogous to browsing through
books with a table of contents in the front and an
index at the back of the book. In order to search for
a specific topic of interest, one may consult the
index to locate the pages where it appears. Conse-
quently, if one wants to know more about the topic,
he may refer to the table of contents to browse
through chapters, sections and so on. Similarly, for
video data, the feature vectors serve as the index
and the scene tree serves as the table of contents.
The search for relevant content in the video is
initiated by locating the video shot by feature
matching/retrieval and then carried forward by
browsing up and down along the scene tree (table
of content) to further explore the relevant content.
Hence, the feature vector and the scene tree are
closely related tools for the management of the
video content. Many visual features like color,
texture, shape, edge, etc. have been extracted to be
used as indices [37—41]. However, such indexing
techniques do not take into account the essential

characteristic of video, viz., its temporal dimension.
Recent works have used the spatio-temporal rela-
tionship among video frames by extracting motion
information inherent in them [42—45]. The authors
in [42] use texture features extracted from temporal
slices to index motion content. While patterns in
spatio-temporal slices reveal camera motions (pan
and zoom) and direction of motion, they do not
indicate the intensity of motion in a video sequence.
The authors in [43] use the trajectory of the moving
object as the index to motion content. However, it is
very difficult to extract the trajectories of moving
objects under complex scene. In [44], the authors use
Markov random fields to characterize the optical
flow field of video clips. This method is computa-
tionally intensive and is, therefore, not suitable for
long video clips in large video databases. In [45], the
authors use block-based motion vectors and princi-
pal component analysis to represent motion con-
tent, but this is done at a very coarse level. The
MPEG-7 standard provides motion descriptor to
describe motion activity. The extraction of this
descriptor is based on aggregate motion vectors
contained in the compressed bitstream [46]. In this
section, we describe a new motion feature for video
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indexing and retrieval. The motion content is
represented by three components, viz., the camera
motion (CM), the object motion (OM), and the
total motion (7M). Each of CM,OM and TM are
matrices and it is these matrices that serve as indices
for video retrieval.

4.1. Motion extraction

Recall that all the videos considered in this paper
are compressed according to MPEG-2 format.
Hence, the MV for frame n is obtained as

—Bk,_,

Fw, — Fw,_,

(Fw, — Fwy,_;
+Bk, — Bk,-1)/2 for B-frame.

for I-frame,

for P-frame,

MV, = (7

Refer to Section 2 for meanings of the notations.
The MV fields (MVFs) obtained are then smooth-
ened using a spatial (3 x 3) median filter followed
by a temporal (1 x1 x3) median filter. The
smoothened MVFs are then used to calculate the
camera motion and object motion. The total motion
component at each MB is just the smoothened
motion vector at its center.

We use a six parameter affine model to estimate
the camera motion which is modelled as

muy(i,j) = py - i+py-j+ps
muy(i,j) = py - i+ ps - J + Pes (®)

where mu.(i,j) and mv,(i,j) are the x and y
components of the motion vector for a MB centered
at (i,j), p’s are the affine parameters. Consider a
group of MBs G whose affine parameters P =
{P1».-.,ps} need to be determined. We will explain
the significance of G shortly, when we present the
iterative algorithm for camera motion estimation.
Using the method of least squares, from Eq. (8), P is
obtained by minimizing

> i) = pyi=pyj=ps)
G
+ (muy(i,j) = py-i—ps-j —pe)- ©)
The two terms inside the summation can be
minimized independently. Considering the first term
only and differentiating it with respect to p;, p, and
P and setting the resulting equations to zero, we get

> mu(inj) = py-i—py-j—p3)i=0, (10)
(iy)eG

> (molij)—pi-i—py-j—p)i=0, (11)
(i))eG
> (mo(i,j)—py-i—py-j—p;)=0. (12)
(i))eG

If the origin of the frame is taken to be at its center
(instead of the top left corner as is conventionally
done), ' =i—(V+1)/2 and j =j—(U+1)/2,
U x V 1is the size of the motion vector field, then
> ¢ =0and ),/ =0 and the affine parameters
can be easily shown to be

XYY -JX - XY _JX XX -IX - XY

D= A » P = 1 5
Y g muij) _IY-YY-JY XY
P3 = g > 4 = A >
JY - XX —-1Y - XY muy(i, )
pS = A 5 p6 = ZG ! B (13)
g
where
IX =) i), X =) modd ),
G G

1Y =Y "i moy(ij), JY =) mui ).
G

G
Yy=> ;% xv=>»1i.j.
G G

Xx =31
G
A=XY-XY - XX YX,

and ¢ is the number of MBs in the group G.
m(i',j") = mo(i,j) since they refer to the same MB.

The algorithm to estimate the affine parameters
starts by labelling all the MBs in a frame as ‘inliers’.
Then the parameters are estimated for all the inliers
using Eq. (13). A new set of motion vectors are
reconstructed for each inlier using the estimated
parameters. If the magnitude of the residual motion
vector R,,,, calculated as the difference between
the original motion vector and the reconstructed
one, is greater than an adaptive threshold T =
max(median(R,,;), f) for a particular MB, then that
MB and the one situated diagonally opposite it are
marked as ‘outliers’. The role of f§ is to prevent the
rejection of a large number of MBs if the median of
the residuals is very small. We choose f to be 1.
Fig. 3 shows the histogram of the magnitudes of
residual motion vectors between two frames in an
‘example’ soccer video. Note that the diagonally
opposite MBs are also marked as ‘outliers’ due to
the shifting of the co-ordinate axes to the center of
the frame. After each iteration, some MBs are
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Fig. 3. Histogram of magnitudes of residual motion vectors
between two frames in an example ‘soccer’ video.

marked as ‘outliers’; these MBs correspond to areas
in which the motion is associated with moving
objects. The steps in the algorithm to estimate the
camera motion are shown in Algorithm 1.

Algorithm 1. Camera Motion Estimation

1: Mark all the MBs as ‘inliers’.

2: Estimate the motion affine parameters for
‘inliers’ (Eq. (13)).

3:  Reconstruct the global motion vector at each
MB with the estimated affine parameters.

4. Calculate residual motion vector (R,;,) as the
difference between the original and
reconstructed motion vector.

5:  If Ry, is greater than max(median(R,,,), f),
then mark this MB and its opposite diagonal
MB as ‘outliers’. median(R,,,) is the median of
all the R,,;s.

6: Go to Step 2 until there are no more new
‘outliers’ or more than two thirds the MBs are
marked as ‘outliers’.

7. 1If more than two thirds of the MBs are
‘outliers’, the affine parameters are set to zero.

When Algorithm 1 is terminated, the MBs that
are rejected as outliers correspond to moving
foreground regions. The background area consist-
ing of MBs labelled as inliers are marked with zero
intensity. Such a partition of frame into foreground

and background regions results in the block
rejection map; an example of which is shown in
Fig. 4. As mentioned in the previous section, we can
utilize the BRM for the calculation of the similarity
between two scenes since the meaningful calculation
of scene similarity requires different treatments of
background and foreground areas.

After estimating the camera motion, we now
describe the CM, OM, TM matrices for motion
content indexing. Since the computed camera
motion vector should not be greater than the total
motion vector at a MB,

lem(i, )| = min(|mo(i, /)1, [em(i, /), (14)

where ¢m(i,j) and muv(i,j) are the camera motion
vector and total motion vector, respectively, at the
MB centered at (7,;). For the same reason

|0m(l’])| = maX(O’ |mU(l,]) - C}’}’l(l,_])l), (15)

where om(i,j) is the object motion vector at the
MB centered at (i,j). The CM, OM and TM
matrices are now formed for a shot by accumulating
lem(i, ))|, lom(i,f)| and |mu(i,j)|, respectively, over all
the frames in the shot, i.e., CM(i,j) = >_1_, emy(i, ),
OM(ZDJ):ZIqul Oml(iaj)’ and TM(la])ZZ;Izl mv;(i,j),
where 7 is the number of frames in the shot. These
matrices serve as indices for retrieval, as explained in
the next subsection.

4.2. Video similarity measure

Each shot is characterized by the three matrices
CM, OM and TM. In order to compute the similarity

100

150

200

50 100 150 200 250

Fig. 4. Block rejection map.
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between two shots, we assume that the matrices
belong to the Hilbert sequence space /> with metric
defined by

U v 1/2
dM ., My) = Y " M (u,v) — My(m,n)l?|
u=1 v=1

(16)

where M, and M, are the motion matrices of order
U x V. However, instead of comparing matrices, we
reduce the dimension of the feature space by projecting
the matrix elements along the rows and the columns to
form one dimensional feature vectors M’ (v)=
S M(u,v) and MS(u) = SV, M (u,v). The
metric in Eq. (16) can then be rewritten as

14
1 . .
dM, My) = | > &M (0) = M)
v=I1

vy 1/2
LM - M@F A7)

This leads us to the distance function between two
shots s, and s, to be defined as

(s, 8,) = 0c¢ - d(CMy, CM,)) + wo - d(OM, OM,)
+wr-d(TM,, TM,), (18)

where the d(-)’s are computed according to Eq. (17)
and the w’s are the weights for each motion
component. The weights are assigned in such a way
that there is equal contribution from each of the
components to the distance function. Without prior
information, it is a common strategy to assign equal
weight to different components. This mechanism is
widely used and known as the “normalization” scheme
in database literature and the ‘“‘pre-whitening” in
signal processing literature. However, if there are
preferences for certain features, then the weights can
be chosen accordingly, e.g., if the user is more
interested in objection motion, then more weight can
be assigned to OM feature. The interactive relevance
feedback from the user can also be used to guide to
assign the weights of different features. Use of distance
function enables current matrix-based indexing tech-
niques, like M-tree, R-tree, etc. to be applied as the
index to the feature vectors to facilitate efficient search.

5. Experimental results

Our experiments were designed to assess the
performance of the proposed techniques for SBD,

scene tree construction, motion estimation and
motion-based indexing and retrieval of shots. In
the following subsections, we present the experi-
mental results for SBD, scene tree construction,
motion estimation and motion-based indexing and
retrieval of shots.

5.1. Shot boundary detection

We have tested our algorithm on a wide variety of
video sequences like soccer, news, movie and
cartoons which were encoded in the MPEG-2
format with a GOP length of 12 frames. The
encoding pattern was

...IBBPBBPBBPBB... .

There were a total of 105 hard cuts and 25 gradual
transitions of which 20 are dissolves, three are fade-
ins and two are fade-outs. Fig. 5 shows the MFDR,
(see Eq. (3)) for 373 frames of a ‘news’ video. As
expected, the hard cuts at frames 120 and 300 have a
very high MFDR, which enables easy detection of
the shot boundary. As for gradual transitions, local
sum of DMBC, (see Eq. (2)) for a ‘movie’ sequence
is shown in Fig. 6. We note that the beginning of the
dissolve takes place at frame 43 and ends at frame
68. Table 1 summarizes the results of SBD. In the
experiment, the global threshold 7'y in Eq. (4) for
detecting hard cuts was set to 1. For detecting
gradual transitions, the length of the window over
which the local sum is computed is set to 12, with t
(the threshold for F, in Eq. (5)) set to 10. The video
sequences are chosen so as to include various kinds
of camera and object motions. We use precision (the

30

25t

20t

MFDR

107

T . st

0 50 100 150 200 250 300 350 400
(frame)

Koy v

Fig. 5. MFDR for a news sequences.



H. Yi et al. /| Information Systems 31 (2006) 638658 649

ratio of the number of shot changes detected
correctly to the number of shot changes detected)
and recall (the ratio of the number of shot changes
detected correctly over the actual number of shot
changes) to measure the performance of the SBD
algorithm.

The recall rates for hard cuts are consistently
above 95% over all the sequences reinforcing the
fact that the choice of the thresholds are not critical
to the success of the method. The missed cuts are
mostly due to large motion at the shot boundary.
The overall recall rate for gradual transitions is 92%
(only two of the 25 transitions were missed). Note
that 7 is chosen the same for all the sequences. The
false detection of hard cuts is attributed to the
sudden change in brightness of the frame due to
flash in the ‘news’ sequence, a lightning bolt in the

16} dissolve 1
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Fig. 6. Local sum of DMBC in a dissolve.

Table 1
Summary of SBD results

‘movie’ sequence and the sudden appearance of text
in the ‘cartoon’ sequence. We must mention that the
‘news’ sequence has 45 instances of flashes which
were potential candidates for shot boundaries, out
of which only four were falsely detected, and
yielding the precision rate of 91.3%. However, the
overall precision obtained for hard cuts is 91.75%.
The false detection of gradual transitions is mainly
due to the undesirable shaking of the camera which
pulls down the camera motion characterization
parameters to near zero. This is evident from the
relatively low precision obtained for ‘soccer’ and
‘movie’ sequence where such jerky movements of
the camera are present.

5.2. Adaptive scene tree construction

To evaluate the scene tree building algorithm, we
run the algorithm described in Section 3 for various
videos. Since we cannot quantify the effectiveness of
the algorithm to produce the scene trees, we show
four examples of scene trees in Figs. 7-10 and
describe the main events occurring in the video
sequences from which the trees are constructed.

The scene tree in Fig. 7 is built from a 3-min video
clip available from the MPEG-7 test video set (CD
21 Misc2.mpg). In this sequence, two women are
watching the TV, and talking to each other (the first
eight shots, leaf nodes). Then one of the women
leaves while the other continues watching TV (next
four shots). After a while, this woman also leaves
(starting from frames 3300). Then both the women
appear together. One of them puts on a coat and
leaves while the other starts cleaning the table (the

Video Cut Gradual Recall/precision Recall/precision
(frames) (correct,false) (correct,false) Cut Gradual
News 43 12

(32640) (42,4) (11,2) 97.67/91.3 91.67/84.62
Movie 17 3

(29010) (16,2) (3.1 94.12/88.89 100/75
Cartoon 13 0

(1498) (13,2) (0,0) 100/86.67 —

Soccer 32 10

(21310) (31,2) 9,3) 96.88/93.94 90/75.00
Total 105 25

(84458) (102, 10) (23,6) 97.41/91.75 92.00/79.31
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Fig. 8. Scene tree of TV program “Opening The New Era”.
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last shots, leaf nodes). The output XML file for the
scene tree is shown below:

<?xml version="1.0" encoding = "iso-
8859-1"?>
<Mpeg7 >
<DescriptionMetadata>
<Confidence>0.85< /Confidence >
<Version>1.4</Version>
<LastUpdate>2003-09-
1T10:00:00+400:00
< /LastUpdate>
<Comment >
<FreeTextAnnotation>
Scene Tree.
< /FreeTextAnnotation>
< /Comment >
< /DescriptionMetadata>
<Description
xsi:type = "ContentEntityType" >
<MultimediaContent xsi:type =
"VideoType" >
<Video>
<MedialLocator>
<MediaUri>
file:///c:/MPEG-7_tv.mpg
< /MediaUri>
< /MedialLocator>
<TemporalDecomposition gap =
"false" overlap = "true" >
<VideoSegment >
<StartFrame>0</
StartFrame >
<EndFrame>4432</
EndFrame >
<Keyframe>2820</
Keyframe>
<VideoSegment>...</
VideoSegment >
< /VideoSegment >
< /TemporalDecomposition>
< /Video>
< /MultimediaContent >
< /Description>
< /Mpeg7 >

The < DescriptionMetadata> carries the meta
data information of the scene tree XML docu-
ment(Confidence, Version, LastUpdate, Comments).
The main content of the scene tree is stored in

915

1335

L 345

345 ! \ 915
//

510 e

Fig. 9. Scene tree of MPEG-7 test video (CD20#1).

the <TemporalDecomposition> descriptor under
““/Description/MultimediaContent/Video/”.  Each
scene node is represented by a <VideoSegment>.
In total, there are 26 < VideoSegment>s which
correspond to the number of scene nodes in the
scene tree shown in Fig. 7. The <MedialLocator >
descriptor under the <Video > indicates the source
of the video.

The scene tree in Fig. 8 is built from a 2-min video
clip from the TV program “Opening The New Era”.
This video sequence consists of three scenes. A man
and a woman are taking a picture together. Then
the man drives the woman to her home. The woman
goes inside her home and reads the newspaper. If we
traverse the scene trees from the top to bottom,
which in essence is a non-linear browsing of the
video, we get the above stories. The scene trees give
a hierarchical view of the scenes as well as provide a
summary of the video sequence. The output XML
document for the scene tree is shown below:

<?xml version="1.0" encoding = "iso-
8859-1"?>
<Mpeg7 >
<DescriptionMetadata >
< Confidence>0.85</Confidence>
<Version>1.4</Version>
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<LastUpdate>2003-09-
1T710:00:00+00:00< /LastUpdate>
<Comment >
<FreeTextAnnotation>
Scene Tree.
< /FreeTextAnnotation>
< /Comment >
< /DescriptionMetadata>
<Description
xsi:type = "ContentEntityType" >
<MultimediaContent xsi:type =
"VideoType" >
<Video>
<MedialLocator>
<MediaUri>
file:///c:/csj_tv.mpg
< /MediaUri>
< /Medialocator>
<TemporalDecomposition gap =
"false"overlap = "true" >
<VideoSegment >
<StartFrame>0</
StartFrame >
<EndFrame>2999</
EndFrame >
<Keyframe>1020</
Keyframe>
<VideoSegment> ... </
VideoSegment >
< /VideoSegment >
< /TemporalDecomposition>
< /Video>
< /MultimediaContent >
< /Description>
< /Mpeg7 >

The scene tree information is stored in the
<TemporalDecomposition> descriptor. There are
24 nodes in the scene tree, thus there are 24
<VideoSegment > under the <TemporalDecom-
position> descriptor.

Fig. 9 shows the scene tree extracted from another
MPEG-7 test video (CD20 Miscl.mpg). The length
of the video clip is 1 min. This video clip contains
two different events. The first event happens
between a boy and a girl. The boy sits on a chair
and plays with a dog in the room. A girl enters the
room and sees the boy. She begins to talk to him.
Then the girl begins to feed the goldfish. The next
event in this video clip happens between the boy and
two other men. One man introduces the boy to the

other. The output XML document for the scene tree
is as follows:

<?xml version="1.0" encoding = "iso-
8859-1"?>
<Mpeg7 >
<DescriptionMetadata>
<Confidence>0.85< /Confidence >
<Version>1l.4</Version>
<LastUpdate>2003-09-
1T10:00:00+00:00< /LastUpdate>
<Comment >
<FreeTextAnnotation>
Scene Tree.
< /FreeTextAnnotation>
< /Comment >
< /DescriptionMetadata>
<Description xsi:type =
"ContentEntityType" >
<MultimediaContent xsi:type =
"VideoType" >
<Video>
<MediaLocator>
<MediaUri>
file:///c:/MPEG-7_CD20_1.mpg
< /MediaUri>
< /MedialLocator>
<TemporalDecomposition gap =
"false"overlap = "true" >
<VideoSegment >
<StartFrame>0</
StartFrame >
<EndFrame>1499</

EndFrame >
<Keyframe>915< /Keyframe>
<VideoSegment> ... <
/VideoSegment >
<
/VideoSegment >
< /TemporalDecomposition>
< /Video>

< /MultimediaContent >
< /Description>
< /Mpeg7 >

Fig. 10 shows another scene tree extracted from
the same video as in Fig. 9. This video clip lasts
I min. The story happens in the classroom. There
are three events in this video clip. The first event is
that the teacher walks into the classroom and begins
the class. The second event is that the students hear
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Fig. 10. Scene tree of MPEG-7 test video (CD20#2).

the bell and think the class is over. They begin to
leave the classroom. The teacher gets angry and
orders the student to go back to their seats and
continues the class. The corresponding XML
document of the scene tree is shown below:

<?xml version="1.0" encoding = "iso-
8859-1"?>
<Mpeg7 >

<DescriptionMetadata >
< Confidence>0.85</Confidence>
<Version>1.4</Version>
<LastUpdate>2003-09-
1T10:00:00+00:00</LastUpdate>
<Comment >
<FreeTextAnnotation>
Scene Tree.
< /FreeTextAnnotation>
< /Comment >
< /DescriptionMetadata>
<Description xsi:type =
"ContentEntityType" >
<MultimediaContent xsi:type =
"VideoType" >
<Video>
<MedialLocator>
<MediaUri>
file:///c:/MPEG-7_CD20_2 .mpg
< /MediaUri>
< /Medialocator >
<TemporalDecomposition gap =
"false"overlap = "true" >
<VideoSegment >
<StartFrame>0</
StartFrame >
<EndFrame>1499</
EndFrame >
<Keyframe>1335</
Keyframe>
<VideoSegment> ... <
/VideoSegment >
< /VideoSegment >
< /TemporalDecomposition>
< /Video>
< /MultimediaContent >
< /Description>
< /Mpeg7 >

As described in previous sections, the scene tree
can be viewed as “‘the table of content” of a video. It
can used as a guide for video content browsing and
navigation. It has a very wide range of practical
applications. We have integrated the “‘scene tree”
into a semiautomatic video annotation tool, called
“VideoBuddy”. The interface of VideoBuddy is
shown in Fig. 11. The user selects the input video
to be annotated. Our algorithm automatically per-
forms the SBD, key frame extraction and builds up
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Fig. 11. Video annotation tool (VideoBuddy) interface.

the scene tree. The outputted scene tree is shown in
the bottom left part in the interface. The key frames
from each shot are shown as thumbnail images on
the right panel besides the scene tree panel. Then,
the user can navigate the “scene tree” and select
interested scene node for annotation. When the user
select one scene node, the corresponding scene node
information from the scene tree is shown in “‘shot
information” window. The user can view the
selected scene in the embedded media player. After
that, he can annotate the video with key words by
ticking the appropriate checkbox. The user can also
perform the key frame region annotation by
drawing a rectangle over the annotated regions
(Fig. 12). Although “VideoBuddy” 1is still a
semiautomatic video annotation tool, the automa-
tically extracted ‘‘scene tree” provides valuable
information for video navigation and facilitates
the annotation of the video content. With guidance
of the ““scene tree’’, the user can annotate the video
more efficiently with “VideoBuddy”.

5.3. Motion estimation

In this subsection, we evaluate the proposed
algorithm for motion estimation. We consider video
sequences that are compressed using the MPEG-2
standard. Fig. 13 shows four examples of such
videos. Each row consists of the key frame in a
particular shot, camera motion, object motion and
total motion. The motion information contained in
the CM, OM and TM matrices are represented as

Keywords
Basketbal Match
Basketball Court
Person-withrontal face

People-countable

Fig. 12. Key frame annotation.

monochrome images for visualization purposes; the
brighter pixels indicate higher motion activity. The
first row in Fig. 13 shows the shot of a news anchor
person in which the camera is stationery. This is
reflected in the black CM image while the motion of
the object (face of the person) is clear in the OM
image. Thus the total motion consists essentially of
the object motion only. Similarly in the second row
which shows a scene with a moving camera while
the objects in the scene are stationery, the OM
image is black (indicating no motion) while the CM
image is uniformly bright. The third row illustrates
the case of both object motion and camera motion
contributing to the total motion in the shot from a
soccer game. We can clearly see the zooming in of
the camera in the CM image while object motion is
indicated by some bright pixels in the OM image.
Finally, we show a shot of the camera tracking a
person and its corresponding motion images which
are all mostly bright implying that the motion
contains both camera as well as object motion. We
see that the proposed motion estimation algorithm
has been able to extract the motion information
quite well.

5.4. Motion-based retrieval

We noted earlier that the video retrieval process is
implicitly contained within the process of browsing
the adaptive scene tree. However, the retrieval
method proposed in this paper can also be
considered as a ‘standalone’ process. To evaluate
the performance of our proposed method for
motion indexing and retrieval, we build a database
consisting of video shots using the SBD algorithm
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Fig. 13. Motion estimation. Each row consists of a key frame of the shot, the CM image, the OM image and the TM image of news
anchor person (first row), gallery (second row), soccer (third row) and moving person (fourth row).

on the 643 video sequences of the MPEG-7 test set.
The lengths of the video clips range from 5 to 30s.

Using the CM, OM and TM matrices as indices
and the video similarity measure developed in
Section 4, we retrieve the top N video shots from
the database. In Fig. 14, we show the top three
results of the query shown in the first column. We
compare the retrieval results when only TM is used
with the case when all the three motion matrices,
viz, CM, OM and TM, are used to retrieve.
Fig. 14(a) shows the retrieval results with the
motion feature extracted from 7M matrix only,
while Fig. 14(b) shows the retrieval result when CM,
OM and TM matrices are considered. The first
columns of Fig. 14(a) and (b) are the key frames
from the query video shots. The second, third and

fourth columns of Fig. 14(a) and (b) are the first,
second and third retrieval results. From these
examples, we observe that both models retrieve
video clips which have similar motion content.
However, we see that the video similarity model
with CM, OM and TM matrices gives better
retrieval result in both the motion and semantic
sense than the model that uses only 7'M matrix.
We randomly choose 50 video shots from the video
database as queries and retrieved the top 30 videos.
Precision is used as the measure for performance,
which is defined as the ratio of the number of relevant
shots retrieved to the total number of shots retrieved.
We also compare the efficiency of the proposed
features with PCA + motion vector features used in
[45]. The frame size is 320 by 240. The motion vector



656 H. Yi et al. /| Information Systems 31 (2006) 638658

Fig. 14. Motion-based video retrieval. (a) Five example query
results using 7M matrix. (b) The same five query results using
CM, OM and TM matrices.

field size is 20 by 15. Since we are using projection
vector of the motion vector field, the actual dimension
of our feature vector is 20 + 15 = 35, the dimension
of the PCA + motion vector feature [45] is set to 35 in
the comparison. We plot precision as a function of the
number of retrieved video clips are shown in Fig. 15.
The average precision (computed as average of the
precision with the number of top return video clips
varying from 1 to 30) when CM, OM and TM are
considered is 91% compared to 85% when only TM is
used as an index and 87% when PCA + MV feature
is used as an index. The performance of the features is
™ + OM + CM > MV + PCA>TM only.

—— TM,CM,0M
—— TM
0.95 b —— MV+PCA@S5D)| |
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Fig. 15. Precision as a function of the number of video clips
retrieved.

6. Conclusion

In this paper, we have presented a fully automatic
content-based approach to organizing and indexing
compressed video data. The three main steps in our
approach are (i) shot boundary detection using
motion prediction information of MPEG-2, (ii)
development of a browsing hierarchy called adap-
tive scene tree and (iii) video indexing based on
camera motion, object motion and total motion.
The SBD algorithm can detect both abrupt cuts and
gradual transitions. Unlike existing schemes for
building browsing hierarchies, our technique builds
a scene tree automatically from the visual content of
the video. The size and shape of the tree reflect the
semantic complexity of the video sequence. A video
similarity measure based on the CM, OM and TM
matrices is shown to give good retrieval results. The
estimation of these matrices using the affine para-
meter model is also shown to perform well.

The hunt for highly discriminating features is a
continuous one. From our study, we find that the
CM, OM and TM matrices have excellent dis-
criminatory characteristics. However, during com-
putation of video similarity, the conversion of the
matrices to a one dimensional vector might result in
loss of valuable information. A more elegant and
robust use of these matrices is one of the future
directions for this research. The proposed scene tree
is integrated into the MPEG-7 standard description
scheme to generate a MPEG-7 compliant XML
metadata. In the MDS of MPEG-7, there is a
descriptor to describe the temporal segment of the
video. We use this segment descriptor to represent
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the scene tree since each node in the scene tree is a
video segment. To check the effectiveness of the
scene tree building algorithm, it will be useful to
conduct user studies in the form of presenting the
summarized video to several users and asking them
to narrate the story as they understand it. However,
it remains to be seen if a meaningful scene tree can
be built for sports videos.
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