
A motion-based scene tree for compressed video content management

Haoran Yi, Deepu Rajan *, Liang-Tien Chia

Center for Multimedia and Network Technology, School of Computer Engineering, Nanyang Technological University, Singapore 639798

Received 24 July 2004; received in revised form 29 July 2005; accepted 9 September 2005

Abstract

This paper describes a fully automatic content-based approach for browsing and retrieval of MPEG-2 compressed video. The first step of the

approach is the detection of shot boundaries based on motion vectors available from the compressed video stream. The next step involves the

construction of a scene tree from the shots obtained earlier. The scene tree is shown to capture some semantic information as well as provide a

construct for hierarchical browsing of compressed videos. Finally, we build a new model for video similarity based on global as well as local

motion associated with each node in the scene tree. To this end, we propose new approaches to camera motion and object motion estimation. The

experimental results demonstrate that the integration of the above techniques results in an efficient framework for browsing and searching large

video databases.

q 2005 Elsevier B.V. All rights reserved.

Keywords: Shot boundary detection; Video indexing; Video browsing; Video similarity; Video retrieval
1. Introduction

State-of-the-art video compression and communication

technologies have enabled a large amount of digital video to

be available online. Storage and transmission technologies

have advanced to a stage so that they can accommodate the

demanding volume of video data. Encoding technologies such

as MPEG, H.263 and H.264 [1–4] provide for access to digital

videos within the constraints of current communications

infrastructure and technology. Even production of digital

videos has become available to the masses with introduction of

high performance, low-cost digital capture and recording

devices. As a result, a huge volume of digital video content is

available in digital archives on the World Wide Web, in

broadcast data streams, and in personal and professional

databases. Such a vast amount of content information calls for

effective and efficient techniques for finding, accessing,

filtering and managing video data. While search engines and

database management systems suffice for text documents, they

simply cannot handle the relatively unstructured, albeit

information rich, video content. Hence, building a content-

based video indexing system turns out to be a difficult problem.
0262-8856/$ - see front matter q 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.imavis.2005.09.019

* Corresponding author. Tel.: C65 6790 4933; fax: C65 6792 6559.

E-mail addresses: pg03763623@ntu.edu.sg (H. Yi), asdrajan@ntu.edu.sg

(D. Rajan), asltchia@ntu.edu.sg (L.-T. Chia).
However, we can identify three tasks that are fundamental to

building an efficient video management system: (i) the entire

video sequence must be segmented into shots, where a shot is

defined as a collection of frames recorded from a single camera

operation. This is akin to a tuple, which is the basic structural

element for retrieval in conventional text-based database

management system. (ii) Even though a shot determines a

physical boundary in a video sequence, it does not convey any

meaningful semantics within it. Hence, shots that are related to

each other must be grouped together into a scene [8–10]. (iii)

Finally, a robust retrieval method depends on a model that

captures similarity in the semantics of video content.

In this paper, we address the above fundamental tasks to

provide an integrated approach for managing compressed

video content. Since video is mostly available in compressed

form, there is a need to develop algorithms to process

compressed video directly without paying for overheads to

decode them before processing. Tasks such as restoration,

resolution enhancement, tracking, etc. in compressed videos

have been reported recently [11–14]. Our objective is to

develop a fully automatic technique for content-based

organization and management of MPEG compressed videos.

To this end, the paper

(1) describes a novel shot boundary detection algorithm that is

capable of detecting both abrupt and gradual shot changes

like dissolve, fade-in/fadeout;

(2) describes a scene tree that acts as an efficient hierarchical

structure to facilitate browsing;
Image and Vision Computing 24 (2006) 131–142
www.elsevier.com/locate/imavis

http://www.elsevier.com/locate/imavis

H. Yi et al. / Image and Vision Computing 24 (2006) 131–142132
(3) presents a video similarity model that enables efficient

indexing of video content based on motion and which is

shown to be useful in video retrieval.

As noted earlier, these three tasks provide for an integrated

approach to browsing and retrieval in large video databases.

This is in contrast to video abstraction [5] and video

summarization [6], which provides a linear (sequential)

representation of the sequence, but is insufficient for interactive

browsing and retrieval of video. These processes entail

extraction of ‘important’ parts within a video, while discarding

the rest, akin to text summarization in documents. In doing so,

relevant information needed for retrieval may also be lost.

Furthermore, they do not support nonlinear access to the video

content. Hence, a hierarchical structure that facilitates non-

linear access is needed to build a video database search engine

as in Ref. [7]. However, the authors in Ref. [7] use a fixed

hierarchical structure as opposed to the adaptive structure

proposed in this paper. Moreover, their structure lacks

temporal information of the video sequence since it is obtained

by clustering shots using only visual similarity.

The remainder of this paper is organized as follows. In

Section 2, we describe a novel shot boundary detection

algorithm in the compressed domain. The procedure for

building an adaptive scene tree is described in Section 3. In

Section 4, the motion-based indexing and retrieval techniques

are discussed. The experimental results are presented in

Section 5. Finally, we give concluding remarks in Section 6.
2. Shot boundary detection algorithm

There is a rich literature of algorithms for detecting shot

boundaries in video sequences. They can be broadly classified

into methods that use one or more of the following features

extracted from the video frames: (i) pixel differences; (ii)

statistical differences; (iii) histogram; (iv) compression

differences; (v) edge tracking and (vi) motion vectors [15]. In

the initial phase of research in shot boundary detection (SBD),

the data mostly consisted of uncompressed video [16–18].

However, with the emergence of the MPEG compression

standard, it has become prudent to develop algorithms to parse

MPEG video directly. Several methods that detect shot

boundaries directly from compressed video have also been

reported [19–22]. Most of these methods use either the DC

coefficients or the bit-rate of different MPEG picture types

(I, P, or B) in their algorithms; the methods using DC

coefficients involve significant decoding of the MPEG-

compressed video, while the methods using bit-rate do not

yield satisfactory detection. Moreover, these methods are

incapable of handling both hard cuts and gradual transitions

(i.e. fade, dissolve, etc.) simultaneously. Lastly, most of them

involve tight thresholds that are largely dependent on the video

sequence. In this section, we describe a method of detecting not

only hard cuts but also gradual transitions [23]. We exploit the

number of macroblock (MB) types in each of the I-, P-, and

B-frames to derive the SBD algorithm.
2.1. Abrupt shot change detection

We note that not all the macroblocks (MBs) in a P-frame are

forward motion predicted and not all the macroblocks in a

B-frame are bidirectionally predicted [22]. Each MB in the

P-frame is either forward predicted, skipped or intracoded.

Similarly, each MB in the B-frame is either forward predicted,

backward predicted, bi-directionally predicted, skipped or

intracoded. However, a skipped MB is encoded in the same

way as the first MB in the slice to which it belongs [24]. Hence,

we are left with basically four types of MBs which we

abbreviate as In, Fw, Bk and Bi for intracoded, forward

predicted, backward predicted and bidirectionally predicted,

respectively.

The number of each type of MBs in a frame is an indication

of the similarity/dissimilarity of that frame with its neighboring

frames. Since only the B-frame has all the four types of MBs,

we use it to compare the dissimilarity through a frame

dissimilarity ratio (FDR), which is defined as

FDRn Z

FwnK1

BinK1

for Reference frame

max
Fwn

Bin

;
Bkn

Bin

0
@

1
A for B frame

8>>>>><
>>>>>:

(1)

where the Reference frame refers to either an I-frame or a

P-frame and the index n denotes the frame number. If a shot

change takes place at a reference frame, most of the MBs in the

previous frame (which has to be a B-frame) are predicted from

the previous reference frame. In other words, Fw in the

previous frame will be high resulting in a high FDR. On the

other hand, if the shot change takes place in a B-frame, all the

frames lying between the previous and the following reference

frames are either forward predicted or backward predicted. If

the number of bi-directionally predicted MBs is small, it once

again results in a high FDR for these B-frames. The advantage

of using only the B-frames for comparison is that we can avoid

the need for normalizing the FDR as well as choosing a

different threshold on the FDR for each type of frame.

However, we observe that if a shot change takes place at a

B-frame, all the B-frames lying between the previous and the

next reference frames will have high FDRs. Consider the

following frame structure in an MPEG bit stream: .
I1B2B3B4P5B6B7B8P9 .. If the shot change takes place at B3,

FDRs for B2, B3 and B4 will be very high. In order to determine

the exact location of the shot boundary, we observe that B2 is

mostly forward predicted while B3 and B4 are mostly backward

predicted. Thus, at the shot boundary there is a change in the

dominant MB type of the B-frame. So, we define a dominant

MB change (DMBC) for frame n as

DMBCn Z

1

0 if ðBkn KFwnÞðBknK1KFwnK1ÞO0

1 if ðBkn KFwnÞðBknK1KFwnK1Þ%0;

8><
>: (2)

H. Yi et al. / Image and Vision Computing 24 (2006) 131–142 133
where the first line in the above equation applies to the

reference frames and the other two lines apply to the B-frames.

The modified FDR (MFDR) for frame n is then defined as

MFDRn Z FDRn !DMBCn (3)

While the MFDR is the same as the FDR for a reference

frame, there will be one or two consecutive high MFDRs for a

shot change in a B-frame. If there is only one high MFDR, the

corresponding frame indicates the beginning of a new shot.

If there are two consecutive high MFDRs, the former indicates

the end of a shot and the latter indicates the beginning of a new

shot. In the example frame structure considered earlier, the

MFDR is retained for frames B2 and B3, while it drops to zero

for frame B4.

An adaptive threshold mechanism based on a sliding

window as proposed in Ref. [25] is used to detect hard cuts

from the MFDR. The MFDR values are compared over a

window whose length l is set to be less than the duration of a

shot, typically 10 frames. The presence of an abrupt change is

detected at each window position, in the middle of the window,

using the following adaptive threshold:

T Z
maxðMFDRn;.;MFDRnClÞ

maxðTg; submaxðMFDRn;.;MFDRnC1ÞÞ
Ra (4)

Here, max and submax refer to the largest and the third

largest values, respectively, of their arguments, the parameter a

can be thought of as a shape parameter of the boundary pattern

characterized by an isolated sharp peak in a series of

discontinuity values [26] and Tg is a global threshold which

prevents the detected MFDR to be very small. At first glance, it

would appear that the presence of a and Tg imposes a tight

constraint diluting the adaptive nature of the thresholding

process. It is interesting to note, though, that an accurate choice

of a and Tg is not crucial to the success of the algorithm. We

have observed that an empirical choice of aZ5 and TgZ1

works well with a wide variety of video sequences.
2.2. Detection of gradual transitions

We consider two types of gradual transitions, viz., fade and

dissolve. A fade is characterized by a gradual darkening of a

frame and its replacement by another image, which either fades

in or appears abruptly [27]. A fade-in occurs when the image

gradually appears from a blank screen and a fade-out occurs

when the image disappears gradually, leaving a blank screen.

A dissolve occurs when one image fades away while another

image appears. It can be viewed upon as a linear transition from

the ending frame in one shot to the starting frame in the next

shot with pictures from both the shots occupying the region of

transition. From this perspective, fade-in and fade-out can be

considered as special instances of a dissolve in which case, the

former is a dissolve that begins with a blank frame and the

latter is a dissolve that ends in a blank frame.

We use the DMBC defined in Eq. (2) to detect dissolves.

Consider the following frame structure from an MPEG video:

. I1B2B3P4B5B6P7 .. If a dissolve takes place in this
sequence, the dominant MB type in frame B2 will be Fw since

B2 is nearer to the reference frame I1, and that in frame B3 will

be Bk because it is nearer to P4. Thus, we observe that during a

dissolve the DMBC changes rapidly during a dissolve and

consequently a high local sum of the DMBC indicates the

presence of a dissolve. If w is the length of a window centered

around frame n, then the local sum of the DMBC for that frame

is given by

Fn Z
XnCw

nKw

DMBCk (5)

If Fn is greater than a threshold t, then frame n belongs to

the set of frames that makes up the dissolve. It is heuristically

found that the value of t can be chosen to be 0.8 times the

width of the window for several kinds of video sequences. The

width of the window is taken to be less than the width of a

dissolve, which is typically 10 frames. Thus, we note that the

presence of the threshold t does not render the algorithm

inflexible over different types of sequences, as we show in our

experiments. A further refinement of the detected gradual

transitions can be achieved by merging those transitions whose

temporal distance is less than the width of a typical dissolve.
3. Scene tree building algorithm

The objective of content-based indexing of videos is to

facilitate easy browsing and retrieval. Ideally, a nonlinear

browsing capability is desirable as opposed to standard

techniques like fast forward or fast reverse. This can be

achieved, preferably, using a structure that represents video

information as a hierarchy of various semantic levels. Such a

multi-layer abstraction makes it not only more convenient to

reference video information but also simplifies video indexing

and storage organization. Several multilevel structures have

been proposed in the literature [28,9,29,7]. However, they use a

fixed structure to describe the video content, i.e. shot and scene.

The underlying theme is to group together frames that are

‘similar’ to each other where similarity could be defined in

such primitive terms as temporal adjacency [30] or in terms of

video content. The latter results in the entity called scene,

which should convey semantic information in the video being

viewed. Hence, our objective is to build a browsing hierarchy

whose shape and size are determined only by the semantic

complexity of the video. We call such a hierarchical structure

as an adaptive scene tree. The scene tree algorithm described in

this section is motivated by the work of Oh and Hua [31] who

build a scene tree for uncompressed videos. Our algorithm is an

extension and an improvement over [31] that works for

compressed videos.

The main idea of the scene tree building algorithm is to

sequentially compare the similarity of the key frame from the

current shot to the key frames from the previous w shots. Based

on a measure of similarity, the current shot is either appended

to the parent node of the previous shot or appended to a newly

created node. The result of the scene tree building algorithm is

a browsing tree whose structure is adaptive, i.e. the number of

Frame Width
w w

Fram
e H

eight
h

: Background Area

: Foreground Area

Fig. 1. Background and foreground areas for computing the function isSimilar().

H. Yi et al. / Image and Vision Computing 24 (2006) 131–142134
levels of the tree are larger for complex content and smaller for

simple content. The details of the algorithm, which takes in a

sequence of video shots and outputs the scene tree is shown

below:

(1) Initialization: create a scene node SN0
i at the lowest level

(i.e., level 0) of the scene tree for each shoti. The subscript

indicates the shot (or scene) from which the scene node is

derived and the superscript denotes the level of the scene

node in the scene tree;

(2) Initialize i)3.

(3) Check if shoti is similar to shots shotiK1, ., shoti-w (in

descending order) using a function isSimilar(), which will

be described later. The comparisons stop when a similar

shot, say shotj, is found. If no related shot is found, a new

empty node is created and connected to SN0
i as its parent

node; then proceed to step 5.

(4) For scene nodes SN0
iK1 and SN0

j ,

(a) If SN0
iK1 and SN0

j do not currently have a parent node,

we connect all scene nodes, SN0
i through SN0

j to a

new empty node as their parent node.

(b) If SN0
iK1 and SN0

j share an ancestor node, we connect

SN0
i to this ancestor node.

(c) If SN0
iK1 and SN0

j do not currently share an ancestor

node, we connect SN0
i to the current oldest ancestor of

SN0
iK1, and then create a new empty node and connect

the oldest ancestor of all nodes from SN0
j to

SN0
iK1 ifðBknKFwnÞðBknK1KFwnK1Þ%0, to it as its

children.

(5) If there are more shots, we set i)iC1, and go to step 3.

Otherwise, connect all the nodes currently without a parent

to a new empty node as their parent.

(6) For each scene node at the bottom of the scene tree (it

represents a shot), we select the key frame as its

representative frame by choosing the I frame in a shot

whose DC value is closest to the average of the DC values

of all the I frames in the shot. We then traverse all the

nodes in the scene tree from the bottom to the top. For each

empty node visited, we identify the child node, which

contains the largest number of frames and assign its

representative frame as the representative frame for this

node.

We now return to the function isSimilar() used in Step 3 to

compute the similarity between key frames. The first step is to

divide each frame into a fixed background area and a fixed

object area, as shown in Fig. 1. The fixed background area is

defined as the left, right and top margins of the frame whose

width is chosen as 10(of the frame width. The remaining area

of the frame is called a fixed object area. Such a partitioning of

the frame was proposed in Ref. [31], but the authors used it to

develop a SBD algorithm. Operating on the HSV color space,

we compute the color histograms of the object and background

areas of two key frames k1 and k2. The H and S are quantized

into 8 bins and 4 bins, respectively, while we ignore the V

values since it corresponds to luminance. The similarity
measure is defined as

Sim Z w1 !jhistbðk1; k2ÞjCw2 !jhistoðk1; k2Þj (6)

where histb(.) and histo(.) are the Euclidean distances of

histograms of the background and object areas, respectively,

between frames k1 and k2 and w1, w2 are weightings for the

background and object areas, respectively. We choose w1Z0.7

and w2Z0.3 so as to give more weight to the background since

a change in background area is a stronger indication of a

change in the scene. The value of Sim in Eq. (6) is compared

with a threshold to determine if two key frames are similar.

Although the above adaptive scene tree building algorithm

is motivated by Ref. [31], there are some important differences,

which we highlight now. As mentioned earlier, our algorithm

works directly on MPEG-2 compressed video in the sense that

we need only partially decode the video to extract the motion

vectors and DC images. Moreover, a full decoding is required

only for one frame per shot that represents the key frame.

Secondly, the similarity between shots is ascertained through a

meaningful predefined window, w, as opposed to all the shots

from the beginning of the video. We now compare the

computational complexity of our algorithm to Ref. [31]. The

shot similarity determination can be done in O(w!s), where w

is the length of the window and s is the number of shots.

Generally, the number of frames in a shot, f is much larger than

s and s is larger than w(fOOsOw). The scene tree construction

algorithm involves traversal in step 4 and step 6. Therefore, the

worst-case computational complexity of building the tree is of

O(s!log(s)). Thus, the total computational complexity of our

algorithm is of O(s!log(s)), while that in Ref. [31] is O(s!f2).
4. Motion-based indexing and retrieval

In this section, we develop a model to compute the

similarity between two video sequences. The model is based

on motion content within the video sequences. The motion

content itself is represented by three components, viz., the

camera motion (CM), the object motion (OM), and the total

motion (TM). Each of CM, OM and TM are matrices and it is

these matrices that serve as indices for video retrieval.

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

(frame)

M
F

D
R

30

Fig. 2. MFDR for a News Sequences.

0 10 20 30 40 50 60 70 80 90 100

6

8

10

12

14

16

Frame

Lo
ca

l S
um

 o
f D

P
P

C

dissolve

Fig. 3. Local Sum of DMBC in a Dissolve.

H. Yi et al. / Image and Vision Computing 24 (2006) 131–142 135
4.1. Motion extraction

Recall that all the videos considered in this paper are

compressed according to MPEG-2 format. Hence, the MV for

frame n is obtained as

MVn Z

KBknK1 for I frame

FwnKFwnK1 for P frame

ðFwnKFwnK1 CBknKBknK1Þ=2 for B frame

8><
>: (7)

Refer to Section 2.1 for meaning of the notations. The MV

fields (MVFs) obtained are then smoothened using a spatial

(3!3!1) median filter followed by a temporal (1!1!3)

median filter. The smoothened MVFs are then used to calculate

the camera motion and object motion. The total motion

component at each MB is just the smoothened motion vector at

its center.

We use a six parameter affine model to estimate the camera

motion, which is modeled as

mvxði; jÞ Z p1i Cp2j Cp3 mvyði; jÞ Z p4i Cp5j Cp6; 8

where mvx(i, j) and mvy(i, j) are the x and y components of the

motion vector for an MB centered at (i, j), ps are the affine

parameters. Consider a group of MBs G whose affine

parameters PZ{p1,L,p6} need to be determined. We will

explain the significance of G shortly, when we present the

iterative algorithm for camera motion estimation. Using the

method of least squares, from Eq. (8), P is obtained by

minimizing

X
G

ðmvxði; jÞKp1iKp2jKp3Þ
2

C ðmvyði; jÞKp4iKp5jKp6Þ
2 (9)

The two terms inside the summation can be minimized

independently. Considering the first term only and differentiat-

ing it with respect to p1, p2 and p3 and setting the resulting

equations to zero, we get

X
ði;jÞ3G

ðmvði; jÞKp1iKp2jKp3Þi Z 0 (10)

X
ði;jÞ3G

ðmvði; jÞKp1iKp2jKp3Þj Z 0 (11)

X
ði;jÞ3G

ðmvði; jÞKp1iKp2jKp3Þ Z 0 (12)

If the origin of the frame is taken to be at its center (instead of

the top left corner as is conventionally done), i0Z iKðV C1Þ=2

and j0Z jKðUC1Þ=2; U !V is the size of the motion vector

field, then
P

G i0Z0 and
P

G j0Z0 and the affine parameters
can be easily shown to be

p1 Z
IX$YY KJX$XY

A
; p2 Z

JX$XXKIX$XY

A
;

p3 Z

P
G mvxði; jÞ

g
; p4 Z

IY$YY KJY$XY

A
;

p5 Z
JY$XXKIY$XY

A
; p6 Z

P
G mvyði; jÞ

g

(13)

where

IX Z
X

G

i0$mvxði
0; j0Þ; JX Z

X
G

j0$mvxði
0; j0Þ;

IY Z
X

G

i0$mvyði
0; j0Þ; JY Z

X
G

j0$mvyði
0; j0Þ;

XX Z
X

G

i0
2
; YY Z

X
G

j0
2

XY Z
X

G

i0$j0;

A Z XY$XY KXX$YX;

and g is the number of macroblocks in the group G. mv(i 0, j 0)Z
mv(i, j) since the they refer to the same MB.

The algorithm to estimate the affine parameters starts by

labelling all the MBs in a frame as ‘inliers’. Then the

Table 1

Summary of SBD results

Video

(frames)

Cut (correct,

false)

Gradual

(correct,

false)

Recall/pre-

cision cut

Recall/pre-

cision gra-

dual

News

(32640)

43 (42,4) 12 (11,2) 97.67/91.3 91.67/84.62

Movie

(29010)

17 (16,2) 3 (3,1) 94.12/88.89 100/75

Cartoon

(1498)

13 (13,2) 0 (0,0) 100/86.67 –

Soccer

(21310)

32 (31,2) 10 (9,3) 96.88/93.94 90/75.00

Total

(84458)

105 (102,10) 25 (23,6) 97.41/91.75 92.00/79.31

Fig. 4. (a) Scene tree of MPEG-7 test video, (b) scen

H. Yi et al. / Image and Vision Computing 24 (2006) 131–142136
parameters are estimated for all the inliers using Eq. (13).

A new set of motion vectors are reconstructed for each inlier

using the estimated parameters. If the magnitude of the residual

motion vector Rmv, calculated as the difference between the

original motion vector and the reconstructed one, is greater

than an adaptive threshold TZmax(median(Rmv), b) for a

particular MB, then that MB and the one situated diagonally

opposite it are marked as ‘outliers’. The role of b is to prevent

the rejection of a large number of MBs if the median of the

residuals is very small. We choose b to be 1. Note that the

diagonally opposite MB is also marked as outliers due to the

shifting of the co-ordinate axes to the center of the frame. After

each iteration, some MBs are marked as outliers; these MBs

correspond to areas in which the motion is associated with
e tree of TV program ‘Opening The New Era’.

Shot

S
ho

t

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

Shot

S
ho

t

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

(a) (b)

Fig. 5. Shot pairwise similarity matrix for (a) MPEG-7 test video and (b) Opening The New Era video in Fig. 4.

H. Yi et al. / Image and Vision Computing 24 (2006) 131–142 137
moving objects. The set of macroblocks marked as ‘inliers’ at

any iteration constitute G. The steps in the algorithm to

estimate the camera motion is shown in Algorithm 1.

Algorithm 1. Camera Motion Estimation

1. Mark all the MBs as inliers.

2. Estimate the motion affine parameters for inliers (Eq. (13)).

3. Reconstruct the global motion vector at each macroblock

with the estimated affine parameters.

4. Calculate residual motion vector (Rmv) as the difference

between the original and reconstructed motion vector.

5. If Rmv is greater than max (median(Rmv), b), then mark this

MB and its opposite diagonal MB as outliers. Median(Rmv)

is the median of all the Rmv’s.

6. Go to step 2 until there are no more new outliers or more

than two thirds of the MBs are marked as outliers.

7. If more than two thirds of the MBs are outliers, the affine

parameters are set to zero.

Since the computed camera motion vector should not be

greater than the total motion vector at a MB,

jcmði; jÞj Z minðjmvði; jÞj; jcmði; jÞjÞ (14)

where cm(i, j) and mv(i, j) are the camera motion vector and

total motion vector, respectively, at the MB centered at (i, j).

For the same reason

jomði; jÞj Z maxð0; jmvði; jÞKcmði; jÞjÞ (15)

where om(i, j) is the object motion vector at the MB centered at

(i, j). The CM, OM and TM matrices are now formed for a shot

by accumulating jcm(i, j)j, jom(i, j)j and jmv(i, j)j,

respectively, over all the frames in the shot, i.e., CMði; jÞZPn
lZ1 cmlði; jÞ;OMði; jÞZ

Pn
lK1 omlði; jÞ; and TMði; jÞZ

Pn
lZ1

mvlði; jÞ; where n is the number of frames in the shot. These

matrices serve as indices for retrieval, as explained in the next

sub-section.
4.2. Video similarity measure

Each shot is characterized by the three matrixes CM, OM

and TM. In order to compute the similarity between two shots,

we assume that the matrices belong to the Hilbert sequence

space l2 with metric defined by

dðMx;MyÞ Z
XU

uZ1

XV

vZ1

jMxðu; vÞKMyðm; nÞj2

" #1=2

(16)

where Mx and My are the motion matrices of order U!V.

However, instead of comparing matrices, we reduce the

dimension of the feature space by projecting the matrix elements

along the rows and the columns to form one dimensional feature

vectors Mr
xðvÞZ

PU
uZ1 Mxðu; vÞ and Mc

xðuÞZ
PV

vZ1 Mxðu; vÞ:

The metric in Eq. (16) can then be rewritten as

dðMx;MyÞZ
XV

vZ1

1

U
jMr

xðvÞKMr
yðvÞj

2 C
XU

uZ1

1

V
jMc

xðuÞKMc
yðuÞj

2

" #1=2

:

(17)

This leads us to the distance function between two shots sx and sy

to be defined as

d̂ðsx;syÞZuCdðCMx;CMyÞCuOdðOMx;OMyÞ

CuT dðTMx;TMyÞ; (18)

where the d($)s are computed according to Eq. (17) and the us are

the weights for each motion component. The weights are assigned

in such a way that there is equal contribution from each of the

components to the distance function.
5. Experimental results

Our experiments were designed to assess the performance of

the proposed techniques for SBD, scene tree construction,

motion estimation and motion based indexing and retrieval of

shots.

Fig. 6. Video decomposition by clustering for (a) MPEG-7 test video and (b) TV program Opening The New Era [7].

H. Yi et al. / Image and Vision Computing 24 (2006) 131–142138
5.1. Shot boundary detection

We have tested our algorithm on a wide variety of video

sequences like soccer, news, movie and cartoons, which were

encoded in the MPEG-2 format with a GOP length of 12

frames. The encoding pattern was IBBPBBPBBPBB. There

were a total of 105 hard cuts and 25 gradual transitions of

which 20 were dissolves, 3 were fade-ins and 2 were fade-outs.

Fig. 2 shows the MFDR, (see Eq. (3)) for 373 frames of a

‘News’ video. As expected, the hard cuts at frames 120 and 300

have a very high MFDR, which enables easy detection of the

shot boundary. As for gradual transitions, local sum of DMBC,

(see Eq. (2)) for a ‘Movie’ sequence is shown in Fig. 3. We

note that the beginning of the dissolve takes place at frame 43
and ends at frame 68. Table 1 summarizes the results of shot

boundary detection. In the experiment, the global threshold Tg

in Eq. (4) for detecting hard cuts was set to 1. For detecting

gradual transitions, the length of the window over which the

local sum is computed is set to 12, with t (the threshold for Fn

in Eq. (5)) set to 10. The video sequences are chosen so as to

include various kinds of camera and object motions. We use

precision (the ratio of the number of shot changes detected

correctly to the actual number of shot changes) and recall (the

ratio of the number of shot changes detected correctly over

the total number of shot changes detected) to measure the

performance of the SBD algorithm.

The recall rates for hard cuts are consistently above 95(over

all the sequences reinforcing the fact that the choice of the

Fig. 7. Motion estimation. Each row consists of a key frame of the shot, the CM image, the OM image and the TM image of News anchor person (first row), gallery

(second row), soccer (third row) and moving person (fourth row).

H. Yi et al. / Image and Vision Computing 24 (2006) 131–142 139
thresholds are not critical to the success of the method. The

missed cuts are mostly due to large motion at the shot

boundary. The overall recall rate for gradual transitions is 92

(only 2 of the 25 transitions were missed). Note that t is chosen

the same for all the sequences. The false detection of hard cuts

is attributed to the sudden change in brightness of the frame

due to flash in the News sequence, a lightning bolt in the Movie

sequence and the sudden appearance of text in the ‘Cartoon’

sequence. We must mention that the News sequence has 45

instances of flashes, which were potential candidates for shot

boundaries, out of which only 4 were falsely detected, and

yielding the precision rate of 91.3(. However, the overall

precision obtained for hard cuts is 91.75(. The false detection

of gradual transitions is mainly due to the undesirable shaking

of the camera, which pulls down the camera motion

characterization parameters to near zero. This is evident from

the relatively low precision obtained for ‘Soccer’ and Movie

sequence where such jerky movements of the camera are

present.
5.2. Adaptive scene tree construction

To evaluate the scene tree building algorithm, we run the

algorithm described in Section 3 for various videos. Since we

cannot quantify the effectiveness of the algorithm to produce

the scene trees, we show two examples of scene trees in Fig. 4

and describe the main events occurring in the video sequences

from which the tree is constructed. The scene tree in Fig. 4(a) is
built from a 3 min video clip available from the MPEG-7 test

video set (CD 21 Misc2.mpg). In this sequence, two women are

watching the TV, and talking to each other (the first 8 leaf

nodes). Then one of the women leaves while the other

continues watching the TV (next 4 leaf nodes). After a while,

this woman also leaves. Then both the women appear together.

One of them puts on a coat and leaves while the other starts

cleaning the table (the last 4 leaf nodes). The scene tree in

Fig. 4(b) is built from a 2-min video clip from the TV program

‘Opening The New Era’. This video sequence consists of three

scenes. A man and a woman are taking a picture together. Then

the man drives the woman to her home. The woman goes inside

her home and reads the newspaper. If we traverse the scene

trees from the top to bottom, which in essence is a nonlinear

browsing of the video, we get the above stories. The scene trees

give a hierarchical view of the scenes as well as provide a

summary of the video sequence.

Fig. 5 shows the pairwise shot similarity matrices for the

two video clips in Fig. 4. The brighter the pixel is, the higher

the similarity between the two shots is. The similarity between

any two shots is computed using Eq. (6). The similarity matrix

in Fig. 5(a) represents the MPEG-7 test video shown in

Fig. 4(a). The blue lines create four clusters along the diagonal

of the similarity matrix, which correspond to the four scene

nodes (SN (1, 1), SN (1, 2), SN (1, 3), SN (1, 4)) at the first level

in the scene tree. The clusters formed by these scene nodes

have very high intra cluster similarity and relatively low inter

cluster similarity except for cluster SN (1, 2). The cluster

Fig. 8. Motion-based video retrieval. The odd rows use CM, OM and TM matrices for retrieval; the even rows use only the TM matrix for retrieval.

H. Yi et al. / Image and Vision Computing 24 (2006) 131–142140
formed by SN (1, 2) displays a check-board pattern in the intra-

cluster similarity matrix due the alternative appearance of the

two women in the talking scene. The largest partition created

by the red dotted lines encloses the clusters representing, SN (1,

1), SN (1, 2), SN (1, 3), so that it corresponds to scene node SN

(2, 1) at the second level. Fig. 5(b) shows the shot similarity

matrix computed from the ‘Opening The New Era’ video in
Fig. 4(b). The three blue lines create clusters corresponding to

the scene nodes (SN (1, 1), SN (1, 2), SN (1, 3)) at the first level

in the scene tree in Fig. 4(b).

Fig. 6 shows the video decomposition scheme proposed in

Ref. [7], in which shot classes are found by clustering similar

shots using GA algorithm. In our implementation, we use

K-means clustering for finding the shot clusters with the

5 10 15 20 25 30
0.6

0.65

0.7

0.75

0.8

0

0.9

0.95

1
TM
TM,OM,CM

Fig. 9. Precision as a function of the number of video clips retrieved. Solid line

correspond to retrievals using the TM, OM and CM and dashed line correspond

to retrievals using TM only.

H. Yi et al. / Image and Vision Computing 24 (2006) 131–142 141
pairwise similarity matrix given by Eq. (6). In Fig. 6(a), the

shots are decomposed into four clusters that contain shots

relating to (1) watching TV, (2) a woman talking, (3) the other

woman talking and (4) a women leaving. Although these four

clusters of shots characterize some of the major events in the

video, it does not preserve the temporal order of the events as

does the scene tree in Fig. 4(a). Fig. 6(b) shows three

representative shot classes obtained from the clustering

procedure of Ref. [7]. The clusters are: (1) photo taking

machine, (2) indoor shots and (3) outdoor shots. But this

decomposition scheme does not describe the story of the video

properly. For example, SN (0, 1), the photo taking shot is

grouped as an indoor shot together with the shots, in which the

woman is reading a news paper in her room. This

decomposition lacks temporal organization of events as well.

However, the scene tree decompositions of the video content in

Fig. 4(b) do not have these limitations.
5.3. Motion estimation

In this subsection, we evaluate the proposed algorithm for

motion estimation. We consider video sequences that are

compressed using the MPEG-2 standard. Fig. 7 shows four

examples of such videos. Each row consists of the key frame in

a particular shot, followed by camera motion, object motion

and total motion. The motion information contained in the CM,

OM and TM matrices are represented as monochrome images

for visualization purposes; the brighter pixels indicate higher

motion activity. The first row in Fig. 7 shows the shot of a news

anchor person in which the camera is stationary. This is

reflected in the black CM image while the motion of the object

(face of the person) is clear in the OM image. Thus the total

motion consists essentially of the object motion only. Similarly

in the second row, which shows a scene with a moving camera

while the objects in the scene are stationary, the OM image is

black (indicating no motion) while the CM image is uniformly

bright. The third row illustrates the case of both object motion

and camera motion contributing to the total motion in the shot
from a soccer game. We can clearly see the zooming in of the

camera in the CM image while object motion is indicated by

some bright pixels in the OM image. Finally, we show a shot of

the camera tracking a person and its corresponding motion

images, which are all mostly bright implying that the motion

contains both camera as well as object motion. We see that the

proposed motion estimation algorithm has been able to extract

the motion information quite well.

5.4. Motion-based retrieval

We noted earlier that the video retrieval process is implicitly

contained within the process of browsing the adaptive scene

tree. However, the retrieval method proposed in this paper can

also be considered as a ‘standalone’ process. To evaluate the

performance of our proposed method for motion indexing and

retrieval, we build a database consisting of video shots using

the SBD algorithm on the 643 video sequences of the MPEG-7

test set. The lengths of the video clips range from 5 to 30 s.

Using the CM, OM and TM matrices as indices and the

video similarity measure developed in Section 4, we retrieve

the top N video shots from the database. In Fig. 8, we show the

top three results of the query shown in the first column. We

compare the retrieval results when only TM is used with the

case when all the three motion matrices, viz., CM, OM and

TM, are used to retrieve. The odd rows in Fig. 8 show the

retrieval result with the motion feature extracted from CM, OM

and TM matrices while the even rows are the retrieval results

when only TM is considered. The first column is the key frame

from the query video shot. The second, third and fourth

columns are the first, second and third retrieval results. From

these examples, we observe that both models retrieve video

clips, which have similar motion content. Furthermore, we can

see that video similarity model with CM, OM and TM gives

better retrieval result in both the motion and semantic sense

than the model that uses only TM.

We randomly choose 50 video shots from the video

database as queries and retrieve the top 30 videos. Using

precision as the measure for performance, where precision is

defined as the ratio of the number of relevant shots retrieved to

the total number of shots retrieved, we plot precision as a

function of the number of retrieved video clips as shown in

Fig. 9. The average precision (computed as average of the

precision with the number of top return video clips varying

from 1 to 30) when CM, OM and TM are considered is

91(compared to 85(when only TM is used as an index.

6. Conclusion

In this paper, we have presented a fully automatic content-

based approach to organizing and indexing compressed video

data. The three main steps in our approach are: (i) shot

boundary detection using motion prediction information of

MPEG-2, (ii) development of a browsing hierarchy called

adaptive scene tree, and (iii) video indexing based on camera

motion, object motion and total motion. The SBD algorithm

can detect both abrupt cuts and gradual transitions. Unlike

H. Yi et al. / Image and Vision Computing 24 (2006) 131–142142
existing schemes for building browsing hierarchies, our

technique builds a scene tree automatically from the visual

content of the video. The size and shape of the tree reflect the

semantic complexity of the video sequence. A video similarity

measure based on the CM, OM and TM matrices is shown to

give good retrieval results. The estimation of these matrices

using the affine parameter model is also shown to perform well.

The hunt for highly discriminating features is a continuous

one. From our study, we find that the CM, OM and TM

matrices have excellent discriminatory characteristics. How-

ever, during computation of video similarity, the conversion of

the matrices to a one-dimensional vector might result in loss of

valuable information. A more elegant and robust use of these

matrices is one of the future directions for this research. To

check the effectiveness of the scene tree building algorithm, it

will be useful to conduct user studies in the form of presenting

the summarized video to several users and asking them to

narrate the story as they understand it. However, it remains to

be seen if a meaningful scene tree can be built for sports videos.

References

[1] International Organization for Standardization, Overview of the MPEG-7

Standard, ISO/IEC/JTC1/SC29/WG11 N4031 Edition, March 2001.

[2] International Organization for Standardization, MPEG21 Overview

(CODING OF MOVING PICTURES AND AUDIO), ISO/IEC

JTC1/SC29/WG11/N4318 Edition, July 2001.

[3] ITU-T, Video Coding for Low Bitrate Communication ITU-T Rec-

ommendation, H.263 Edition, February 1998.

[4] ITU-T, Joint Final Committee Draft (JFCD) of Joint Video Specification

(ITUT Rec. H.264 - ISO/IEC 14496-10 AVC), H.264 Edition, July 2002.

[5] A. Divakaran, R. Regunathan, K.A. Peker, Video summarization using

descriptors of motion activity: A motion activity based approach to key-

frame extraction from video shots, Journal of Electronic Imaging 10

(2001) 909–916.

[6] B. Yu, W.-Y. Ma, K. Nahrstedt, H. Zhang, Video summarization based on

user log enhanced link analysis, in: ACM Multimedia 2003, Berkeley,

CA, USA, 2003, pp. 382–391.

[7] N.D. Doulamis, Optimal content-based video decomposition for

interactive video navigation, IEEE Transaction on Circuits and Systems

for Video Technology 14 (6) (2004) 757–775.

[8] E. Katz, The Film Encyclopedia, Harper Collins, New York, 1994.

[9] J.R. Kender, B.-L. Yeo, Video scene segmentation via continuous video

coherence, in: Proceedings of IEEE Internation Conference on Computer

Vision and Pattern Recognition, Santa Barbara, CA, 1998, pp. 367–373.

[10] B.T. Truong, S. Vekatesh, C. Dorai, Scene extraction in motion picture,

IEEE Transactions on Circuits and Systems for Video Technology 13 (1)

(2003) 5–15.

[11] M.A. Robertson, R.L. Stevenson, Restoration of Compressed Video

Using Temporal Information, in: Proceedings of SPIE conference on

Visual Communications and Image Processing, San Jose, CA, vol. 4310,

2001, pp. 21–29.

[12] B. Gunturk, Y. Altunbasak, R. Mersereau, Super-resolution reconstruc-

tion of compressed video using transform-domain statistics, IEEE

Transactions on Image Processing 13 (1) (2004) 33–43.
[13] D. Schonfeld, D. Lelescu, VORTEX: Video retrieval and tracking from

compressed multimedia databases—multiple object tracking from

MPEG- 2 bitstream, Journal of Visual Communications and Image

Representation, Special Issue on Multimedia Database Management 11

(2000) 154–182.

[14] H. Wang, A. Divakaran, A. Vetro, S.-F. Chang, H. Sun, Survey of

compressed-domain features used in audio-visual indexing and analysis,

Journal of Visual Communication and Image Representation 14 (2)

(2003) 50–183.

[15] R. Lienhart, Comparison of automatic shot boundary dtection algortihms,

in: Proceedings of SPIE conference on Storage and Retrieval for Image

and Video Databases VII, vol. 3656, 1999, pp. 290–301.

[16] H. Zhang, A. Kankanhalli, S. Smoliar, Automatic partitioning of full-

motion video, Multimedia Systems 1 (1993) 10–28.

[17] R. Zabih, J. Miller, K. Mai, A feature-based algorithm for detecting and

classifying scene breaks, in: Proceedings of ACM Multimedia 95, San

Francisco, CA, vol. 1, 1995, pp. 10–28.

[18] I.K. Sethi, N.V. Patel, Statistical approach to scene change detection, in:

Proceedings of SPIE Conference on Storage and Retrieval for Image and

Video Databases, San Jose, CA, vol. 2420, 1995, pp. 329–338.

[19] J. Feng, K.-T. Lo,. M.H, Scene change detection algorithm for image

video sequence, in: Proceedings of IEEE International Conference on

Image Processing, vol. 1, 1996, pp. 821–824.

[20] B.L. Yeo, B. Liu, Rapid scene analysis on compressed video, IEEE

Transactions On Circuits and Systems for Video Technology 5 (1995)

553-544.

[21] B.L. Yeo, B. Liu, On the extraction of DC sequence from MPEG

compressed video, in: Proceedings of IEEE International Conference on

Image Processing, Washington, DC, 1995, pp. 2260–2263.

[22] J. Meng, Y. Juan, S.-F. Chang, Scene change detection in a MPEG video

sequence, in: Proceedings of SPIE Conference on Multimedia Computing

and Networking, San Jose, CA, vol. 2417, 1995, pp. 180–191.

[23] H. Yi, D. Rajan, L.-T. Chia, A unified approach to detection of shot

boundaries and subshots in compressed video, in: Proceedings of IEEE

International Conference on Image Processing, Barcelona, Spain, 2003.

[24] B.G. Haskell, A. Puri, A.N. Netravali, Digital video: An Introduction to

MPEG-2, Chapman I & Hall, New York, 1997.

[25] B.L. Yeo, B. Liu, Rapid scene analysis on compressed video, IEEE

Transactions On Circuits and Systems for Video Technology 5 (1995)

553-544.

[26] A. Hanjalic, R.L. Lagendijk, J. Biemond, Automated segmentation of

movies into logical story units, IEEE Transactions on Circuits and

Systems for Video Technology 9 (4) (1999) 580–588.

[27] A. Daniel, Grammar of the Film Language, Focal Press, London, 1976.

[28] C. Saraceno, R. Leonardi, Identification of story units in audio-visual

sequences by joint audio and video processing, in: Proceeding of

International Conference on Image Processing, Chicago, IL, USA, 1998,

pp. 358–362.

[29] Z. Rasheed, M. Shah, Scene boundary detection in hollywood movies and

TV show, in: Proceedings of IEEE International Conference on Computer

Vision and Pattern Recognition, Madison, WI, 2003.

[30] J. Nam, A.H. Tewfik, Combined audio and visual streams analysis for

video sequence segmentation, in: Proceedings of ICASSP-97, Munich,

Germany, vol. 4, 1997, pp. 2665–2668.

[31] J. Oh, K.A. Hua, An efficient and cost-effective technique for browsing

and indexing large video databases, in: Proceedings of 2000 ACM

SIGMOD International Conference on Management of Data, Dallas, TX,

2000, pp. 415–426.

	A motion-based scene tree for compressed video content management
	Introduction
	Shot boundary detection algorithm
	Abrupt shot change detection
	Detection of gradual transitions

	Scene tree building algorithm
	Motion-based indexing and retrieval
	Motion extraction
	Video similarity measure

	Experimental results
	Shot boundary detection
	Adaptive scene tree construction
	Motion estimation
	Motion-based retrieval

	Conclusion
	References

