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Abstract

A new motion feature for video indexing is proposed in this paper. The motion content of the video at pixel level, is

represented as a Pixel Change Ratio Map (PCRM). The PCRM enables us to capture the intensity of motion in a video

sequence. It also indicates the spatial location and size of the moving object. The proposed motion feature is the motion

histogram which is a non-uniformly quantized histogram of the PCRM. We demonstrate the usefulness of the motion

histogram with three applications, viz., video retrieval, video clustering and video classification.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The abundance of multimedia content in

various forms like digital libraries and broadcast

media calls for efficient techniques for its analysis

and management. While initial research activities

in this area were directed at image databases, it

did not take long to address similar issues like

retrieval and classification for video data. These
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tasks are guided by suitable indexing methods

based on the content of the video itself and/or
semantic descriptors that could be extracted from

the data. Early video indexing methods were based

on detecting shot boundaries followed by extract-

ing key frames from which visual features like

color, texture, shape, edge etc. were extracted to

be used as indices (Smoliar and Zhang, 1994; Deng

et al., 2001; Manjunath and Ma, 1996; Rui et al.,

1996; Park et al., 2000). However, such indexing
techniques do not take into account the essential

characteristic of video, viz., its temporal dimen-

sion. Recent works have used the spatio-temporal
ed.
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relationship among video frames by extracting

motion information inherent in them (Ngo et al.,

2002; Chang et al., 1998; Fablet et al., 2000; Saho-

uria and Zakhor, 1999). Ngo et al. (2002) use tex-

ture features extracted from temporal slices to
index motion content. While patterns in spatio-

temporal slices reveal camera motions (pan and

zoom) and direction of motion, they do not indi-

cate the intensity of motion in a video sequence.

Chang et al. (1998) use the trajectory of the mov-

ing object as the index to motion content. How-

ever, it is very difficult to extract the trajectories

of moving objects under complex scene. Fablet
et al. (2000) use Markov Random Fields to char-

acterize the optical flow field of video clips. This

method is computationally intensive and is, there-

fore, not suitable for long video clips in large video

databases. Sahouria and Zakhor (1999) use block

based motion vectors and principal component

analysis to represent motion content, but this is

done at a very coarse level. The MPEG-7 standard
provides motion descriptor to describe motion

activity. The extraction of this descriptor is based

on aggregate motion vectors contained in the com-

pressed bitstream (MPEG, 2002). However, as in

(Sahouria and Zakhor, 1999), motion vectors in

MPEG compressed video streams are computed

over macroblocks of size 16 · 16 and hence they

are only a coarse representation of the actual mo-
tion. It is desirable to consider motion features

that can be determined at the pixel level in order

to obtain motion information at a finer resolution.

In this paper, we propose a simple and efficient

method to extract motion features at the pixel level

in order to index video segments on the basis of

motion content. Through a simple procedure that

uses frame differencing, we create what we call a
Pixel Change Ratio Map (PCRM) that indicates

moving regions in a particular video sequence.

The histogram of each of the PCRMs, with appro-

priate quantization as explained later, is the pro-

posed new motion histogram. This definition of a

motion histogram is different from an intuitive

interpretation, which might consider it to be a dis-

tribution of motion vectors with respect to their
magnitudes and directions (Deng and Manjunath,

1997). However, since our motion histogram is

extracted from a PCRM which in turn is represen-
tative of the motion in the video sequence at the

pixel level, the terminology is justified. We illus-

trate the utility of the proposed motion histogram

through applications in video retrieval, video clus-

tering and video classification.
The paper is organized as follows: in Section 2,

we describe the method to compute the PCRM.

Section 3 describes the construction of the motion

histogram from PCRM. In Section 4, we illustrate

the applications of the proposed motion histogram

and finally, conclusions are presented in Section 5.
2. Pixel change ratio map

In this section, we present the algorithm to com-

pute the Pixel Change Ratio Map (PCRM), which
characterizes motion content in a video segment.

We assume that each segment consists of a single

shot. However, if the segment consists of more than

one shot, a shot detection algorithm can be used to

locate the shot boundaries before determining the

PCRM for each shot. The algorithm to generate

the PCRM is motivated by the fact that the human

visual system perceives motion if the intensity of
motion is high and the motion continues for a rea-

sonably long duration. By intensity of motion, we

mean how fast a certain object moves, implying

that a high intensity of motion results in a large

change in pixel intensities over the frames. Simi-

larly, object motion that is spread over several

frames, i.e., one that has a long duration, is more

perceptible than motion over a few frames.
Based on the above observations, we accumu-

late the changes in pixel intensity over all the

frames in a video segment to generate the PCRM

for that segment. We initialize the PCRM, which

is of the same size as that of the frame, to all zeros.

If the frame size is M · N, then the PCRM is

simply a matrix of size M · N initialized to zeros.

For the current frame i, we add the absolute values
of the frame differences pi � pi�1 and pi+1 � pi, i.e.,

DIi = jpi � pi�1j + jpi+1 � pij. For each pixel in this

frame, if the sum DIi is greater than a threshold,

the corresponding location in the PCRM is incre-

mented by 1. This procedure is carried out for all

the frames in a video segment. The PCRM values

are then divided by the number of frames and nor-



Fig. 1. (a) Key frame (middle frame) of a �Football� sequence, (b) Pixel Change Ratio Map of the video sequence in (a).
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malized to lie in [0,1]. Thus, it represents the ratio

of the number of pixels whose intensities have

changed as a result of significant motion, where
significant qualifies intensity and duration, as

explained earlier. The comparison of DIi with a

threshold is simply to undo the effect of any noise

associated with the camera or the decoding process

when dealing with compressed video. In this work,

the threshold is chosen to be 10 for all the experi-

ments discussed and hence it is not dependent on

any particular type of video. Fig. 1(a) shows the
50th frame of a video segment from a soccer se-

quence consisting of 100 frames. The PCRM for

this segment, shown as an intensity image in Fig.

1(b), clearly indicates motion regions. Note that

both the local motion (of the players) as well as

the global motion (of the camera) is captured in

the PCRM. It is the camera motion component

of the total motion that causes the lines of the pen-
alty box to show up. The brighter the pixel inten-

sity in the PCRM, higher is the intensity of motion

there.
3. The motion histogram

The representation of the PCRM as an intensity
image enables us to consider its histogram as a reli-

able feature to index motion content. However, a

histogram with uniform quantization of the bins

will not achieve the purpose. This is because most

of the values in the PCRM will be cluttered at low

values. This is indicated in Fig. 2 which shows the

histogram of the PCRM images accumulated for

all the 643 video segments in the database that
we use in our experiments. Here, the range [0,1]

of the PCRM values are quantized uniformly into

1000 bins. Clearly, in order for the proposed
motion histogram to have a high discriminative

ability among different classes, it is required to

requantize the bins non-uniformly such that the

step size is finer where the distribution is high

and coarser where the distribution is low. Thus,

in Fig. 2, we would like �narrower� bins to be

placed close to the origin while the bins get larger

as we move away from it. Once the quantization
step sizes are determined for the accumulated

histogram, the same is used to requantize the

histograms of individual PCRM images, which is

indeed the proposed motion histogram for each

video sequence.

Suppose there are m quantization levels and it is

required to determine the step size for each of

them. We obtain the cumulative histogram from
the accumulated histogram and traverse it, mark-

ing off points at 1
m ,

2
m , . . . ,

m�1
m ,1, where m is the

number of bins. The abscissa of each of these

points marks the boundary between two bins. This

is a way of simply ensuring that the distribution of

the PCRM values among the bins is uniform. Fig.

3(a) shows the histogram of Fig. 1(b) with uniform

quantization; this histogram is then subjected to a
non-uniform quantization and the result is shown

in Fig. 3(b). We see that the histogram obtained

from nonuniform quantization has higher bins

that are more populated than those in the histo-

gram with uniform quantization. This is desirable

since the �Football� sequence of Fig. 1 has high mo-

tion content. We note that although the non-uni-

form quantization in Fig. 3 is illustrated for a
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Fig. 2. Histogram of PCRM images accumulated over all the sequences in the database.

1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

(a) (b)

Fig. 3. (a) Histogram of Fig. 1(b) before re-quantization, (b) histogram of Fig. 1(b) after 8-level nonuniform quantization.
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single video sequence, the actual requantization is

carried out on the histogram obtained from the

entire database.

The use of the accumulated histogram to deter-

mine the step sizes implies that we use all the

available information in the database. However,

addition of a new sequence to the database does
not require the recomputation of quantization

levels since we are already considering a wide

variety of sequences whose properties are included

in the accumulated histogram. The recomputa-

tion needs to be done only in the case where the

accumulated histogram is seen to be altered signif-

icantly. The determination of the step sizes as
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described above can also be justified from an infor-

mation theoretic point of view wherein we would

like the requantized histogram to provide the max-

imum information about the dataset. Since uni-

form distribution is the one that maximizes the
entropy of a source in the absence of constraints

other than those imposed by laws of probability,

we would like a uniform distribution of the PCRM

values among the bins.
4. Applications of motion histogram

In this section, we illustrate three applications

of the new motion histogram proposed in this

paper. We utilize the motion histogram for video

retrieval, clustering and classification. The video

database consists of 643 video sequences taken

from the MPEG-7 test set. The videos include

sports videos (e.g., soccer, basketball, golf, cycl-

ing), news videos, sitcoms, concert videos, document-
aries etc. The duration of each video segment varies

from 7 to 30 s and there are a total of 299,110

frames. We expect various types of motion content

in the different videos and therefore, they form a

suitable data set in which to test the proposed

motion histogram.
4.1. Video retrieval

The objective here is to retrieve video sequences

with motion content similar to that in a query

video. The motion content is represented by the

motion histogram described above. In this paper,

we consider three instances of the number of quan-

tization levels viz., 8, 16 and 32. While the choice

of these numbers are merely illustrative, it may
be pointed out that they can be represented in bin-

ary format with full usage of bits and that they

enable the histograms to be feature scalable, i.e,

a histogram with a high number of quantization

levels can be converted to one with a lower number

by simply merging the adjacent bins. Moreover,

the MPEG-7 Scalable Color Descriptor which is

based on histograms also uses these quantization
levels. The Minkowski distance between two histo-

grams hq and hd is defined as
dðhq,hdÞ ¼
XN
m¼1

jhqðmÞ � hdðmÞju
 !1=u

, ð1Þ
where N is the number of quantization levels (or
bins). In our experiment, we choose Euclidean dis-

tances (u = 2 in Eq. (1)) to compute the similarity

between motion histograms.

Fig. 4 shows examples of video retrieval exper-

iments based on the motion histogram. The first

column consists of the key frames of the query

video shots. In this case, we simply consider the

middle frame in the sequence as the key frame.
The second, third and fourth columns show the

key frames of the first, second and third retrieved

video sequences. It is evident that sequences belong-

ing to the same category are present among the top

returns for different types of videos. We also ob-

serve that the motion histogram is able to distin-

guish between large and small moving objects.

For example, the soccer sequence (first row in
Fig. 4) consists of moving regions that are small

while the sequence containing walking people (sec-

ond row in Fig. 4) consists of moving regions that

are large.

To quantify the performance of the motion his-

togram for video retrieval, we consider the preci-

sion of retrieval. However, first, we would like to

emphasize on the difficulty of obtaining the
ground truth when motion histogram is used as a

feature for retrieval. Intuitively, it would seem that

the ground truth could be obtained by categorizing

the database according to motion content, e.g.,

low, mid and high motion sequences. But this is

a very subjective task and it is not easy to define

these categories exactly. The alternative is to cate-

gorize the database on the basis of semantics in
which case construction of the ground truth is

not hard. But the problem here is that semantics

does not always relate to motion content in a di-

rect manner, e.g. in a golf sequence, the swing of

the golfer is high motion while the ball slowly roll-

ing towards the hole is low motion. Even though

�golf� is the semantic class, the motion is not coher-

ent throughout. However, we observe that in soc-
cer, basketball and talking head videos, the motion

content is coherent in that there is significant

motion throughout the sequence, e.g., in soccer



Fig. 4. Examples of video retrieval showing the key frame of each sequence.
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sequence, even when the ball goes out of play and

there is not much motion among the players, the

camera will be zooming into the area from where

the ball is thrown in. Thus, we calculate precision
of retrieval on two semantic classes—the first one

is called �soccer & basketball� and the second one

is called �talking head�. Note that soccer and bas-

ketball sequences are categorized into one class—

we could as well consider them as separate classes.

Fig. 5(a) shows the average precision for different

values of top n retrievals for �soccer & basketball�.
The average precision for a particular n is obtained
by querying the database with each video sequence

belonging to this class and averaging the precision

over all the queries. The 32-level motion histogram

performs better than the 8-level and the 16-level

histograms because the variation in pixel intensi-

ties in the PCRM image for these sequences is very

large and hence, a finer quantization is required.

Note that our measure of precision is stricter than
the one based only on semantic ground truth be-

cause the retrieved video sequences are considered

relevant only when they are not only similar in mo-

tion content to the query video sequence, but also
share the same semantics. Fig. 5(b) shows the aver-

age precision for top n retrievals for the �talking
head� class of videos. Here, the 8-level histogram

performs better since the sequences in this class

contain very low motion resulting in the intensity

values of the PCRM image to be concentrated

near zero. Since the variation of the pixel values

in the PCRM is very small, the 32 level motion his-
togram may over quantize the PCRM values. The

lower average precision in this case compared to

�soccer & basketball� is a consequence of our defi-

nition of precision. In the database, there are many

sequences from sitcoms which have similar motion

content to talking head videos, e.g. conversation

between two people. Although they are similar in

motion content, they are considered as false posi-
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tives since they do not belong to the same semantic

class. We also compare the efficiency of the pro-
posed feature with motion vectors used in (Sahou-

ria and Zakhor, 1999); the precision and recall for

a 32 dimensional motion feature are illustrated

by the MV + PCA curves in Fig. 5(a) and 5(b).

Clearly, the feature proposed in this paper is

superior.

4.2. Video clustering

We wish to group together video sequences with

similar motion content using the proposed motion

histogram. However, the clusters thus formed

should also be semantically meaningful. If so, the

clusters can be initialized to be the starting point

for content browsing by the user. We assume that

the video sequences in the database are generated
by a Gaussian Mixture Model (GMM). Since each

sequence is represented by the motion histogram,

its N dimensional feature vector x (recall that N

is the number of bins in the motion histogram) is

denoted by

f ðxjhÞ ¼
XM
k¼1

akfkðxjhkÞ, ð2Þ

where M is the number of mixtures, a is the mixing

co-efficient and h is the parameter set. The assump-

tion of Gaussian mixture models allows us to write

fk(xjhk) as
fkðxjhkÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞN jRkj
q
� exp � 1

2
ðx� lkÞ

TR�1
k ðx� lkÞ

� �
:

ð3Þ
The model is specified in terms of the parameter

set hk = {ak,lk,Rk}, for k = 1 to M, wherePM
k¼1ak ¼ 1 and Rk is a N · N positive definite

covariance matrix. The clustering problem is then

the estimation of these parameters followed by

determining those video sequences that have the

most similar sets of parameters. Here, M is the

number of clusters. A maximum likelihood (ML)

approach is followed to carry out this task. If there

are Q observations of the random vector x, then
the ML estimate of the parameters, hMLk , is ob-

tained by maximizing the likelihood function

f(xjhk), i.e.,
hMLk ¼ argmax

hk
f ðx1, . . . ,xQjhkÞ: ð4Þ

Here, x1, . . .,xQ are the feature vectors correspond-

ing to motion histograms of the Q video sequences

in the database. We use the Expectation–Maximi-

zation (EM) algorithm (Dempster et al., 1977) to

estimate the parameter hk.
It is important that the EM algorithm is initial-

ized with parameters so that it does not get
trapped in a local maxima of the likelihood
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function. Therefore, we utilize the K-means algo-

rithm (Duda and Hart, 1973) to perform data-dri-

ven initialization instead of a random one. In the

experiment, we perform K-means clustering 5

times (here the initialization is random). The K-
means clustering result with the smallest sum of

squared distance (SSD) is chosen as the initializa-

tion for the EM algorithm. An optimal criterion

for the number of clusters, M, is based on a trade-

off between the performance and number of

parameters used for describing the mixture distri-

bution. We choose the Bayes information criterion

(BIC) (Burnham et al., 1994) to determine the
optimum number of clusters,

BIC ¼ �2� log Likþ q� log L, ð5Þ

where logLik is the log-likelihood evaluated at the

maximum likelihood estimates of the model

parameters, and q is the number of parameters in

the model and L is the sample size. Fig. 6(a) shows
the BIC for different number of clusters. We see

that 7 is the optimal number of clusters as chosen

by the BIC.

Although we would like to show the discrimi-

natory capability of the motion histogram visu-

ally, it is not possible to plot the feature vectors

because of their high dimensionality. However,

we use the Principal Components Analysis to re-
duce the dimension of the feature vectors (from
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8, 16 or 32) to 2 and plot them in Fig. 6(b). We

observe that the features are separated into two

clusters. One of the clusters represents �high� mo-

tion and the other represents �low� motion as per-

ceived by the human visual system. Next, we
apply the EM based clustering algorithm on the

643 video sequences in the database to cluster

them into 7 groups. Fig. 7 shows the key frames

from 3 representative video sequences for each

of the clusters. It is interesting to note that each

cluster represents a particular type of motion.

For example, cluster 2 represents sequences in

which the camera is stationary while there is little
object motion. Such sequences include news

videos, interviews etc. However, in cluster 3, there

is indeed a smooth camera motion although

motion of objects is very little or non-existent,

for example as in the camera pan of a landscape.

The descriptions of motion in the video sequences

in each cluster and their examples are listed as

follows:

Cluster 1. Irregular camera motion, large object

motion with small moving object size

(e.g., soccer (long shot), basketball

(long shot), etc.)

Cluster 2. Still camera and little object motion

(e.g., talking head, dialogue, interview,

etc.)
–0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6
.8

.6

.4

.2

0

.2

.4

.6

High Motion
Low or no Motion (b)

f clusters and (b) scatter plot of feature vectors reduced from 8



Fig. 7. Video clustering using 8-level motion histogram (the key frames are shown).
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Cluster 3. Smooth camera motion with little or no

object motion (e.g., scenery, etc.)

Cluster 4. Little camera motion and little object

motion (e.g., outdoor interview, out

door news shots, etc.)

Cluster 5. Little camera motion and large object

motion (e.g., marathon, racing cars,
animal shows, etc.)

Cluster 6. Irregular camera motion and large mov-

ing object(e.g., soccer(close-up), basket-

ball(close-up), cycling, etc.)

Cluster 7. Little or no motion (scenery, etc.).

4.3. Video classification

In this section, we classify video sequences into

predefined categories according to their motion

content. We choose two categories—�high motion�
and �low motion�. As before, we use the 643 se-

quences in the database and label them as belong-

ing to one of the two classes. There are 337

sequences labelled as �high motion� and the rest

306 are labelled as �low motion�. Fig. 8(a) shows
some of the representative video sequences from

the two classes; the top row shows sequences con-
taining high motion and the bottom row those

containing low motion. We use Support Vector

Machines (SVM) for classification because of their

discriminating power and simplicity. In this case,

the SVM performs a binary classification. Radial

basis functions are chosen as the kernel for train-

ing. For details about SVM (see Christianini and

Shawe-Taylor, 2000).
In order to train the SVM, we randomly pick n

samples from the database. We consider the effect

of n on the classification rate by performing the

training/classification 30 times for each n and then



Fig. 8. (a) Examples of video sequences (key frames) from two classes—�high motion� (top row) and �low motion� (bottom row),

(b) average classification rate with different number of training samples.
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finding the average of the classification rate. The

performance of the classifier for various values of

n are shown in Fig. 8(b). We note that the classifier

needs very less training samples to converge. In
our experiment, only 20 samples are enough to

train the SVM, which is just 3% of the entire data.

The small size of the training samples indicates

that these two classes are quite separated by the

proposed motion histogram. The average classifi-

cation rate for 8-, 16- and 32-level motion histo-

grams are above 86%. Considering that labelling

of the video clips into �high motion� and �low mo-
tion� is a highly subjective task, the high classifica-

tion rate is encouraging. Comparing the PCRM

based feature with the features proposed in (Saho-

uria and Zakhor, 1999), we find the former outper-

forms that latter by a significant margin as shown

in Fig. 8(b).
5. Conclusions

In this paper, we have introduced a new method

for motion indexing. We propose the formation of

a Pixel Change Ratio Map based on motion con-

tent in a video sequence and extract the motion

histogram from it. The bins in the motion histo-

gram are adaptively quantized so as to have a high
discriminating power among different classes. We

illustrate the efficacy of the proposed motion histo-

gram through applications in video retrieval, clus-

tering and classification. Not only does it retrieve

sequences having similar motion as the query se-
quence, but it is also able to provide an indication

of the size of the moving objects. The clusters

formed by using motion histogram as the feature

are very similar in motion content to what is per-
ceived by the human visual system. Classification

of video sequences using the proposed motion

histogram results in a high classification rate.

Moreover, there is need for only a few training

samples indicating that it has a high discriminating

ability. We plan to investigate other features that

can be extracted from the PCRM which could

enable description of textures.
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