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Abstract

Social influence analysis in online social networks is the study of peo-
ple’s influence by analyzing the social interactions between individuals. In
recent years, there have been increasing research efforts to understand the
influence propagation phenomenon due to its importance to viral marketing
and information dissemination among others. Despite the progress achieved
by state-of-the-art social influence analysis techniques, a key limitation of
these techniques is that they only utilize positive interactions (e.g., agree-
ment, trust) between individuals, ignoring two equally important factors,
namely, negative relationships (e.g., distrust, disagreement) between indi-
viduals and conformity of people, which refers to a person’s inclination to be
influenced.

In this paper, we propose a novel algorithm for social influence analy-
sis called casino (Conformity-Aware Social INfluence cOmputation), which
quantitatively studies the interplay between influence and conformity of each
individual by exploiting the positive and negative relationships between in-
dividuals. Given a social network, casino first extracts a set of topic-based
subgraphs where each subgraph depicts the social interactions between indi-
viduals associated with a specific topic. Then it optionally labels the edges
(relationships) between individuals with positive or negative signs. Finally, it
iteratively computes the influence and conformity indices of each individual
in each signed topic-based subgraph. Our exhaustive empirical study with
several real-world social networks demonstrates superior effectiveness and
accuracy of casino for social influence analysis compared to state-of-the-art
methods. Furthermore, our investigation revealed several interesting charac-
teristics of “influentials” and “conformers” in these social networks.
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1 Introduction

Though the field of social network analysis (sna) has developed over the past 50
or more years, it is with the recent emergence of large-scale online social network-
ing applications (e.g., Facebook, LinkedIn, MySpace) that techniques from this
area have received a great deal of attention. We are now faced with the opportu-
nity to analyze social network data at unprecedented levels of scale and temporal
resolution for marketing, health, politics, communication, education and other ap-
plications. However, translating the research techniques of traditional sna to these
large-scale online data-intensive applications is a daunting task. In this paper, we
present our work towards addressing one of the challenges, namely the social in-
fluence analysis problem.

The goal of social influence analysis is to study individuals’ influence by ana-
lyzing the social interactions between people. Recently, it has attracted tremendous
research interest due to its role in governing the interactions in social networks as
well as understanding the spread patterns of social influence. By identifying the
“influentials” in a social network, users may be able to maximize the influence
of a piece of information [8, 9, 15]. Informally, influentials are those individuals
whose opinions or advices are often accepted and supported by others. For in-
stance, Domingos and Richardson [9,23] are the first to study influence maximiza-
tion as an algorithmic problem. They proposed a probabilistic model of interaction
and heuristics were given for choosing individuals with a large overall effect on
the network. Kempe et al. [15] studied this problem from discrete optimization
perspective and proposed three cascade models for influence propagation. They
proposed a greedy algorithm which aimed to find a limited number of influentials
from whom the information diffusion can be maximized.

Recently, Leskovec et al. [16,17] viewed online social networks as signed net-
works, where social interactions involve both positive and negative relationships
(edges). For instance, consider the signed network in Figure 1 depicting interac-
tions between a set of individuals. An edge pointing from u to v denotes that person
u trust/agree (resp., distrust/disagree) person v. An edge representing agreement or
trust relationship is labeled as positive (e.g., edge −→uv) whereas the one represent-
ing disagreement or distrust is labeled as negative (e.g., edge −→wv). Note that social
influence flows in the opposite direction of the edges (i.e., v influenced u and w).

The representation of social interactions as positive and negative relationships
demanded a revisit of the social influence analysis problem as general influence
analysis techniques overwhelmingly assumed only positive edges among individ-
uals. However, negative relationships between individuals are valuable in several
real-world scenarios (i.e., politics) as they often carry as much information as the
positive ones. For instance, in 2006, 31% of US residents used the Internet for
gathering or sharing political information (above 60 millions people). 28% of them
mentioned that most sites they use share their point of views while 29% of the In-
ternet users mentioned that most challenge their point of views [20]. Thus, it is
imperative to reconsider social influence analysis problem by taking into account
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Figure 1: Social influence propagation scenario.

the signed interactions between individuals.

1.1 Motivation

A closer analysis of social influence phenomenon in signed networks reveals that
there are three important factors that play a key role. Firstly, an individual’s ability
to influence others (e.g., v in Figure 1). Secondly, the nature of social interactions
(positive or negative) between individuals (e.g., −→uv and −→wv). Lastly, the degree of
conformity of an individual, which is a person’s inclination to be influenced [3].
The last factor is important as empirical studies have shown that large conversation
are not only driven by the limited number of influentials but also by the large popu-
lation of the early adopters who accept the influentials’ opinion [24]. Observe that
an individual’s ability to influence or conform is context-sensitive. For example,
reconsider Figure 1, where u conforms to v’s opinion on iPad 2. However, it does
not necessarily mean that u will always conform to v on any topic. For instance, u
may not agree with v on conversation related to salsa dancing as u may believe
that she is a better dancer than v. Additionally, v may not even be considered as
influential on this topic.

Despite the benefits of the state-of-the-art social influence analysis techniques,
a key limitation is their inability to systematically exploit the aforementioned sec-
ond and third factors for superior analysis. Majority of existing research have
overwhelmingly focused on considering only the positive relationships. Only very
recently Cai et al. [7] took a step towards classifying influential individuals into
Positive Persona, Negative Persona, and Controversy Persona, by exploiting both
positive and negative relationships in the network. However, they ignored the effect
of conformity of individuals on influentials. To elaborate further, consider the two
signed networks in Figure 2 where an edge −→uv with positive (resp., negative) sign
indicates u trust (resp., distrust) v. The shadowed part depicts the conformity of
individuals u1 and u2. Specifically, u1 is easily convinced by others whereas u2 is
not. Thus, it is easier for v1 to influence u1 than v2 to influence u2. However, state-
of-the-art approaches have ignored this issue and failed to differentiate between
these two cases. Consequently, these conformity-unaware techniques compute the
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Figure 2: Conformity and negative edge effect.

same influence score for v1 and v2. However, an individual’s influence should be
increased if a larger number of users conform to her (positive interactions) but de-
creased if she is distrusted by individuals who are not conforming to her (negative
interactions). Is it possible to design a conformity-aware social influence analysis
strategy that can address the aforementioned limitation? In this paper, we provide
an affirmative answer to this question.

1.2 Overview and Contributions

We propose a novel algorithm called casino (Conformity-Aware Social INfluence
cOmputation) that somewhat departs from existing influence analysis techniques
in the following way: where existing strategies essentially ignore conformity of in-
dividuals, casino focuses on integrating the interplay of influence and conformity
of individuals for social influence analysis by exploiting the positive and negative
signs of edges. Additionally, it is context-aware, allowing the same individual to
exhibit different influence and conformity over different topics of social interac-
tions.

Given a social network, if it is a context-aware one, then casino first extracts
a set of topic-based subgraphs. Each subgraph depicts the social interactions be-
tween individuals associated with a specific topic. Since the edges of a social net-
work may not be always explicitly labeled with positive or negative signs, casino
exploits an existing sentiment analysis technique to label the edges in each topic-
based subgraph. Finally, given a set of signed topic-based subgraphs, the algorithm
iteratively computes the influence and conformity indices of each individual in each
subgraph.

To validate the proposed algorithm, a series of experiments have been con-
ducted on five public datasets from three popular online social media sites, i.e.,
Slashdot1, Epinions2, and Twitter. Epinions and Slashdot are context-free networks
where individuals trust (distrust) each other regardless of any specific topic. The

1http://slashdot.org/
2http://www.epinions.com
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sign of each edge in these networks is explicitly provided. Twitter is a context-
aware network where each conversation is based on a specific topic. Note that the
signs of edges are not explicit in Twitter and hence they need to be extracted using
a sentiment analysis technique.

There is no direct mechanism to justify the list of influentials generated by
a generic social influence analysis technique. Hence, to quantitatively evaluate
the performance of casino, we borrow the experimental framework articulated by
Leskovec et al. [16, 17]. In this framework, machine-learning based approach is
used for discovering the presence of unknown edges and edge sign prediction,
wherein the conformity and influential indices of individuals are used as additional
features to describe the signed edges. The intuition for using this framework is as
follows. When an individual v influences u, it results in an edge −→uv in a social net-
work graph. Moreover, if v has more influence on u (u is a conformer), then there
is a greater probability of the existence of −→uv. Thus, presence of a positive edge in
a social network can be interpreted as the result of influence of v and conformity
of u. In summary, the main contributions in this paper are as follows.

• In Section 3, we discuss the roles of influentials and conformers in the con-
text of social influence analysis and describe how to quantify influence and
conformity of each individual in a social network. To the best of our knowl-
edge, we are the first to study the interplay of influentials and conformers
with the goal of social influence analysis.

• In Section 4, we propose an iterative algorithm called casino that utilizes
signs of social interactions (edges) to compute the influence and conformity
indices of each vertex in an arbitrary social network. Moreover, we prove
that the proposed algorithm is guaranteed to converge.

• By applying casino to real-world online social media sites, in Section 5, we
strongly demonstrate the effectiveness and superiority of casino compared
to state-of-the-art approaches and at the same time reveal several interesting
characteristics of influentials and conformers in these sites.

In the next section, we review related work.

2 Related Work

We address related work from a number of relevant research areas, including: in-
fluence within online social media; conformity in social psychology; and analysis
and prediction of signed networks.

Social influence within social media. Several recent works have focused on de-
veloping effective techniques to find a limited number of individuals who have
significant influence on others within an online social network. These efforts use
graph-theoretic approaches where influence analysis is transferred to a link analysis
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problem and the directed links are viewed as influences between pairs of individu-
als. For instance, Agarwal et al. [1] proposed an influence-based ranking function
for blogs which exploits the influence of posts in each blog. The influence of a post
is computed based on its length, comments, and a propagation factor which is the
aggregated influence from the posts that linked to and from the current one. Each
blogger is associated with an influence score. Interestingly, this work demonstrated
that the most influential bloggers are not necessarily those who are most active
(large number of posts). Ma et al. [19] used heat diffusion models to find a set of
k influential candidates as target for marketing strategy in social networks. Par-
ticularly, the influence propagation is modeled as a heat diffusion process within
social networks where the influence each node receives at a particular timepoint
follows a heat diffusion formula. Based on this idea, the top-k candidates whose
heat diffused to the largest scope are selected using a greedy algorithm. Recently,
Bao et al. [5] proposed an influence-based advertising model, which diffuses hint
words of influential users to others and then matches advertisements for each user
with aggregated hints. They tested their model on a large online Q & A community
and showed that it can improve the advertisement click through rate. In a different
media, Pal et al. [21] used the count of original tweets, conversational tweets, and
re-tweets of a tweeter as features to rank the authority of each tweeter in the con-
text of different topics. They employed a Gaussian Mixture Model to compute the
authority score of each tweeter. To validate their results, they conducted a survey
to rate the authority of the tweeters and use it as the ground truth for authority rank-
ing. Bakshy et al. [4] also studied social influence in Twitter by assigning a score to
the tweet first appeared in a conversation and then diffuse the score to other tweets
along the conversation. Each tweet in the conversation receives a portion of the
score. A regression tree-based approach is used to predict the unknown influence
scores using a set of features including number of followers, number of tweets, etc.
The predicted influence score was validated using an online survey, which asked
people to rate the interestingness of the tweets.

The aforementioned research have exclusively emphasized on the influence ca-
pability of the individuals and ignored the conformity of those who are influenced.
However as discussed in the preceding section, the interplay between influence and
conformity are indispensable for investigating the social influence phenomenon. In
contrast, casino seamlessly incorporates both factors for social influence analysis.
Specifically, we demonstrate that by considering the interplay between influence
and conformity, the social influence process can be modeled more accurately.

Conformity in social psychology. The notion of conformity originated in social
psychology in the context of social networks. It is defined as yielding to perceived
group pressure by copying the behavior and beliefs of others [3]. Several lines of
work in social psychology have focused on conducting experiments on groups of
people in order to find the cause of conformity from the aspect of human nature [6,
11,14]. These efforts identified two major causes of conformity, namely, influential
and normative. The former claims that people conform to others’ opinions for
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advice [6]; the latter claims that people conform to others’ opinions in order to be
consistent with the social group regardless whether the opinion is right or not [11].
In this paper, we are inspired by the conformity study in social psychology and
utilize it to enhance social influence analysis in online social networks. We take
into account the conformity in social influence and propose a model to evaluate
the conformity of each individual in a social group. However, classification of
the causes of conformity within online social networks is beyond the scope of this
paper.

Characteristics of signed social networks. In a different direction, there are also
large bodies of work involving positive (friendly) and negative (antagonistic) links
in social media. In [17], the authors analyzed two structural properties of positive
edges and negative edges, referred to as balance and status, in three real-world
networks (Slashdot, Epinions and Wiki3). Balance is a classical theory from so-
cial psychology, which postulates that when considering the relationships between
three people, either only one or all three of the relations should be positive. Status
is a theory of directed signed networks which postulates that when person A makes
a positive link to person B, then A is asserting that B has higher status – with a
negative link from A analogously implying that A believes B has lower status. The
authors use these two theories to explain the observed edge signs in undirected and
directed social networks.

Leskovec et al. [16] used logistic regression to predict the signs of edges in
signed networks by exploiting 7-dimensional degree features and 16-dimensional
triad features of the networks. They showed that their logistic regression-based
method yields higher accuracy in predicting the signs of edges compared to the
state-of-the-art. Besides, the authors demonstrated that the accuracy of predicting
only the positive edges can be improved by taking into account the negative inter-
actions. In other words, it is often important to consider the interplay between posi-
tive and negative interactions. Recently Cai et al. [7] proposed another feature (i.e.,
influence) aside from the 7-dimensional degree features in [16]. A PageRank-like
algorithm was developed to compute the influence of individual users and then use
it as another feature in an svm classifier to predict the signs of edges. They showed
that by taking into account the social influence of individual users the accuracy of
edge sign prediction can be significantly improved. Based on this, they catego-
rized influence personae into Positive Persona, Negative Persona, and Controversy
Persona. Positive and Negative Personae represent users with high positive and
negative influence, respectively. The last kind of Controversy Persona represents a
group of individuals who are liable to be challenged or supported by many.

In the aforementioned research, different structural features of signed networks
(i.e., positive/negative edges, in/out degree, influence, triad frequency) are used
in machine learning methods in order to predict the signs of edges. However,
these research do not address the following two issues. Firstly, although [7] has
taken into account the influence of node u for prediction of the sign of edge −→uv,

3http://www.wikipedia.org/
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Table 1: Symbols.

Symbol Semantics

G social network graph
V vertex set
E edge set
E+ positive edge set
E− negative edge set
A topic ID
EA edge correlated with topic A
GA subgraph correlated with topic A
G topic-based subgraph set
Ω(·) conformity index
Φ(·) influence index
ΩA(·) conformity index with respect to topic A
ΦA(·) influence index with respect to topic A
−→uv the edge pointing from u to v
−−→
uAv the edge pointing from u to v on context topic A

it does not consider the conformity of v. That is, whether v accepts the opinion
of u. In contrast, we not only study the influence of u on the sign of edge −→uv but
also investigate the conformity of v and its effect on u’s influence. Secondly, an
individual v may agree with u on a certain topic as u maybe more knowledgeable
than her in that topic. However, v may not agree with u in some other topic where
u may not be as proficient as v. In this paper, we propose a context-aware strategy
which allows the same individual to exhibit different influence and conformity in
different topics.

3 Influence and Conformity

In this section, we formally introduce the notion of influence and conformity in the
context of signed social networks. We begin by briefly introducing signed social
networks, which lie at the foundation of our proposed strategy. In the sequel, we
shall use the notations shown in Table 1 to represent different concepts.

3.1 Signed Social Networks

Social interactions in online social networks can be either positive (indicating re-
lations such as friendship) or negative (indicating relations such as distrust and
opposition). For instance, in online rating sites such as Epinions, people can give
both positive and negative ratings not only to items but also to other users. In online
discussion sites such as Slashdot, users can tag other users as “friends” (positive)
and “foes” (negative). In blogosphere and Twitter, the reply relationship among
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users can be a positive or a negative one. In our following discussion, we treat such
social interaction as signed directed graph.

In a signed social network G(V,E), each edge has a positive or negative sign
depending on whether it expresses a positive or negative attitude from the generator
of the edge to the recipient [16]. Specifically in this paper, a positive sign indicates
that the recipient supports the opinion of the generator whereas the negative sign
represents otherwise. For example, Figure 2(b) depicts a signed social network.
The positive edge E+ = {−−−→u2v2} represents trust relationship while the negative ones
(E− = {−−−−→w20v2,

−−−−→u2w21,
−−−−→u2w22,

−−−−→u2w23}) represent distrust relationships. Note that the
signs on the edges are not always available explicitly. In networks such as Epinions
and Slashdot, the sign of each edge is explicitly provided. However, in other net-
works such as blogosphere and Twitter the sign of each edge is not explicitly avail-
able. In this case, we need to preprocess the network using text mining methods
to discover signs associated with the links (detailed in Section 4.2). Consequently,
a social network G(V,E) containing both positive and negative edges can be rep-
resented using a pair of graphs G+(V,E+) and G−(V,E−) such that the following
hold.

∀−→uv ∈ E,

 (−→uv ∈ E+)∩ (−→uv ∈ E−) = 0,

(−→uv ∈ E+)∪ (−→uv ∈ E−) = 1

In other words, G+(V,E+) denotes the induced graph of positive edges E+

(trust/agreement relationship) and G−(V,E−) denotes that of negative edges E−

(distrust/disagreement relationship).

3.2 Definitions

In our approach, each individual (vertex) in a signed network is associated with
a pair of influence index and conformity index to describe the power of influence
and conformity of the individual, respectively. Reconsider the signed network in
Figure 2(b). Intuitively, the influence of v2 should increase as aggregated confor-
mity of those who trust v2 (i.e., u2) increases. On the other hand, the influence of
v2 should decrease if the aggregated conformity of those who distrust v2 (i.e., w20)
increases. Thus, the influence index of an individual should capture this interplay
of influence and conformity and penalize her whenever necessary.

Definition 1 [Influence Index] Let G+(V,E+) and G−(V,E−) be the induced graphs
of the signed social network G(V,E). The influence index of vertex v ∈ V , denoted
as Φ(v), is defined as follows.

Φ(v) =
∑
−→uv∈E+

Ω(u)−
∑
−→uv∈E−

Ω(u)

where Ω(u) represents the conformity index of vertex u ∈V .
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Similarly, the conformity index of u2 in Figure 2(b) depends on the influences
of vertices which are trusted or distrusted by u2. Intuitively, as the aggregated
influence of those vertices which u2 trust (e.g., v2) increases, u2 is more inclined
to conform to others. On the other hand, when the aggregated influence of vertices
which u2 distrust (e.g.,, w21,w22,w23) increases, u2 is less inclined to conform to
others. This intuition is captured by conformity index which is defined as follows.

Definition 2 [Conformity Index] Let G+(V,E+) and G−(V,E−) be the induced
graphs of the signed social network G(V,E). The conformity index of vertex u ∈V ,
denoted as Ω(u), is defined as follows.

Ω(u) =
∑
−→uv∈E+

Φ(v)−
∑
−→uv∈E−

Φ(v)

where Φ(v) is the influence index of vertex v ∈V .

Thus, according to the above definition the influence index of v2 in Figure 2(b)
can be computed as Φ(v2) = Ω(u2)−Ω(w20). The conformity index of u2 is com-
puted as Ω(u2) = Φ(v2)−Φ(w21)−Φ(w22)−Φ(w23). Observe that the aforemen-
tioned definitions of influence and conformity are mutually dependent on each
other. Consequently, a recursive computation framework is necessary to compute
these two indices. In the next section, we shall present an algorithm called casino
that computes the influence index and conformity index of every vertex iteratively.

Remark. Observe that the aforementioned definitions aim to measure each in-
dividual’s ability to positively influence her neighbors. The absolute number of
incoming edges play a lesser role compared to relative number of positive and neg-
ative edges. This is because an individual A with 500 positive and 500 negative
incoming edges may have strong social ties but not necessarily good influence, as
half of A’s neighbors do not trust her. In contrast, another user B with 9 positive
and 1 negative incoming edges may not have strong social ties compared to A but
definitely exhibits good influence within his friends. Having said this, in our defi-
nitions we do consider the influence of node degree as a node with 100 positive and
10 negative incoming edges may exhibit higher index value compared to another
with 10 positive and 1 negative incoming edges.

4 Conformity-aware Influence Computation

In this section, we formally describe the algorithm casino for computing confor-
mity and influence indices of individuals in a social network containing positive
and negative edges. We begin by briefly describing the notion of context-aware
and context-free signed social networks to represent real-world online networks.
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Algorithm 1: The casino algorithm.
Input: Social network G(V,E)
Output: the influence index �A = (ΦA(u1),ΦA(u2), . . . ,ΦA(uℓ)) and conformity

index �A = (ΩA(u1),ΩA(u2), . . . ,ΩA(uℓ)) for V = {u1,u2, . . . ,uℓ} and for
each topic A

1 begin
2 if G is context-aware then
3 G← extractSubgraph(G);

4 else
5 G = {G};
6 foreach GA ∈ G do
7 if GA is not a signed network then
8 (G+A(VA,E+A ),G−A(VA,E−A ))← edgeLabel(GA);

9 (�A,�A)← indicesCompute(G+A(VA,E+A ),G−A(VA,E−A ));

4.1 Context-aware and Context-free Networks

Online social networks can be classified into context-aware and context-free net-
works. The former represent networks where the edges are associated with topics
(context) as social interactions may often involve conversations on specific topics.
For example, each conversation in Twitter is based on a specific topic. Figure 1
depicts interactions between three users on the topic iPad 2. On the other hand,
interactions in context-free networks do not involve specific topics. For example,
in Epinions and Slashdot individuals trust (distrust) each other regardless of any
specific topic.

The leftmost social network in Figure 3 is an example of context-aware so-
cial network where an edge labeled as A1,A2 indicates that the pair of individuals
communicate with each other on topics A1 and A2.

4.2 The Algorithm CASINO

The casino (Conformity-Aware Social INfluence cOmputation) algorithm is out-
lined in Algorithm 1 and consists of three phases, namely the topic-based subgraph
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extraction phase (Line 3), the edge labeling phase (Line 8), and the indices com-
putation phase (Line 9).

Figure 3 depicts an overview of the casino algorithm. Given a social network
G(V,E), if it is a context-aware network then the topic-based subgraph extrac-
tion phase extracts a set of subgraphs of G (denoted by G) where each subgraph
GA(VA,EA) ∈ G contains all the vertices and edges in G associated with a specific
topic A. Each subgraph GA represents positive or negative attitudes of individ-
uals toward opinions of others in G with respect to the topic A. For instance,
in Figure 3, this phase generates three topic-based subgraphs, namely, GA1 , GA2 ,
and GA3 , for topics A1, A2, and A3, respectively. Recall that edges of a social
network may not be explicitly labeled with positive or negative signs. This is es-
pecially true for context-aware networks (e.g., Twitter). On the other hand, links
in many context-free networks (e.g., Slashdot and Epinions) are explicitly labeled
with signs. Hence, it is important to label the edges in each topic-based subgraph
GA. The objective of the edge labeling phase is to assign sign to each edge by ana-
lyzing the sentiment expressed by the generator and recipient of the edge. Figure 3
depicts the labeling of GA1 . Finally, given a set of signed topic-based subgraphs
G, the goal of the indices computation phase is to iteratively compute the influence
and conformity indices of each individual in each GA ∈ G. Observe that a vertex
v in G may have multiple pairs of indices if v is involved in more than one topic-
based subgraph. Since the first phase is straightforward, we now elaborate on the
remaining two phases in turn.

The edge labeling phase. The edge labeling method varies with dataset. In this
paper, we adopt the method described in Algorithm 2. We denote each edge −→uv
associated with topic A as

−−→
uAv. This enables us to differentiate between an edge

which shares the same generator and recipient for more than one topic. For each
edge

−−→
uAv in a topic-based subgraph GA, we identify 5-level sentiment (i.e., like,

somewhat like, neutral, somewhat dislike, dislike)4 expressed at both ends using
LingPipe [2] which is a popular sentiment mining package adopted in several re-
cent research [12,18,22,25] (Lines 4-5). Note that LingPipe has been tested to pro-
vide very promising results (i.e., with accuracy over 85% in most cases [12,18]) on
sentiment extraction. If the sentiments at both ends are similar (sentiment similar-
ity threshold is less than ε), we denote the edge as positive (Lines 6-7). Otherwise,
we denote it as negative (Lines 8-9).

Indices computation phase. Given a topic A and topic-based subgraph GA, the
preceding phase generates G+A and G−A. Without loss of generality, assume that there
are |G| different topics. Then, we are able to compute an individual’s influence and
conformity indices for each topic (i.e., ΦA(u) and ΩA(u)). We now elaborate on the
algorithm for computing these indices.

Algorithm 3 outlines the strategy for computing a pair of influence and confor-

4In this paper to simplify the discussion, we adopt a 5-level system of sentiment which is widely used in
many rating networks such as Yahoo! Answer.
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Algorithm 2: The edgeLabel procedure.
Input: Topic-based subgraph GA(VA,EA) induced by topic A,
Output: G+A(VA,E+A ) and G−A(VA,E−A ) such that: E+A ∪E−A = EA and E+A ∩E−A = ∅

1 begin
2 E+A = E−A = ∅;
3 foreach

−−→
uAv ∈ EA do

4 u.sentiment ← LingPipe.sentExtr(u);
5 v.sentiment ← LingPipe.sentExtr(v);
6 if |u.sentiment − v.sentiment |< ε then
7 E+A = E+A ∪{

−−→
uAv}

8 else
9 E−A = E−A ∪{

−−→
uAv}

mity indices (Φ(u), Ω(u)) for each vertex u. It first initializes the influence index
and conformity index of all vertices to be 1 (Lines 1-4). Subsequently, in each
iteration it computes them for each vertex by using the values of the indices in pre-
vious iteration (Lines 6-8) and normalizing these values using the square root of
the summation of all vertices’ index values (Lines 9-13). The algorithm terminates
when both indices converge. We shall now prove that the proposed algorithm is
guaranteed to converge after a fixed number of iterations n. In other words, the dif-
ference between an arbitrary node’s indices between n and n+1 rounds of iteration
is insignificant and hence we do not need to consider additional iterations.

Theorem 1 The indicesCompute procedure described in Algorithm 3 converges.

Proof 1 (Sketch)
According to Definition 1, for each vertex u its influence index Φ(u) can be

computed as the following.

Φ(u) =
∑
−−→
u′u∈E+

Ω(u′)−
∑
−−→
u′u∈E−

Ω(u′)

If we denote � =(Φ(u1), Φ(u2), . . ., Φ(uℓ))⊤ and � =(Ω(u1), Ω(u2), . . ., Ω(uℓ))⊤

for V = {u1, u2, . . ., uℓ}, then the computation of both indices in each iteration can
be represented as:  � =�⊤+�−�⊤−�� =�+�−�−�

where �+ and �− represent the adjacency matrices for G+ and G−, respectively.
If we substitute � in the first equation using the second equation, then the first line
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Algorithm 3: The indicesCompute procedure.
Input: G(V,E) = G+(V,E+)∪G−(V,E−)
Output: the influence index � = (Φ(u1),Φ(u2), . . . ,Φ(uℓ)) and conformity index

� = (Ω(u1),Ω(u2), . . . ,Ω(uℓ)) for V = {u1,u2, . . . ,uℓ}
1 begin
2 k = 1 /*initialize iteration counter*/ ;
3 foreach u ∈V do
4 Φk(u) = Ωk(u) = 1

5 while � or � not converged do
6 foreach u ∈V do
7 Φk+1

0 (u) =
∑
−→vu∈E+

Ωk(v)− ∑
−→vu∈E−

Ω(v);

8 Ωk+1
0 (u) =

∑
−→uv∈E+

Φk(v)− ∑
−→uv∈E−

Φ(v);

9 foreach u ∈V do

10 Φk+1(u) =
Φk+1

0 (u)√ ∑
v∈V
Φk+1

0 (v)2
;

11 Ωk+1(u) =
Ωk+1

0 (u)√ ∑
v∈V
Ωk+1

0 (v)2
;

12 �k+1 = (Φk+1(u1),Φk+1(u2), . . . ,Φk+1(ul));
13 �k+1 = (Ωk+1(u1),Ωk+1(u2), . . . ,Ωk+1(ul));
14 k = k+1;

turns into the following:

�k+1 =
1
Z

(�⊤+ −�⊤− )(�+−�−)�k

=
1
Z

(�+−�−)⊤(�+−�−)�k

where Z is a normalizing factor such that ∥�k+1∥ = 1. If we compute �k+1 using �k
for k = 1,2, . . . ,n recursively, then �n+1 should be the unit vector along the direction
of

((�+−�−)⊤(�+−�−))n(�+−�−)⊤(1,1, . . . ,1)⊤.

Similarly, �n+1 should be the unit vector along the direction of

((�+−�−)(�+−�−)⊤)n+1(1,1, . . . ,1)⊤.

According to the result in [10], if M is a symmetric matrix, and v is a vector not
orthogonal to the principal eigenvector ω1(M), then the unit vector in the direction
of Mkv converges to ω1(M) as k increases.

Comparing with our case, (1, 1, . . ., 1)⊤ is not orthogonal to ω1((�+−�−)(�+−
�−)⊤), thus �k converges. Similarly, �k also converges.

In summary, both Φ(u) and Ω(u) converge.
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Table 2: Statistics of context-free datasets.

Dataset #nodes #edges #positive edges #negative edges

Slashdot1 77,357 516,575 396,378 120,197
Slashdot2 81,871 545,671 422,349 123,322
Slashdot3 82,144 549,202 425,072 124,130

Epinions 131,828 841,372 717,667 123,705

Table 3: Statistics of the context-aware dataset.

Dataset #tweets #trends #tweeters #edges

Twitter 1,054,261 21,917 576,894 1,230,748

Observe that the aforementioned technique can easily be extended to compute
the aggregated indices of an individual by taking into account the entire social
network G over all topics A = 1, . . . , |G|. In this case, E+ and E− in Definitions 1
and 2 are replaced by

∪|G|
A=1 E+A and

∪|G|
A=1 E−A , respectively.

5 Experimental Study

In this section, we report experimental results to quantitatively measure the per-
formance of casino for discovering influential individuals by considering the con-
formity of others. To this end, we borrow the experimental framework articulated
by Leskovec et al. [16, 17], in which machine-learning based approach is used for
discovering the presence of unknown edges and edge sign prediction by exploit-
ing various edge features. By considering conformity and influence indices as new
features for classification, it is expected that these additional features will provide
more concrete evidence for edge prediction compared to state-of-the-art strategies.

5.1 Datasets

We consider the following context-free and context-aware networks where each
link is explicitly or implicitly labeled as positive or negative.

Context-free network data. In order to compare the performance of casino with
state-of-the-art efforts on influence evaluation in signed networks [7, 16, 17], we
adopt the same datasets that have been used in these work: Slashdot and Epinions 5.
Recall that these network data are context-free and contain explicit signs of edges to
indicate the attitudes of individuals towards one another. Specifically, we obtained
three Slashdot datasets at different timepoints. The statistics of each dataset is
reported in Table 2.

5http://snap.stanford.edu/data/
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Context-aware network data. We use the Twitter dataset to investigate the per-
formance on a context-aware network. The dataset was crawled using the Twitter
api 6 during Dec 2010 to Feb 2011. We extracted top 20 trends keywords at hourly
duration and retrieved up to 1500 tweets for each trend. Then we identified the
relationships between all the tweeters in the dataset. Table 3 reports the statistics
associated with this dataset. Note that these statistics are computed after removing
non-English tweets (using Twitter api). In order to compute accurate influential
and conformity indices, we need to have large context-aware interaction graphs.
We removed spam trend keywords which contain only meaningless IDs. Thus, we
selected top 492 trends that contain more than 1,000 tweets to compute the indices.
For each trend (topic), we identified all the tweets associated to it. Then the edges
connecting different tweets using ‘@’ tag are extracted and their signs are assigned
as positive or negative using Algorithm 2. Additionally, there exists another tag
‘RT’ in many tweets indicating that a tweet author supports another author’s opin-
ion by re-tweeting it. That is, if an author u directly re-tweets another twitter v,
then it indicates that u wants to distribute this tweet to her followers. Hence, we
assign positive signs to such re-tweet edges.

5.2 Experimental Setup

We have implemented casino using Java and run all the experiments on a 1.86GHz
Intel 6300 machine with 4gb ram with Windows XP. The algorithm converges after
average 30 iterations. For the Twitter dataset, the sentiments for all the tweets are
classified into 5 different levels (i.e., 1-5) using the LingPipe library [2]. We set
the sentiment similarity threshold ε (Algorithm 2) to 1. Note that it is not effective
to set ε > 1. For instance, if ε is set to 2 or 3 then it indicates that the sentiment is
‘somewhat dislike’ or ‘neutral’, respectively. Consequently, higher value of ε will
ignore negative edges. Obviously, the selection of ε depends on how many levels
of sentiment we have classified.

Similar to [7,16,17], in our experiments, the task of edge sign prediction is con-
sidered as a binary classification problem. We adopted svmlight classifier [13] and
classification accuracy is taken as the main measure for evaluation. Specifically,
accuracy is defined as follows.

accuracy =
#T P+#T N

#T P+#FP+#T N +#FN

In the above equation T P and T N stand for “true positives” and “true negatives”,
respectively; FP and FN stand for “false positives” and “false negatives”, respec-
tively. The reason for adopting accuracy as evaluation measure over precision and
recall is that the former is suitable for quantifying the prediction performances of
both positive and negative samples. This is crucial in our framework as in most
experiments both positive and negative edges are being predicted.

6http://dev.twitter.com/doc
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Figure 4: Positive edge presence prediction.

As mentioned in [16], the overwhelming majority of the edges in Slashdot and
Epinions are positive. Consequently, random guessing can achieve approximately
80% accuracy [7]. In order to avoid such biased classification, we adopt the same
strategy used in [7, 16, 17]. Specifically, we create a balanced dataset with same
number of positive and negative edges for training and testing.

In all experiments we report the average accuracy and perform 5-folds cross
validation. For example, for the dataset with 200K edges, we first randomly select
100K negative edges and separate them into 5 parts each of which include 20K
negative edges. Then we iteratively select 20K random positive edges and add
them into each of the 5 negative edge sets. Based on the learned model (discussed
below), we predict a label 1 or -1 for each target edge indicating its possibility to
be positive or negative, respectively.

In order to compare the prediction accuracy of the proposed approach with
state-of-the-art efforts, a baseline classifier is constructed by referring to the struc-
tural features discussed in [16]. Specifically, given an edge from vertex u to v, a
7-dimensional feature vector {d+in(v), d−in(v), d+out(u), d−out(u), din(v), dout(u), C(u,v)}
is constructed, where features d+in(v) and d−in(v) denote the number of positive and
negative incoming edges to v, features d+out(u) and d−out(u) represent the number of
positive and negative outgoing edges from u, features din(v) and dout(u) denote the
number of in-degree and out-degree of v and u, and C(u,v) denotes the total num-
ber of common neighbors of u and v without considering the edge direction. Then,
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Table 4: Features involved in different approaches. (P: positive, N: negative, I:
influence, C: conformity, A: topic)````````````Features

Approaches
p pn ipn icp icpn icapn

d+in(v) X X X X X X
d−in(v) - X X - X X
d+out (u) X X X X X X
d−out (u) - X X - X X
din(v) - X X - X X
dout (u) - X X - X X
C(u,v) X X X X X X
Φ(u) - - X - - -
Φ(v) - - X X X X
Ω(u) - - - X X X

context A - - - - - X
ΦA(v) - - - - - X
ΩA(u) - - - - - X

we create variants of this baseline classifier by adding influence index and confor-
mity index of vertices as new features in the feature vector. Table 4 describes the
features involved in the feature vector for each edge −→uv for different variations of
the baseline classifier.

5.3 Experimental Results

The goals of the evaluation were to establish whether the proposed approach can
reliably predict presence of edges; predict signs of edges; and seek to understand
the characteristics and importance of influence and conformity indices for these
prediction tasks.

Positive edge presence prediction. We first conduct a series of experiments to
predict the presence of positive edges. Note that in order to test the effect of neg-
ative edges in predicting the presence of positive edges, we adopted a regression
function of svmlight where presence of positive edges are labeled as 1 and negative
edges are labeled as −1. We investigate how each of the aforementioned classifiers
perform in predicting the presence of positive edges. Figure 4 shows the average
accuracy for the benchmark datasets, where the results are compared between dif-
ferent classifiers for different size of training and testing data. We can make the
following observations. First, for each dataset pn performs better than p indicat-
ing that information related to negative edges enhance the quality of edge presence
prediction. Second, the prediction accuracy is further improved when we incorpo-
rate the influence index or conformity index as a feature (icp and ipn). Note that icp
performs slightly better than ipn but the improvement is not significant. When the
training set is large both approaches exhibit similar performance. Third, icpn con-
sistently reports the best prediction performance. That is, edge presence prediction
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Figure 5: Signed edge prediction.

is enhanced when we consider the interplay between influentials and conformers.

Signed edge prediction. Next, we undertake a series of experiments to predict
the signs of edges. Similar to our earlier experiments, we ensure that the training
set and test set both contain equal number of positive and negative edges. We
vary the size of training set to test the prediction accuracy. Note that in a binary
classification, positive edges and negative edges belong to two different classes.
Our goal is to predict the signs of edges which maybe either positive or negative.
Figure 5 reports the prediction accuracies of the classifiers. Observe that among
the three approaches involving both positive and negative edges (pn, ipn, and icpn),
icpn performs the best, followed by ipn and pn, respectively. Thus, by taking into
account the influence and conformity of vertices, the accuracy of sign prediction
task can improve significantly.

Edge presence and signed edge prediction in context-aware networks. We now
report the performance of our model on a context-aware network (Twitter). In this
experiment we adopt the classifier icapn which takes into account the topic infor-
mation associated with each edge. That is, the following features for each edge

−−→
uAv

are used to train the model: d+in(v), d−in(v), d+out(u), d−out(u), din(v), dout(u), C(u,v),
Φ(v), Ω(u), ΦA(v) and ΩA(u). Figure 6 plots the prediction accuracies of the rel-
evant classifiers. Observe that in both figures icapn outperforms the rest. Note
that the performances of icapn and icpn are similar when the training set is very
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Figure 6: Context-aware prediction accuracy.

small. This is because there may not be enough training edges in each topic-based
subgraphs GA when the training set is very small. Consequently, not enough in-
formation is available to accurately compute ΦA(v) and ΩA(u). All these evidences
demonstrate that by leveraging on the influence and conformity indices in topic-
based subgraphs, the proposed model leads to superior prediction performance for
both positive edge presence and edge sign prediction tasks.

Influentials and conformers. Lastly, we analyze the list of influentials and con-
formers detected by the casino algorithm. Figures 7 and 8 depict the distribution
heatmap of influence index versus conformity index for each benchmark dataset.
For each individual u in a network we compute her influence index Φ(u) and con-
formity index Ω(u) and represent it as a point in the influence-conformity 2-D
plane. Then we separate the plane into grids of size 0.005× 0.005 and count the
number of points in each grid. The color shade of a grid denotes the number of
points residing in it. Note that both influence index and conformity index are nor-
malized into the range of [0,1). For each figure, we explicitly draw a boundary
line along which the vertices exhibit identical influence index and conformity in-
dex. Observe that the line separates the influence-conformity plane into two areas.
In the sequel, we refer to the top area as ‘Area I’ and the down one as ‘Area II’.
The points belonging to ‘Area I’ exhibit higher influence index compared to con-
formity index, indicating that individuals in this area are more prone to influence
others than being influenced. We refer to them as influence-biased. On the other
hand, the points in ‘Area II’ represent individuals who are conforming in nature.
That is, they are more prone to be influenced than influencing others. We refer to
these individuals as conformity-biased.

We first analyze the context-free networks (Figures 7(a)-(d)). Consider Fig-
ure 7(a) related to Epinions dataset. Observe that 31% of all individuals belong to
‘Area I’. Consequently, fewer number of individuals in this network are influence-
biased. That is, majority of individuals in Epinions are often conforming to the
others. Similar phenomenon also exists in the Slashdot datasets where the percent-
age of individuals in ‘Area I’ is between 36% to 37%.

Observe that those vertices in Epinions which exhibit very high conformity in-
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Figure 7: Influence vs. conformity distribution heatmap.
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dex values also have high influence index values. On the other hand, vertices with
highest influence index values have a wider range of conformity indices (i.e., from
0 to 0.11). Such phenomenon indicates that in Epinions most influence-biased
individuals may also conform to others whereas the most conformity-biased in-
dividuals are always influencing others. Interestingly, the phenomenon is differ-
ent in the three Slashdot datasets (Figures 7(b)- 7(d)). Specifically, individuals
who are associated with highest influence index values have very small confor-
mity index (i.e., less than 0.02). But individuals with highest conformity index
may not exhibit small influence index values. In fact, the conformity index val-
ues of these conformity-biased individuals are distributed along the boundary line
(Φ(u) = Ω(u)). Thus, we can make the following observations regarding Slashdot.
Firstly, there are a few influence-biased individuals who exhibit very high influence
but are not easily influenced by others. Secondly, there do not exist conformity-
biased individuals who are not influencing others at all.

Next, we analyze the context-aware network (Figures 7(e)-(f) and 8). Fig-
ures 7(e)-(f) show the distributions of influence and conformity indices for the
top-2 topics (Mumford & Sons and BornThisWayFriday) with the most number
of tweets (4390 and 4046, resp.). Observe that 40% and 45% of all the individuals
fall in ‘Area I’ for Figure 7(e) and (f), respectively. Notably, both these figures ex-
hibit certain influence-biased characteristics similar to Slashdot. That is, there are
a few influence-biased individuals who exhibit very high influence but are not eas-
ily influenced by others. This similarity may be due to the fact that both Slashdot
and Twitter are driven by user conversations where majority individuals are com-
menting or following a few individuals who started the conversations. Figure 8
plots the distribution of indices computed over all topics. In this case, 41% of all
individuals belong to ‘Area I’. The most influential author has influence index of
0.138 whereas the most conforming individual has a conformity index of 0.082.

Table 5 shows IDs of top-10 authors who exhibit the highest influence index
and conformity index for the top-2 topics as well as for all topics. Consider the top
two twitters for all topics. The author ‘142987924’ who has the highest influence
index receives 66 conforming edges out of 73 in-links over 22 topics. Similarly, the
author ‘49276778’ receives 61 conforming edges out of 82 in-links over 24 topics.
On the other hand, the author ‘51389816’ who exhibits the highest conformity in-
dex initiates 35 conforming edges out of 37 out-links over 37 topics indicating that
she has high chance to conform to others’ opinions in almost all the topics she is
involved in. Furthermore, we can make the following observations. Firstly, none of
the top-10 authors occupies a position in both indices for each category (all, top-1,
and top-2). Secondly, the top-10 individuals having highest influence and confor-
mity indices are different for different topics. This confirms our hypothesis that
social influence phenomenon is context-sensitive as same individual may exhibit
different influence and conformity over different topics of social interactions.
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Figure 8: Heatmap of Twitter for all topics.

Table 5: Top 10 authors with the highest influence index and conformity index.
Rank Influential twitter (#positive in-links/#in-links) Conformer twitter (#positive out-links/#out-links)

All Top-1 Top-2 All Top-1 Top-2

1 142987924 (66/73) 3453454 (13/13) 950596 (31/34) 51389816 (35/37) 121836131 (14/16) 49276778 (101/144)
2 49276778 (61/82) 56068621 (11/11) 190108655 (11/11) 172039151 (31/34) 105332925 (13/14) 202346609 (45/61)
3 119394881 (60/77) 3984874 (10/10) 3498571 (8/9) 177173204 (30/35) 177255919 (11/12) 197538544 (26/30)
4 231134989 (55/71) 133282617 (11/11) 147327886 (5/5) 143062806 (27/34) 193206052 (11/12) 184930795 (22/26)
5 2109823 (56/72) 199855121 (7/7) 49126931 (5/5) 128118710 (25/33) 36525648 (9/10) 148335502 (21/23)
6 92503401 (55/78) 8234375 (5/5) 121158546 (5/5) 130414633 (30/41) 90723076 (7/8) 171387567 (17/20)
7 206661373 (51/66) 1465130 (3/3) 129009252 (5/5) 4782790 (23/30) 123606641 (6/8) 126407259 (18/22)
8 220490093 (46/60) 2894822 (3/3) 79897503 (4/4) 125551983 (22/34) 51513825 (6/6) 114455733 (14/20)
9 168175236 (40/51) 21755211 (2/2) 83629945 (4/4) 91930055 (21/28) 203774695 (5/6) 217826740 (15/20)

10 171287044 (41/62) 4051581 (2/2) 166830172 (4/4) 145339829 (22/31) 203780314 (4/4) 159724683 (12/17)

6 Conclusions and Future Work

The social influence analysis problem for online social networks, which focuses
on studying people’s influence by analyzing social interactions between individu-
als, is considered important with applications to viral marketing and information
dissemination among others. Recently, several techniques have been proposed to
address this problem by exploiting the positive interactions (e.g., trust, agreement,
friendship) between individuals. However, these techniques ignore two equally
important factors that play a key role in social influence propagation, namely, neg-
ative relationships (e.g., distrust, disagreement, antagonism) between individuals
and conformity of people who are being influenced. In this paper, we propose a
novel algorithm for social influence analysis called casino, which quantifies the
influence and conformity of each individual in a network by utilizing the positive
and negative relationships between individuals.

Our exhaustive experimental study using several online social media sites demon-
strates the effectiveness and superior accuracy of casino compared to state-of-the-
art methods. Specifically, our investigation revealed that the knowledge of con-
formity of individuals enhance the accuracy of social influence analysis. We also
observed several interesting characteristics of influentials and conformers in Slash-
dot, Epinions, and Twitter. Particularly, in Slashdot and Twitter, there are a few
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individuals who exhibit very high influence but are not easily influenced by others.
However, in Epinions, individuals who exhibit high influence are often conforming
to others. Besides, in Slashdots and Twitter there do not exist individuals who are
always influenced but they are not influentials. In contrasts, such individuals can
be found in Epinions.

There are a number of further directions suggested by this work. A first one
is of course to explore methods for maximizing the spread of influence [15] by
incorporating conformity characteristics of individuals. We are also interested in
investigating the role of the two causes of conformity, namely, influence and nor-
mative, to the influence analysis problem. In summary, the results of this paper are
an important first step in this regard.
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