
CQP-Miner: Mining Conserved XML
Query Patterns For

Evolution-Conscious Caching

Sourav S Bhowmick

School of Computer Engineering
Nanyang Technological University, Singapore

assourav@ntu.edu.sg

Abstract

Existing xml query pattern-based caching strategies focus on extracting
the set of frequently issued query pattern trees (qpt) based on the support
of the qpts in the history. These approaches ignore the evolutionary features
of the qpts. In this paper, we propose a novel type of query pattern called
conserved query paths (cqp) for efficient caching by integrating the support
and evolutionary features together. cqps are paths in qpts that never change
or do not change significantly most of the time (if not always) in terms of
their support values during a specific time period. We proposed a set of
algorithms to extract frequent cqps (fcqps) and infrequent cqps (icqps) and
rank these query paths using evolution-conscious ranking functions. Then,
these ranked query paths are used in evolution-conscious caching strategy for
efficient xml query processing. Finally, we report our experimental results to
show that our strategy is superior to previous query pattern-based caching
approaches.

2

1 Introduction

Semantic/query caching has played a key role in improving query performance in
databases. With the emergence of xml as a standard for data representation and
exchange on the Web, several researchers have examined different cache strategies
for xml query evaluation [4, 10, 16, 17]. One of the efforts in this direction is to
discover the frequent query patterns from the historical query log and cache the
corresponding query results to reduce the response time for future queries that are
the same or similar [16].

In the literature, several algorithms such as XQPMiner [15], FastXMiner [16],
and 2PXMiner [17] have been proposed to mine frequent query patterns. Given
an xml data repository X , let Q = {q1, q2, . . ., qn} be a set of xml queries issued
against X . Then, the queries in Q can be transformed into a transactional database,
D = {QPT1, QPT2, QPT3, · · · , QPTn}, where each transaction is a query pattern tree
(qpt) that corresponds to an xml query. A frequent query pattern refers to a rooted
tree that is a subtree of at least minsup number of xml queries in the query col-
lection, where minsup is a user-defined minimum support. For example, Figure 1
shows a set of query pattern trees (qpt) representing four xml queries. If the minsup
is two, then Figure 1(e) is a frequent query pattern since it is an extended subtree
of QPT1 and QPT4 according to the extended subtree inclusion concept in [16,17].
Note that these frequent query pattern mining techniques are primarily designed
for static collection of xml queries. Thus, they cannot handle evolution of query
workload efficiently, because they have to compute the frequencies of candidate
query patterns from scratch in order to get most up-to-date frequent query patterns.
Consequently, several incremental algorithms [5,8] have been recently proposed to
address the issue of efficiently maintaining the frequent query patterns.

While the above techniques have certainly been innovative and powerful, our
initial investigation revealed that existing frequent query pattern-based caching
strategies are solely based on the concept of frequency without taking into ac-
count the temporal features of the evolving query workload. Every occurrence of
a query subtree contributes equally to the caching strategy regardless of when the
query was issued. However, this may not always be an effective approach in many
real-life applications. For instance, reconsider the two queries, QPT2 and QPT4, in
Figure 1. Assume that QPT2 had been issued many times in the past but rarely in
recent times whereas QPT4 is only formulated frequently in recent times. Interest-
ingly, QPT2 may still remain as a frequent query over the entire query collection
due to its popularity in the past. On the other hand, in spite of its recent popularity,
QPT4 may be considered as infrequent with respect to the entire query collection
in the history due to its lack of popularity in the past. Note that, it is indeed possi-
ble that more queries similar to QPT4 are expected to be issued in the near future
compared to queries similar to QPT2. However, existing techniques fail to exploit
such evolutionary features of the queries while designing caching strategies.

In this paper, we propose a more effective and novel caching strategy that
incorporates the evolutionary patterns of xml queries. Given an xml data repos-

3

book

title author price publisher

book

title

// author

book

figure

section

title

(a) QPT1 (b) QPT2 (c) QPT3

price

book

section

title

//

(d) QPT4

price

book

title

//

(e) frequent QPT

Figure 1: QPTs and frequent QPT.

itory, a collection of xml queries are issued by different users over a period of
time. These queries can be represented as a collection of qpts. Each qpt consists
of a set of rooted query paths (rqps). Informally, a rqp in a qpt is a path starting
from the root. For example, /book/section/figure is a rqp of the xml query shown
in Figure 1(c). In our approach, we first discover two groups of rqps, the frequent
conserved query paths (fcqp) and the infrequent conserved query paths (icqp), from
the historical xml queries. Intuitively, conserved query paths (cqp) are rqps whose
support values never change or do not change significantly most of the times (if
not always) during a time period. We define a set of evolution metrics to determine
how conserved the rqps are. Hereafter, whenever we say changes to the qpts/rqps,
we refer to the changes to the support values of the rqps.

The second step of our approach is to build a more efficient evolution-conscious
caching strategy using the discovered cqps (fcqps and icqps). Our strategy is based
on the following principles. For rqps that are fcqp, the corresponding query results
should have higher priority to be cached since the support values of the rqps is
not expected to change significantly in the near future and the rqps will be issued
frequently in the future as well. Similarly, for rqps that are icqp, the corresponding
query results should have lower caching priority.

Observe that we adopt a path-level caching strategy for xml queries instead
of twig-level (subtree-level) caching. However, it does not hinder us in evaluating
twig queries as such queries can be decomposed into query paths. In fact, decom-
posing twig queries into constituent paths has been widely used by several holistic
twig join algorithms [2]. Our focus in this paper is to explore how evolutionary
characteristics of xml queries can enable us to design more efficient caching strate-
gies. Our path-level, evolution-conscious caching approach can easily be extended
to twig-level caching and we leave this as our future work. More importantly, we
shall show in Section 5 that our proposed caching strategy can outperform a state-
of-the-art twig-level, evolution-unconscious caching approach [17].

In summary, the main contributions of this paper are as follows.

4

• We propose a set of metrics to measure the evolutionary features of qpts
(Section 2).

• Based on the evolution metrics, two algorithms (D-CQP-Miner and R-CQP-
Miner) are presented in Section 3 to discover novel patterns, namely frequent
and infrequent conserved query paths.

• A novel and efficient evolution-conscious caching strategy is proposed in
Section 4 that is based on the discovered cqps. To the best of our knowledge,
this is the first approach that integrates evolutionary features of xml queries
along with frequency of occurrences for building an efficient caching strat-
egy.

• Extensive experiments are conducted in Section 5 to show the efficiency
and scalability of the CQP-Miner algorithms as well as effectiveness of our
caching strategy. Our study reveals that our caching strategy outperforms
state-of-the-art approaches such as 2PX-Miner [17] and lru-based caching
approaches in terms of average response time and cost ratio.

2 Modeling Historical XML Queries

In this section, we propose a novel way of representing the historical collection of
xml queries. Then, a set of evolution metrics is proposed to measure the evolution-
ary nature of the rooted query paths.

We begin by defining some terminology that we shall use later for representing
historical xml queries. A calendar schema is a relational schema R with a con-
straint C, where R = (fn : Dn, fn−1 : Dn−1, · · · , f1 : D1), fi is the name for a
calendar unit such as year, month, and day, Di is a finite subset of positive integers
for fi, C is a Boolean-valued constraint on Dn×Dn−1×· · ·×D1 that specifies which
combinations of the values in Dn × Dn−1 · · ·D1 are valid. For example, suppose
we have a calendar schema (year: {2000, 2001, 2002}, month: {1, 2, 3, · · · ,12},
day: {1, 2, 3, · · · , 31}) with the constraint that evaluate ⟨y,m, d⟩ to be “true” only
if the combination gives a valid date. Then, it is evident that ⟨2000, 2, 15⟩ is valid
while ⟨2000, 2, 30⟩ is invalid. The reason to use the calendar schema is to exclude
invalid time intervals that are generated due to the combinations of calendar units.
Specifically, by modifying the constraint, users can further narrow down valid time
intervals according to application-specific requirements. For instance, if we want
to monitor the change patterns of xml queries on a daily basis, then a daily-based
calendar schema can be defined and used. Hereafter, we use ∗ to represent any
integer value that is valid based on the constraint.

Given a calendar schema R with the constraints C, a calendar pattern, denoted
as �, is a valid tuple on R of the form ⟨dn, dn−1, · · · , d1⟩ where di ∈ Di ∪ {∗}. For
example, given a calendar schema ⟨year, month, day⟩, the calendar pattern ⟨∗, 1, 1⟩
refers to the time intervals “the first day of the first month of every year”.

5

Next we introduce the notion of temporal containment. Given a calendar pat-
tern ⟨dn, dn−1, · · · , d1⟩ denoted as �i with the corresponding calendar schema R, a
timestamp t j is represented as ⟨d′n, d′n−1, · · · , d′1⟩ according to R. The timestamp
t j is contained in �i, denoted as t j ≃ �i, if and only if ∀ 1 ≤ l ≤ n, d′l ∈ dl . For
example, given a calendar pattern ⟨∗, 2, 12⟩ with the calendar schema ⟨ week, day
of the week, hour⟩, the timestamp 2008-05-24 12:28 is contained in this calendar
pattern as it is not the second day of the week, while the timestamp 2008-05-27
12:08 is.

2.1 Representation of an XML Query

In existing xml query pattern mining approaches, xml queries are modeled as trees
called Query Pattern Trees (qpts) [16,17]. We adopt the qpt representation method
in this paper. A query pattern tree is a rooted tree QPT = ⟨V,E⟩, where V is a set
of vertex and E is the edge set. The root of the tree is denoted by root(QPT). Each
edge e = (v1, v2) indicates node v1 is the parent of node v2. Each vertex v’s label,
denoted as v.label, is a tag value such that v.label ∈ {{“//”, “ ∗ ”} ∪ tagSet} where
tagSet is the set of all element and attribute names in the schema. Furthermore, if
v ∈ V and v.label ∈ {“//”, “ ∗ ”} then there must be a v′ ∈ V such that v′ ∈ tagSet
and is a child of v if v.label = “//”.

A qpt is a tree structure that represents the hierarchy structure of the predicates,
result elements, and attributes in the xml query. Based on the definition of qpt, in
existing approaches the rooted subtree of a qpt is defined to capture the common
subtrees in a collection of xml queries [15, 17]. However, in this paper, we are
interested in rooted query paths, which can provide a finer granularity for caching
than rooted subtrees. Rooted query paths are special cases of rooted subtrees.
Given a qptQPT = ⟨V,E⟩, RQP = ⟨V ′,E′⟩ is a rooted query path of QPT , denoted
as RQP ⊆ QPT , such that (1) Root(QPT) = Root(RQP) and (2) V ′ ⊆ V , E′ ⊆ E,
and RQP is a path in QPT . For example, /book/section/figure is a rqp in Figure 1(c).

2.2 Representation of XML Query History

In existing approaches, qpts are modeled as transactions and the timestamps as-
sociated with qpts are ignored. In our approach, each qpt is represented as a pair
(QPTi, ti), where ti is the timestamp recording the time when QPTi was issued. As
a result, the collection of queries (qpts) can be represented as a sequence ⟨ (QPT1,
t1), (QPT2, t2), · · · , (QPTn, tn) ⟩, where t1 ≤ t2 ≤ . . . ≤ tn. Then, a Query Pattern
Group (qpg) is a bag of qpts [(QPTi, ti), (QPTi+k, ti+k), · · · , (QPTj, t j)] such that
1 ≤ (i, j) ≤ n and ∀ m (i ≤ m ≤ j), tm ≃ �x where �x is the user-defined cal-
endar pattern. Observe that the qpts in a specific qpg are issued within the same
calendar pattern according to the calendar schema. Users can define their own time
granularity according to the workload and application-specific requirements.

The sequence of qpts can now be partitioned into a sequence of query pattern
groups denoted as ⟨QPG1, QPG2, · · · , QPGk⟩. The occurrences of all qpts in a qpg

6

3/3

3/3 2/3 1/3 1/3

book

title // price publisher

1/3

1/3

2/3title

figure

section

book

title

author

price publisher

title

figure

section

<3/3,1/1>

<3/3,0/1>

<2/3,0/1>

<1/3,1/1> <1/3,0/1>

<1/3,1/1>

<1/3,1/1>

<2/3,1/1>

(a) QPG-Tree (b) HQPG-Tree

2/3

author

//

<2/3,1/1>

Figure 2: QPG-tree and HQPG-tree.

are considered to be equally important. In our approach, we compactly represent
each qpg as a query pattern group tree (qpg-tree). Formally, a qpg-tree is defined as
follows.

Definition 1 Query Pattern Group Tree (QPG-tree): Let QPG = [QPTi, QPTi+1,
· · · , QPTj] be a query pattern group. A query pattern group tree is a 3-tuple tree,
denoted as TG = ⟨ V, E, ℵ ⟩, where V is the vertex set, E is the edge set, and ℵ is
a function that maps each vertex to the support value of the corresponding rooted
query path (rqp), such that ∀ RQP ⊆ QPTk, i ≤ k ≤ j, there exists a rooted query
path, RQP′ ⊆ TG, that is extended included to RQP.

Consider the three qpts in Figures 1(a), (b), and (c). The corresponding qpg-
tree is shown in Figure 2(a). The qpg-tree includes all rqps and records the support
values (the values inside the nodes of the rqps in the figure). Given a query pattern
group QPGi, the support of a rqp in QPGi is defined as Φi(RQP) = K / L, where K
denotes the number of times the rqp is extended included in the qpts in QPGi and
L denotes the number of qpts in QPGi. When the rqp is obvious from the context,
the support is denoted as Φi.

Note that the traditional notion of subtree inclusion [11] is too restrictive for
qpts where handling of wildcards and relative paths are necessary. Hence, the
concept of extended subtree inclusion, a sound approach to testing containment of
query pattern trees, was proposed by Yang et al. [15] to count the occurrence of
a tree pattern in the database. Here, we adopt this concept in the context of rqps.
Given two rooted query paths, RQP1 and RQP2, RQP1 ≺ RQP2 denotes that RQP1 is
extended included in RQP2. Our definition of extended inclusion is similar to that
of Yang et al. [15]. The only difference is that we assume the subtrees are rqps.
The formal definition is as follows.

Definition 2 Partial Ordering of Labels: Given two labels y and y′, if y = y′,
then we say y ≤ y′. For any label y ∈ tagSet, we define y ≤ ∗ ≤ //, that is, a node
with label y matches a wildcard, which in turn matches a node with label ‘//’.

7

Definition 3 Extended Inclusion of RQPs: Let RQPa and RQPb be two rqps with
root nodes a and b, respectively. Let child(v) denotes the child node of v. Then we
can recursively determine if RQPa is included in RQPb, denoted by RQPa ≺ RQPb,
as follows: a ≤ b and satisfies: (1) both a and b are a leaf nodes; or (2) a is a leaf
node and b = ‘//’, then ∃ child(b) such that RQPa ≺ RQPchild(b); or (3) both a and
b are non-leaf nodes, and one of the following holds:

1. For child(a), ∃ child(b) s.t RQPchild(a) ≺ RQPchild(b); or

2. b = ‘//′ and RQPchild(a) ≺ RQPb; or

3. b = ‘//′ and ∃ child(b) where RQPa ≺ RQPchild(b).

Note that as there can be a sequence of qpgs in the history, the mean support
value of a rqp is represented as Group Support Mean (gsm). That is, let ⟨QPG1,
QPG2, · · · , QPGn⟩ be a sequence of qpgs in the history. The gsm of a rooted query
path, RQP ⊆ QPGi (0 ≤ i ≤ n), denoted as Φ(RQP), is defined as 1

n
∑n

i=1Φi.
To facilitate discovery of specific patterns from the evolution history of the rqps

in the qpg-trees, we propose to merge the sequence of qpg-trees into a “global” tree
called historical qpg-tree (hqpg-tree).

Definition 4 Historical QPG-tree (HQPG-tree): Let G = ⟨TG1 , TG2 , · · · , TGi⟩ be
a sequence of qpg-trees. An hqpg-tree is a 3-tuple tree, denoted as TH = ⟨ V, E, Ψ
⟩, where V is the vertex set, E is the edge set, and Ψ is a function that maps each
vertex to a sequence of support values, such that ∀ RQP⊆TGk , 1≤k≤i, ∃ RQP′⊆ TH

that is identical to RQP.

The idea of hqpg-tree is similar to the idea of qpg-tree except for the function
Ψ. In the definition of qpg-tree, the ℵ function is used to map each vertex to a
single real value, which is the support value of the rooted path at that vertex; in the
definition of hqpg-tree, the Ψ function is used to map each vertex to a sequence of
support values. For example, Figure 2(b) shows an example hqpg-tree by partition-
ing the qpts in Figures 1(a), (b), (c), and (d) into two qpgs. The first three qpts are
in one group, while the last is in another group. The sequence of values associated
with each vertex in Figure 2 corresponds to the support values.

2.3 Evolution Metrics

In order to extract conserved query paths, it is important to define metric(s) that can
quantify the evolutionary characteristics of a specific rqp in history. Intuitively, the
lower the degree of evolution of a rqpwith respect to its support values is, the more
conserved it is in the history.

Given a sequence of historical support values of a rqp, we can undertake two
approaches to measure its evolutionary characteristics. First, in the regression-
based approach, the evolution metric computes the “degree” of evolution (or con-
servation) from the sequence directly. Second, in the delta-based approach, we

8

first compute the changes to consecutive support values in the sequence and then
quantify the evolution characteristics of the rqp using a set of delta-based evolu-
tion metrics. The justification for having two such approaches is that we wish to
study the effect of different types of evolution metrics on the caching performance
(discussed in Section 5).

Regression-based Evolution Metric: Intuitively, the evolutionary pattern of
a rqp can be modeled using regression models [14]. We propose a metric called
query conservation rate to monitor the changes to supports of query paths using
the linear regression model:Φt(RQP) = Φ0(RQP) + λ t, where 1 ≤ t ≤ n. Here the
idea is to find a “best-fit” straight line through a set of n data points {(Φ1(RQP),
1), (Φ2(RQP), 2), · · · , (Φn(RQP), n)}, where Φ0(RQP) and λ are constants called
support intercept and support slope, respectively. The most common method for
fitting a regression line is the method of least-squares [14]. By applying the sta-
tistical treatment known as linear regression to the data points, the two constants,
Φ0(RQP) and λ , can be determined. The correlation coefficient, denoted as r, can
then be used to evaluate how the regression fits the data points actually. Based on
the above model we define the query conservation rate metric.

Definition 5 Query Conservation Rate: Let ⟨ Φ1, Φ2, · · · , Φn⟩ be the sequence
of historical support values of the rooted query path rqp. The query conservation
rate of rqp is defined as �(RQP) = r2 − |λ | where

λ =

∑n
i=1 iΦi −

∑n
i=1Φi

∑n
i=1 i

n
∑n

i=1 i2 − (
∑n

i=1 i)2

r =
n
∑n

i=1 (Φi ∗ i) − (
∑n

i=1Φi)(
∑n

i=1 i)√
[n
∑n

i=1 (Φi)2 − (
∑n

i=1Φi)2][n
∑n

i=1 i2 − (
∑n

i=1 i)2]

Note that the larger the absolute value of the support slope, the more signifi-
cantly the support changes over time. At the same time, the larger the value of r2,
the more accurate is the regression model. Hence, the larger the query conservation
rate �(RQP), the support values of the rqp change less significantly or are more
conserved. Also it can be inferred that 0 ≤ �(RQP) ≤ 1.

Delta-based Evolution Metrics: We now define a set of evolution metrics that
are defined based on the changes to the support values of a rqp in consecutive qpg
pairs. We begin by defining the notion of support delta. Let QPGi and QPGi+1 be
any two consecutive qpgs. For any rooted query path, RQP, the support delta of
RQP from ith qpg to (i + 1)th qpg, denoted as δi(RQP), is defined as δi(RQP) =
|Φi+1(RQP) − Φi(RQP)|.

The support delta measures the changes to support of a rooted query path be-
tween any two consecutive qpgs. Obviously, a low δi is important for a rqp to be
conserved. Hence, we define the support conservation factor metric to measure the
percentage of qpgs where the support of a specific rqp changes significantly from
the preceding qpg.

9

Definition 6 Support Conservation Factor: Let ⟨ QPG1, · · · , QPGn ⟩ be a se-
quence of qpgs . For any rooted query path, RQP, the support conservation factor
in this sequence, denoted as �(α , RQP), where α is the user-defined threshold for
support delta, is defined as

�(α,RQP) =
∑n−1

i=1 di

n − 1
where di =

{
1, i f δi(RQP) ≥ α
0, i f δi(RQP) < α

Observe that the smaller the value of �(α,RQP) is, the less significant is the
change to the support values of the RQP. Consequently, at first glance, it may
seem that a low �(α,RQP) implies that the RQP is conserved. However, this may
not be always true as small changes to the support values in the history may have
significant effect on the evolutionary behavior of a rqp over time. For instance,
suppose that the support value of a rqp keeps increasing (decreasing) with very
small support delta (e.g., δi = 0.01). If α = 0.02 then it is possible for �(α,RQP)
to be low. When the number of qpgs is very large, it is possible that the support
values of the rqp in the first few qpgs are significantly smaller (larger) than the
support values of the rqp in the last few qpgs. In order to address this issue, we
define the aggregated support delta metric.

Definition 7 Aggregated Support Delta: Let ⟨QPG1, QPG2, · · · , QPGn⟩ be a
sequence of qpgs in the history. The aggregated support delta of RQP, denoted as

∆(RQP), is defined as: ∆(RQP) =
√

1
n−1
∑n−1

i=1 (Φi − Φi+1)2.

Observe that for two sequences of support values that have same mean and
standard deviation values, the values of aggregated support delta can be substan-
tially different. It can be observed that the value of ∆ is within the range of [0, 1].
A larger value of ∆ indicates that the support values of the corresponding rqp are
not conserved over time.

3 CQP-Miner Algorithms

In this section, we present the algorithms for discovering conserved query paths
(cqp). We begin by formally presenting two definitions for cqps by using the
regression-based metric and delta-based metrics, respectively.

Definition 8 Conserved Query Path (CQP): A RQP is a conserved query path
in a sequence of qpgs if and only if any one of the following conditions is true: (a)
�(RQP) ≤ ζ where ζ is the threshold for query conservation rate; (b) �(α,RQP) ≤
β and ∆(RQP) ≤ γ where α , β , and γ are the thresholds for support delta, support
conservation factor, and aggregated support delta, respectively.

There are two variants of cqps, frequent conserved query paths (fcqps) and
infrequent conserved query paths(icqps), which are important for our caching strat-
egy. Both of them have the following characteristics: (a) the support values of the

10

rqps are either large enough or small enough; and (b) their support values do not
evolve significantly in the history.

Definition 9 FCQP and ICQP: Let rqp be a conserved query path. Let ξ and ξ ′
be the minimum and maximum group support mean (gsm) thresholds, respectively.
Also, ξ > ξ ′. Then, (a) rqp is a Frequent Conserved Query Path (fcqp) iff Φ(RQP)
≥ ξ ; (b) rqp is an Infrequent Conserved Query Path (icqp) iff Φ(RQP) ≤ ξ ′.

3.1 Mining Algorithms

Given a collection of historical xml queries, the objective of conserved query paths
mining problem is to extract the frequent and infrequent cqps. Using the delta-
based and regression-based evolution metrics, we present two algorithms to extract
the sets of fcqps and icqps. We refer to these two algorithms as D-CQP-Miner and
R-CQP-Miner, respectively. Each algorithm consists of the following two major
phases.

HQPG-tree Construction Phase: Given a collection of xml queries, an hqpg-
tree is constructed in the following way. Firstly, the queries are transformed into
qpts. Then, the qpts are partitioned into groups based on the timestamps and user-
defined calendar pattern, where each qpg is represented as a qpg-tree. Next, the
sequence of qpg-trees are merged together into an hqpg-tree. As the process of
transforming queries into qpts and partitioning qpts into groups are straightfor-
ward, we present the details of constructing the qpg-tree and merging qpg-trees.

The algorithm of constructing the qpg-tree is shown in Algorithm 1. Firstly, the
qpg-tree is initialized as the first qpt in that group. Next, other qpts in the group are
compared with the qpg-tree to construct the structure of the qpg-tree as shown in
Lines 3-10. Each rqp in the corresponding qpt is compared with the existing qpg-
tree and the support values of the rqp′s in the qpg-trees that are extended included
by this rqp are updated. Moreover, if this rqp is not included in the existing qpg-
tree, then the qpg-tree is updated by inserting this rqp into the tree. This process
iterates for all the rqps in all the qpts in the corresponding query pattern group. An
example qpg-tree is shown in Figure 2(a) for the qpts in Figures 1(a)-(c).

The algorithm of merging the sequence of qpg-trees into the hqpg-tree is sim-
ilar to the above algorithm. The only difference is that rather than increasing the
support values of the corresponding rqps, a vector that represents the historical
support values is created for each rqp. If the rqp does not exist in the hqpg-tree,
then the vector of supports for this rqp should be a vector starting with i-1 number
of 0s, where i is the ID of the current query pattern group. Figure 2(b) shows an
example of hqpg-tree.
CQP Extraction Phase: Given the hqpg-tree, the fcqps and icqps are extracted
based on the user-defined thresholds for the corresponding evolution metric(s).
Corresponding to the two definitions of cqps, two algorithms are presented. The
first algorithm is based on the delta-based evolution metrics and the second one is
based on the regression-based evolution metric. We refer to these two algorithms

11

1 Algorithm 1: QPG-tree Construction
Input: A bag of qpts: [QPT1, QPT2, . . ., QPTn]
Output: The qpg tree: TG

1: Description
2: Initialize TG as the first qpt QPT1
3: for all 2 ≤ i ≤ n do
4: for all RQP ⊆ QPTi do
5: for all RQP′ ⊆ TG do
6: if RQP′ ≺ RQP then update the support of RQP′

7: if RQP * TG then Insert RQP to TG
8: end for
9: end for

10: end for
11: Return(TG)

Algorithm 2: D-CQP-Extract
Input: An hqpg tree: TH
The user-defined thresholds α , β , γ , ξ , ξ ′.
Output: Sets of fcqps and icqps: F and I

1: Description
2: for all RQP ⊆ TH (top-down)
3: if ξ ′ < Φ < ξ then prune all the children of this RQP
4: if Φ ≥ ξ , �(α ,RQP) ≤ β and ∆(RQP) ≤ γ then F = F ∪ RQP
5: if Φ ≤ ξ ′, �(α,RQP) ≤ β and ∆(RQP) ≤ γ then I = I ∪ RQP
6: end for
7: Return (F, I)

Algorithm 3: R-CQP-Extract
Input: An hqpg-tree: TH
The user-defined thresholds ζ , ξ , ξ ′.
Output: Sets of fcqps and icqps: F and I

1: Description
2: for all RQP ⊆ TH (top-down)
3: if ξ ′ < Φ < ξ then prune all the children of this RQP
4: if Φ ≥ ξ and �(RQP) ≤ ζ then F = F ∪ RQP
5: if Φ ≤ ξ ′ and �(RQP) ≤ ζ then I = I ∪ RQP
6: end for
7: Return (F, I)

as D-CQP-Extract and R-CQP-Extract, respectively. In both algorithms, the top-
down traversal strategy is used to enumerate all candidates of both frequent and
infrequent cqps. We use the top-down traversal strategy based on the downward
closure property of the gsm values for rqps.

Lemma 1 Let RQP1 and RQP2 be two rooted query paths in an hqpg-tree. If RQP1
is included in RQP2, then Φ(RQP1) ≥ Φ(RQP2) .

Proof 1 (Sketch) Based on the definition of qpg-tree, it can be inferred thatΦi(RQP1)
≥ Φi(RQP2) for all i (1 ≤ i ≤ n) because whenever RQP2 is extended included in a
qpt, RQP1 is also extended included in that qpt provided that RQP1 is included in
RQP2. As a result, it is evident that Φ(RQP1) ≥ Φ(RQP2).

Based on the above lemma, we can prune the hqpg-tree during the top-down
traversal. That is, for rqps whose Φ are smaller than ξ , no extensions of the rqps

12

can be fcqps. Similarly, for rqps whoseΦ are smaller than ξ ′, all of their extensions
also satisfy this condition to be icqps. The D-CQP-Extract algorithm is shown in
Algorithm 2. The idea is to first compare the values ofΦwith the thresholds of gsm.
In this case, some candidates can be pruned. After that, the value of �(α,RQP) is
calculated and compared with β . If �(α,RQP) ≤ β , then the value of ∆(RQP) is
calculated and compared with γ . Otherwise, we do not need to calculate the value
of ∆(RQP). If �(RQP) ≤ γ , then the rqp is inserted into the corresponding group of
fcqps or icqps. Note that as �(RQP) is expensive to compute, it is only calculated
for the candidates that satisfy all other constraints. The R-CQP-Extract algorithm
(Algorithm 3) is similar to the D-CQP-Extract, the only difference being the usage
of different metrics.

4 Evolution-Conscious Caching

We now present how to utilize the discovered cqps to build the evolution-conscious
cache strategy. There are two major phases, the cqp ranking phase and the evolution-
conscious caching (ECC) strategy phase.

4.1 The CQP Ranking Phase

In this phase, we rank the cqps discovered by the CQP-Miner algorithm using a
ranking function. The intuitive idea is to assign high rank scores to query paths
that are expected to be issued frequently. Note that there are other factors such as
the query evaluation cost and the query result size that are important for designing
effective caching strategy [15, 16].

Definition 10 Ranking Functions: Let the cost of evaluating a rqp (denoted as
Costeval(RQP)) is the time to execute this query against the xml data source without
any caching strategy, while the size of the result (denoted as |result(RQP)|) is the
actual size of the view that stores the result. Then the ranking function, R, is defined
as:

• If D-CQP-Miner is used to extract icqps and fcqps, then

R(RQP) =
Costeval (RQP) × Φ(RQP)

�(α ,RQP) × ∆(RQP) × |result(RQP)|

• If R-CQP-Miner is used to extract icqps and fcqps, then

R(RQP) =
Costeval(RQP) × Φ(RQP)
�(RQP) × |result(RQP)|

Observe that we have two variants of the ranking function as our ranking strat-
egy depends on the two sets of evolution metrics used in the regression-based (R-
CQP-Miner) and delta-based (D-CQP-Miner) cqps discovery approaches. Partic-
ularly, these evolution metrics are used to estimate the expected number of occur-
rences of the query paths. The remaining factors are used in the similar way as
they are used in other cache strategies [4, 10, 16].

13

1 Algorithm 4: Cache-Conscious Query Evaluation
Input: A new xml query: qx,
Ranked fcqps and icqps in descending order: Fp and Ip

1: Description:
2: M = {RQPi |RQPi ≺ qx} ∩ Fp
3: if M , ∅
4: choose a sequence of ordered RQPi ∈ M based on their ranking
5: decompose qx = RQPi ◦ · · · ◦ RQPj ◦ q′x
6: end if
7: evaluate the query by combining the results
8: for all RQPi · · · RQPj ∈ M
9: update R(RQPi)

10: if R(RQPi) < Min{R(RQP)}
11: evict the cached result of RQPi from caching
12: end if
13: end for

Algorithm 5: Evolution-Conscious Cache Maintenance Policy
Input: Q, ∆Q, K be the set of queries that have been cached

1: Description:
2: Compute q = |∆Q|

|Q|
3: if q ≥ ε
4: Regenerate Ip and Fp.
5: if M′ = K ∩ Ip , ∅
6: evict RQP ∈ M′

7: end if
8: while there is space left in the cache
9: cache the rqp with maximum rank but not in the cache

10: end while
11: end if

4.2 The ECC Strategy Phase

The goal of this phase is to construct an evolution-conscious caching strategy that
utilizes the ranked fcqps and icqps in such a way that the query processing cost
for future incoming queries is minimized. As the cache space is limited, the basic
strategy is to cache the results for the fcqps with the largest rank scores by replacing
the cached results of the rqps with smaller rank scores.

We first introduce the notion of composing query which we shall be using sub-
sequently. Suppose at time t1, the cache contains a set of views V = {V1, V2, · · · ,
Vn} and the corresponding queries are Q = {Q1, Q2, · · · , Qn}. When a new query
Qn+1 comes, it inspects each view Vi in V and determines whether it is possible to
answer Qn+1 from Vi. View Vi answers query Qn+1 if there exists another query C
which, when executed on the result of Qi, gives the result of Qn+1. It is denoted by
C◦Qi = Qn+1, where C is called the composing query (CQ). When a view answers
the new query, we have a hit, otherwise we have a miss.

Cache-conscious query evaluation: Algorithm 4 describes the query evalu-
ation strategy. When a new query qx appears, it may match to more than one of
the rqps in the set of fcqps (which are denoted as M). Hence, qx can be con-
sidered to be the join of many RQPs and the composing query q′x. Formally,
qx = RQP1 ◦ RQP2 · · · ,RQPj ◦ q′x, where RQP1,RQP2, · · · ,RQPj are the cached

14

rqps with the highest rank scores and are contained in qx, q′x is the composing
query that does not contain any of the rqps in the cache. The answers are obtained
by evaluating the composing query and joining the corresponding results (Lines 2-
7). Next, for all RQPs that are contained in M, the corresponding ranks are updated
with respect to the changes of Φ (Lines 8-9). If the rank for any of these RQPs falls
below the minimum value of these rqps in the cache, then the corresponding query
results will be evicted (Lines 10-12). Note that we do not update the values of
evolution metrics of icqps and fcqps during the caching process. Rather, it is done
off-line as discussed below.

Evolution-conscious cache maintenance policy: One can observe that under
heavy query workload, mining fcqps and icqps frequently during evaluation of ev-
ery new query can be impractical. Hence, rather than computing new sets of fcqps
and icqps whenever a new query appears, we recompute these cqps only when the
number of new queries that have been issued, in comparison with the set of his-
torical queries, is larger than some factor q. Note that this mining process can be
performed off-line.

Formally, let tp be the most recent time when we computed the sets of fcqps
and icqps in the history. Let |Q| denote the number of xml queries in the collection
at tp. Assume that we recompute the sets of fcqps and icqps at time tn where tn > tp.
Let |∆Q| be the set of new queries that are added during tp and tn. Then, q = |∆Q|

|Q| .
The algorithm for query evaluation is shown in Algorithm 5. First, it computes

the q value. If q is greater than or equal to some threshold ε then the fcqps and
icqps are updated off-line. In Section 5.2, we shall empirically show that ε =
0.5 produces good results. If the rqps that have been cached are in the list of
regenerated icqps, then the corresponding results in the cache have to be evicted
(Lines 5-7). Consequently, there may be some space in the cache available that can
be utilized. If the space is enough, then cache those rqps in Fp having maximum
rank but have not been cached yet (Lines 8-10).

5 Performance Evaluation

In this section, we evaluate the performance of the proposed mining algorithms
and caching strategies with extensive experiments. The mining algorithms and the
caching strategy are implemented in Java. All the experiments were conducted on
a Pentium IV PC with a 1.7Ghz cpu and 512mb ram, running Microsoft Windows
2000 Professional. Two sets of experiments are conducted. The first set is to
evaluate the mining algorithms for their efficiency and scalability. The second set
is to compare our proposed caching strategy with the state-of-the-art frequent query
pattern-based caching strategy and lru-based cache strategy.

We use two set of synthetic datasets (queries) generated based on the dblp.dtd1

and SSPlay.dtd2. Firstly, a dtd graph is converted into a dtd tree by introducing

1http://dblp.uni-trier.de/xml/dblp.dtd
2http://www.kelschindexing.com/shakesDTD.html

15

QPT Time- DBLP SSPLAY

ID -stamp
1 day 1 dblp//key play/act/scene
2 day 2 dblp/∗/title[author=“M. Lee”] play//stage
3 day 2 dblp/article/author play/∗/stage
4 day 3 dblp//author play/prologe/onstage
5 day 3 dblp/book/editor play/act/scene/stage
6 day 5 dblp/∗/year play//speechblock
7 day 5 dblp//page play/epilogue/∗
8 day 5 dblp/article/author play/prologe/onstage

Table 1: Example QPTs in the DBLP and SSPLAY Datasets

some “//” and “*” nodes. Then, all possible rooted query paths are enumerated.
Similar to [8, 16, 17], the collection of qpts is generated based on the set of rqps
using the Zipfian distribution and these qpts are randomly distributed in the tem-
poral dimension. That is, most of the numbers of occurrences of qpts are near the
average number, while the number of very frequent and very rare qpts is small.
Example of two sets of qpts in the dblp and SSPlay datasets is given in Table 1.
Each basic dataset consists of up to 3,000,000 qpts, which are divided into 1000
qpgs. The characteristics of the datasets are shown in Figure 3(a).

5.1 CQP-Miner

Algorithm Efficiency: We evaluate the efficiency of the algorithms by varying
the average size of qpgs and the number of qpgs (the size of the time window).
Figures 3(b) and (c) show the running time of the D-CQP-Miner when the size of
the dataset increases. In the first case, the number of qpgs is increased while the
average size of each qpg is fixed. In the second case, the average size of each qpg
increases while the number of qpgs is fixed. Note that the dblp dataset is used and
the parameters for the D-CQP-Miner are fixed as follows: α = 0.02, β = 0.05,
γ = 0.02, and ξ = 0.25. Also, we set ξ ′ = ξ/10. It can be observed that when
the size of the dataset increases, the running time increases as well. The reason
is intuitive as the size of the hqpg-tree becomes larger, it requires more time for
the tree construction and handling large number of candidate cqps. The running
time of the R-CQP-Miner (Figures 3(d) and 4(a)) shows a similar trend. We use
the SSPlay dataset and the parameters for the R-CQP-Miner are fixed as follows:
ξ = 0.25 and ζ = 0.05.

Moreover, we conduct experiments to show the compactness of the two data
structures we proposed. The sizes of the qpg-tree and hqpg-tree are compared with
the size of the original qpts. Figure 4(b) shows the space requirements for the dblp
and SSPlay datasets. It can be observed that the qpg-tree and the hqpg-tree are very
compact and their space requirements are approximately 50% and 70% less than
those using the original data set, respectively. Relatively, hqpg-tree is much smaller
than the qpg-trees as there is only one hqpg-tree for the entire query collection.

Effects of Thresholds: As there are four thresholds: α , β , γ , and ζ for the D-
CQP-Miner, experiments are conducted by varying one of the thresholds and fixing

16

(a) Characteristics of dataset

Datasets

QPT
 in
DB

Ave # of
nodes

Max depth

Max fanout

DBLP SSPlay

12.4

10

15

9.5

9

11

0

50

100

150

200

250

300

350

400

3000 6000 9000 12000 15000
Number of QPGs

Avg Size of QPG = 100

Avg Size of QPG = 200

Avg Size of QPG = 300

0

50

100
150

200

250

300

350
400

450

500

100 200 300 400 500

Avg Size of QPG

Number of QPGs = 3000

Number of QPGs = 6000

Number of QPGs = 9000

(b) D-CQP-Miner (1)

(c) D-CQP-Miner (2)

0

100

200

300

400

500

600

700

3000 6000 9000 12000 15000
Avg Size of QPG

Avg Size of QPG = 100

Avg Size of QPG = 300

Avg Size of QPG = 500

(d) R-CQP-Miner (1)

R
un

ni
ng

 ti
m

e
(S

)
R

un
ni

ng
 ti

m
e

(S
)

R
un

ni
ng

 ti
m

e
(S

)

Figure 3: Datasets and perf. of CQP-Miner.

the others. For instance, in Figure 4(c), “α = 0.01 ∗ k, β=0.01, γ=0.02, ξ=0.1”
means that we fix the values of β , γ and ξ , and vary α from 0.01 to 0.05 by varying
k from 1 to 5. In this experiment, the dblp dataset with 300,000 queries is used.
The results in Figure 4(c) show that the running time of D-CQP-Miner increases
when the threshold values increase. Moreover, we observed that the changes to ξ
and α have more significant effect on the running time than the changes to β and
γ . This is because ξ affect the total number of fcqps and icqps and the values of α
affect both support deltas and support conservation factors.

Similarly, the thresholds, ζ and ξ , are varied to evaluate their effects on the
running time of the R-CQP-Miner. The results are shown in Figure 4(d). The
SSPlay dataset with 900,000 queries is used. It can be observed that the running
time increases with the thresholds. The reason is that when the values for any of
the two parameters increase, the number of cqps increases.

Comparison of Mining Results: As the two algorithms use different evolution
metrics, to compare the mining results, we define the notion of overlap metric. Let
FD and ID be the sets of fcqps and icqps, respectively, in the D-CQP-Miner mining
results. Let FR and IR be the sets of fcqps and icqps in the R-CQP-Miner mining

17

0
50

100
150
200
250
300
350
400
450
500

100 200 300 400 500
Avg Size of QPG

Number of QPGs = 3000

Number of QPGs = 6000

Number of QPGs = 9000

(a) R-CQP-Miner (2)

R
un

ni
ng

 ti
m

e
(S

)

0

50

100

150

200

250

300

350

400

1 2 3 4 5

α=0.01*k, β=0.01,γ=0.02,ξ=0.1α=0.01, β=0.01*k,γ=0.02,ξ=0.1α=0.01, β=0.01,γ=0.02*k,ξ=0.1α=0.01, β=0.01,γ=0.02,ξ=0.1*k
(c) D-CQP-Miner (3)

R
un

ni
ng

 ti
m

e
(S

)

value of k

0

20

40

60

80

100

120

140

1 2 3 4 5
value of k

ζ=0.01,ξ=0.1*kζ=0.01*k,ξ=0.1
(d) R-CQP-Miner (3)

R
un

ni
ng

 ti
m

e
(S

)

0

20

40

60

80

100

120

DBLP SSPlay

Original QPG-Tree H-QPG-Tree

S
pa

ce
 R

eq
ui

re
m

en
t (

M
B

)

(b) Compactness of H-QPG-Tree

Figure 4: Performance of CQP-Miner (2).

results. The overlap between the two sets of mining results is defined as:

Overlap =
1
2
× (
|FD ∩ FR|
|FD ∪ FR|

+
|ID ∩ IR|
|ID ∪ IR|

)

.
Basically, the overlap value is defined as the number of shared cqps divided by

the total number of unique cqps in both mining results. Based on this definition,
it is evident that the larger the overlap value, the more similar the mining results
are. In this definition all the cqps in the mining results are taken into considera-
tion. However, in caching, only the top-k frequent/infrequent cqps in the results are
important. Hence, we define the notion of overlap@k metric. Let CD(k) and CR(k)
be the sets of top-k conserved query paths in the D-CQP-Miner and R-CQP-Miner
results, respectively, where CD(k) ⊆ FD ∪ ID and CR(k) ⊆ FR ∪ IR. The overlap@k
(denoted as o@k) is defined as:

o@k =
|CD(k) ∩CR(k)|
|CD(k) ∪CR(k)|

.

18

0.01

0.01

0.01

0.02

0.02

0.02

(a) Mining Results (b) Running Times

0.01

0.01

0.02

0.01

0.02

0.02

0.01

0.02

0.01

0.01

0.02

0.01

0.01

0.01

0.01

0.01

0.01

0.01

overlap

0.66

0.71

0.85

0.79

0.93

0.97

o@10

1

1

1

1

1

1

o@30

0.83

0.87

1

0.93

1

1

o@60

0.77

0.83

0.88

0.79

1

1

0.02 0.01 0.02 0.01 0.94 1 0.98 1

0.01

0.03

0.02

0.02

0.02

0.01

0.01

0.01

0.91

0.88

1

1

1

1

0.91

0.89

Figure 5: Comparison of mining algorithms.

The experimental results with the SSPlay dataset is shown in Figure 5(a). We
vary the thresholds of the evolution metrics and compute the overall and over-
all@k. It can be observed that the overlap value depends on threshold values.
Interestingly, the overlap value can be very close to 1 when the threshold values
are appropriately set. This indicates that both algorithms share a large number of
cqps even though they are based on different evolution metrics. Moreover, it can
be observed that the top-10 cqps are exactly the same. Even for the top-60 cqps,
the two categories of evolution metrics can produce identical sets of cqps under
appropriate threshold values. This is indeed encouraging as it indicates that both
the regression-based and delta-based evolution metrics can effectively identify the
top-k cqps that are important for our caching strategy.

Comparison of Running Times: We now compare the running times of the
two algorithms when they produce identical top-k cqps under appropriate thresh-
olds. We choose the three sets of threshold values shown in Figure 5(a) that can
produce identical top-60 cqps (shaded region in the table). Figure 5(b) shows the
comparison of the running time. The dblp dataset is used and ξ is set to 0.1. It can
be observed that D-CQP-Miner is faster than R-CQP-Miner when they produce
the same top-60 cqps.

5.2 Evolution-Conscious Caching

We have implemented the caching strategy by modifying the replacement policies
of lruwith the knowledge of fcqps and icqps as stated in the previous section. From
the original collections of qpts, some qpts are chosen as the basic query paths and
are extended to form the future queries. To select the basic query paths, queries
that are issued more recently have a higher possibility of being chosen. That is,
given a sequence of n qpgs, n−i

2i+1−n qpts are selected from the ith group. Then, the
set of selected queries are extended according to the corresponding dtd. The future
queries are generated by extending the previous query paths with the randomly
selected query paths. Note that for each of the following experiments, 10 sets of
queries are generated for evaluation and the figures show the average performance.
The qpts used for generating examples of the 10 sets of queries are given in Table 1.

19

0

0.1

0.2

0.3

0.4

0.5

0.6

10 30 50 70 90

D-CQP-R R-CQP-R
QP LRU
D-CQP R-CQP

0

2000

4000

6000

8000

10000

12000

14000

0 10 20 30 40 50

D-CQP-R R-CQP-R
D-CQP R-CQP
LRU QP

(a) Avg response time (b) Cost ratio

A
vg

 r
es

po
ns

e
ti

m
e

(m
s)

C
os

t r
at

io

Number of queries(x1000) Cache size (MB)

Figure 6: Performance of caching strategies.

We use the same storage scheme as in [16]. That is, we use the index scheme
of [9] to populate the SQL Server 2000 database and create the corresponding
indexes. The system accepts tree-patterns as its queries, and utilizes structural join
method [1] to produce the result. No optimization techniques are used.

Basically, six caching strategies are implemented: the D-CQP-Miner and R-
CQP-Miner-based strategies (denoted as dcqp and rcqp, respectively), D-CQP-
Miner and R-CQP-Miner-based strategies without a ranking function (denoted
as dcqp-r and rcqp-r, respectively), the original lru-based caching strategy (de-
noted as lru), and the state-of-the-art frequent query pattern-based caching strategy
(2PX-Miner [17] based caching strategy denoted as qp). Note that the fcqps and
icqps used in the following experiments are discovered using the D-CQP-Miner
and R-CQP-Miner, by setting α = 0.02, β=0.02, γ=0.01, ζ=0.01, and ξ = 0.2.

Average Response Time: The average response time is the average time taken
to answer a query. It is defined as the ratio of total response time for answering a
set of queries to the total number of queries in this set. Note that the query response
time includes the time for ranking the cqps (The cqp ranking phase). Figure 6(a)
shows the average response time of the six approaches while varying the number
of queries from 10,000 to 50,000 with the cache size fixed at 40mb. We make
the following observations. First, as the number of queries increases, the average
response time decreases. This is because when the number of queries increases,
more historical behaviors can be incorporated and the frequent query patterns and
conserved query paths can be more accurate. Hence, the average response time
decreases in the corresponding caching strategies. Second, dcqp, dcqp-r, rcqp, and
rcqp-r perform better than qp and lru. Particularly, when the number of queries
increases, the gaps between our approaches and the existing approaches increases
as well. For instance, our caching strategies can be up to 5 times faster than the
qp approach and 10 times faster than the lru approach when the number of queries
is up to 50,000. Third, the rank-based evolution-conscious caching strategies out-

20

0.2

0.3

0.4

0.5

0.6

0.7

3000 6000 9000 12000 15000
Number of query groups

D-CQP-R R-CQP-R
D-CQP R-CQP
QP LRU

7000

9000

11000

13000

15000

17000

3000 6000 9000 12000 15000
Number of query groups

D-CQP-R R-CQP-R
D-CQP R-CQP
QP LRU

(a) Avg response time (b) Cost ratio

A
vg

 r
es

po
ns

e
tim

e
(m

s)

C
os

t r
at

io
Figure 7: Effect of QPG size.

perform the rank-unconscious caching strategies highlighting the benefits of using
the ranking functions. Also, the performance of the algorithms in presence of the
two types of evolution metrics are almost identical. This indicates that both types
of evolution metrics can improve the caching performance.

Cost ratio: The cost ratio is proposed to represent the query response time
using different types of caching strategies against the response time without any
caching strategy for all query examples. Figure 6(b) shows the performance of the
six caching strategies in terms of the cost ratio measure. The number of queries
is fixed at 2000, while the cache size varies from 20mb to 100mb (for the SSPlay
dataset). It can be observed that dcqp, dcqp-r, rcqp, and rcqp-r perform better
than qp and lru. Particularly, observe that the ratio difference between state-of-
the-art qp approach and lru is between 0.09 ∼ 0.12. If we consider this as the
benchmark then observed further difference of 0.1 ∼ 0.13 between our approach
and qp is significant. In other words, the idea of including evolutionary feature of
queries for caching is an effective strategy. Moreover, as the cache size increases,
the caching strategies perform better but the gaps between our approaches and the
existing approaches decrease.

Number of QPGs: Figures 7(a) and (b) show how the average response time
and cost ratio change when the number of qpgs increases. The SSPlay dataset is
used and the average size of each qpg is 300. We vary the number of qpgs from
3,000 to 15,000. Observe that the evolution-conscious caching strategies perform
better when there are more qpgs. This is because when the number of qpgs is large,
our cqps are more accurate, thus, the caching strategies become more efficient.

Maintenance cost of ICQPs and FCQPs: As mention in Section 4.2, the sets
of fcqps and icqps need to be updated after certain number of queries are issued. In
this experiment, we empirically determine the threshold value ε such that as long
as q < ε we do not need to update the icqps and fcqps. We first vary q to study its
effect on the quality of our caching strategy. Note that from the running cost point

21

q

0.1

0.2

0.3

0.4

0.5

0.6

LRU R-CQP-R D-CQP-R

0.52

0.52

0.52

0.52

0.52

0.52

0.29

0.32

0.37

0.43

0.51

0.68

0.36

0.41

0.48

0.56

0.63

0.71

QP

0.39

0.45

0.53

0.61

0.74

0.86

(a) Effects of q on cost ratio (1) (b) Effects of q on cost ratio (2)

Figure 8: Effects of q on cost ratio.

of view, the larger the value of q, the lesser is the overhead. Figure 8(a) shows the
performance of our proposed approaches compared to the lru and qp approaches
(in terms of cost ratio). We set |Q| = 45000000 (9000 qpgs) and the cache size is
fixed to 50mb. It can be observed that the cost ratio increases with the increase in q
for all approaches except the lru-based approach. For the qp approach, rather than
repeatedly updating the frequent query patterns whenever new queries are issued,
the same strategy of periodically updating the mining results is used. It can be
observed that the performance of our proposed rcqp-r and dcqp-r are better than
the qp approach for any q value. Furthermore, rcqp-r and dcqp-r are better than the
lru approach in most cases when q < 0.5.

In Figure 8(b) we vary |Q| and the cache size to study the effect of q on the
cost ratio. It can be observed that our approaches produce good performance in
most cases when q < 0.5 (ε = 0.5) . That is, our approach can improve the query
evaluation performance without updating the fcqps and icqps as long as |∆Q| < |Q|

2 .

6 Related Work

XML query caching: Different caching strategies have been proposed for effi-
cient xml query caching as traditional caching strategies may not work well for
xml data [3, 7, 16, 17]. In [7], the authors proposed a compact data structure to
represent the semantic regions of the xml queries and use such structures to create
the remainder and refinement queries for new queries. In [3], Chen et al. proposed
to use the subtype relations between two regular expression groups to tackle the
XQuery containment mapping problem. Yang et al. proposed to use the frequent
xml qpt to improve the xml caching strategy [16, 17]. The idea is to extract the
set of qpts that occur frequently in the query history and cache the correspond-
ing query results for future queries. In [5, 8], incremental mining algorithms for
frequent xml query patterns are proposed. Compared to these strategies, our work
differs as follows. Firstly, we use frequent and infrequent conserved rqps instead of
frequent qpts for caching strategies. Secondly, not only the frequency of the rqps is

22

considered, but also the evolution patterns of their support values are incorporated
to make the caching strategy evolution-conscious.

Frequent substructures mining: Most existing works in this area focus on
discovering the frequent substructures from a collection of semi-structured data
such as xml documents [12,13,18]. Our work differs from these efforts as follows.
First, the frequent query pattern mining problem is different from the existing fre-
quent subtree mining problem. Although the frequent query pattern mining and
rqp mining focus only on the rooted subtrees/paths and the frequent subtree min-
ing is to discover arbitrary subtrees, the first problem is more complicated than
the second because of the introduction of “//” and “*” in the xml query pattern
trees [16, 17]. Second, the above approaches focus only on snapshot xml data. As
a result they do not focus on the discovery of novel knowledge hidden behind the
historical changes to xml data. In our approach, we focus on discovering specific
pattern called conserved rqp, by analyzing the temporal and evolutionary charac-
teristics of historical xml query patterns.

Mining evolutionary patterns: Emerging pattern [6] was proposed to capture
significant changes and differences between datasets. Basically, emerging patterns
are defined as itemsets whose supports increase significantly from one dataset to
another dataset. Our study is different from emerging pattern in that we consider
the changes in a sequence of snapshots of the data while emerging pattern considers
only two snapshots. In our previous work [19], we proposed a novel approach to
discover the frequently changing structures from the sequence of historical struc-
tural changes to unordered xml. The frequently changing structures are defined as
substructures that changed frequently and significantly in the history. Compared
to this work, in this paper we focus on discovering xml query patterns that do
not change frequently in the history. More importantly, compared to the above ap-
proaches, we propose a technique to build the evolution-conscious caching strategy
using these patterns.

7 Conclusions and Future Work

This work is motivated by the fact that existing xml query pattern-based caching
strategies ignore the temporal and evolutionary features of the historical xml queries.
In this paper, we proposed a novel type of xml query pattern named conserved
query paths (cqps) for efficient caching by analyzing the evolution patterns of his-
torical xml queries. Conserved query paths are rooted query paths (rqps) in qpts
that never change or do not change significantly most of the time in terms of their
support values during a specific time period. We proposed two categories of evo-
lution metrics (delta-based and regression-based) to measure the evolutionary fea-
tures of qpts. Based on these proposed metrics, we presented two algorithms (D-
CQP-Miner and R-CQP-Miner) that extract frequent and infrequent cqps from the
historical collection of qpts. These cqps are ranked according to our proposed

23

ranking function and used to build the evolution-conscious caching strategy. Ex-
perimental results showed that D-CQP-Miner and R-CQP-Miner are efficient, scal-
able and can accurately identify the cqps. More importantly, these algorithms can
be effectively used to build more efficient caching strategies compared to state-
of-the-art caching strategies. Furthermore, our caching approach shows good per-
formance even when the fcqps and icqps are not updated until the number of new
queries issued during a specific time period is less than half of the size of historical
query set.

Currently, the calendar pattern is user-defined. In future, we wish to explore
how this task can be automated. Note that this is a challenging problem as different
users may wish to specify different calendar patterns. Also, we would like to ex-
tend our framework to provide a more sophisticated probabilistic ranking function.
Finally, we plan to investigate strategies to automate the maintenance of icqps and
fcqps.

Acknowledgement
The authors wishes to acknowledge and thank Dr Qiankun Zhao for implementing many
of the ideas discussed in this report.

References
[1] S. Al-Khalifa, H.V. Jagadish, J. M. Patel et al. Structural Joins: A Primitive for Effi-

cient XML Query Pattern Matching. ICDE, 2002.

[2] N. Bruno, N. Koudas, D. Srivastava. Holistic Twig Joins: Optimal XML Pattern
Matching. In SIGMOD, 2002.

[3] L. Chen, E. A. Rundensteiner, and S. Wang. Xcache: a semantic caching system for
XML queries. SIGMOD, 618, 2002.

[4] L. Chen, S. Wang, and E. Rundensteiner. Replacement strategies for xquery caching
systems. Data Knowl. Eng., 49(2):145–175, 2004.

[5] Y. Chen, L. Yang, and Y-G. Wang. Incremental Mining of Frequent XML Query
Patterns. ICDM, 2004.

[6] G. Dong and J. Li. Efficient Mining of Emerging Patterns: Discovering Trends and
Differences. KDD, 43–52, 1999.

[7] V. Hristidis and M. Petropoulos. Semantic caching of XML databases. WebDB,
25–30, 2002.

[8] G. Li, J. Feng, J. Wang, Y. Zhang, and L. Zhou. Incremental Mining of Frequent
Query Patterns from XML Queries for Caching. ICDM, 2006.

[9] Q. Li, B. Moon. Indexing and Querying XML Data for Regular Path Expressions.
VLDB, 2001.

[10] B. Mandhani and D. Suciu. Query caching and view selection for XML databases.
VLDB, 469–480, 2005.

24

[11] R. Ramesh and L.V. Ramakrishnan. Nonlinear Pattern Matching in Trees. JACM,
39(2):295-316, 1992.

[12] A. Termier, M-C. Rousset, and M. Sebag. TreeFinder: a First Step towards XML
Data Mining. ICDM, 2002.

[13] C. Wang, M. Hong, J. Pei, H. Zhou, W. Wang, and B. Shi. Efficient Pattern-Growth
Methods for Frequent Tree Pattern Mining. PAKDD, 2004.

[14] S. Weisberg. Applied Linear Regression. Wiley, 2 edition, 1985.

[15] L. Yang, M. Lee, W. Hsu, and S. Acharya. Mining frequent query patterns from XML
queries. DASFAA, 355–362, 2003.

[16] L. Yang, M. Lee, and W. Hsu. Efficient mining of XML query patterns for caching.
VLDB, 69–80, 2003.

[17] L. Yang, M. Lee, W. Hsu, and X. Guo. 2pxminer: an efficient two pass mining of
frequent XML query patterns. SIGKDD, 731–736, 2004.

[18] M. J. Zaki. Efficiently mining frequent trees in a forest. SIGKDD, 71–80, 2002.

[19] Q. Zhao, S. S. Bhowmick, M. Mohania, and Y. Kambayashi. Discovering Frequently
Changing Structures from Historical Structural Deltas of Unordered XML. CIKM,
2004.

25

