
Towards Enhancing Database Education: Natural Language
Generation MeetsQuery Execution Plans

[Technical Report]

Weiguo Wang ‡,§ Sourav S Bhowmick‡ Hui Li§ Shafiq R Joty‡

Siyuan Liu ‡ Peng Chen§

‡School of Computer Science and Engineering, Nanyang Technological University, Singapore
§School of Cyber Engineering, Xidian University, China

assourav|srjoty|sliu019@ntu.edu.sg,hli@xidian.edu.cn,wgwang|pchen97@stu.xidian.edu.cn

ABSTRACT

The database systems course is offered as part of an undergraduate
computer science degree program in many major universities. A
key learning goal of learners taking such a course is to understand
how sql queries are processed in a rdbms in practice. Since a query
execution plan (qep) describes the execution steps of a query, learn-
ers can acquire the understanding by perusing the qeps generated
by a rdbms. Unfortunately, in practice, it is often daunting for a
learner to comprehend these qeps containing vendor-specific im-
plementation details, hindering her learning process. In this paper,
we present a novel, end-to-end, generic system called lantern that
generates a natural language description of a qep to facilitate un-
derstanding of the query execution steps. It takes as input an sql
query and its qep, and generates a natural language description of
the execution strategy deployed by the underlying rdbms. Specifi-
cally, it deploys a declarative framework called pool that enables
subject matter experts to efficiently create and maintain natural
language descriptions of physical operators used in qeps. A rule-

based framework called rule-lantern is proposed that exploits
pool to generate natural language descriptions of qeps. Despite
the high accuracy of rule-lantern, our engagement with learners
reveal that, consistent with existing psychology theories, perus-
ing such rule-based descriptions lead to boredom due to repetitive
statements across different qeps. To address this issue, we present
a novel deep learning-based language generation framework called
neural-lantern that infuses language variability in the gener-
ated description by exploiting a set of paraphrasing tools and word

embedding. Our experimental study with real learners shows the
effectiveness of lantern in facilitating comprehension of qeps.

1 INTRODUCTION

There is continuous demand for database-literate professionals in
today’s market due to the widespread usage of relational database
management system (rdbms) in the commercial world. Such com-
mercial demand has played a pivotal role in the offering of database
systems course as part of an undergraduate computer science (cs)
degree program in major universities around the world. Further-
more, not all working adults dealing with rdbms have taken an

Conference’17, July 2017, Washington, DC, USA

2021. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

undergraduate database course. Hence, they often need to undergo
on-the-job training or attend relevant courses in higher institutes
of learning to acquire database literacy. Indeed, while formal ed-
ucation for young learners at universities has been the focus of
educational provisions in the industrial age, the digital age is now
seeing an increased experimentation of “lifelong learning” [51] with
provisions such as work-study programmes for early career and
mid-career individuals, and digital learning initiatives.

A key learning goal of learners taking a database course is to
understand how sql queries are processed in a rdbms in practice.
A relational query engine produces a query execution plan (qep),
which represents an execution strategy of an sql query. Hence,
such understanding can be gained by learners by perusing the qeps
of queries. Major database textbooks introduce the general (i.e.,
not tied to any specific rdbms software) theories and principles
behind the generation of qeps using natural language-based narra-
tives and visual examples. This allows a learner to gain a general
understanding of query execution strategies of sql queries.

Most database courses complement text book-learning with
hands-on interaction with an off-the-shelf commercial rdbms (e.g.,
PostgreSQL) to infuse knowledge about database techniques used in
practice. A learner will typically implement a database application,
pose queries over it, and peruse the associated qeps to compre-
hend how they are processed by a commercial-grade query engine.
Most commercial rdbms expose the qep of an sql query using
visual or textual (e.g., unstructured text, json, xml) format. Un-
fortunately, comprehending these textual formats to understand
query execution strategies of sql queries in practice is daunting
for learners. In contrast to natural language-based narrations in
database textbooks, they are not user-friendly and assume deep
knowledge of vendor-specific implementation details. On the other
hand, the visual format is relatively more user-friendly but hides
important details. Consequently, it is challenging for learners to un-
derstand query execution strategies in a specific rdbms from these
qep formats. We advocate that in order to promote palatable learn-
ing experiences for diverse individuals in full recognition of the
complexity of qeps in practice, user-friendly tools are paramount.

Example 1.1. Alice is an undergraduate cs student who is cur-
rently enrolled in a database course. She wishes to understand the
execution steps of an sql query in PostgreSQL on a tpc-h bench-
mark dataset [12] by perusing the corresponding qep in Figure 1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: A qep in PostgreSQL.

orders Hash Inner Join

customer Ha.sh

Figure 2: Visual tree representation of the qep.

(partial view). Unfortunately, Alice finds it difficult to mentally con-
struct a narrative of the overall execution steps by simply perusing
it. This problem is further aggravated in more complex sql queries.
Hence, she switches to the visual tree representation of the qep as
shown in Figure 2. Although relatively succinct, it simply depicts
the sequence of operators used for processing the query, hiding
additional details about the query execution (e.g., sequential scan,
join conditions). In fact, Alice needs to manually delve into details
associated with each node in the tree for further information.

We advocate that an intuitive natural language-based descrip-
tion of a qep can greatly facilitate learners to comprehend how
an sql query is executed by a rdbms. To support this hypothesis,
we surveyed 62 unpaid volunteers taking the database course in
an undergraduate cs degree program. We use the tpc-h v2.17.3
benchmark and a rule-based natural language generation tool for
qeps [36] to generate natural language (nl) descriptions of qeps
for sql queries formulated by the volunteers (both ad hoc and
benchmark queries). The volunteers were asked to select their most
preferred qep format (i.e., json text, visual tree, and nl description)
that aide in understanding the execution steps of these queries.
Figure 3 depicts the results. Observe that nl description is the most
preferred format. On the other hand, very few voted for the json for-
mat supported by PostgreSQL. Also, the visual tree representation
of a qep has healthy support. Hence, we believe that an nl-based
interface can effectively complement visual qeps to augment the
learning experience of learners. Specifically, a learner may use the
visual qep to get a quick overview of an execution plan and then
peruse the nl description to acquire detailed understanding.

The majority of natural-language interfaces for rdbms [32–34,
46], however, have focused either on translating natural language
sentences to sql queries or narrating sql queries in a natural lan-
guage. Scant attention has been paid for generating natural lan-
guage descriptions of qeps. Natural language generation for qeps
is challenging from several fronts. First, although deep learning
techniques, which can learn task-specific representation of input
data, are particularly effective for natural language processing, it
has a major upfront cost. These techniques need massive training
sets of labeled examples to learn from. Such training sets in our

Figure 3: Survey of qep formats.

context are prohibitively expensive to create as they demand data-
base experts to translate thousands of qeps of a wide variety of
sql queries. Even labeling using crowdsourcing is challenging as
accurate natural language descriptions demand experts who un-
derstand qeps. Note that accuracy is critical here as low quality
translation may adversely impact individuals’ learning. Second,
ideally we would like to generate natural language descriptions
of qeps using one application-specific dataset (e.g., movies) and
then use it for other applications (e.g., hospital). That is, the natural
language generation framework should be generalizable. This will
significantly reduce the cost of its deployment in different learning
institutes and environments where different application-specific
examples may be used to teach database systems.

In this paper, we present a novel end-to-end system called lantern
(naturaL lANguage descripTion of quERy plaNs) to generate natural-
language descriptions of qeps. Given an sql query and its qep, it
automatically generates a natural language description of the key
steps undertaken by the underlying rdbms to execute the query. To
this end, instead of mapping an entire qep to its natural language
description, we focus on mapping the set of physical operators
in a rdbms to corresponding natural language descriptions and
then stitch them together to generate the description of a specific
qep. The rationale behind this strategy is as follows. Any rdbms
implements a small number of physical operators to execute any
sql query. Hence, although there can be numerous qeps, they are
all built from a small set of physical operators. Consequently, it is
more manageable to label these operators and generate the natural
language description of any qep from them. This also allows us
to generalize lantern to handle any application-specific database
as the relations, attributes, and predicates can simply be used as
placeholders in describing a physical operator. Lastly, it makes our
framework orthogonal to the complexities of sql queries as they
are all executed by a small set of physical operators.

We present a flexible declarative framework called pool for suc-
cinctly specifying natural language descriptions of physical opera-
tors in an rdbms. We then develop a rule-based framework called
rule-lantern to generate a natural language description of a qep
by leveraging the specified descriptions of physical operators. We
observe from our engagements with learners that although rule-
based approach have high accuracy, it makes the descriptions of
qeps monotonous leading to boredom. In fact, this is consistent
with psychology theories that repetition of messages can lead to an-
noyance and boredom [20] (detailed in Section 6.1). To address this
issue, we develop a novel deep learning-based language generation
framework called neural-lantern that infuses language variability
in the generated description by exploiting a group of paraphrasing

2

tools [8–10] and pretrained word embeddings [23, 38, 44, 45]. Im-
portantly, it addresses the challenge of training data generation by
first generating a large number of random queries based on schema
information and actual values in the database and then utilize rule-
lantern and the paraphrasing tools to generate a large number of
natural language descriptions of the physical operators. We built
lantern on top of PostgreSQL and SQL Server. Our exhaustive
experimental study with real learners demonstrates the superiority
of lantern to existing qep formats of commercial rdbms.

In summary, this paper makes the following contributions:
• We present a novel end-to-end system called lantern for
generating natural language descriptions of qeps. It takes a
concrete step towards the vision of natural language inter-
action with the relational query optimizer.
• We present a declarative framework called pool to enable
subject matter experts (smes) to label physical operators in
an intuitive way (Section 4).
• Based on the specifications using pool, in Section 5 we
present a rule-based approach called rule-lantern to gen-
erate a natural language description of a qep.
• We present a novel psychology-inspired neural framework
for natural language generation called neural-lantern in
Section 6 that addresses limitations of rule-lantern. (e) In
Section 7, we undertake an exhaustive performance study
using synthetic and real-world datasets to demonstrate the
effectiveness of lantern.

2 RELATEDWORK

Natural language interfaces to databases have been studied for
several decades. Such interfaces enable users easy access to data,
without the need to learn a complex query languages, such as
sql. Specifically, there have been natural language interfaces for
relational databases [15], xml [35], and graph-structured data [64].
Given a logically complex English language sentence as query input,
the goal of majority of these work is to translate it to the underlying
query language such as sql [16–18, 30, 46, 57, 60–63, 65]. Recently,
deep learning techniques have been utilized to translate natural
language queries to sql [18, 52, 60–63, 65]. On the other hand,
frameworks such as Logos [32] explain sql queries to users using
natural language. lantern compliments these efforts by providing
a natural language description of a qep.

Most germane to this work is the demonstration of a system
called neuron in [36], which generates natural language descrip-
tions of qeps using a rule-based technique. It also supports a natural
language question answering system that allows a user to seek an-
swers to a variety of concepts and features associated with a qep.
In contrast, we focus on generating a natural language description
of a qep and give detailed methodology to address this problem.
We also introduce a declarative framework for label specification
and a deep learning-based solution that are omitted in [36]. Finally,
user studies and experiments demonstrating the effectiveness of
the proposed frameworks are presented in this work.

3 PRELIMINARIES

In this section, we present basic concepts that are necessary to
comprehend this paper.

Unique

Aggregate

Sort

Hash Join

Hash SeqScan
(inproceedings)

SeqScan
(publication)

Figure 4: A physical operator tree (i.e., qep).

Physical Operator Tree. The relational query execution engine
implements a set of physical operators [22]. An operator takes
as input one or more data streams and produces an output data
stream. Some examples of physical operators are sequential scan,
index scan, and hash join. Note that in database literature, we
typically refer to such operators as physical operators since there
is not necessarily one-to-one mapping with relational operators.
These physical operators are the building blocks for the execution
of sql queries. An abstract representation of such an execution is
a physical operator tree (operator tree for brevity), denoted as T =
(N ,E), where N is a set of nodes representing the operators and E is
a set of edges representing data flow among the physical operators.
The physical operator tree is the abstract representation of a query
execution plan (qep) and we use these terms interchangeably. The
query execution engine is responsible for the execution of the qep
to generate results of a sql query.

Example 3.1. Consider the following sql query on dblp dataset.
SELECT DISTINCT(I.proceeding_key)
FROM inproceedings I, publication P
WHERE (I.proceeding_key = P.pub_key AND

P.title like '%July%')
GROUP BY I.proceeding_key
HAVING COUNT (*) > 200;

The qep (i.e., physical operator tree) of the query generated by
PostgreSQL is depicted in Figure 4.

Intuitively, we classify the nodes in an operator tree of a qep
into two categories, namely critical and auxiliary operators (nodes).
The former type of nodes corresponds to important operations (e.g.,
HASH JOIN, SEQSCAN) in a qep. On the other hand, the latter
type is located near a critical node (e.g., parent, child) and supports
the execution of the operator represented by a critical node. For
instance, HASH JOIN and HASH in Figure 4 are examples of critical
and auxiliary nodes/operators in PostgreSQL, respectively .

Seq2SeqModel. The Seq2Seqmodel has revolutionized the process
of machine translation using the deep learning framework [50]. It
has also been a standard method for other text generation appli-
cations such as image captioning [14, 55], conversational models
[54], text summarization [48]. The Seq2Seq model puts two neural
networks together, one as an encoder and the other as a decoder.
It takes as input a sequence of words and generates an output se-
quence of words. Given a source (input) sequence of words, the
encoder-decoder framework works as follows. The encoder deep

3

neural network converts the input words to its corresponding hid-
den vectors, where each vector gives a contextual representation
of the corresponding word. The decoder deep neural network is a
language model that takes as input the hidden vector generated by
the encoder, its own hidden (previous) states and the current word
to produce the next hidden vector and to finally predict the next
word.

The encoder and the decoder can use a recurrent neural net-
work (rnn) architecture [50] with carefully designed cells like lstm
or gru, convolutional [24, 59] or recently proposed transformer
architecture [53]. It is also common to employ an attention mecha-
nism [19, 40] so that the decoder can selectively focus on relevant
encoder states while generating a token.

4 A DECLARATIVE FRAMEWORK

Ideally, we would like to have access to large volumes of labels
that associate qeps to their corresponding natural language descrip-
tions. Then, in principle, we can use such labels as training data to
build a deep learning-based model to generate a natural language
description of any qep. Unfortunately, although there is increasing
availability of sql-to-natural language training datasets [62], to
the best of our knowledge, no publicly-available data source exists
for qeps. Note that natural language translation techniques for sql
queries cannot be adopted here as sql queries are declarative and
specified using logical operators. To further aggravate this issue,
the natural language labeling of qeps needs to be performed by
trained subject matter experts (sme) in order to ensure accuracy of
the annotations. Given that there can be numerous qeps in practice,
it is prohibitively expensive to deploy such experts for labeling
qeps. On the other hand, crowdsourcing for cheaper sources of
labeling is not a viable option as non-smes may not have sufficient
background on query processing to annotate qeps with high degree
of accuracy.

To address these challenges, we deploy smes to provide natural
language descriptions for physical operators in a commercial rdbms
in lieu of qeps. All qeps are essentially constructed from this set
of operators, which is orders of magnitude smaller than a training
set containing qeps, making natural language descriptions (i.e.,
labels) economical to obtain from smes. In order to expedite the
labeling process, we propose a declarative framework where a sme
can create and manipulate the labels using a declarative language
called pool (Physical Operator Object Language). In this section,
we elaborate on this framework. Note that we focus on features
that are necessary to understand our rule-lantern framework.

4.1 Requirements

Investigation of physical operators in commercial rdbms as well
as our engagement with learners identified several crucial require-
ments for pool. First, an abstract data type for physical operators is
necessary so that smes may treat such data at a level independent
from a specific rdbms.

Second, smes must be able to select objects to be labeled and spec-
ify corresponding natural language labels. In particular, they must
be able to label physical operators in three dimensions, namely,
create meaningful alias of a physical operator, natural language
definition of an operator, and natural language descriptions of the

operation performed by an operator. In particular, aliases are impor-
tant as names of certain operators can be ambiguous to a learner.
For instance, DB2 uses HSJOIN as the name of hash join operator.
Hence, an alias of HASH JOIN is more intuitive to a learner. Simi-
larly, a learner may encounter unfamiliar operators (e.g., zigzag join
(ZZJOIN in DB2)) in her course. Hence, natural language definitions
of such operators will be useful to her while perusing qeps.

Third, it may be necessary to declaratively combine labels of a
pair of operators in order to generate a succinct natural language
description of a qep. For instance, in PostgreSQL labels of HASH
JOIN and HASH operators need to be combined to generate a natu-
ral language description of the former operator. An example of such
description can be “hash $R1$ and perform hash join on $R2$ and
$R1$ on condition $cond$” where “hash $R1$” is the label associated
with the HASH operator.

Fourth, smes should be able to transfer the description of one
operator to another to make specification of natural language de-
scriptions of operators more efficient. For instance, hash join and
nested-loop join are both join operators. Consequently, their de-
scriptions may be very similar, i.e., the description of nested-loop
join operator does not have the “hash $R1$” segment. Hence, pool
should be able to reuse and modify the existing description of hash
join operator when specifying the description of nested-loop join
operator. Similarly, one should be able to transfer the description
or definition of hash join across different rdbms (e.g., PostgreSQL
to DB2) without specifying it from scratch.

4.2 Features of POOL

DataModel.The datamodel underlying pool is called poem (Physical
Operator ObjEct Model). poem is a simple and flexible graph model
where all entities are objects. Each object represents a physical
operator of a relational query engine. Each object has a unique
object identifier (oid) from the type oid. Objects are either atomic
or complex. Atomic objects do not have any outgoing edges. All
objects have a set of attribute-value pairs. Specifically, each object
is associated with the following attributes: source, name, alias, defn,
desc, type, cond, and target. The source refers to the specific rela-
tional engine that an operator belongs to. The name refers to the
name of a physical operator in the source and the type captures
whether it is an unary or binary operator. Alias is an optional alter-
native name for an operator. The defn attribute stores the definition
of an operator. The desc attribute stores a natural language descrip-
tion of the operation performed by an operator. The cond attribute
takes a Boolean value to indicate whether a specified condition
(e.g., join condition) should be appended to the natural language
description of an operator. Values of all attributes are taken from
the atomic type string (possibly empty). As an example, consider
theHASHJOIN operator in PostgreSQL. In poem, it is an object with
the following attributes: source = ‘postgresql’, name = ‘hashjoin’,
alias = ‘ ’, type = ‘binary’, defn = ‘a type of join algorithm that uses
hashing to create subsets of tuples’, desc = ‘perform hash join’, and
cond = ‘true’. Note that the source serves as an entry point to the
database. The set of objects is referred to as poem store.

There is a directed edge between an object pair (pa , pc) iff pa
is an auxiliary operator and pc is a critical operator (recall from
Section 3) in a qep in source. It is captured by the target attribute

4

of pa . For example, (phash, phashjoin) of PostgreSQL has a directed
link. Hence, the target attribute value of phash is ‘hashjoin’.

Data Definition. The data definition in pool allows one to declar-
atively create physical operator objects associated with a specific
rdbms. The general format of the statement is as follows: CREATE
POPERATOR <name> FOR <source> (<attribute-value pairs>). An
example is as follows.

CREATE POPERATOR hashjoin FOR pg
(ALIAS = null,
TYPE = 'binary',
DEFN = null,
DESC = 'perform hash join',
COND = 'true',
TARGET = null)

Note that name must exists in the set of physical operators sup-
ported by the specified rdbms engine (i.e., source). For instance,
hashjoin is a physical operator in PostgreSQL (i.e., pg). The optional
ALIAS attribute specifies an alternative name of the operator. For
example, the operator ZZJOIN in DB2 can be given an alias ‘zigzag
join’ . In the case an alias is unspecified, it can be either set to null
or simply omitted from the definition. The TYPE is a mandatory
attribute that can take either ‘unary’ or ‘binary’ value. The DESC
attribute is mandatory, which allows one to specify a natural lan-
guage description of the operation performed by the operator. Note
that pool does not prevent one from describing several descrip-
tions for a single operator. For instance, DESC = ‘execute hash join’
can be added to the above definition. Observe that no relation or
condition is specified in DESC. This is because these are added
automatically to DESC by exploiting TYPE and COND attributes
of an operator. For instance, since TYPE = ‘binary’ in the above
definition, two variables representing join relations will be added
automatically to the description of hashjoin. Lastly, the TARGET
attribute allows one to specify auxiliary-critical operator pair. If its
value is non-empty, it must be an existing name in the source.

Data Manipulation. The key goals of the data manipulation com-
ponent of pool are to provide syntactical means to support (a)
retrieval of specific properties (i.e., attributes) of physical operators,
(b) generation of the template for natural language description of
an operator that can be subsequently used in a qep, and (c) update
properties of physical operator objects. We elaborate on them in
turn.

Retrieval of specific properties of physical operators follows sql-
like SELECT-FROM-WHERE syntax. The SELECT-FROM clauses
are mandatory for any retrieval task. Predicates in the WHERE
clause are formulated upon attributes of poem objects. Every query
result is a set of poem objects with specific attributes specified
in the SELECT clause and satisfies the conditions in the WHERE
clause. The following example shows the retrieval of the ZZJOIN
operator object with defn attribute.

SELECT defn FROM pg WHERE name = 'zzjoin'

The following example shows retrieval of all objects representing
the join operation in the source.

SELECT * FROM pg WHERE name LIKE '%join'

Our framework also supports join queries especially between phys-
ical objects from multiple dbms.

pool supports a COMPOSE clause to specify generation of a
natural language description template of an operator. Specifically,
the COMPOSE clause uses the desc, type, and cond attributes
of operators to generate the template. For example, the template
generation for the HASH operator can be specified as follows.

COMPOSE hash FROM pg

The above state will return the template “hash $R1$”, which
can be subsequently used by our framework to generate specific
description of theHASH operator in a qep. Note that theCOMPOSE
operator returns a value of type string instead of a poem object.
Also, observe that R1 is appended based on the type attribute of the
hash object.

As mentioned above, pool allows composing a pair of critical
and auxiliary operators (e.g., hash and hash join) to generate the
natural language description template for the critical operator.

COMPOSE hash, hashjoin FROM pg
USING hashjoin.desc = 'perform hash join'

The above statement generates the following template: “hash $R1$
and perform hash join on $R2$ and $R1$ on condition $cond$”. Since
an operator object may have multiple desc attributes, the optional
USING clause allows one to specify which one to use to generate
the template. In the case it is unspecified, a desc will be chosen
randomly for each operator in the COMPOSE clause to create the
template. Hence, the form of a COMPOSE statement is: COMPOSE
<list of object names> FROM <source> USING <condition on desc>.
Note that in the case the list of object names contains more than
one operators, it must be an (auxiliary, critical) operator pair, which
generates the template for the critical operator.

pool supports update statements that allow attributes of existing
poem objects to be changed. The general form of the update state-
ment is: UPDATE <source> SET <new-value assignments>WHERE
<condition>. Each new-value assignment is an attribute, an equal
sign and a string. If there are more than one assignment, they are
separated by commas. The following example shows updating the
definition of the hash join operator.

UPDATE pg
SET defn = 'a type of join algorithm...'
WHERE name = 'hashjoin'

The update statement can be exploited to assign definition or
description of an operator from one commercial database to another,
thereby making it more efficient for an sme to specify properties
of physical operators. The following example demonstrates how
description of hash join in PostgreSQL is transferred to the hash
join operator in DB2.

UPDATE db2
SET desc = (SELECT desc
FROM pg WHERE pg.name = 'hashjoin')

WHERE db2.name = 'hsjoin'

It can also be used along with the REPLACE clause to transfer
definition or description of an operator to another within the same

source. For example, one can transfer the description of hash join
to nested loop join by replacing the word ‘hash’ with ‘nested loop’
as follows.

UPDATE pg
SET desc = REPLACE((SELECT desc FROM pg AS pg2

5

WHERE pg2.name = 'hashjoin'), 'hash', 'nested loop')
WHERE pg.name = 'nested loop join'

Note that the REPLACE clause takes three parameters as input,
namely the description or definition of a poem object, the string in
it that needs to be replaced (e.g., ‘hash’), and its new replacement
string (e.g., ‘nested loop’).

Implementation. pool is implemented on top of a standard rela-
tional database. poem objects are stored in two relations with the
following schema: POperators(oid, source, name, alias, type, defn,
cond, targetid) and PDesc(oid, desc) as an object may have multiple
descriptions. We use Python script to translate pool statements
to corresponding sql statements on these relations. A wrapper
is implemented that takes the results of sql queries as input and
returns poem objects or string as output.

5 THE FRAMEWORK OF RULE-LANTERN

Our rule-based framework, rule-lantern, leverages the narration
(descriptions by smes) of various operators defined using pool to
generate a natural language description of the qep of an sql query.
In this section, we describe it in detail. We begin with the model
of the framework for generating natural language descriptions of
qeps. Next, we highlight the key issues for designing rule-lantern.
Finally, we present the algorithm for realizing rule-lantern.

5.1 Model For Narration of QEPs

Narration is the use of techniques to convey a story to an audi-
ence [7]. In our context, the story is the description of a query
execution plan and the audience consists of learners. Chatman [21]
defines narrative as a story (content of the narrative) and discourse

(expression of it). In a nutshell, the story can be viewed as the logical
form of the narrative, while the discourse prunes out unimportant
content and focuses on presenting components deemed interesting
in a particular order.

Inspired by this classical model of narration, El Outa et al. [42]
recently proposed a four-layered model for data narration1 that
we adopt for qeps. Specifically, the narration of qeps is modeled as
follows.

• Factual layer.The factual layermodels qeps (i.e., data) using
language-annotated operator trees that allow for manipula-
tion of qeps for narration generation.
• Intentional layer. The intentional layer models the sub-
stance of a story by identifying the content (description of
various operators) based on the desired goal (i.e., compre-
hension of a qep by learners).
• Structural layer. The structural layer models the structure
of a narrative by organizing its plot (i.e., the arrangement of
messages in a way easily understandable by the audience).
While the previous layers focus on the contents of the nar-
rative, this layer focuses on its discourse. In our framework,
we organize the plot as a sequence of steps.
• Presentation layer. It models the presentation of a narra-
tive. That is, how a story is presented to the audience.

1The factual, intentional, structural, and the presentation layers map to form of content, substance
of content, form of expression, and substance of expression of [21], respectively.

Our rule-lantern addresses the first three layers. We utilize
the presentation approach of [36] for the presentation layer.

5.2 Design Issues

At first glance, we may simply perform a post-order traversal of
an operator tree and exploit the natural language description tem-
plates specified using pool to transform the information contained
in each node “independently” to its natural language description
and simply aggregate them to generate the description of a qep.
This method, however, may produce a verbose description contain-
ing redundant information. This is because a node in an operator
tree may only convey a segment of information related to a specific
physical operator. For instance, in PostgreSQL, the node represent-
ing HASH JOIN have a child called HASH. The latter node conveys
the hashed relation and can be considered as a part of the main
narrative of performing hash join between two relations. Hence,
it is important to consider the roles played by different nodes for
generating concise natural language descriptions of qeps.

A consequence of the above issue is that the natural language
description of an execution step related to a specific operation may
need to be generated by composing descriptions of multiple nodes.
For example, consider the TBSCAN operator (i.e., table scan op-
erator in DB2). In one qep, we may simply perform a table scan
on a relation without any filtering condition. On the other hand,
in another qep, we may perform a table scan on a relation based
on certain filtering condition (e.g., title contains ‘July’) using the
FILTER operator. Hence, in the former plan, the natural language de-
scription is simply based on the TBSCAN node whereas in the latter
plan, concise description demands composition of desc attributes of
TBSCAN and FILTER nodes. Hence, rule-lantern should support
such composition.

5.3 Language-annotated Operator Tree

Observe that an operator tree does not contain any information
related to natural language descriptions of the operators. Hence,
we extend it to annotate the nodes with their natural language
descriptions as specified using pool. We refer to such extension
as language-annotated operator tree (lot), denoted as TL = (N ,E).
Formally, each node n ∈ N inTL is associated with a name, denoted
as n.name , and a label, denoted as n.label . The former is set to the
alias value of the corresponding object in poem. In the case the
alias is unspecified, it is set to the object’s name. The latter contains
a natural language description of n generated from the natural
language template created by executing COMPOSE statement of
pool on n. For example, reconsider the operator tree in Figure 4.
For the node representing hash join, n.name = HASH JOIN. A
natural language description of this node can be n.label = “perform

hash join on table $R1$ and table $R2$ on condition C” where
R1 (resp. R2) and C are place holders for input relations and join
condition(s), respectively. Note that this template is returned by the
following pool query:COMPOSE hashjoin FROMpg. Also, specific
relation/attribute names and conditions to replace the placeholders
are added in subsequent steps.

6

5.4 Composition of Node Labels

To tackle the issues described in Section 5.2, we logically refine

a lot by clustering the auxiliary nodes with the corresponding
critical ones. Recall that these two types of nodes are specified by
an sme using pool. For example, in PostgreSQL, HASH JOIN node
and its child HASH,MERGE JOIN node and its child SORT are two
examples of auxiliary-critical node pairs that can be specified using
pool.

Given a lotTN = (N ,E), cluster (TN) returns a set pairs of nodes
in TN , {(na ,nc)|(na ,nc) ∈ E ∧ na , nc }, where nc and na denote
critical and auxiliary nodes, respectively. Each pair of critical and
auxiliary nodes in a cluster is translated into a single natural lan-
guage description template using the COMPOSE statement as an
auxiliary node contributes to a segment in the description. For ex-
ample, consider the HASH JOIN and its child HASH in a lot. A
natural language description template of this pair of nodes can be as
follows: “hash $R1$ and perform hash join on $R2$ and $R1$ on con-

dition $cond$”. Observe that the segment “hash $R1$” is generated
from the HASH node.

Under the hood, the COMPOSE statement on a pair of nodes
is realized using a composition operator, denoted by ◦. Given a
pair of critical and auxiliary nodes (na ,nc) such that (na ,nc) ∈ E,
na ◦nc = na .label∧nc .label where∧ represents “and’’. In the above
example, na .label = “hash $R1$” and nc .label = “perform hash join

on $R2$ and $R1$ on condition $cond$”. The composition operator is
neither associative nor commutative. The left operand must be an
auxiliary node. This is intuitive as the natural language description
is unclear if “hash $R1$” appears after the label of HASH JOIN.

5.5 Algorithm

Algorithm 1 outlines the procedure for generating a natural lan-
guage description of a qep in rule-lantern. It first extends the
operator treeT to a lotTL (Line 1). Observe that in a graphical rep-
resentation of a qep (e.g., Figure 2), hierarchical relations between
operators and data flow are clearly indicated by edges in the tree.
In contrast, a natural language description is inherently sequential
as a reader reads it top-down like a document. Particularly, a parent
of an operator may not be translated immediately as the next step
during natural language generation as other children need to be
translated first (e.g., auxiliary nodes). Therefore, in order to ensure
clarity of data flow, this step also assigns a unique identifier to the
output of each operator (i.e., intermediate results) so that it can be
appropriately referred to in the translation of its parent (denoted by
node .identi f ier). For example, in Figure 4, the intermediate results
of the SEQSCAN operation on the Publication relation is assigned
an identifier T1. This identifier is subsequently used in the natural
language description of its parent HASH node.

Next, it retrieves the cluster C in TL containing a set of critical
and auxiliary node pairs by leveraging the poem store (Line 2).
Since the structural layer of our model consists of a sequence of
steps to describe the qep, it traverses TL in post-order manner to
generate these steps. If a node and its child are an element in C
then it uses the label of the critical node to generate corresponding
natural language description by replacing the place holders with
corresponding values (Lines 5-6). For example, in Figure 4, the
HASHJOIN node satisfies the condition in Line 5 and is translated

Algorithm 1 rule-lantern Algorithm
Input: An operator tree T = (N , E), poem store P ;
Output: Natural language translation r esult ;

1: TL ← GenerateLOT(T , P)
2: C ← Cluster(TL , P)
3: for all node ∈ TL do

4: step ← ∅
5: if (node .child, node) ∈ C then

6: step ← Translate(node .child, node, step)
7: else

8: step ← Translate(node .label, step)
9: end if

10: if node .parent ! = ∅ and node .identif ier ! = ∅ then
11: step ← AppendIntermediate(step , node .identif ier)
12: else if node .parent = ∅ then
13: step ← AppendFinal(step , “to get the final results.’’)
14: end if

15: r esult ← Add(r esult , step)
16: end for

17: return r esult

as follows: “hash T1 and perform hash join on inproceedings and T1
on condition ((i.proceeding_key)= (p.pub_key))”. Observe that T1 is
the identifier of intermediate results of the SEQSCAN node. On
the other hand, if a node is not in C , then the corresponding step
is generated by utilizing its label. For example, the right leaf node
is translated to “perform sequential scan on inproceedings”. Finally,
the intermediate relation information is appended to step in Lines
10-11. For instance, the segment “to get the intermediate relation

T2” is appended to the above step of the HASHJOIN node. In the
case, the node represents the final operation in an operator tree,
“to get the final results." is appended to step (Line 13). Observe that
contents of these nodes represent the intentional layer of our model.
The time complexity of generating a natural language description
is O(N).

Example 5.1. Consider the operator tree in Example 3.1. The
rule-lantern algorithm generates the description of the qep as
the following sequence of steps. (1) Visit SEQ SCAN for table inpro-
ceedings and generate “perform sequential scan on inproceedings."
(Line 8). Note that the identi f ier of intermediate results associated
with this node is set to null as there is no filtering condition (i.e.,
intermediate relation is identical to the base relation). (2) Visit SEQ
SCAN for table publication and generate “perform sequential scan

on publication and filtering on (title containing ’July’) to get the inter-
mediate relationT1." (Lines 8, 11). (3) Visit HASH JOIN and generate
“hash tableT1 and perform hash join on inproceedings andT1 on condi-
tion ((i.proceeding_key)= (p.pub_key)) to get the intermediate relation

T2." (Lines 6, 11). (4) Visit AGGREGATE and generate “sort T2 and
perform aggregate on T2 with grouping on attribute i.proceeding_key
and filtering on (count(all) > 200) to get the intermediate relation T3."
(Lines 6, 11). (5) Visit UNIQUE and generate “perform duplicate

removal on T3 to get the final results." (Lines 8, 13).

Remark. It is worth noting that the aforementioned algorithm is
generic and can be realized on any commercial rdbms. Specifically,
although the physical operator names are different across different
rdbms, the rule-lantern framework operates onTL andC , which
are generated using the poem store.

7

6 NEURAL-LANTERN FRAMEWORK

Although the rule-lantern technique can generate accurate natu-
ral language descriptions of qeps, our engagement with learners
revealed an intriguing problem of this approach. Since the natu-
ral language description of an operation is generated from sme-
specified descriptions in the poem store, the descriptions in qeps
can be repetitive and lack variability. For example, the description
in Step 3 of Example 5.1 will be repeated for all qeps containing a
hash join operator although the input relations or join conditions
may differ. Note that even though pool allows an sme to specify
multiple descriptions of an operator, in practice she may only spec-
ify one. Consequently, some learners found that after reading the
descriptions for several queries, they feel bored due to the usage of
the same language to describe the operations. They reported that
they started skipping several sentences in the descriptions. In fact,
this is consistent with research in psychology that have found that
repetition of text messages can lead to annoyance and boredom [20]
resulting in purposeful avoidance [27], content blindness [28], and
even lower motivation [47]. To mitigate this problem, we propose
a novel neural network-based framework called neural-lantern
that is inspired by theories from psychology.

6.1 Habituation and Boredom

In psychology theory, habituation is a decrease in response to a stim-
ulus after repeated presentations [4]. The advantage of habituation
is that it enables individuals to tune out unimportant information
to be more productive or efficient. However, it also creates bore-
dom that makes an individual disinterested in the information.
Specifically, many studies in psychology such as [41] reported that
habituation of cortical arousal in response to repetitive stimulation
contribute to the likelihood that boredom2 is experienced. In fact,
subjectively monotonous activities could lead to a high degree of
frustration and boredom [29]. Simple and homogeneous stimulus
(e.g., same or similar messages) as well as high exposure, accelerate
the appearance of boredom [26].

Diverse messaging has been studied to mitigate the problems
germinated from repeated exposure. In controlled experiments,
diversification was shown to reduce tedium from repeated expo-
sure [26, 47]. However, the messages were manually developed in
these studies. Recall that pool also allows specifying such manual
description using multiple desc attribute values. However, such
manual generation creates a major barrier for diversifying descrip-
tions of operators in qeps. Hence, systematic and automated tech-
nique is necessary for mitigating the negative effects of repeated
exposure of similar descriptions.

6.2 Training Data Generation

If we regard a qep as an input language while the natural language
description as the output, interpreting qep into natural language
can be viewed as amachine translation task, which can be addressed
by a deep learning-based framework. However, as remarked earlier,
it brings in two key challenges. First, it is prohibitively expensive
to get large volumes of training data for this task. Second, the

2Mikulas and Vodanovich [39] defined boredom as “a state of relatively low arousal and dissatis-
faction, which is attributed to an inadequately stimulating situation”. Watt and Vodanovich [56]
describe boredom as a dislike of repetition or of routine.

description generated as output should mitigate the appearance of
boredom among learners when they peruse the natural language
descriptions of qeps. We address these challenges by presenting
a neural network-based framework called neural-lantern. We
begin with the training data generation process in this framework.

The training sample of a translation task consists of two parts,
the sentence in the original (resp., input) language to be translated,
i.e., the input operator tree, as well as the ground-truth translation
in the output language, i.e., the natural language description of the
corresponding qep. We shall now discuss these parts in turn.

Input. Given a relational database, we need a large number of sql
statements in order to generate a large number of corresponding
qeps for translation. Hence, we adopt the approach in [31] to gen-
erate a set of sql queries given a particular schema and database
instance. This enables us to generate thousands of queries given
a relational database instance. These queries contain aggregation,
projection, as well as various filtering and join predicates.

Next, we acquire a collection of qeps corresponding to these
queries. Each qep is decomposed into a set of acts (denoted as
actCol), each of which corresponds to a set of operators over some
relations. For instance, in Figure 4, SEQUENTIAL SCAN and (HASH
JOIN,HASH) are two acts. Specifically, each act is a single node (i.e.,
operator) or a cluster (recall from Section 5.4) in an operator tree.
Each of such act, in the form of some operators and corresponding
relations/conditions, is employed as an input training sample, and
its corresponding natural language description is used as output
sequence in the translation model. Specifically, for each act, we em-
ploy the strategy in rule-lantern to generate the corresponding
lot in order to generate its corresponding natural language descrip-
tion. Observe that our input is at the act-level (i.e., a subtree of an
operator tree) instead of the entire operator tree. This enables us to
not only generate numerous training data at specific operator-level
but also, as we shall see in the next subsection, facilitates injecting
diversity in the natural language description of each act, which in
turn improves the neural model generalization.

Output. For each training act, we have to obtain its natural lan-
guage translation as the output sequence. We apply rule-lantern
to generate the natural language description for each input. No-
tably, we need to pay attention to the schema-dependent variables,
e.g., relation/column names and filtering conditions, which do not
contribute to the training of a translation model. We mark them
with special symbols in the output labels for each input operation.
For example, an INDEX SCAN node is translated by rule-lantern
into the followings: “perform index scan on $R1$ and filtering on C
to get the intermediate relation $R2$”. We replace it with “perform
index scan on <T> and filtering on <F> to get the intermediate re-

lation <TN>” in the output label. Herein, special tags are adopted
in the output to replace specific relations or predicates. The set of
special tags we use is shown in Table 1. This leads us to a set of
training samples, each of which consists of an operation (i.e., act)
as input and a corresponding nl description as output.

6.3 Diversifying Translation

The preceding subsection describes a strategy to generate train-
ing data automatically instead of manual labeling. Specifically,
the output labels for the training samples are all generated by

8

Table 1: List of special tags used in the output.

Tag Description Example

<I> indexed column name
<F> filtering condition c_mktseдment = ’BUILDING’
<C> join condition c_custkey = o_custkey
<T> an existing temporary table name
<TN> new temporary table name
<A> column name for sort order by revenue desc ...
<G> column name for groupby group by l_orderkey ...

rule-lantern. Consequently, it does not address two key chal-
lenges discussed earlier. First, the translation generated by rule-
lantern can be repetitive leading to possible boredom among
learners while reading the natural language descriptions of qeps.
Second, the amount of training data generated is still limited since
rule-lantern imposes a one-to-one mapping between an act and
its corresponding natural language description.

To address these challenges, we employ three popular state-of-
the-art synonymous sentence generation tools [8–10] to expand
the training samples as well as inject diversity in the translated text.
For the same sql statement, these models can generate a variety of
natural language descriptions that add diversity to the narrative. In
particular, for each of the rule-lantern results, we apply all the
three tools and acquire a set of synonymous sentences. Notably, we
remove duplicates (if any) and manually eliminate invalid sentences
generated by these tools. As a result, we enlarge the number of
training samples in our datasets by approximately 3 times.

Table 2 shows an example of three synonymous sentences gen-
erated by these tools from a rule-lantern-generated text. An
interesting observation is that these tools may not always choose
correct words in the generated sentences. For example, in sentences
1 and 2, the word “separating” is generated instead of “selecting”.
At first glance, it may seem that this may hinder a learner’s com-
prehension. However, surprisingly, our empirical study shows that
is not the case. Instead, it may even arouse interest among learners
as they encounter novel unexpected words.

6.4 Translation Model

Taskdefinition.To finish our translation task, we present aQEP2Seq
model following the Seq2Seq structure. For a qep, the acts collection
actCol is composed of a series of acts L1,L2, . . . ,Ln , each of which
is derived from the qep. Specifically, each act Li constitutes an
input to the neural Seq2Seq model, and the corresponding output
is the generated description Si containingm tokens o1,o2, . . . ,om ,
with ot being the word at position t . Our goal is to train a model
parameterized by θ that can be used to infer the most likely natural
language description Si for any given input Li as follows:

Ŝi = argmax
y1:m

m∏
t=1

Pθ (yt = ot |y0:t−1,Li) (1)

The explanation for the entire qep containing acts L1,L2, . . . ,Ln is
then constructed by concatenating the Ŝi ’s for i = 1 . . .n.

6.4.1 Model Architecture. As shown in Figure 5, our QEP2Seq
model consists of an Encoder and a Decoder. The decoder employs
an attention mechanism so that it can focus on the relevant portion
of the input when generating a target word. Besides, we also use
pre-trained word vectors in the Decoder (see Embedding in Figure 5).

Table 2: Examples of synonymous sentence generation.

Approach Description

rule-lantern perform sequential scan on user and filtering on age > 10 to get the
final results.

synonymous sentence
1

perform sequential scan on user and separating on age > 10 to get the
conclusive outcome.

synonymous sentence
2

execute sequential scan on user and separating on age > 10 to get the
conclusive outcome.

synonymous sentence
3

execute sequential scan output on user and get user which age > 10
and to get the conclusive outcome.

h1

LSTMcLSTM

Tablename

h2

LSTM

Parallel

Seq Scan

LSTM LSTM ...

Attentiona1

a2

<BOS> perform sequential

Embedding

perform sequential scan

Encoder Decoder

Figure 5: The QEP2Seq Model.

Pre-trained word vectors. Static and contextualized pre-trained
word representations like GloVe [44], Word2Vec [38] and BERT
[23] have attracted a great amount of attention recently in nlp. The
vector representations of words learned by these models have been
shown to carry semantic information that can help the model to
generalize well for different nlp tasks.

In this work, we adopt both static (Word2Vec and GloVe) and
contextual word embeddings (ELMo [2] and BERT). While static
word embeddings are easy to use, using contextual embeddings
effectively can be non-trivial. For ELMo, we take the embeddings
from its two bi-lstm layers (each of size 4096) and take a linear com-
bination of the vectors as the pre-trained representation of a word.
For BERT, we take the representation from its last layer. We use
the BERT-based model, which has 12 layers with 768 hidden units
and 12 heads. Empirical study in the next section demonstrates that
using pre-trained word embeddings can accelerate the convergence
of our QEP2Seq model and alleviate overfitting problem.

Encoder. The Encoder rnn encodes each word wt in Li into the
corresponding hidden state ht using an lstm layer. The lstm main-
tains a vector of memory cells ct ∈ Rd (a.k.a. cell state) to store long
term memory, and uses (soft) gates to control how much informa-
tion to update with, to retrieve, or to remember for the next token.
At each time step t , the lstm hidden layer receives previous hidden
state ht−1 and the current input xt , i.e., the word embedding for to-
kenwt (randomly initialized). The LSTMEnc(ht−1, xt) architecture
used here is given by the following equations [25]:

it = sigmoid(Uihlt−1 +Vixt) [input gate] (2)

ft = sigmoid(Uf hlt−1 +Vf xt) [forget gate] (3)

ot = sigmoid(Uohlt−1 +Voxt) [output gate] (4)

ct = it ⊙ tanh(Uchlt−1 +Vcxt) + ft ⊙ ct−1 [cell state] (5)
ht = ot ⊙ tanh(ct) [output] (6)

where U · and V· are the corresponding weight matrices and ⊙
denotes element-wise product.

9

Decoder with attention. To generate the natural language de-
scription (Si) for the input sequence (Li), we use an lstm decoder
with an attention mechanism [40]. The attention is an elegant way
to let the decoder focus on the relevant portion of the encoder while
generating a token (Figure 5). Similar to the Encoder rnn, at each
time step t , the decoder rnn receives two inputs – the previous hid-
den state st−1 and the word embedding xt (e.g., Word2Vec, BERT).
The lstm layer then constructs st following Equations 2 - 6 (using
a different set of weight matrices).

st = LSTMDec(st−1, xt) (7)
The decoder hidden state st is then used to compute a relevance

score (attention weight) with respect to each of the encoder states
ht for t = 1 . . .N with N being the number of tokens in Li (Eq. 8).

α ti =
exp(д(st , hi))∑N
j=1 exp(д(st , hj))

(8)

In particular, д(st , hi) is a relevant score between the hidden
state st of the Decoder and the hidden state hi of the Encoder. There
are several ways to compute the relevant scores. In our work, we
use the additive attention [19] to measure the relevance score:

д(st , hi) = VT
a tanh(Ws st +Whht) (9)

where Va ,Ws , and Wh are learnable parameters. The attention
weights are then used to compute a context vector at as a weighted
sum of encoder hidden states (Eq. 10).

at =
N∑
i=1

α ti hi (10)

We concatenate the lstm state ht and the context vector at and
use the concatenated vector to compute the generation probability
over the vocabulary items o ∈ O (Eq. 11).

Pθ (yt = o |y0:t−1,Li) =
exp(wT

o [st ; at])∑
o′∈O exp(wT

o′[st ; at])
(11)

where wo is the weight vector corresponding to the output word o.

6.4.2 Model Training. We minimize the cross entropy loss and
use Teacher Forcing [58] to train the Seq2Seq model. Teacher forcing,
where current step’s target token is passed as the next input to the
decoder rather than the predicted token, is a common way to train
neural text generation models for faster convergence. The loss for
one input-output pair (Li , Si) can be written as:

L(θ) = −
m∑
t=1

∑
o∈O

1(yt = o) log Pθ (yt = o |y0:t−1,Li) (12)

where 1(yt = o) is an indicator function that returns 1 if yt = o
otherwise 0. Our LSTM layer has 256 cells at each layer, with an
input vocabulary of 36 and an output vocabulary of 62. The statistics
about the word embeddings and the resulting LSTM parameters
are listed in Table 3. The complete training details are given below:
• We initialized all of the lstm’s parameters with the uniform
distribution between -0.1 and 0.1
• We used stochastic gradient descent (sgd) without momen-
tum, with a fixed learning rate of 0.001. We trained our mod-
els for a total of 50 epochs.
• We used minibatches of 4 sequences.

Method Dimension

of embed-

ding

#parameters (total) #pure recurrent connec-

tions (Encoder, Decoder)

QEP2Seq+Word2Vec 128 920,393 837,632 (279,552, 558,080)
QEP2Seq+GloVe 100 993,901 907,264 (279,552, 627,712)
QEP2Seq+BERT 768 1,716,009 1,591,296 (279,552, 1,311,744)
QEP2Seq+ELMo 1024 1,992,745 1,853,440 (279,552, 1,573,888)

Table 3: Statistics about our LSTM layer.

• The dimension of the word embedding in the Encoder is 16,
and at the Decoder is 32 when no pre-trained word vector is
employed (i.e., for random initialization).
• We select our model based on the validation loss.

6.4.3 Natural Language Generation. After the QEP2Seq model
is trained, the most likely description can be inferred (or decoded)
by:

Ŝi = argmax
y1:m

m∏
t=1

Pθ (yt |y0:t−1,Li) (13)

In the above equation, θ denotes the trained QEP2Seq model, and∏m
t=1 Pθ (yt |y0:t−1,Li) is the probability that the model assigns to

sequence y1:m for an input sequence Li . In practice, the argmax

procedure is intractable for large output vocabulary. To overcome
that, we employ a Beam Search algorithm, which maintains a beam
of K partial hypothesis starting with the start symbol <BOS> (as
shown in Figure 5). At each step, the beam is extended by one addi-
tional character and only the top K hypotheses are kept. Decoding
continues until the stop symbol <END> is emitted, at which point
the hypothesis is added to the set of completed hypotheses.

Finally, we replace the special tags (e.g., < I >, < C >, . . .) listed
in Table 1 in the generated natural language using the correspond-
ing identifiers.

Remark. The neural-lantern framework is novel in the follow-
ing ways. First, this is a seminal effort to model the qep to natural
language description as a machine translation task. Second, our
training data generation process is designed to address the psycho-
logical impact of repeated text on learners. Third, we propose a
novel QEP2Seq scheme. As a qep cannot be regarded as an input
sequence, we present a model to interpret qeps into a set of acts,
each of which is viewed as an input for the translation model.

7 EXPERIMENTAL STUDY

lantern is implemented in Python. In this section, we report the
performance results of lantern. All experiments are performed
on a server running Ubuntu 16.04.6 LTS with 2*Intel Xeon CPU
E5-2680 v2 @ 2.80GHz, 256GB RAM, and 2*NVIDIA RTX 2080 Ti
graphical card with 11GB GDDR6.

7.1 Experimental Setup

Datasets. By default, we use PostgreSQL v10.12.2 as the underly-
ing rdbms. Two smes used pool to generate the descriptions of
all physical operators to create the poem store. We use the tpc-h
benchmark [12], sdss [11], and imdb [5] datasets as representa-
tives of application domains. In particular, a recent benchmarking
study [30] reported that existing nl2sql techniques perform poorly
on tpc-h dataset containing complex and diverse sql queries.

10

0 10 20 30 40 50
training epochs

0.2

0.4

0.6

0.8

1.0
lo

ss
 (

cr
os

s
en

tr
op

y)
Validation set loss (diversifying translation)
Validation set loss

(a) Diversification of text

0 10 20 30 40 50
training epochs

0.0

0.2

0.4

0.6

0.8

1.0

lo
ss

 (
cr

os
s

en
tr

op
y)

Validation set loss (QEP2Seq)
Validation set loss (QEP2Seq+Word2Vec)
Training set loss (QEP2Seq)
Training set loss (QEP2Seq+Word2Vec)

(b) Pre-trained word vectors

Figure 6: Paraphrasing and pre-trained word vectors.

We train our QEP2Seq model in neural-lantern using the
workloads in tpc-h and sdss. For instance, given the 22 queries
in tpc-h, we obtain their corresponding qeps. The qeps are then
decomposed into 544 acts. For each of them, we generate a series
of natural language descriptions following the procedure described
in Section 6.2, resulting in 1632 samples. On the other hand, we
generate 608 samples from the 71 predefined workload (http://
skyserver.sdss.org/dr16/en/help/docs/realquery.aspx) in sdss. The
neural network is implemented using Keras 2.2.4 and TensorFlow
1.13.2. We use Word2Vec [13], GloVe [3], ELMo [2], and BERT [1] as
pre-trained word vectors in the Decoder.

Note that sdss is tailored for SQL Server. Hence, we implement
rule-lantern (neural-lantern relies on QEP2Seq and is orthog-
onal to the underlying rdbms) on SQL Server (v15.0) as follows.
First, qeps of SQL Server are in xml format. Hence, we implement
a parser to transform a qep to the corresponding operator tree.
Second, all physical operators of SQL Server are created using pool
and stored in the poem store. In summary, we can extend lantern
to any rdbms easily by writing a parser to create operator trees and
updating the poem store with rdbms-specific physical operators.

Finally, from all the samples, 80% of them are randomly selected
to train the model, while the remaining 20% are selected as the
validation set. Note that the performance of QEP2Seq is affected by
the average number of training samples for each operator. In our
experiments, there are on average 100 samples for each operator.

Method Self-BLEU #Samples per group

Without paraphrasing 1.0 1
paraphrasing with [10] 0.309 2
paraphrasing with [9] 0.603 2
paraphrasing with [8] 0.502 2
paraphrasing with [8–10] 0.482 4

Table 4: Diversity among the training samples.

0 10 20 30 40 50 60 70 80
training epochs

0.2

0.4

0.6

0.8

1.0

va
lid

at
io

n
ac

cu
ra

cy

QEP2Seq
QEP2Seq+GloVe (pre-trained)
QEP2Seq+GloVe (self-trained)
QEP2Seq+Word2Vec (pre-trained)
QEP2Seq+Word2Vec (self-trained)
QEP2Seq+BERT (pre-trained)
QEP2Seq+ELMo (pre-trained)

(a) pre-trained vs. self-trained

0 10 20 30 40 50 60 70 80
training epochs

0.2

0.4

0.6

0.8

1.0

va
lid

at
io

n
ac

cu
ra

cy

QEP2Seq
QEP2Seq+GloVe (weights not shared)
QEP2Seq+GloVe (weights shared)
QEP2Seq+Word2Vec (weights not shared)
QEP2Seq+Word2Vec (weights shared)
QEP2Seq+BERT (weights not shared)
QEP2Seq+BERT (weights shared)
QEP2Seq+ELMo (weights not shared)
QEP2Seq+ELMo (weights shared)

(b) w or w/o learned parameters

Figure 7: Impact of pre-trained vectors.

The trained model is applied to imdb for testing to demonstrate
the portability of lantern across different domains. Specifically,
we generate 1000 sql queries using the approach in [31]. The cor-
responding qeps for these queries are then decomposed into 5232
acts, each of which is viewed as a test sample.

Algorithms.We compare lanternwith neuron [36], a rule-based
approach for generating natural language descriptions of qeps. We
also compare it with the textual and visual tree-based descriptions
of qeps in PostgreSQL/SQL Server.

7.2 Experimental Results

Exp 1: Effect of diversifying text. First, we report the benefits
brought by paraphrasing in neural-lantern. Table 4 reports the
diversity of nl descriptions measured using Self-BLEU [49] (nor-
malized to 0 ∼ 1, a lower value indicates a higher diversity), which
is widely adopted in machine translation tasks to measure diversity
of the generated text in a language. Given the 1152 samples (544
from tpc-h, 608 from sdss) generated by rule-lantern, we apply

11

http://skyserver.sdss.org/dr16/en/help/docs/realquery.aspx
http://skyserver.sdss.org/dr16/en/help/docs/realquery.aspx

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 6 11 16 21

N
o
.
o
f

to
k

en
s

22 workloads in TPC-H

input SQL RULE-LANTERN results NEURAL-LANTERN results

(a) Length of input vs. output.

 0

 2

 4

 6

 8

 10

 12

 14

 16

JSON Visual
 tree

RULE-
LANTERN

NEURAL-
LANTERN

N
o

.
o

f
re

sp
o

n
se

s

Not easy at all(1)
2
3

4
Extremely easy(5)

(b) Question Q1

 0

 5

 10

 15

 20

 25

JSON Visual
 tree

RULE-
LANTERN

NEURAL-
LANTERN

N
o

.
o

f
re

sp
o

n
se

s

Not good at all(1)
2
3

4
Extremely well(5)

(c) Question Q2

30.23%

30.23%

27.91%

11.63%

 JSON
 Visual tree
 RULE-LANTERN
 NEURAL-LANTERN

(d) Question Q3

Figure 8: (a) Length of output; (b)-(d) Responses to Question 1-3.

the paraphrasing tools over each sample. As a result, each original
sample (from rule-lantern) as well as its variations (generated by
paraphrasing) form a group. We compute the diversity of each group
and report the average over all 1152 groups. Notably, #Samples per

group column refers to the number of samples in each group. Recall
that we eliminate invalid or duplicate paraphrasing results. Hence,
a few groups may have fewer samples than the theoretical values
listed in the column. Clearly, paraphrasing is beneficial w.r.t diver-
sity of nl descriptions. Next, we use the diversified samples (i.e.,
paraphrasing with [8–10]) for training and evaluate the validation
loss (i.e., cross entropy loss in Eq 12). Figure 6(a) plots the results.
Observe that paraphrasing reduces the loss significantly.

Exp 2: Length of output.Although paraphrasing enables neural-
lantern to generate descriptions with high diversity and low vali-
dation loss, does it make the descriptions verbose? We now report
lengths of the nl descriptions generated by rule-lantern and
neural-lantern to answer this. Figure 8(a) plots the lengths of
the original sql statements in tpc-h as well as outputs of these
two techniques. We observe that the length of a natural language
description is, in fact, affected by the complexity and the number of
relations in a sql statement, but not by the length of the statement.
Importantly, neural-lantern injects variability without adversely
impacting the length significantly compared to rule-lantern.

Exp 3: Effect of pre-trained word embeddings. Next, we com-
pare the changes to the loss function by employing Word2Vec or

otherwise. Figure 6(b) depicts the results. Observe that the adoption
of pre-trained word vector can speed up training and significantly
reduce the validation loss. We also notice that during training, the
training set loss first decreases and then slowly increases (over
35 epochs). Hence we apply an early stopping strategy to prevent
overfitting. Specifically, we terminate training when the training
set loss fluctuation range is less than a threshold (e.g., 0.001).

Exp 4: Varying the pre-trained word vectors.We conduct a set
of experiments to test the performance of neural-lantern by
varying the pre-trained word vectors. In particular, we compare the
following five approaches:QEP2Seq (with randomly initialized word
embeddings), QEP2Seq+GloVe, QEP2Seq+Word2Vec, QEP2Seq+BERT,
and QEP2Seq+ELMo. Figure 7(a) depicts the results in terms of
sparse_categorical_accuracy [6] averaged over all output sequences.
For each output sequence withm tokens, it can be calculated as
Acc = 1

m
∑m
t=1 1(yt = o). Observe that the training process is

faster and the accuracy on the development set is higher when
pre-trained vectors are adopted. As expected, the performance for
the contextual embeddings (ELMo, BERT) are the best. In addition,
using existing pre-trained word vectors, which are trained on large
corpus such as Wikipedia, show superior results to our self-trained
word vectors (referred to as self-trained in the figure), which are
pre-trained on our rule-lantern output. This is expected as the
dataset size is limited for the latter.

We also compare the impact of sharing and not sharing the
weights between the Encoder and Decoder. The results are shown

12

Method BLEU score (test set)

QEP2Seq 51.46
QEP2Seq+GloVe (pre-trained) 68.15
QEP2Seq+GloVe (self-trained) 57.01
QEP2Seq+Word2Vec (pre-trained) 64.01
QEP2Seq+Word2Vec (self-trained) 54.85
QEP2Seq+BERT (pre-trained) 73.73

QEP2Seq+ELMo (pre-trained) 71.67

Table 5: The performance of QEP2Seq (with beam size 4)

Steps Training

(over tpc-h
and sdss
samples)

Training for
each epoch

SQL gener-
ation (1000
queries in
imdb)

neural-
lantern avg.
response time

rule-
lantern
avg. response
time

Time 825.60 16.51 [18.22] 0.77 0.216 0.015

Table 6: Efficiency (in sec).

in Figure 7(b). Observe that the performances are comparable for
models with pretrained embeddings.

Lastly, in line with existing Seq2Seq models, we adopt a measure
that is widely used in machine translation task, i.e., BLEU [43]. For
each specific approach of neural-lantern, we compute the BLEU
score of its output with respect to the ground-truth and report
the average over all samples. The results are presented in Table 5.
Clearly, QEP2Seq+BERT demonstrates the most similar results with
respect to the ground-truth.

Exp 5: Errors in neural-lantern. Observe that neither ac-
curacy nor BLEU can justify the correctness (i.e., whether the
translation make sense for human understanding) of the output of
neural-lantern. Hence, we employ two smes to manually check
the correctness of the nl descriptions. We uniformly sample 100 test
samples randomly, and test whether the translated descriptions are
correct. We find that 83 are correctly translated; another 13 has one
wrong token; the remaining four contains 6-9 wrong tokens. In the
next section, we shall investigate the impact of these descriptions
on facilitating understanding of qeps among learners.

Exp 6: Efficiency. Table 6 reports the time cost of different com-
ponents. Firstly, the average training time for each epoch is 16.51
(resp. 18.22) sec for QEP2Seq + GloVe (resp. QEP2Seq + ELMo),
which has the least (resp. largest) number of dimensions. Secondly,
the average time taken to generate a nl description is less than a
second.

7.3 User Study

We conducted a user study among cs undergraduate students who
are taking the database course in an institution. 43 unpaid volun-
teers participating in the study. We utilized the gui of neuron [36]
for presenting the input queries and output translations of lantern.
Rest of the features (e.g., question answering module) of neuron
are orthogonal to this work and hence were disabled. We presented
a 10-min scripted tutorial of the gui describing how to use it. We
then allowed the subjects to play with the tool for 15 min.

US 1: Survey. Each of the subjects was given the qeps correspond-
ing to the queries in tpc-h/sdss and their natural language de-
scriptions generated by rule-lantern and neural-lantern. The
subjects were not informed on which description was generated by

which technique. They were also given the corresponding json/xml
and visual tree formats of qeps generated by PostgreSQL/SQL
Server. The queries as well as outputs of different approaches were
given in random order. They were allowed to take their own time
to peruse the plans. After the completion of the task, the subjects
were asked to fill up a survey form, which consists of a series of
questions to understand the impact of various modes of qep on
their understanding of how sql queries are executed. They were
instructed that the outcomes of the survey have no bearing on their
course grades. We now elaborate on the key results from the survey
on tpc-h (results on sdss are qualitatively similar).

Q1: How easy it is to understand the query plan presented using

each approach? Figure 8(b) shows the statistics with respect to the
number of responses for this question. Each subject gave a rating
in the Likert scale of 1-5. Observe that the lantern approach
is the easiest format to understand. In particular, for both rule-
lantern and neural-lantern, 58.1% of ratings are above 3 for
both solutions. In comparison, there are 27.9% and 48.8% ratings
above 3 for json and visual tree, respectively. Note that majority of
the volunteers (41 out of 43) did not raise any issue with the length
of the nl descriptions generated by lantern.

Q2: How well does lantern describe the query plans? Figure 8(c)
reports the results. 86% (resp., 81.4%) of the respondents agree that
the rule-lantern (resp., neural-lantern) does a good job in
describing the query plans to facilitate understanding of query exe-
cution steps. Slightly higher agreement for the former is expected
as hand-written rule-based technique is expected to be more accu-
rate than the neural-based approach. We also observe that there
is no significant impact of different pre-training models employed
in neural-lantern (Figure 9(a)). This is not surprising as given
the constrained nature of the problem (i.e., both input and out-
put), large pretrained models like BERT has little scope to improve
qualitatively.

We also study whether the diverse descriptions generated by
lantern are confusing the volunteers. To this end, we generate 20
pairs of nl descriptions. 10 of these are positive examples where
each pair is associated with the same sql query. That is, in each pair,
the two descriptions are generated by rule-lantern and neural-
lantern for the same qep. The remaining 10 pairs are negative
examples where the two nl descriptions in each pair are from
two different qeps. The 20 pairs are then given to the volunteers in
random order and they were tasked to identify the positive example
pairs. All volunteers correctly identified all the positive pairs.

Q3: Which query plan format do you prefer the most? Figure 8(d)
reports the results. Both solutions of lantern are preferred the
most. In particular, rule-lantern and neural-lantern receive
similar preferences. On the other hand, very few, i.e., 11.63%, par-
ticipants chose the textual format as the most preferred choice.

US 2: Impact of paraphrasing.We now conduct a user study to
test the impact of incorporating paraphrasing in neural-lantern.
The participants answerQ2 again but now they study the outputs of
neural-lanternwith (w) andwithout (w/o) usage of paraphrasing.
The results are shown in Figure 9(b). The user experience of neural-
lantern w/o paraphrasing is worse than with paraphrasing. In
fact, when we eliminate the samples generated by paraphrasing,
the results of neural-lantern contain many error tokens (e.g.,

13

Method

Boredom index

(not boring→ extremely boring)
1 2 3 4 5

rule-lantern 2 7 19 10 5
neural-lantern 6 11 22 3 1

neuron 2 8 16 11 6
lantern 6 12 21 2 2

Table 7: Impact on boredom.

missing filtering conditions) due to limited number of training
samples and overfitting problem.

US3: Impact of habituation andboredom.The diversified trans-
lation of neural-lantern aims to mitigate the potential boredom
suffered by subjects in using rule-lantern. To validate this issue,
we presented a set of output generated by each approach in random
order and asked the subjects to rate the degree of boredom (i.e.,
boredom index) they felt perusing these plans to understand qeps
using the Likert scale of 1-5 (1 refers to no boredom and 5 refers
to the highest degree of boredom). Note that boredom literature
relies heavily on subjective self-report measures [37]. Table 7 re-
ports the results (first two rows). 15 (gave scores above 3) out of
43 volunteers felt that the output of rule-lantern makes them
bored and prone to skipping text due to repeated exposure of the
same descriptions over multiple workloads. In comparison, only 4
volunteers (i.e., 9.3%) felt results of neural-lantern are boring.

In the above settings, the subjects perused the outputs of rule-
lantern and neural-lantern separately in random order. In
this experiment, we randomly mix the results of the two. In par-
ticular, we adopt 50 sql statements generated by [31] over imdb,
each of which contains Hash Join and Aggregate operators. We
use neural-lantern to generate every 4 + f () output, where f ()
is a pseudorandom function with uniform probability to output
{−1, 0, 1}. Others are generated using rule-lantern. As a result,
the volunteers are given 14 nl descriptions from neural-lantern,
mixed with 36 output generated by rule-lantern. They are un-
aware of which output is generated by which technique. They were
asked to mark outputs that make them feel bored to peruse and
those which arouse their interests without compromising on under-
standing the qeps. We observe that not all descriptions are marked
w.r.t boredom. Particularly, 21 (resp. 14) descriptions generated by
rule-lantern (resp. neural-lantern) are marked. Out of them
2 (resp. 8) descriptions of rule-lantern (resp. neural-lantern)
aroused interest. In summary, our proposed neural approach indeed
alleviates the impact of boredom on learners.

US 4: Impact of incorrect token on comprehension. Recall
that the neural-lantern may produce some wrong tokens in the
test samples. Hence, we ask the volunteers to evaluate whether the
existence of wrong tokens affect their understanding of qeps or
mislead their understandings for the corresponding operators. Our
study revealed that only 2 out of 43 think that the incorrect tokens
are problematic for their understanding (gave a rating below 3).

US5:Comparisonwithneuron [36]. Lastly, we compare lantern
with neuron [36]. In order to compare the full features of lantern,
we integrate rule-lantern and neural-lantern into a single
framework for generating nl descriptions. Specifically, we track
(qep, nl description) pairs viewed by each participants. By default,
the nl description of each physical operator is generated using

 5

 10

 15

 20

Q
EP2Seq

Q
EP2Seq+G

loV
e

Q
EP2Seq+W

ord2V
ec

Q
EP2Seq+B

ER
T

Q
EP2Seq+ELM

o

N
o
.
o
f

re
sp

o
n
se

s

Not good at all(1)
2
3

4
Extremely well(5)

(a) Pre-trained models

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

w/ para. w/o para.

N
o
.
o
f

re
sp

o
n
se

s

Not good at all(1)
2
3

4
Extremely well(5)

(b) Impact of paraphrasing.

 5

 10

 15

 20

 25

 30

LANTERN NEURON

N
o
.
o
f

re
sp

o
n
se

s

Not good at all(1)
2
3

4
Extremely well(5)

(c) lantern vs. neuron.

Figure 9: User study (contd.)

rule-lantern. Whenever an operator appeared more than a pre-
defined frequency threshold (i.e., 5) in total in different qeps associ-
ated with a participant, neural-lantern is invoked to generate
the description for the operator.

Firstly, we ask the volunteers how well these two frameworks
describe the query execution steps for tpc-h and sdss workloads.
Figure 9(c) reports the results. sdss on SQLServer is not supported
by neuron as it is tightly integrated with PostgreSQL and does not
expose a declarative framework like pool. The translation rules
for various operators of PostgreSQL are hardcoded in neuron.
Consequently, even if we allow neuron to use lantern’s parser
for SQL Server to extract the operator tree from a given qep, none
of the workloads of sdss is successfully translated as majority
of operators of SQL Server have different names from those in
PostgreSQL. Consequently, 41 out of 43 volunteers gave a score

14

Figure 10: An example of visual tree-based nl presentation format.

lower than 3 for neuron. Secondly, we compare the boredom index
of neuron and lantern for tpc-h on PostgreSQL. As shown in
the last two rows of Table 7, the volunteers found the output of
rule-based neuron more boring than lantern. Thirdly, neuron
(resp. lantern) takes on avg.0.015 sec (resp. 0.172 sec) to generate
a nl description. The avg. length of the descriptions is 188.136 (resp.
188.318) tokens.

US 6: Presentation models. Recall that we use the presentation
layer of neuron [36] in lantern. Specifically, nl descriptions
are presented in document-style text format. In this experiment,
we compare it with a visual tree-based nl presentation format by
integrating the visual tree (Figure 4) with our nl description output.
Specifically, the visual operator tree is shown by default and the
nl description corresponding to each physical operator in the tree
is added as an annotation to the corresponding node. A user can
view the nl description of an operation by simply clicking on the
corresponding node in the tree. An example is depicted in Figure 10.
We ask the volunteers which of these two formats they prefer.
Among the 43 participants, 38 of them selected the document-style
text format. Majority of learners are taking the database course for
the first time. They mentioned that they chose the simple document-
style presentation format as the visual tree-based nl format incurs
a mental overhead of integrating the nl descriptions associated
with nodes and the sequence of steps depicted by the visual tree. In
contrast, a text-based narration simply makes them read the text
like a document (i.e., text book-style learning), which they are more
familiar with.

8 CONCLUSIONS & FUTUREWORK

The quest for high-quality techniques for natural language interac-
tion with rdbms have witnessed a rejuvenation due to tremendous
progress in deep learning and natural language processing. This
paper takes a concrete step towards this grand vision by present-
ing a domain-oblivious framework called lantern that generates
natural language descriptions of qeps to aide learners taking a
database systems course. lantern provides a new paradigm of effi-
ciently specifying nl descriptions of physical operators through a

declarative interface, a rule-based technique that utilizes such spec-
ifications to translate a qep to its nl description, and a psychology-
inspired deep learning-based framework that adds diversity to the
nl description in order to alleviate boredom among learners. We
believe that lantern-generated descriptions of qeps complement
its visual tree-based counterpart prevalent in commercial rdbms.
Our user study indeed demonstrates the effectiveness of lantern
in facilitating comprehension of qeps among learners. As part of fu-
ture work, we wish to explore techniques to facilitate nl interaction
with a query optimizer to comprehend qep selection.

Acknowledgments. Sourav S Bhowmick and Shafiq Joty are supported
by AcRF Tier-1 Grant 2018-T1-001-134. Hui Li is supported by National
Natural Science Foundation of China (No. 61972309). We would like to
thank Dr Patricia Chen from NUS (Dept of Psychology) for her advice on
research related to habituation and boredom. We also thank Zheng Li from
Xidian University for contributing to the implementation of lantern on
SQL Server.

REFERENCES

[1] BERT. https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_
H-768_A-12.zip.

[2] ELMo.https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/.
[3] GloVe. https://nlp.stanford.edu/projects/glove/.
[4] Habituation. Wikipedia. https://en.wikipedia.org/wiki/Habituation.
[5] The IMDb database. https://relational.fit.cvut.cz/dataset/IMDb.
[6] TensorFlow. https://www.tensorflow.org/api_docs/python/tf/keras/metrics/

SparseCategoricalAccuracy.
[7] Narration. Wikipedia. https://en.wikipedia.org/wiki/Narration.
[8] Paraphrasing tool. https://paraphrasing-tool.com/.
[9] Prepostseo paraphrasing tool. https://www.prepostseo.com/paraphrasing-tool.
[10] Quillbot paraphraser. https://quillbot.com/.
[11] SDSS dataset. https://www.skyserver.org/myskyserver/.
[12] TPC-H benchmark. http://www.tpc.org.
[13] Word2Vec. https://code.google.com/archive/p/word2vec/.
[14] K. Andrej, F. F. Li. Deep Visual-Semantic Alignments for Generating Image

Descriptions. IEEE Trans. Pattern Anal. Mach. Intell., 39(4): 664-676, 2017.
[15] K. Affolter, K. Stockinger, A. Bernstein. A Comparative Survey of Recent Natural

Language Interfaces for Databases. The VLDB Journal, 28(5): 793-819, 2019.
[16] C. Baik, H. V. Jagadish, Y. Li. Bridging the Semantic Gap with SQL Query Logs in

Natural Language Interfaces to Databases. In ICDE, 2019.
[17] C. Baik, Z. Jin, M. J. Cafarella, H. V. Jagadish. Duoquest: A Dual-Specification

System for Expressive SQL Queries. In SIGMOD, 2020.
[18] F. Basik, et al. DBPal: A Learned NL-Interface for Databases. In SIGMOD, 2018.
[19] D. Bahdanau, K. Cho, Y. Bengio. Neural machine translation by jointly learning

to align and translate. In ICLR, 2015.

15

https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip
https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip
https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/
https://nlp.stanford.edu/projects/glove/
https://en.wikipedia.org/wiki/Habituation
https://relational.fit.cvut.cz/dataset/IMDb
https://www.tensorflow.org/api_docs/python/tf/keras/metrics/SparseCategoricalAccuracy
https://www.tensorflow.org/api_docs/python/tf/keras/metrics/SparseCategoricalAccuracy
https://en.wikipedia.org/wiki/Narration
https://paraphrasing-tool.com/
https://www.prepostseo.com/paraphrasing-tool
https://quillbot.com/
https://www.skyserver.org/myskyserver/
http://www.tpc.org
https://code.google.com/archive/p/word2vec/

[20] J. T. Cacioppo and R. E. Petty. Effects of Message Repetition and Position on
Cognitive Response, Recall, and Persuasion. Journal of Personality and Social

Psychology ,37, 1: 97-109, 1979.
[21] S. Chatman. Story and Discourse: Narrative Structure in Fiction and Film. Cornell

paperbacks, Cornell University Press, 1980.
[22] S. Chaudhuri. An Overview of Query Optimization in Relational Systems. In

PODS, 1998.
[23] J. Devlin, M. Chang, K. Lee, K. Toutanova. Bert: Pre-training of deep bidirectional

transformers for language understanding. ArXiv e-prints, 2018.
[24] J. Gehring, M. Auli, D. Grangier, D. Yarats, Y. N. Dauphin. Convolutional Sequence

to Sequence Learning. In ICML, 2017.
[25] A. Graves, A. Mohamed, G. Hinton. Speech recognition with deep recurrent

neural networks. In ICASSP, 2013.
[26] A. A. Harrison and R. Crandall. Heterogeneity-homogeneity of Exposure Se-

quence and the Attitudinal Effect of Exposure. Journal of Personality and Social

Psychology, 21, 2: 234-238, 1972.
[27] M. R. Hastall and S. Knobloch-Westerwick. Severity, Efficacy, and Evidence Type

as Determinants of Health Message Exposure. Health Communication, 28, 4:
378-388, 2013.

[28] G. Hervet, K. Guerard, S. Tremblay, M. Saber Chtourou. Is Banner Blindness
Genuine? Eye Tracking Internet Text Advertising. Applied Cognitive Psychology,
25, 5: 708-716, 2011.

[29] A. B. Hill, R. E. Perkins. Towards a Model of Boredom. British Journal of Psychol-

ogy, 76, 1985.
[30] H. Kim, B.-H. So, W.-S. Han. H. Lee. Natural Language to SQL: Where Are We

Today? PVLDB, 13(10), 2020.
[31] A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, A. Kemper. Learned Cardinalities:

Estimating Correlated Joins with Deep Learning. In CIDR, 2019.
[32] A. Kokkalis, P. Vagenas, A. Zervakis, A. Simitsis, G. Koutrika, Y. E. Ioannidis.

Logos: A System for Translating Queries into Narratives. In SIGMOD, 2012.
[33] F. Li, H. V. Jagadish. NaLIR: An Interactive Natural Language Interface for Query-

ing Relational Databases. In SIGMOD, 2014.
[34] F. Li, H. V. Jagadish. Constructing an Interactive Natural Language Interface for

Relational Databases. PVLDB, 8(1), 2014.
[35] Y. Li, I. Chaudhuri, H. Yang, S. P. Singh, H. V. Jagadish. DaNaLIX: a domain-

adaptive natural language interface for querying XML. In SIGMOD, 2007.
[36] S. Liu, et al. NEURON: Query Optimization Meets Natural Language Processing

For Augmenting Database Education. In SIGMOD, 2019.
[37] K. B. Mercer-Lynn ,D. B. Flora, S. A. Fahlman, J. D. Eastwood. The Measurement

of Boredom: Differences between Existing self-report Scales. Assessment, 2011.
[38] T. Mikolov, K. Chen, G. Corrado, J. Dean. Efficient estimation of word represen-

tations in vector space. ArXiv e-prints, 2013.
[39] W. L. Mikulas., S. J. Vodanovich. The Essence of Boredom. The Psychological

Record, 43, 1993.
[40] M. Luong, H. Pham, C. Manning. Effective approaches to attention-based neural

machine translation. ArXiv e-prints, 2015.
[41] J. F. O’Hanlon. Boredom: Practical Consequences and a Theory. Acta Psychologica,

49, 53-82, 1981.
[42] F. El Outa, M. Francia, P. Marcel, V. Peralta, P. Vassiliadis. Towards a Conceptual

Model for Data Narratives. In ER, 2020.
[43] K. Papineni, S. Roukos, T.Ward,W. Zhu. BLEU: a method for automatic evaluation

of machine translation. In ACL, 2002.
[44] J. Pennington, R. Socher, C. Manning. Glove: Global vectors for word representa-

tion. In EMNLP, 2014.
[45] M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, L. Zettlemoyer.

2018. Deep contextualized word representations. In NAACL, 2018.
[46] D. Saha, A. Floratou, et al. ATHENA: An Ontology-Driven System for Natural

Language Querying over Relational Data Stores. PVLDB, 9(12), 2016.
[47] D. W. Schumann, R. E. Petty,D. S. Clemons. Predicting the Effectiveness of Dif-

ferent Strategies of Advertising Variation: A Test of the Repetition-Variation
Hypotheses. Journal of Consumer Research, 17, 2: 192, 1990.

[48] A. See, P. J. Liu, C. D. Manning. Get to the point: Summarization with pointer-
generator networks. In ACL, 2017.

[49] R. Shu, H. Nakayama, K. Cho. Generating Diverse Translations with Sentence
Codes. In ACL, 2019.

[50] I. Sutskever, O. Vinyals, Q. V Le. Sequence to Sequence Learning with Neural
Networks. In NeurIPS, 2014.

[51] USESCO Insititute of Lifelong Learning. UNESCO Global Network of Learning
Cities. Accessible at https://uil.unesco.org/lifelong-learning/learning-cities, 2019.

[52] P. Utama, N. Weir, F. Basik, C. Binnig, U. Cetintemel, B. Hattasch, A. Ilkhechi, S.
Ramaswamy, and A. Usta. An End-to-end Neural Natural Language Interface for
Databases. ArXiv e-prints, Apr. 2018.

[53] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N Gomez, ÅĄ. Kaiser,
I. Polosukhin. Attention is all you need. In NeurIPS, 2017.

[54] O. Vinyals, Q. Le. A neural conversational model. CoRR, abs/1506.05869, 2015.
[55] O. Vinyals, A. Toshev, S. Bengio, D. Erhan. Show and tell: A neural image caption

generator. In CVPR, 2015.

[56] J. D. Watt , S. J. Vodanovich. Boredom Proneness and Psychosocial Development.
The Journal of Psychology, 133/3, pp. 303-314, 1999.

[57] Nathaniel Weir, Prasetya Utama. Bootstrapping an End-to-End Natural Language
Interface for Databases. In SIGMOD, 2019.

[58] R. J. Williams and D. Zipser. A learning algorithm for continually running fully
recurrent neural networks. Neural Computation, 1(2):270-280, 1989.

[59] F. Wu, A. Fan, A. Baevski, Y. Dauphin, M. Auli. Pay less attention with lightweight
and dynamic convolutions. In ICLR, 2019.

[60] B. Xu, R. Cai, Z. Zhang, X. Yang, Z. Hao, Z. Li, Z. Liang. NADAQ: Natural Language
Database Querying Based on Deep Learning. IEEE Access, 7: 35012-35017, 2019.

[61] P. Yin, Z. Lu, H. Li, and B. Kao. Neural Enquirer: Learning to Query Tables in
Natural Language. In IJCAI, 2016

[62] T. Yu, R. Zhang, K. Yang, M. Yasunaga, D. Wang, Z. Li, J. Ma, I. Li, Q. Yao, S.
Roman, Z. Zhang, and D. R. Radev. Spider: A Large-scale Human-labeled Dataset
for Complex and Cross-domain Semantic Parsing and Text-to-SQL Task. CoRR,
abs/1809.08887, 2018.

[63] T. Yu, R. Zhang, et al. CoSQL: A Conversational Text-to-SQL Challenge Towards
Cross-Domain Natural Language Interfaces to Databases. In EMNLP/IJCNLP,
2019.

[64] W. Zheng, H. Cheng, L. Zou, J. X. Yu, K. Zhao. Natural Language Ques-
tion/Answering: Let Users Talk With The Knowledge Graph. In CIKM, 2017.

[65] V. Zhong, C. Xiong, and R. Socher. Seq2sql: Generating Structured Queries from
Natural Language using Reinforcement Learning, CoRR abs/1709.00103, 2017.

16

https://uil.unesco.org/lifelong-learning/learning-cities

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 A Declarative Framework
	4.1 Requirements
	4.2 Features of POOL

	5 The Framework of Rule-LANTERN
	5.1 Model For Narration of QEPs
	5.2 Design Issues
	5.3 Language-annotated Operator Tree
	5.4 Composition of Node Labels
	5.5 Algorithm

	6 Neural-LANTERN Framework
	6.1 Habituation and Boredom
	6.2 Training Data Generation
	6.3 Diversifying Translation
	6.4 Translation Model

	7 Experimental Study
	7.1 Experimental Setup
	7.2 Experimental Results
	7.3 User Study

	8 Conclusions & Future Work
	References

