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Abstract

Given a signaling network, the target combination identification prob-
lem aims to predict efficacious and safe target combinations for treatment
of a disease. State-of-the-art in silico methods use Monte Carlo simulated
annealing (MCSA) to modify a candidate solution stochastically, and use the
Metropolis criterion to accept or reject the proposed modifications. However,
such stochastic modifications ignore the impact of the choice of targets and
their activities on the combination’s therapeutic effect and off-target effects
which directly affect the solution quality. In this paper, we present STEROID,
a novel method that addresses this limitation by leveraging two additional
heuristic criteria to minimize off-target effects and achieve synergy for can-
didate modification. Specifically, off-target effects measure the unintended
response of a signaling network to the target combination and is generally
associated with toxicity. Synergy occurs when a pair of targets exerts effects
that are greater than the sum of their individual effects, and is generally a
beneficial strategy for maximizing effect while minimizing toxicity. Our em-
pirical study on the cancer-related MAPK-PI3K network demonstrates the
superiority of STEROID in comparison to MCSA-based approaches. Specif-
ically, STEROID is an order of magnitude faster and yet yields biologically
relevant synergistic target combinations with significantly lower off-target
effects.
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1 Introduction

Despite considerable progress in genome- and proteome-based high-throughput
screening methods and rational drug design, past 30 years have witnessed a steady
decline in the number of new drug targets. Most modern searches for new drugs
adopts the one-target, one-drug paradigm, where the focus is to identify a single
new chemical entity that inhibits one well-defined molecular target. However, most
diseases of interest involve physiological processes controlled in a combinatorial
fashion. Specifically, redundancy and multi-functionality of biological processes
are often implicated in diseases [13] such as cancer. For example, cell proliferation
is used the combined control of multiple growth factor receptor pathways, and
genetic experiments reveal that inhibition of any single receptor is only partially
effective in blocking growth.

One way to address these challenges is through combination therapy by tar-
geting multiple molecules simultaneously in a disease-related signaling network.
Sometimes such strategy yields better benefits compared to a single molecule (mono-
therapy) for complex diseases, for dynamically changing diseases, or for diseases
with a heterogeneous population of pathological mechanisms [11]. Even for dis-
eases that are caused entirely by disruption of a single pathway (lacking in dynam-
ics or heterogeneity), combination therapy might still offer benefits over monother-
apy by virtue of spreading out the side effects to sub-toxic levels, while con-
centrating the desired effects on the target pathway. However, not all combi-
nation therapies produce better effects than monotherapies. For instance, in a
study of combinations of analgesic drugs, some combinations (e.g., aspirin
and pentazocine) were beneficial, while others (e.g., acetaminophen and
pentazocine) were detrimental [28]. Hence, it is important to formulate strate-
gies to develop good drug combinations which maximize the overall therapeutic
effect while minimizing the off-target effects.

The identification of good drug combinations typically involves two key steps,
namely identification of good target combinations and identification of appropri-
ate set of drugs hitting these targets. In this paper, we address the target combi-
nation identification problem, which is complex and non-linear. Informally, this
problem involves finding suitable sets of drug targets and the required target ac-
tivities (type and extent of perturbations) for these targets for a given signaling
network and a therapeutic goal. The complexity of the biological network (numer-
ous potential drug targets and wide range of target activities) makes performing
exhaustive search for sets of targets technically challenging, expensive and time
consuming since the number of testable combinations increases exponentially with
the number of variables associated with the network. Current techniques for tar-
get identification and combination therapy are generally based on empirical clin-
ical experience. Hence, tools that can facilitate early detection of inefficacious
and/or toxic target combinations in silico can serve as a powerful discovery and
prescreening platform when coupled with other complementary technologies such
as high-throughput screening.
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Figure 1: MAPK-PI3K signaling cascade [18].

Informally, the therapeutic effect and the off-target effects are measures of the
intended and the unintended response, respectively, of a biological signaling net-
work1 to the drug combination. Since a signaling network can be modeled using
mass action kinetics where ordinary differential equations (ODE) are used to model
dynamics of the network, each drug effect can be simulated in silico by modi-
fying appropriate signaling network model parameters. The intended response
is the resulting changes to the concentration of the output node, while the unin-
tended response is the resulting changes to the sum of the concentration of the
rest of the nodes in the network. An output node is a molecule that is either in-
volved in some dysregulated biological processes implicated in a disease, or is of
interest due to its potential role in the disease. An example of an output node
in the MAPK-PI3K network (Fig. 1) implicated in cancer is phosphorylated ERK

(ERKPP) [44]. The therapeutic effect of the drug combination, AZD6244 (MEK in-
hibitor) and sorafenib (Raf inhibitor), can be described as reducing [ERKPP],
the node concentration we seek to decrease [12, 48].

1The biological signaling processes are often modeled as hypergraphs (G = V,E) in systems biology, where
the nodes V represent molecules (e.g., proteins) and the edges E represent interactions [25]. For example, Fig. 1
depicts the hypergraph representation of the MAPK-PI3K signaling cascade [18].
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1.1 Related Work and Motivation

Few designs of target combinations are automated. These state-of-the-art in silico
methods are based on sequential decoding (SD) algorithms [5] or Monte Carlo sim-
ulated annealing (MCSA) [21, 47]. Stochastic search algorithms such as MCSA are
expected to perform better than SD for non-linear problems [5]. MCSA modifies
a candidate solution stochastically and the proposed modification is accepted or
rejected using the Metropolis criterion [32]. Although stochastic candidate mod-
ification effectively covers the search space by producing a wide variety of can-
didates, it has two key limitations when used for identifying target combinations.
First, drug targets in real signaling networks influence the therapeutic and off-target
effects differently, due to one or more downstream nodes’ involvement in other
protein-protein interactions [9]. Ignoring this consideration may yield combina-
tions satisfying the user-desired therapeutic effect, but with excessive off-target
effects. Note that in [47] a user needs to specify apriori specific side effects (as
input to the algorithm) in terms of the ratio of concentration of two relevant nodes.
Due to the complexity of biological networks, such strategy is often impractical as
it is highly unlikely for a user to know all system-wide side effects ahead of time.
Second, although the target activity affects the combination effects, it is chosen
randomly in MCSA. A judicious selection process can provide us an opportunity to
improve efficiency of the overall process.

1.2 Overview and Contributions

In this paper, we present a novel and generic approach called STEROID (HeuriSTic-
Based SynErgistic TaRget COmbination IDentifier) to address the aforementioned
limitations. Instead of only modifying the drug target and target activity stochasti-
cally (e.g., [21,47]), STEROID judiciously modifies candidate solutions by leverag-
ing two additional heuristic criteria for minimizing off-target effects and achieving
synergy (detailed in Section 4). Off-target effects measure the unintended response
of a signaling network to the drug combination and are generally associated with
toxicity. Synergy occurs when a pair of targets exerts effects that are greater than
the sum of their individual effects, and is generally a beneficial strategy for max-
imizing effect while minimizing toxicity. For instance, medullary thyroid cancer
cells treated with AZD6244 and sorafenib had better outcome in terms of cell
survival and apoptosis due to drug synergy [26]. STEROID uses heuristics based
on target prioritization methods (e.g., sensitivity analysis [45, 50] and PANI [9])
which prioritize potential targets in a given disease-related network; and Loewe
additivity isobologram analysis (LOEWE) [49] which assesses drug interaction in
a combination. Specifically, target prioritization-based heuristics are used to select
more effective targets to reduce off-target effects. Off-target effects is the main rea-
son why drugs fail, and systems biology offers the hope of improving this trend by
avoiding off-target effects throughout the therapy design process. LOEWE-based
heuristics is used for pruning the target activity search space to reduce computa-
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tional cost and to ensure that targets selected are synergistic. As we shall see in
Section 5, the above candidate modification strategy leads to efficient identifica-
tion of superior target combinations compared to MCSA-based techniques [21,47].
Note that the goal of this work is to identify synergistic combinations of targets
with reduced off-target effects and excludes the evaluation of drug compounds that
bind and regulate the target molecules.

STEROID starts with a preprocessing phase that identifies the individual target
activity necessary to achieve the therapeutic effect which will be used for selecting
appropriate target activity of the combination in the later phase. The ODE model
describing the signaling network is also modified to facilitate simulation of the
target combination effect. In the second phase (simulated annealing), new candi-
date modifications (drug target and target activity) are proposed using heuristics.
The effects of the new candidate are simulated and assessed using the Metropolis
criterion [32] (Section 4.2).

The rest of the paper is organized as follows. In Sections 2 and 3, we formally
introduce the terminologies and problem definition, respectively. We present the
Algorithm STEROID in Section 4. Empirical analysis of our approach is discussed
in Section 5. The last section concludes the paper.

2 Background

In this section, we briefly introduce target prioritization and Loewe additivity isobolo-
gram analysis which we shall be exploiting in the sequel. We begin by briefly de-
scribing the heregulin (HRG)-induced MAPK-PI3K signaling network impli-
cated in ovarian cancer [18] (Fig. 1), which we use as a running example because
its nodes are well-studied for the roles they play when targeted with relevant drugs.
Details of this ordinary differential equation (ODE) model (BIOMD0000000146)
are found in Biomodels.net [27]. We selected ERKPP as the output node due to its
role in ovarian cancer [44]. The desired therapeutic effect was set to 50% ERKPP

down-regulation but in practice would depend on the stage of the disease. Note that
in practice, the therapeutic effect is dependent on the stage of the disease and is
typically measured as inhibition of certain phenotypic response (e.g., cell growth)
which may not be linearly correlated with the inhibition of the output node concen-
tration. In the sequel, we assume an ordinary differential equation (ODE) model of
the signaling network is available.

2.1 MAPK-PI3K Network

The coupled MAPK-PI3K network (Fig. 1) is involved in up to 30% of human can-
cers [30] due to its roles in cell survival signaling. Here, we briefly describe the
MAPK-PI3K network as depicted in Fig. 1. This model describes the heregulin
(HRG)-induced ErbB receptor signaling network in Chinese hamster ovary cells.
Extracellular signals such as HRG can result in dimerization of receptor tyrosine
kinases on the cell surface. This causes the intracellular portions of the receptors
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to be phosphorylated, which then binds to an adaptor protein known as growth
factor receptor-bound protein 2 (Grb2). This complex binds son
of sevenless (SOS), thereby activating SOS which facilitates exchange of
membrane-bound Ras-GDP to Ras-GTP [43]. The activated Ras-GTP in turn
binds Raf leading to activation and phosphorylation of Raf (p-Raf) [1]. p-Raf
then phosphorylates and activates MEK which in turn phosphorylates ERK. Phos-
phorylated ERK is translocated from the cytoplasm to the nucleus where it activates
various transcription factors (e.g., c-Myc) [29]. Parallel to this cascade is the
PI3K-Akt pathway, which is activated when HRG-stimulated receptor (RP) binds
to and activates PI3K. The activated PI3K phosphorylates phosphoinositol
lipids which recruit and activate Akt. The MAPK and PI3K-AKT cascades inter-
acts at the level of Raf and PP2A [19].

2.2 Target Prioritization

Target prioritization methods assign prioritization rank to individual target nodes
based on certain criteria (e.g., the sensitivity of the output node to each target node
[45]). Several target prioritization approaches such as local sensitivity analysis
(LSA) [45], multi-parametric sensitivity analysis (MPSA) [50] and PANI [9] have
been recently proposed.

Sensitivity analysis assigns node rank according to the sensitivity value which
is the extent of the output node perturbation divided by the extent of parameter
(e.g., kinetic rate constant) perturbation. LSA measures sensitivity by varying a
single parameter at a time [45], and global sensitivity approaches, such as MPSA,
measure sensitivity by varying multiple parameters simultaneously [50].

PANI [9], in contrast, uses network information and simple empirical scores
to prioritize and rank biologically relevant target molecules in signaling networks.
First, it prunes the nodes based on a reachability rule to eliminate nodes that are
likely to be non-regulators. Then, it ranks the resulting nodes based on the putative
target score of each node, which is a weighted rank aggregation of a dynamic
property (profile shape similarity distance (PSSD)) and two structural properties
(target downstream effect (TDE) and bridging centrality (BC)) of the node. PSSD

identifies the most relevant upstream regulators of the output node; TDE assesses
the potential impact on the network when a node is perturbed; and BC identifies
nodes that bridge modular subregions in a network [20]. PANI-prioritized nodes in
the MAPK-PI3K network (e.g., AktPIP) are found to correlate well with known
ovarian cancer drug targets [9]. Hence, we reason that they are likely to form safer
and more efficacious combinations.

Remark. The goal of the aforementioned target prioritization techniques is to
rank individual target nodes and hence different from our goal to identify synergis-
tic combinations of targets with reduced off-target effects.
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Figure 2: Isobologram. D1 and D2 are the dose of each drug that achieves the desired therapeutic
effect if administered alone. d1 and d2 together can achieve the same effect.

2.3 Loewe Additivity Theory (LOEWE)

The Loewe additivity theory assumes that drugs act without self-interaction and
determines drug interaction in a combination using the combination index [13].
Given a set of drugs X and therapeutic effect T , let Dx and dx be the doses of
drug x ∈ X required to achieve effect T when used alone and in combination,
respectively. Then, the combination index is defined as CI =

∑
x∈X

dx
Dx

. The
combination is synergistic, additive or antagonistic if CI < 1, CI = 1 or CI > 1,
respectively. The isobologram (Fig. 2) provides a visual interpretation of LOEWE.
It is a graph with the individual drug doses (D1 and D2) as its axes. The “line
of additivity” is used to interpret the drug interaction: synergistic and antagonistic
combinations are represented by drug doses that fall below and above the line of
additivity, respectively [49]. We adapt this theory by replacing drugs and drug
dose with drug targets and target activity, respectively for selecting synergistic
target activity in Section 4.1.

3 Target Combination Identification Problem

In this section, we formally define the problem of target combination identification.
We begin by introducing several concepts related to drug target. Henceforth, we
shall use the notations given in Table 1.

3.1 Drug Target and Target Activity

A drug asserts its effect on a network through the target, while the target activity is
a variable related to the extent of target perturbation. The perturbation is typically
a network parameter (e.g., kinetic rate constant) that controls the concentration
of the node associated with the target. The drug effect is typically modeled in
silico as modulation of the node concentration. The modulation is achieved by
modifying either the node’s edges (typically represented as ODE reactions) [47] or
the node itself (initial concentration) depending on whether the node concentration
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Symbol Description
Γc Target activity of target c.
ζu Reactant-product edge set of node u.
ξu Concentration-time series profile of node u.
αu Area under the concentration-time series profile curve of node u.
ΨX Ranked list {ψX:u1 , ψX:u2 , · · · , ψX:ui} based on score X where

ψX:ui is the rank of node ui.
tc Therapeutic effect of target c.
ρc Off-target effects of target c.
λ+ Selective pressure in the range [1–2].
δc Selection probability of target c.
θ Adjustment factor for relaxing conditions.
τ Temperature parameter of simulated annealing.

Table 1: Notations.

varies with time. We now formally define these two concepts. We first introduce
the notion of reactant-product edge set to facilitate exposition. Given a signaling
network G = (V,E) and a node u ∈ V , the reactant-product edge set of u is
defined as ζu = Ru

∪
Pu where Ru ⊂ E and Pu ⊂ E are the edge sets involving

u as reactants and products, respectively.

Definition 1 Given a signaling network G = (V,E), and node u ∈ V with con-
centration time-series profile ξu and reactant-product edge set ζu, the drug target
of a node u is cfix = u if ξu is constant, and it is cvar ∈ ζu otherwise.

Definition 2 Given a drug target c perturbed by drugD with dissociation constant
KD, the target activity of c is defined as Γc =

[D]
KD

where [D] is the concentration
of D.

The ODE modification varies according to the drug type (e.g., activators or in-
hibitors) and the mechanism of action. We modeled activation using nonessential
activation [7], and inhibition using competitive inhibition [47]. These reaction
modifications make sense only when applied to uni-directional irreversible reac-
tions. Note that reversible reactions can be transformed into equivalent pairs of
irreversible reactions using [40].

Formally, let I be an inhibitor, A be an activator, and cfix = u and cvar = r
be two targets where u is a node with constant concentration time-series profile
and r is a reaction in the reactant-product edge set and a node v with variable
concentration time-series profile. Let r = Vmax[S]

Km+[S] where Vmax is the maximum
velocity; Km is the Michaelis-Menten constant; and [S] is the concentration of
the substrate S. Then, the competitive inhibition of cfix and cvar are given by the
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following equations:

I(cfix) =
[u]0
[I]
KI

(1)

I(cvar) =
Vmax[S]

Km(1 + [I]
KI

) + [S]
(2)

In the above equations, [u]0 is the initial concentration of u and KI is the disso-
ciation constant of I . Similarly, let KA be the dissociation constant of A. The
nonessential activation of cfix and cvar are defined as follows.

A(cfix) =
[A]

KA
[u]0 (3)

A(cvar) =
Vmax[S](1 +

[A]
KA

)

Km + [S]
(4)

3.2 Target Effects

Next, we formally define the notions of therapeutic effect and off-target effects.
Given a signaling network G = (V,E), a drug target c and the desired therapeutic
effect t, let u ∈ V be the node associated with effect t. Let αu and α′

u be the area
under the concentration-time series profile curve of node u before and after c is
perturbed, respectively. Then, the therapeutic effect tc and off-target effects ρc of c
are given by the following equations.

tc =
|αu − α′

u|
αu

(5)

ρc =
∑

v∈V \u

(
|αv − α′

v|
αv

) (6)

Note that tc and ρc can be determined from in silico simulation using Copasi [40].
The combination effects are defined similarly and α can be estimated using the
linear trapezoidal rule method [6].

3.3 Problem Definition

Intuitively, the goal of the target combination identification problem is to identify
targets and their activities that achieve a user-specified therapeutic effect (e.g., to
achieve 50% inhibition of ERKPP) while minimizing the off-target effects. Hence,
the problem can be modeled as the optimization of a constraint satisfaction prob-
lem (CSP) which is NP-hard [15]. The CSP is represented as a triple (X ,D,C),
where X , D and C represent the set of variables, the variables’ domain and the set
of constraints, respectively. The element X represents the set of drug targets and
target activities; D represents the set of candidate targets in a given disease-related
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network and the target activity range; and C represents the condition that the com-
bination therapeutic effect must match the desired therapeutic effect. The objective
of the target combination identification problem is to minimize the combination
off-target effects.

Definition 3 Given a set of target combination C = {C1, · · · , CN} and a desired
therapeutic effect t, let Ci = {c1, · · · , cm} where cj ∈ Ci is the jth target in the
ith combination. Let ρCi and tCi be the off-target effects and therapeutic effect of
combinationCi, respectively. Then, the target combination identification problem
is defined as

Ci = min{ρCi |tCi = t}

4 Identifying Target Combination

In this section, we describe the heuristic algorithm STEROID for identifying target
combinations. We begin by presenting the target prioritization and LOEWE-based
heuristics which we shall exploit for modifying candidate solutions.

4.1 Heuristics

Target prioritization-based heuristics. The goal of using the target prioritization
heuristic for target selection is to improve the average solution quality by choos-
ing more effective targets with higher probability, thereby minimizing off-target
effects. To achieve this, we first translate the node prioritization rank (Recall from
Section 2.2) to an equivalent target rank, then convert the rank to a selection proba-
bility value which is used to decide if the target will be accepted. We now introduce
these two concepts.

Given a signaling networkG = (V,E) and a target prioritization method P , let
ΨP :u be the rank of node u ∈ V based on P and ζv ⊂ E be the reactant-product
edge set of node v ∈ V . Let cfix, cvar ∈ C where C is the set of targets in G.
Then, the target ranks of cfix and cvar are denoted as Ψcfix = ΨP :u and Ψcvar =∑

w∈W ΨP :w, respectively, where W = X
∪
Y , X,Y ⊂ V , and cvar = (X,Y ).

The selection probability (δ) of a target is the likelihood of selecting the target.
We use the rank-based fitness function in [3] to obtain a target’s selection probabil-
ity. The fitness function is based on the individual target ranks and avoids scaling
problems associated with using actual objective values. The expected sampling
rate of the individual target is controlled by a parameter called selective pressure
λ+ [46].

Observe that the aforementioned heuristic is independent of any specific target
prioritization method. However, as we shall see in Section 5, PANI-based target
combination identification typically generates superior quality results compared to
MCSA-based techniques as the former exploits structural and dynamics properties
of the signaling network [9] to improve prioritization of targets.
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LOEWE-based heuristic. The effects (Section 3.2) resulting from a drug combi-
nation can be interpreted as drugs at particular dosages hitting their targets resulting
in certain target activities causing a particular response of the network. Hence, an
interaction of multiple targets in a combination can be assessed the same way as
drug interactions (Section 2.3) by replacing the drug doses with target activities. A
target combination is guaranteed to be synergistic if the target activities are chosen
from values below the line of additivity. Following from Section 2.3, we define the
target interaction as follows.

Definition 4 Given a therapeutic effect t and a target combinationC = {c1, · · · , cm},
let Γ0(ci) and Γ(ci) be the target activities of the ith target in C that achieve t when
targeted alone and in combination, respectively. Then, the target combination
index of C is defined as

TCIC =
∑
ci∈C

Γ(ci)

Γ0(ci)

The combination is synergistic, additive or antagonistic if TCIC < 1, TCIC = 1
or TCIC > 1, respectively. The synergistic ranges of cj and cm are denoted as
[0–Γ0(cj)) and [0–Γ(cm)), respectively, where 1 ≤ j < m, Γ(cj) ∈[0–Γ0(cj)) and
TCIC < 1.

Graphically, the synergistic ranges of a 2-target combination can be visualized
in Fig. 2 (leftmost isobologram) as “synergistic range1” and “synergistic range2”.

4.2 The Algorithm STEROID

Systematic algorithms (e.g., backtracking) that rely on partial instantiation of the
candidate solutions to eliminate candidates that violate the constraints have been
proposed for solving CSP [4]. In the target combination identification problem,
full instantiation of the candidate solution is needed to find the combination ef-
fects. Hence, these systematic algorithms cannot be applied effectively. Meta-
heuristics (e.g., SA) are used instead to find approximate solutions as they can
achieve good performance performance results for large combinatorial optimiza-
tion problems [34]. MCSA (a variant of SA) has been proposed for finding drug
target combinations [21, 47], but suffer from certain limitations as highlighted in
Section 1. In this section, we present a novel algorithm called STEROID (outlined
in Algorithm 1) that addresses these limitations by leveraging on target prioritiza-
tion and LOEWE-based heuristics for modifying drug target and target activity of
candidate solutions.

In this section, we present STEROID (outlined in Algorithm 1) that leverages
on the heuristics in Section 4.1 for modifying the candidate solutions. The inputs
G and Ψ to the algorithm are used to modify the drug targets and target activi-
ties. Input G is also used to simulate the target combination effects. Note that
the user can specify his preferred target prioritization method for finding Ψ. The
input t is used to assess the combination effects while input S specifies the size
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of the combination target. Several other parameters (λ+, θt, θa, N , τ0 and imax)
that are required by STEROID are set to default values which can be modified if
required (Line 2). The parameter λ+ is used to compute the selection probability
of the target. In practice, it is difficult to achieve the therapeutic effect exactly and
additive target combinations are generally close to the line of additivity, but sel-
dom “sit” exactly on it. Hence, we specify adjustment factor parameters θt and θa
to relax the condition for therapeutic effect and additive combination into bound
conditions, respectively (e.g., 49.5% to 50.5% inhibition of ERKPP and additive if
0.95 ≤ TCI ≤ 1.05). Finally, the parameters N , τ0 and imax are used to configure
the SA and they control when the SA terminates: when N solutions are found or
when τ0 × imax iterations are completed.

STEROID consists of two phases, namely, the preprocessing phase and the sim-
ulated annealing with heuristics phase.

4.3 Phase 1: Preprocessing

In this phase (Line 4), the reversible reactions in G are converted into pairs of ir-
reversible reactions using [40]. The reactions are then modified (according to Sec-
tion 3.1) to simulate the effects of the targets when modulated by non-competitive
inhibitors or essential activators. The set of drug targets C is obtained using Defini-
tion 1. The individual target activities Γ0 required to achieve the desired therapeutic
effect (50% down-regulation of ERKPP, θt=5%) are found using MCSA configured
with the parameters τ0 and imax. Details of the individual target activity (Γ0) are
found in Table 2. Targets not listed in Table 2 cannot achieve the desired therapeu-
tic effect alone and are deemed to have Γ0 =∞.

For instance, PIP3+Akt=AktPIP3 is converted into a pair of irreversible re-
actions using MODIFYREACTION. This pair of reactions (AktPIP3→PIP3+Akt

and PIP3+Akt→AktPIP3) are then modified into
k[AktPIP3](1+ [A]

KA
)

1+
[I]
KI

and

k[PIP3][Akt](1+ [A]
KA

)

1+
[I]
KI

, respectively, where k is the affinity constant; A and I are the

activator and inhibitor with dissociation constants KA and KI , respectively. These
reactions are targets (cvariable) associated with AktPIP3, Akt and PIP3 and their
individual target activities are∞ since they are not found in Table 2.

4.4 Phase 2: Simulated Annealing with Heuristics (SAH)

The SAH consists of three subphases which are repeated until either the temper-
ature τ reaches zero or the required number of solutions N is found (Line 5).
The subphases consist of target combination generation (the GETCOMBI proce-
dure, Line 7); combination effects calculation (the GETEFFECT procedure, Line 8);
and the test for candidate acceptance (the ACCEPTCOMBI procedure, Line 9).

In the GETCOMBI procedure (Algorithm 2), the candidate combination X con-
sisting of target pairs is generated. Lines 4 to 6 implement the target prioritization-
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Target Modification Γ0 Target Modification Γ0

Reaction 1f inhibition 42.975 Reaction 11 inhibition 180.193
Reaction 1b activation 5187.249 Reaction 12 activation 0.273
Reaction 2f inhibition 125.529 Reaction 13 inhibition 7.772
Reaction 2b activation 29.69 Reaction 14 activation 1.012
Reaction 3f inhibition 33.62 Reaction 15 inhibition 4.149
Reaction 3b activation 5857.89 Reaction 16 activation 217.788
Reaction 4 activation 47.246 Reaction 17 inhibition 2.092
Reaction 5f inhibition 2.081 Reaction 18 activation 1.376
Reaction 5b activation 10.622 Reaction 19 inhibition 1.746
Reaction 6f inhibition 8.957 Reaction 20 activation 13.033
Reaction 6b activation 16.933 Reaction 21 inhibition 2.367
Reaction 7f inhibition 8.144 Reaction 22 activation 2.344
Reaction 7b activation 8.295 Reaction 34f activation 3750.449
Reaction 8f inhibition 2.231 MKP3 activation 2.755
Reaction 8b activation 2.243 E activation 2.294
Reaction 9f activation 0.381 PP2A activation 2.315

Table 2: Details of the individual drug target achieving the desired therapeutic
effect. f and b indicate forward and backward reactions, respectively.

and Line 8 LOEWE-based heuristics. The first target A is randomly selected using
SELECTRANDOMTARGET (Line 5, Algorithm 2) and accepted in ACCEPTTAR-
GET (Line 6) if the probability of selectingA (selection probability) is greater than
a random number in the range [0–1] (δA >RAND(0,1)). Its activity is then selected
within the synergistic range (Definition 4) using SELECTACTIVITY (Line 8). Sim-
ilar steps are repeated to find subsequent targets and their activities.

Next, the GETEFFECT procedure (Algorithm 3) obtains the therapeutic and
off-target effects by first simulating the candidate solution using Copasi (Line 1,
Algorithm 3) and then calculating the therapeutic effect (Line 2, Algorithm 3) using
Equation 6 and the off-target effects (Line 3, Algorithm 3) using Equation 6. These
effects are used to assess the candidate in ACCEPTCOMBI (Algorithm 4) using
the Metropolis criterion. A candidate is accepted under two conditions: (1) if
it is synergistic, it achieves the required therapeutic effect and it has lower off-
target effects lower than the current solution (curr) (Line 2, Algorithm 4); or (2)
if it achieves the required therapeutic effect and e−

ρX−ρcurr
τ ≥RAND(0,1) (Line 4,

Algorithm 4). The UPDATESOLUTION procedure updates the solution set and the
current solution with X if the candidate is accepted (Lines 3 and 5, Algorithm 4).

For instance, consider a two-target combination. Suppose backward reaction
29 (AktPIP3→PIP3+Akt) denoted as r29b is randomly selected as the first tar-
get, it will be accepted if its selection probability δr

29b
>RAND(0,1). The activity of

r29b is selected from within the range [0–Γ0(r
29b

)), where Γ0(r
29b

) is the activity of
r29b alone that is required to achieve 50% down-regulation of ERKPP with θt=5%.
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Algorithm 1: Algorithm STEROID

Input: Signaling network G, prioritization rank set Ψ, therapeutic effect t,
combination size S.

Output: Solution setR.
1 R ←INITIALIZE(R)
2 (λ+,θt,θa,N ,τ0,imax)←SETTODEFAULTS(λ+,θt,θa,N ,τ0,imax)
3 τ ← τ0
4 (G,C,Γ0)←PREPROCESSINPUT(G,t,θt,τ0,imax) /*Phase 1*/
5 while τ ≥ 0 and |R| ≤ N do
6 foreach iteration i=1 to imax do
7 X ←GETCOMBI(C,λ+,Ψ,θa,Γ0,R,S) /*Phase 2.1*/
8 (tX ,ρX )←GETEFFECT(G,t,X ) /*Phase 2.2*/
9 R←ACCEPTCOMBI(tX ,ρX ,t,θa,θt,τ ,R) /*Phase 2.3*/

10 Decrement τ

Algorithm 2: The GETCOMBI Procedure (Phase 2.1)
Input: Target candidate set C, selective pressure λ+, prioritization rank set Ψ,

adjustment factor for target interaction θa, individual target activity set Γ0,
solution setR, combination size S.

Output: Combination candidate X = {(x1,Γ1), · · · , (xS ,ΓS)}.
1 X ←INITIALIZE(X )
2 Y ←INITIALIZE(Y)
3 foreach combination candidate component (xi,Γi)=(x1,Γ1) to (xS ,ΓS) do
4 while ISNULL(xi) is TRUE do
5 A ←SELECTRANDOMTARGET(C/Y ,R)
6 xi ←ACCEPTTARGET(A,C/Y ,Ψ,λ+)

7 Y ← Y
∪
xi

8 Γi ←SELECTACTIVITY(xi,Y ,Γ0,θa,R)

The second target (e.g., r13 (Raf→Raf⋆)) is randomly selected from the set of
candidates excluding r29b (C/r29b) and will be accepted if δr13 >RAND(0,1). The

activity of r13 is selected from the range [0–Γr13) where
Γ(r

29b
)

Γ0(r
29b

)
+

Γ(r13)

Γ0(r13)
< 1−θa

and Γ(r
29b

) ∈[0–Γ0(r
29b

)). The therapeutic and off-target effects of the combina-

tion c =((r29b , Γ(r
29b

)), (r13, Γ(r13))) are computed as tc = |αERKPP−α′
ERKPP |

αERKPP
and

ρc =
∑

v∈VMAPK\ERKPP(
|αv−α′

v |
αv

), respectively. Finally, the Metropolis criterion is
used to assess if the combination will be added into the solution set.

Theorem 1 STEROID has time complexity O(τ0 · imax · |E| · |ξ|) where τ0 is the
initial temperature; imax is the limit on iterations per cycle; |E| is the number of
irreversible reactions; and |ξ| is the number of time points in the concentration
time-series profiles used to estimate the target effects.

Proof 1 In the PREPROCESSINPUT procedure (Line 4, Algorithm 1), given a net-
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Algorithm 3: The GETEFFECT Procedure (Phase 2.2)
Input: Signaling network G, therapeutic effect t, candidate combination X .
Output: Combination therapeutic effect tX , combination off-target effects ρX .

1 (α, α′)←SIMULATECOMBINATION(G,X )
2 tX ←GETTHERAPEUTICEFFECT(α,α′,t)
3 ρX ←GETOFFTARGETEFFECTS(α,α′,t)

Algorithm 4: The ACCEPTCANDIDATE Procedure (Phase 2.3)
Input: Combination therapeutic effect tX , combination off-target effects ρX ,

therapeutic effect t, adjustment factor for target interaction θa, adjustment
factor for therapeutic effect θt, temperature τ , solution setR.

Output: Solution setR.
1 M←GETCURRENTSOLUTION(R)
2 if ρX ≤ ρM and

∑
x∈X

ΓR
ΓR0

< 1− θa and |tX−t|
t ≤ θt then

3 R←UPDATESOLUTION(R,X )

4 else if |tX−t|
t ≤ θt and RAND(0,1)≤ e−

ρX−ρM
τ then

5 R←UPDATESOLUTION(R,X )

work model G = (V,E), the process of converting the reversible reactions to
irreversible pairs of reactions; of modifying the reactions to stimulate the effects
of a non-competitive inhibitor or an essential activator; and of obtaining the set of
drug targets all require O(|E|) time. We use the MCSA to find the individual tar-
get activity in PREPROCESSINPUT. Each MCSA iteration consists of the following
steps: generating random candidate solution (O(1)); simulating target combination
effect using an ODE solver (O(|E| · |ξ|) [38]); estimating the therapeutic and off-
target effects (O(|ξ|)); and determining acceptance of candidate (O(1)), where |ξ|
is the number of time points in the concentration-time series profile curve. Hence,
the time complexity of each MCSA iteration is O(|E| · |ξ|). In the worst case,
no values satisfying the desired therapeutic effect is found when the MCSA termi-
nates on completing all runs (τ0 · imax iterations) resulting in a time complexity of
O(τ0 · imax · |E| · |ξ|) for obtaining the individual target activity for each target c.
Hence, PREPROCESSINPUT has time complexity of O(τ0 · imax · |E| · |ξ|) since
O(τ0 · imax · |E| · |ξ|) > O(|E|). In the SA phase, in the worst case, the SA ter-
minates on completing all runs (τ0 · imax iterations) without finding N solutions
(Line 5, Algorithm 1).

Similar to the MCSA, each SAH iteration consists of the following steps: gen-
erating candidate solution (Line 7, Algorithm 1); simulating the combination ef-
fects using an ODE solver (Line 1, Algorithm 3); estimating the combination ef-
fects (Lines 2 to 3, Algorithm 3); and determining acceptance of the candidate
solution (Line 9, Algorithm 1). Generating the candidate solution involves target
prioritization-based heuristic for selecting the target. This heuristics accepts higher
prioritized targets with higher probability (Section 4.1). In the worst case, the low-
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PMID Target 1 Target 2
22180401 Akt inhibitor MEK inhibitor
21632463 PI3K inhibitor MEK inhibitor
21062259 Akt inhibitor MEK inhibitor
14675307 PI3K inhibitor Akt inhibitor

Table 3: PubMed results relevant to ovarian cancer drug combinations targeting the
MAPK-PI3K network.

est prioritized target (cl) from the set of individual targets (C) is considered and
will be accepted if a randomly generated number is lower than the selection prob-
ability of cl (δcl). According to Section 4.1, δcl is computed using the rank-based
fitness function. Hence, δcl =

TARGETRANK(cl)∑
ci∈C TARGETRANK(ci)

where TARGETRANK(cl)=2-

λ++2(λ+−1)(1−1)
(|c|−1) and

∑
ci∈c

TARGETRANK(ci)=|C|(2 − λ+) + 2(λ+ − 1). Thus,

δcl = (2−λ+)
|C|(2−λ+)+2(λ+−1)

. Since λ+ is in the range [1–2], 1
|C| ≤ δcl ≤ 1

(|C|+1) .
This implies that it takes about O(|C|) tries in order to accept the worst candidate.
Hence, the complexity of generating the candidate solution is O(|X | · |C|) where
|X | is the size of the candidate combination and |C| is the size of the target can-
didate. Simulating the combination effects takes O(|E| · |ξ|) [38]. Estimating the
combination effects takes O(|ξ|) and determining acceptance of the candidate so-
lution takes O(1). Since |ξ| ≫ |X | and O(|E|) = O(|C|) (Definition 1), the time
complexity of SAH isO(τ0 · imax · |E| · |ξ|) time in the worst case. Thus, the overall
time complexity of STEROID is O(τ0 · imax · |E| · |ξ|) which is polynomial.

5 Performance Study

STEROID was implemented using Java. In this section, we investigate the perfor-
mance of STEROID and compare it with state-of-the-art MCSA-based techniques [21,
47]. Since STEROID involves two heuristics and it is orthogonal to any specific tar-
get prioritization technique, we use several variants of it for comparative study. We
denote variants of STEROID enabled with one and two heuristics as STEROID-X

and STEROID-XX, respectively, where X∈ {L,P,S,M} and L=LOEWE, P=PANI [9],
S=LSA [45] and M=MPSA [50]. Note that modification of the candidate differs de-
pending on the heuristics used. For MCSA, the targets and activities are selected
randomly. For STEROID-P, STEROID-S and STEROID-M, the targets are selected
using Algorithm 2 (Lines 4- 6) while the activities are selected randomly. For
STEROID-L, the targets are selected randomly while the activities are selected from
within the synergistic range. For STEROID-PL, STEROID-SL and STEROID-ML, the
targets and activities are selected using Algorithm 2 (Lines 4- 8).

We ran the experiments on an Intel 2.93GHz Xeron processor machine with
12GB RAM running Microsoft Windows 7 to obtain 10 sets of results for each
approach. The MAPK-PI3K network [18] was used for analysis and the desired
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Target in Table 3 Inhibition Mechanism Corresponding target(s)
in MAPK-PI3K network

Akt inhibitor Disruption of Akt binding to
its membrane localizing factor
(PIP3) [35] or dephosphoryla-
tion of PIP3 [31]

Activators of Reaction
29b, Reaction 30, Re-
action 33; Inhibitors of
Reaction 29f , Reaction
31, Reaction 32

MEK inhibitor MEK dephosphorylation [33] or
blockade of MEK phosphoryla-
tion [14]. Is also used to achieve
ERK inhibition as there is no
known ERK inhibitors.

Activators of Reaction 16,
Reaction 18, Reaction 20
or Reaction 22; Inhibitors
of Reaction 15, Reaction
17, Reaction 19 or Reac-
tion 21

PI3K inhibitor Inhibits PI3K in ATP-
competitive manner [31]

Activators of Reac-
tion 24b, Reaction 26;
Inhibitor of Reaction 24f

Table 4: Mapping between targets in Table 3 and MAPK-PI3K network.

therapeutic condition was chosen as 50% ERKPP down-regulation (Section 2). For
all experiments, the combination size was set to 2 and the following default values
were used for the rest of the parameters: {τ0=100; imax=500; N=50; θt=θa=5%;
λ+=1.8}. We used Copasi for estimating the combination effects and its parameters
were set following [9]. In the tables presented, the terms ACT and IN denote
activators and inhibitors, respectively. Forward and backward reactions are marked
with superscripts f and b, respectively.

5.1 Biological Relevance

First, we examined each approach’s ability to find a set of benchmark target com-
bination relevant to ovarian cancer and targeting the MAPK-PI3K network. The
benchmark combination set is curated from literature in the PubMed repository us-
ing “ovarian”, “cancer”, “combination” as keywords. Out of 5863 PubMed records
(as of 17 March 2012), only 4 (Table 3) fitted the criteria. Table 4 shows the tar-
gets in the MAPK-PI3K network that match those in Table 3. We examined our
solution set to identify those combinations (Tables 5 and 6) involving the targets
in Table 4 and found that the majority (43.6%) of the target combinations were
found using STEROID-PL. We noted that the off-target effects of these solutions
were relatively low (in the range [4–26]) and were likely to be good combinations,
correlating well with literature [2, 23].

Since the solutions in Tables 5 and 6 were not the best within our solution set,
we went on to examine if the best solutions are biologically relevant and whether
one approach is better than another for biological purposes. We pooled solutions
from all approaches to identify the top-10 solutions having the least off-target ef-
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No. Target 1 [Activity] Target 2 [Activity] ρ Approach PubMed Combina-
tion

1 Reaction 33 ACT [673.356] Reaction 18 ACT [1.282] 4.164 STEROID-L Akt/MEK inhibitors
2 Reaction 30 ACT [8930.634] Reaction 17 IN [1.646] 8.100 STEROID-L Akt/MEK inhibitors
3 Reaction 30 ACT [6874.187] Reaction 22 ACT [2.162] 7.172 STEROID-L Akt/MEK inhibitors
4 Reaction 18 ACT [1.271] Reaction 29b ACT

[3833.824]
6.081 STEROID-L Akt/MEK inhibitors

5 Reaction 24f IN [4207.992] Reaction 16 ACT [144.239] 25.197 STEROID-L MEK/PI3K inhibitors
6 Reaction 22 ACT [2.135] Reaction 24b ACT

[1766.783]
7.403 STEROID-L MEK/PI3K inhibitors

7 Reaction 30 ACT [1140.911] Reaction 20 ACT [9.866] 8.764 STEROID-L Akt/MEK inhibitors
8 Reaction 17 IN [1.739] Reaction 30 ACT [383.720] 8.118 STEROID-PL Akt/MEK inhibitors
9 Reaction 21 IN [2.175] Reaction 24b ACT [887.656] 5.028 STEROID-PL MEK/PI3K inhibitors
10 Reaction 16 ACT [174.005] Reaction 32 IN [6494.301] 11.726 STEROID-PL Akt/MEK inhibitors
11 Reaction 17 IN [1.851] Reaction 32 IN [574.388] 4.241 STEROID-PL Akt/MEK inhibitors
12 Reaction 21 IN [2.241] Reaction 29f IN [7724.345] 5.156 STEROID-PL Akt/MEK inhibitors
13 Reaction 16 ACT [171.804] Reaction 33 ACT [5469.422] 11.695 STEROID-PL Akt/MEK inhibitors
14 Reaction 33 ACT [4200.96] Reaction 18 ACT [1.298] 4.183 STEROID-PL Akt/MEK inhibitors
15 Reaction 24b ACT

[2982.964]
Reaction 16 ACT [193.024] 18.431 STEROID-PL MEK/PI3K inhibitors

16 Reaction 17 IN [1.721] Reaction 26 ACT [1375.482] 10.624 STEROID-PL MEK/PI3K inhibitors
17 Reaction 30 ACT [3145.694] Reaction 18 ACT [1.017] 8.112 STEROID-PL Akt/MEK inhibitors
18 Reaction 18 ACT [1.081] Reaction 30 ACT [1220.678] 8.177 STEROID-PL Akt/MEK inhibitors
19 Reaction 19 IN [1.483] Reaction 30 ACT [9385.883] 7.834 STEROID-PL Akt/MEK inhibitors
20 Reaction 22 ACT [2.105] Reaction 30 ACT [4633.781] 7.155 STEROID-PL Akt/MEK inhibitors
21 Reaction 17 IN [1.810] Reaction 33 ACT [496.541] 4.209 STEROID-PL Akt/MEK inhibitors
22 Reaction 17 IN [1.722] Reaction 26 ACT [6711.221] 10.638 STEROID-PL MEK/PI3K inhibitors
23 Reaction 30 ACT [5635.852] Reaction 18 ACT [1.117] 8.232 STEROID-PL Akt/MEK inhibitors
24 Reaction 19 IN [1.580] Reaction 24b ACT

[5635.829]
12.364 STEROID-PL MEK/PI3K inhibitors

25 Reaction 26 ACT [6693.704] Reaction 17 IN [1.804] 10.707 STEROID-PL MEK/PI3K inhibitors
26 Reaction 26 ACT [8732.574] Reaction 17 IN [1.901] 10.788 STEROID-PL MEK/PI3K inhibitors
27 Reaction 29f IN [9843.501] Reaction 17 IN [1.728] 6.064 STEROID-PL Akt/MEK inhibitors
28 Reaction 29f IN [8620.299] Reaction 17 IN [1.711] 6.049 STEROID-PL Akt/MEK inhibitors
29 Reaction 18 ACT [1.298] Reaction 29b ACT [3725.04] 6.110 STEROID-PL Akt/MEK inhibitors
30 Reaction 20 ACT [9.343] Reaction 30 ACT [3185.532] 8.667 STEROID-PL Akt/MEK inhibitors
31 Reaction 26 ACT [9734.026] Reaction 16 ACT [156.332] 18.285 STEROID-PL MEK/PI3K inhibitors

Table 5: Target combinations in STEROID-L and STEROID-PL corresponding to
combinations curated from PubMed.

fects involving target activity of less than 100 (Min10, Table 7). Note that large
target activity (Definition 2) implies either high drug concentration or very small
dissociation constant, both of which are likely to cause side effects, especially
if the treatment regime requires repeated drug dosing [10]. STEROID-PL identi-
fied a majority of the top-10 solutions (90%). Most of the targets identified are
located downstream of the MAPK-PI3K network. Since none of our solutions
corresponded to the curated combinations in PubMed (Table 3), we performed a
targeted literature search for each predicted combination (Table 7) to see if it had
ever been performed. We found that 60% of the solutions in Min10, all found us-
ing STEROID-PL, have high biological relevance as potential target combinations.
For instance, from experiments, profound growth inhibition and apoptosis were
observed in CI-1040 (MEK1/2 inhibitor) treated ovarian cancer cells with muta-
tions in KRAS or BRAF [37] and these tumors typically overexpress DUSP4 (ERK

19



No. Target 1 [Activity] Target 2 [Activity] ρ Approach PubMed Combina-
tion

32 Reaction 16 ACT [173.567] Reaction 24b ACT
[8241.738]

21.810 STEROID-SL MEK/PI3K inhibitors

33 Reaction 30 IN [2404.32] Reaction 17 IN [1.799] 5.505 STEROID-SL Akt/MEK inhibitors
34 Reaction 16 ACT [183.383] Reaction 32 IN [7604.421] 11.855 STEROID-SL Akt/MEK inhibitors
35 Reaction 16 ACT [187.154] Reaction 33 ACT [3016.774] 11.905 STEROID-SL Akt/MEK inhibitors
36 Reaction 33 ACT [9475.118] Reaction 16 ACT [176.403] 11.760 STEROID-SL Akt/MEK inhibitors
37 Reaction 30 ACT [906.431] Reaction 19 IN [1.452] 7.790 STEROID-SL Akt/MEK inhibitors
38 Reaction 33 ACT [1760.639] Reaction 17 IN [1.784] 4.192 STEROID-SL Akt/MEK inhibitors
39 Reaction 24b ACT

[5924.411]
Reaction 16 ACT [181.304] 20.867 STEROID-ML MEK/PI3K inhibitors

40 Reaction 24b ACT
[8227.259]

Reaction 16 ACT [159.127] 21.578 STEROID-ML MEK/PI3K inhibitors

41 Reaction 18 ACT [1.306] Reaction 29f IN [5263.823] 6.119 STEROID-ML Akt/MEK inhibitors
42 Reaction 16 ACT [146.238] Reaction 29b ACT

[6797.494]
13.535 STEROID-ML Akt/MEK inhibitors

43 Reaction 22 ACT [2.148] Reaction 24b ACT [6121.44] 12.102 STEROID-ML MEK/PI3K inhibitors
44 Reaction 29b ACT [5459.28] Reaction 16 ACT [148.572] 13.575 STEROID-ML Akt/MEK inhibitors
45 Reaction 20 ACT [13.466] Reaction 26 ACT [9016.078] 11.550 STEROID-P MEK/PI3K inhibitors
46 Reaction 33 ACT [7787.74] Reaction 16 ACT [175.569] 11.748 STEROID-P Akt/MEK inhibitors
47 Reaction 16 ACT [176.688] Reaction 32 IN [163.357] 11.747 STEROID-P Akt/MEK inhibitors
48 Reaction 26 ACT [970.527] Reaction 16 ACT [157.165] 18.277 STEROID-P MEK/PI3K inhibitors
49 Reaction 30 IN [5125.455] Reaction 20 ACT [12.882] 6.267 STEROID-P Akt/MEK inhibitors
50 Reaction 16 ACT [245.303] Reaction 30 ACT [4572.657] 16.086 STEROID-P Akt/MEK inhibitors
51 Reaction 24b ACT

[6828.242]
Reaction 16 ACT [178.781] 21.305 STEROID-P MEK/PI3K inhibitors

52 Reaction 32 IN [5453.004] Reaction 19 IN [1.796] 4.158 STEROID-P Akt/MEK inhibitors
53 Reaction 16 ACT [178.010] Reaction 24b ACT

[3238.351]
18.544 STEROID-S MEK/PI3K inhibitors

54 Reaction 26 ACT [4330.076] Reaction 16 ACT [150.770] 18.190 STEROID-M MEK/PI3K inhibitors
55 Reaction 16 ACT [323.857] Reaction 31 IN [1640.247] 15.534 MCSA Akt/MEK inhibitors

Table 6: Target combinations in STEROID-SL, STEROID-ML, STEROID-P,
STEROID-S, STEROID-M and MCSA corresponding to combinations curated
from PubMed. Numbering continues from Table 5

phosphatase) [41]. This correlates with our computational prediction of combina-
tions 1, 6 and 9 involving ERK phosphatase activator and ERK (or MEK) kinase in-
hibitor. Note that there is currently no known inhibitor that acts directly on ERK and
ERK inhibition is typically achieved through MEK inhibitors. Furthermore, the pre-
dicted combination 4 (ERK kinase inhibitor and tyrosine kinase inhibitor) correlates
with the fact that the combination of cetuximab (tyrosine kinase inhibitor [24])
and AZD6244 (MEK inhibitor) is currently undergoing a phase 1 clinical trial for
solid tumors (NCT01217450). For predicted combinations 7 and 10, we did not
find any supporting evidence that they have been performed, successfully or oth-
erwise, in experiments. However, individual components of these combinations
have shown efficacy in ovarian cancer [22, 36], and warrant further investigation
as potential target combinations. In the remaining predicted combinations, two
(combinations 2 and 3) are more akin to monotherapies than combination thera-
pies as they involve the same type of drug (ERK or MEK kinase inhibitor) and we
did not find any supporting evidence for the other two (combinations 5 and 8). We
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No. Target 1 [Activity] Target 2 [Activity] ρ Method
1 Reaction 21 IN [1.858] Reaction 22 ACT [0.173] 1.010 STEROID-PL
2 Reaction 21 IN [2.063] Reaction 19 IN [0.055] 1.010 STEROID-PL
3 Reaction 21 IN [2.248] Reaction 17 IN [2.5×10−4] 1.017 STEROID-PL

4 Reaction 21 IN [2.248] Reaction 1f IN [3.92×10−3] 1.022 STEROID-PL

5 Reaction 22 ACT [2.227] Reaction 8f IN [1.2×10−4] 1.023 STEROID-PL
6 Reaction 22 ACT [2.086] Reaction 21 IN [0.064] 1.026 STEROID-PL
7 Reaction 22 ACT [2.143] Reaction 13 IN [0.065] 1.028 STEROID-PL

8 Reaction 22 ACT [2.222] Reaction 5b ACT [0.011] 1.031 STEROID-L
9 Reaction 22 ACT [2.216] Reaction 17 IN [0.009] 1.032 STEROID-PL
10 Reaction 21 IN [2.163] Reaction 14 ACT [0.010] 1.036 STEROID-PL

Target in Table 7 Count Reaction in [18] Description
Reaction 21 IN 6 ERKP→ERKPP ERK kinase inhibitor
Reaction 22 ACT 6 ERKPP→ERKP ERK phosphatase activator
Reaction 17 IN 2 MEKP→MEKPP MEK kinase inhibitor
Reaction 1f IN 1 R+HRG→RHRG tyrosine kinase inhibitor
Reaction 5b ACT 1 RShc→RP+Shc activator of Shc dissocia-

tion from RP

Reaction 8f IN 1 RShGS→ShGS+RP inhibitor of ShGS dissocia-
tion from RP

Reaction 13 IN 1 Raf→Raf⋆ Raf inhibitor
Reaction 14 ACT 1 Raf⋆ →Raf Raf inhibitor
Reaction 19 IN 1 ERK→ERKP ERK kinase inhibitor

Table 7: Top: Target combinations in Min-10. Bottom: Details of targets. Count
represents the number of occurrences of the target in the top table.

conclude that STEROID can identify biologically relevant combinations with low
off-target effects, suggesting that heuristics are useful in improving the solution
quality.

Then, we proceeded to examine target combinations with large off-target ef-
fects to compare how they differ from those with small off-target effects. We
obtained 10 solutions with maximum off-target effects from the pooled solution
set (Max10, Table 8) and performed a targeted literature search for each predicted
combination. In contrast to the targets in Min10, targets in Max10 are mostly
located upstream of the MAPK-PI3K network. All 10 combinations contain tyro-
sine kinase inhibitors (TKI). Clinical studies have found that although treatments
with tyrosine kinase inhibitors (TKI) sometimes produce promising results, most
treatment lose their effectiveness soon due to resistance often caused by activating
mutations in downstream effectors of the tyrosine kinases [42]. Apart from drug
resistance, another potential issue of TKI is toxicity (e.g., nephrotic syndrome)
due to the disruption of multiple downstream signaling pathways of the tyrosine
kinases which are involved in normal organ functioning [17]. Hence, designing
combinations involving TKI requires understanding the idiosyncrasy of a patient’s
genome in order to select other suitable targets for the combinations which can
minimize TKI-resistance. The activity of TKI in the combinations should also
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No. Target 1 [Activity] Target 2 [Activity] ρ Method
1 Reaction 1b ACT [3556.86] Reaction 28 IN [6870.24] 3998.34 MCSA

2 Reaction 28 IN [5050.14] Reaction 1b ACT [3601.55] 3000.73 MCSA

3 Reaction 1b ACT [3281.75] Reaction 28 IN [4396.67] 2775.37 STEROID-M

4 Reaction 32 ACT [4297.78] Reaction 1b ACT [9192.45] 361.27 STEROID-S

5 Reaction 27 ACT [993.14] Reaction 3b IN [4716.54] 361.22 MCSA

6 Reaction 1b ACT [9136.46] Reaction 31 IN [9945.12] 359.95 MCSA

7 Reaction 1b ACT [8992.41] Reaction 32 ACT [2464.55] 359.59 STEROID-S

8 Reaction 31 IN [1215.39] Reaction 1b ACT [8406.04] 353.37 MCSA

9 Reaction 32 ACT [9962.99] Reaction 1b ACT [8085.70] 351.05 STEROID-S

10 Reaction 15 ACT [3809.31] Reaction 1f IN [1415.88] 349.73 MCSA

Target Count Reaction in [18] Description
Reaction 1b ACT 8 RHRG→R+HRG tyrosine kinase inhibitor
Reaction 28 IN 3 PIP3→PI PIP3 phosphatase in-

hibitor
Reaction 32 ACT 3 AktPIP→AktPIPP PI3 kinase activator
Reaction 31 IN 2 AktPIP→AktPIP3 PI3 kinase inhibitor
Reaction 1f IN 1 R+HRG→RHRG tyrosine kinase inhibitor
Reaction 3b ACT 1 RP→RHRG2 tyrosine kinase inhibitor
Reaction 15 ACT 1 MEK→MEKP MEK kinase activator
Reaction 27 ACT 1 PI→PIP3 PI3 kinase activator

Table 8: Top: Target combinations in Max-10. Bottom: Details of targets. Count
represents the number of occurrences of the target in the top table.

be kept low to reduce potential toxicity. However, the predicted combinations in-
volve TKI at high activity level, making them less than ideal. In addition, we
noted that several of the targets identified in the predicted combinations (50%) in-
volve promoters of known mediators of cancer (e.g., MEK kinase [39]). Such target
combinations, though counter-intuitive, can still achieve the therapeutic goal if the
effect of other targets can offset the pro-cancer signals, resulting in an overall anti-
cancer signal. However, extra caution should be exercised for these combinations
since improper management of the balance between the pro- and anti-cancer signal
can easily aggravate the cancer. Hence, target combinations with predicted large
off-target effects may be indicative of less effective and/or more toxic combinations
in the real world and correlate well with the notion that large off-target effects sug-
gest indication of toxicity. These set of experiments give us a successful “negative
control” which serve further to validate the feasibility of using the literature search
method for evaluating the target combinations.

5.2 Runtime Performance

In this set of experiments, we analyzed the execution time needed to complete
analysis for different approaches. Fig. 3 plots the results. We can make two key
observations. First, our proposed heuristic approach is an order of magnitude
faster than state-of-the-art techniques (MCSA). Second, approaches incorporat-
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Figure 3: Runtime performance.

ing LOEWE are approximately an order of magnitude faster than other approaches,
likely because LOEWE-heuristics avoid doing full evaluation on non-synergistic
combinations which are excluded during candidate generation.

5.3 Off-Target Effects

Next, we studied the effects of using different approaches on the off-target ef-
fects (Section 3.2) by comparing various descriptive statistics (Fig. 4). We also
pooled together the solutions obtained from the 10 trials (pooled trial) and com-
pared the cumulative distribution functions (CDF) using t-test and Kolmogorov-
Smirnov (KS) test for further analysis. Observe that STEROID-PL achieved the
lowest minimum, maximum, average and median off-target effects. For the pooled
trials, using one-tailed t-test, STEROID-PL produced solutions with lower off-target
effects compared with other approaches (p<0.05); for the CDF, using one-tailed
KS-test, STEROID-PL produced CDF which lie further to the left compared with
other approaches (p<0.005). This implies that STEROID-PL produces solutions
with significantly lower off-target effects when compared to other approaches. This
could be due to PANI and LOEWE seeking solutions with reduced off-target effects
in a complementary manner: LOEWE selects for lower target activity by enforcing
target synergy while PANI selects for targets with lower off-target effects at higher
probability.

5.4 Combination Characterization

In this set of experiments, we characterized the solutions based on the target in-
teraction (synergistic, additive or antagonistic) and the combination type (acti-
vators, inhibitors, or mixed activator and inhibitor). Approaches incorporating
LOEWE produced synergistic combinations by default while other approaches pro-
duce mainly antagonistic combinations (Fig. 5a). In terms of the combination type
(Fig. 5b), we observed that the bulk of the combinations found are mixed activator
and inhibitor. Development of inhibitors of protein-protein interaction are per-
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Figure 4: Off-target effects.
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Figure 6: Effect of N on off-target effects.

ceived to be easier than activators which have to achieve binding and be a good
replication of the protein interaction to stimulate increase in activity [16]. Incor-
porating LOEWE-based heuristics improved the fraction of trials with 2-inhibitors
by about 1 to 3 folds.

5.5 Effect of Parameters

Here, we studied the effects of using different parameter values on the results.
These parameters are namely, the solution set sizeN ; initial temperature τ0; limits
on iterations per cycle imax; adjustment factor for therapeutic effect θt; adjustment
factor for target interaction θa; and selective pressure λ+. The parameters were
varied one at a time. Unless otherwise stated, the parameters were set to default
values.

Effect of N . First, we investigated the effect of N by varying it in the range
of {5,10,25,40,50}. We observed from Fig. 6 that the off-target effects generally
decreased asN increased, and converged atN > 30. The increase inN demanded
longer execution time to complete analysis as shown in Fig. 7. We set N = 50 for
subsequent experiments since all the methods were able to identify ∼ 50 solutions
(Fig. 7).

Effect of τ0. Second, we examined the effect of varying τ0 in the range of
{5,25,50,75,100}. We observed from Fig. 8 that the off-target effects generally de-
creased as τ0 increased. In particular, the minimum off-target effects converged at
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Figure 7: Effect of N on execution time and actual solution size.

τ0 ≥ 75. From Fig. 9, we noted that variation in τ0 had little effect on the execution
time needed to complete analysis for STEROID-L, STEROID-PL, STEROID-SL and
STEROID-ML. For other approaches, execution time increased as τ0 is increased.
In terms of the actual solution set size found, increasing τ0 led to an increase in
the number of solutions found, especially for approaches that did not implement
LOEWE-based heuristics. These observations imply that the LOEWE-based heuris-
tics enriches the search space significantly, allowing the required number of so-
lutions to be found in a much shorter time. For subsequent experiments, we set
τ0 = 100 since all the methods were able to identify ∼ 50 solutions (Fig. 9).

Effect of imax. Third, we investigated the effect of varying imax in the range of
{5,100,250,350, 500}. Similar to the results mentioned above, we observed from
Fig. 10 that the minimum off-target effects decreased as imax increased. Con-
vergence is achieved at imax ≥ 350. No visible trends were observed for the
maximum, median and average off-target effects. From Fig. 11, we noted that vari-
ation in imax had little effect on the execution time needed to complete analysis
when imax ≥ 100 for STEROID-L, STEROID-PL, STEROID-SL and STEROID-ML.
For other approaches, execution time increased as imax is increased. In terms of
the actual solution set size found, increasing imax generally led to an increase in
the number of solutions found, especially for approaches that did not implement
LOEWE-based heuristics. These observations imply that the LOEWE-based heuris-
tics enriches the search space significantly, allowing the required number of so-
lutions to be found in a much shorter time. For subsequent experiments, we set
imax = 500 since all the methods were able to identify ∼ 50 solutions (Fig. 9).

Effect of θt. Fourth, we examined the effect of varying θt in the range of
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Figure 8: Effect of τ0 on off-target effects.
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Figure 9: Effect of τ0 on execution time and actual solution size.
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Figure 10: Effect of imax on off-target effects.
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Figure 11: Effect of imax on execution time and actual solution size.
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Figure 12: Effect of θt on off-target effects.

{0.0005,0.005, 0.05,0.1,0.5}. The more prominent trend in Fig. 12 is a decrease
in the minimum off-target effects as θt increases. From Fig. 13, we also observed
that as θt increased, the actual solution set size increased while the execution time
decreased. This is due to further relaxation of the condition for therapeutic ef-
fect which allowed more candidates to be accepted, which also meant that there
is greater likelihood to find a smaller minimum off-target effect from amongst the
candidates. However, this is achieved at the expense of solutions moving further
away from the desired therapeutic effect (Fig. 14 and Fig. 15). We set θt = 0.05
for subsequent experiments since solutions were within a close range to the de-
sired therapeutic effect and a reasonable number of solutions could be found for
all the approaches in the analysis. Interestingly, we noted that compared to other
approaches, the minimum, maximum, median and average off-target effects of
STEROID-PL were robust to changes in θt.

Effect of θa. Fifth, we examined the effect of varying θa in the range of
{0.0005,0.005, 0.05,0.1,0.5}. The off-target effects had no visible trends when
θa was varied (Fig. 16). There was generally a reduction in actual solution set
size when θa was increased, probably due to more stringent condition for target
synergism resulting in fewer candidates satisfying the target synergism condition
(Section 4.1) in LOEWE-based heuristic. This resulted in a general increase in ex-
ecution time as reflected in Fig. 17 since more candidates have to be considered
before suitable solutions are found. This is especially so for approaches incorpo-
rating LOEWE-based heuristics when θa > 0.05. We set θa = 0.05 for subsequent
experiments since majority of the approaches could still find a reasonable num-
ber of solutions. Interestingly, we noted that compared to other approaches, the
minimum, maximum, median and average off-target effects of STEROID-PL were
robust to changes in θa.

Effect of λ+. Finally, we investigated the effect of varying λ+ in the range of
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Figure 13: Effect of θt on execution time and actual solution size.

{1,1.3,1.5,1.8,2}. Recall from Section 4.1 that λ+ is a parameter used to control
the expected sampling rate of individual target in the target prioritization-based
heuristics. Hence, varying λ+ is likely to affect only the results of STEROID-P,
STEROID-S, STEROID-M, STEROID-PL, STEROID-SL and STEROID-ML. Fig. 18
shows the effect of varying λ+ on the off-target effects for these approaches. We
observed that there was a noticeable trend of decreasing average and median off-
target effects as λ+ was increased for STEROID-P and STEROID-S. For STEROID-
M, a reverse trend was observed. Approaches incorporating LOEWE-based heuris-
tics were unaffected by λ+ variation and were lower in terms of off-target effects in
general. These observations suggest that (1) targets ranked higher by PANI and LSA

tend to yield combinations with lower off-target effects since larger λ+ implies a
higher probability of selecting higher ranked individual target. The reverse is true
for MPSA; (2) LOEWE-based heuristics which operates independently of λ+ im-
prove the robustness of STEROID. There was generally an increase in actual solu-
tion set size when λ+ was increased for STEROID-P, STEROID-S and STEROID-M,
which suggest that higher ranked individual targets were more likely to yield target
combinations satisfying the user-specified therapeutic condition. We set λ+ = 1.8
since the solution set size peaked at that value for all approaches.

Target Combinations of Different Sizes. Finally, we investigated the effects of
combination size |S| on the result. From previous experiments, we noted that
STEROID-PL produced the best results in terms of execution time and off-target
effects. Hence, we shall use STEROID-PL in this set of experiments and vary |S|
in the range of {2,3,4,5,6}. From Fig. 20, we observed that the off-target effects
increased as the combination size increased. This is expected since incorporat-
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ing additional targets into the combination is likely to cause perturbation of more
number of downstream nodes of these targets which inevitably increases the off-
target effects. The increase in combination size also resulted in a slight increase in
execution time as observed in Fig. 21 and this is probably due to additional compu-
tation required for the selection of additional targets and their activities. Tables 9
to 11 list the top-5 results for the entire range of |S| we tested. We noted that tar-
gets closer to the output node are selected for the combinations since all the listed
combinations include either a ERK (or MEK) kinase inhibitor or a ERK (or MEK)
phosphatase activator. This is expected since PANI tend to prioritize these targets
over those that are further from the output node [8]. We also observed that as |S|
increased, there was a tendency to include less desirable targets (i.e., promoter of
pro-cancer signals) such as tyrosine kinase activator. Hence, additional rules such
as exclusion of pro-cancer signal promoters should be considered to yield better
target combinations when combinations of larger size are desired.

6 Conclusions & Future Work

In this work, we describe STEROID, the first heuristic approach based on LOEWE

and target prioritization for modifying target combinations in a signaling network
using the simulated annealing framework. Our results highlight the importance of
using heuristics to improve the process of generating appropriate candidates during
the search for target combinations in terms of both execution time and result qual-
ity. STEROID-PL, particularly, produces superior results with high biological rele-
vance and significantly lower off-target results. It also discovers potential combi-
nations (e.g., ERK phosphatase activator with Raf inhibitor) for further exploration.
The good performance of STEROID-PL is likely due to the selection of synergistic
targets (LOEWE-based heuristic) based on structural and kinetic properties of the
network (PANI-based heuristic). Furthermore, we note that LOEWE-based heuris-
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Figure 16: Effect of θa on off-target effects.
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Figure 17: Effect of θa on execution time and actual solution size.
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Figure 18: Effect of λ+ on off-target effects.
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Figure 19: Effect of λ+ on execution time and actual solution size.
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Figure 20: Effect of combination size on off-target effects for STEROID-PL.
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|S|=2
No. Target [Activity] Reaction in [18] Description ρ
1 Reaction 21 IN [2.248] ERKP→ERKPP ERK kinase inhibitor 1.02187

Reaction 1f IN [0.004] R+HRG→RHRG tyrosine kinase inhibitor
2 Reaction 22 ACT [2.216] ERKPP→ERKP ERK phosphatase activator 1.03207

Reaction 17 IN [0.009] MEKP→MEKPP MEK kinase inhibitor
3 Reaction 22 ACT [2.121] ERKPP→ERKP ERK phosphatase activator 1.08848

Reaction 14 ACT [0.023] Raf⋆→Raf Raf inhibitor
4 Reaction 20 ACT [1.791] ERKP→ERK ERK phosphatase activator 1.25864

Reaction 21 IN [1.746] ERKP→ERKPP ERK kinase inhibitor
5 Reaction 19 IN [1.423] ERK→ERKP ERK kinase inhibitor 1.84469

Reaction 17 IN [0.265] MEKP→MEKPP MEK kinase inhibitor
|S|=3
No. Target [Activity] Reaction in [18] Description ρ

1 Reaction 34b IN [1444.745] internalization→RP tyrosine kinase inhibitor 1.03054
Reaction 21 IN [0.610] ERKP→ERKPP ERK kinase inhibitor
Reaction 22 ACT [1.186] ERKPP→ERKP ERK phosphatase activator

2 Reaction 21 IN [2.099] ERKP→ERKPP ERK kinase inhibitor 1.13798
Reaction 19 IN [0.13054] ERK→ERKP ERK kinase inhibitor
Reaction 17 IN [0.035] MEKP→MEKPP MEK kinase inhibitor

3 Reaction 21 IN [2.025] ERKP→ERKPP ERK kinase inhibitor 1.27025
Reaction 20 ACT [0.820] ERKP→ERK ERK phosphatase activator
Reaction 15 IN [0.150] MEK→MEKP MEK kinase inhibitor

4 Reaction 14 ACT [0.053] Raf⋆→Raf Raf inhibitor 1.79488
Reaction 19 IN [1.551] ERK→ERKP ERK kinase inhibitor
Reaction 3b IN [8624.076] RP→RHRG2 tyrosine kinase activator

5 Reaction 12 ACT [0.029] RasGTP→RasGDP RasGAP activator 1.90132
Reaction 22 ACT [1.622] ERKPP→ERKP ERK phosphatase activator
Reaction 14 ACT [0.154] Raf⋆→Raf Raf inhibitor

|S|=4
No. Target [Activity] Reaction in [18] Description ρ
1 Reaction 21 IN [1.711] ERKP→ERKPP ERK kinase inhibitor 2.57488

Reaction 6f IN [0.741] RShc→RShP Shc kinase inhibitor
Reaction 8b ACT [0.034] ShGS+RP→RShGS promoter of ShGS and

RP binding
Reaction 10 IN [5927.404] ShP→Shc Shc phosphatase in-

hibitor
2 Reaction 24f ACT [9096.206] RPI3K→RPI3K⋆ PI3K activator 4.60078

Reaction 7b ACT [1.140] RShGS→RShP+GS promoter of RShGS
dissociation

Reaction 22 ACT [1.148] ERKPP→ERKP ERK phosphatase acti-
vator

Reaction 17 IN [0.155] MEKP→MEKPP MEK kinase inhibitor
3 Reaction 31 ACT [7516.839] AktPIP→AktPIP3 PIP kinase activator 5.85213

Reaction 6b ACT [1.291] RShP→RShc Shc phosphatase acti-
vator

Reaction 21 IN [1.323] ERKP→ERKPP ERK kinase inhibitor
Reaction 13 IN [0.954] Raf→Raf⋆ Raf inhibitor

4 Reaction 31 IN [2943.773] AktPIP→AktPIP3 PIP kinase inhibitor 6.03896
Reaction 18 ACT [1.249] MEKPP→MEKP MEK phosphatase acti-

vator
Reaction 29f IN [3705.561] PIP3+Akt→AktPIP3 Akt inhibitor
Reaction 21 IN [0.059] ERKP→ERKPP ERK kinase inhibitor

5 Reaction 16 IN [3446.009] MEKP→MEK MEK phosphatase in-
hibitor

6.15524

Reaction 14 ACT [0.671] Raf⋆→Raf Raf inhibitor
Reaction 5b ACT [1.047] RShc→RP+Shc promoter of RShc dis-

sociation
Reaction 31 ACT [2110.600] AktPIP→AktPIP3 PIP kinase activator

Table 9: Top-5 results of STEROID-PL for |S|={2,3,4}.
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|S|=5
No. Target [Activity] Reaction in [18] Description ρ
1 Reaction 21 IN [1.299] ERKP→ERKPP ERK kinase inhibitor 4.88571

Reaction 20 IN [9766.701] ERKP→ERK ERK phosphatase inhibitor
Reaction 30 IN [5523.830] AktPIP3→AktPIP PIP3 phosphatase in-

hibitor
Reaction 33 IN [6767.722] AktPIPP→AktPIP PIP3 phosphatase in-

hibitor
Reaction 18 ACT [0.520] MEKPP→MEKP MEK phosphatase activator

2 Reaction 28 ACT [7302.668] PIP3→PI PIP3 phosphatase activa-
tor

6.39667

Reaction 21 IN [0.705] ERKP→ERKPP ERK kinase inhibitor
Reaction 19 IN [0.964] ERK→ERKP ERK kinase inhibitor
Reaction 33 ACT [2569.067] AktPIPP→AktPIP PIP3 phosphatase activa-

tor
Reaction 3b IN [4039.982] RP→RHRG2 tyrosine kinase activator

3 Reaction 32 IN [7925.339] AktPIP→AktPIPP PIP kinase inhibitor 6.48116
Reaction 12 ACT [0.040] RasGTP→RasGDP RasGAP activator
Reaction 18 ACT [0.246] MEKPP→MEKP MEK phosphatase activator
Reaction 9b ACT [1393.884] GS+ShP→ShGS promoter of GS and ShP

binding
Reaction 8b ACT [0.765] ShGS+RP→RShGS promoter of ShGS and RP

binding
4 Reaction 12 ACT [0.237] RasGTP→RasGDP RasGAP activator 6.64748

Reaction 22 ACT [0.244] ERKPP→ERKP ERK phosphatase activator
Reaction 24b IN [1816.184] RPI3K⋆→RPI3K PI3K activator
Reaction 29f IN [9089.066] PIP3+Akt→AktPIP3 Akt inhibitor
Reaction 31 ACT [7188.479] AktPIP→AktPIP3 PIP kinase activator

5 Reaction 27 IN [7608.703] PI→PIP3 PI kinase inhibitor 6.74592
Reaction 9b ACT [2710.060] GS+ShP→ShGS promoter of GS and ShP

binding
Reaction 10 IN [3073.074] ShP→Shc Shc phosphatase inhibitor
Reaction 13 IN [3.837] Raf→Raf⋆ Raf inhibitor
Reaction 21 IN [0.901] ERKP→ERKPP ERK kinase inhibitor

Table 10: Top-5 results of STEROID-PL for |S|=5.

tic enriches the search space, improving runtime performance by about an order of
magnitude, and increasing the fraction of trials with 2-inhibitor combinations by
up to 3 folds.

We note that not all target prioritization approaches improve the results and the
objectives of the problem (e.g., identifying therapeutic target combinations with
low off-target effects) can be used to guide the selection of appropriate approaches.
Further extensions of this work include incorporating various “omics” data and
drug and disease information as heuristics to find target combinations that exclude
combinations akin to monotherapies, and that avoid including activators of pro-
disease targets as part of the combinations. In this work, we assume all nodes
have equally severe off-target effects. A more flexible strategy is to implement a
weighted sum off-target effects to reflect differences in severity of the off-target
effects in future work. In summary, our performance comparisons demonstrate the
potential value of knowledge-based heuristics for sampling and evaluating targets
and STEROID provides a first step in this regard.
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|S|=6
No. Target [Activity] Reaction in [18] Description ρ

1 Reaction 25f ACT [2019.677] RPI3K⋆→RP+PI3K⋆ promoter of RPI3K⋆ disso-
ciation

4.97259

Reaction 28 ACT [7230.289] PIP3→PI PIP3 phosphatase activator
Reaction 18 ACT [1.093] MEKPP→MEKP MEK phosphatase activator
Reaction 27 ACT [8967.207] PI→PIP3 PI kinase activator
Reaction 24b IN [4964.483] RPI3K⋆→RPI3K PI3K activator
Reaction 1f IN [1.128] R+HRG→RHRG tyrosine kinase inhibitor

2 Reaction 30 ACT [2380.633] AktPIP3→AktPIP PIP3 phosphatase activator 5.60381
MKP3 IN [5.477] [MKP3]0 MKP3 inhibitor
Reaction 11 IN [13.181] RasGDP→RasGTP RasGEF inhibitor
Reaction 29f IN [8314.225] PIP3+Akt→AktPIP3 Akt inhibitor
Reaction 22 ACT [0.217] ERKPP→ERKP ERK phosphatase activator
Reaction 16 ACT [0.013] MEKP→MEK MEK phosphatase activator

3 Reaction 25b IN [2296.798] RP+PI3K⋆→RPI3K⋆ inhibitor of RP and PI3K⋆

binding
5.62525

Reaction 12 ACT [0.222] RasGTP→RasGDP RasGAP activator
Reaction 16 IN [1199.750] MEKP→MEK MEK phosphatase inhibitor
Reaction 3f IN [0.114] RHRG2→RP tyrosine kinase inhibitor
Reaction 5f IN [0.188] RP+Shc→RShc inhibitor of RP and Shc

binding
Reaction 2b IN [2643.021] RHRG2→2*RHRG tyrosine kinase activator

4 Reaction 34b ACT [4766.160] internalization→RP tyrosine kinase activator 7.19757
Reaction 18 ACT [1.268] MEKPP→MEKP MEK phosphatase activator
Reaction 33 ACT [5512.159] AktPIPP→AktPIP PIPP phosphatase activator
Reaction 11 IN [9.039] RasGDP→RasGTP RasGEF inhibitor
Reaction 27 IN [4232.607] PI→PIP3 PI kinase inhibitor
Reaction 19 IN [0.011] ERK→ERKP ERK kinase inhibitor

5 Reaction 27 IN [3883.773] PI→PIP3 PI kinase inhibitor 8.52135
Reaction 11 IN [64.156] RasGDP→RasGTP RasGEF inhibitor
Reaction 22 ACT [1.177] ERKPP→ERKP ERK phosphatase activator
Reaction 34b ACT [7191.794] internalization→RP tyrosine kinase activator
Reaction 29b IN [7826.257] AktPIP3→PIP3+Akt Akt activator
Reaction 8f IN [0.152] RShGS→ShGS+RP inhibitor of RShGS dissoci-

ation

Table 11: Top-5 results of STEROID-PL for |S|=6.
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