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Abstract

Despite a large body of work on xml twig query processing in relational
environment, systematic study of xml join evaluation has received little at-
tention in the literature. In this paper, we propose a novel and non-traditional
technique for fast evaluation of multi-source star twig queries in a path ma-
terialization-based rdbms. A multi-source star twig joins different xml doc-
uments on values in their nodes and the XQuery graph takes a star-shaped
structure. Such queries are prevalent in several domains such as life sci-
ences. Rather than following the conventional approach of generating one
huge complex sql query from a twig query, we translate a star query into a
list of sql sub-queries that only materializes minimal information of underly-
ing xml subtrees as intermediate results. We have implemented this scheme
on top of a path materialization-based xml storage system called Sucxent++.
Experiments carried out confirm that our proposed approach built on top of
an off-the-shelf commercial rdbms has excellent real-world performance.
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1 Introduction

xml has emerged as the leading textual language for representing and exchanging
data over the Web in a wide variety of domains. This has generated tremendous
interest in the mainstream database community to propose innovative solutions for
storage and query processing of large volumes of xml data on top of relational as
well as native framework [8]. Consequently, query languages such as XPath and
XQuery have been receiving a great deal of attention from the community lately.

Efficient evaluation of xml queries that correlate (join) multiple input docu-
ments to integrate data from different sources is highly important due to its several
real-world applications. For example, querying biological data across multiple
sources is a key activity for many biologists. If these sources represent data in xml
format (e.g., interpro (www.ebi.ac.uk/interpro/), UniProt (www.expasy.
ch/sprot/), pdb (www.pdb.org), embl (www.ebi.ac.uk/embl/)), then XQuery
can be used to formulate meaningful queries over these data sources. Figure 1
shows examples of xml representations of two sources. Figure 2 shows three ex-
ample queries. Observe that Q1, Q2, and Q3 correlate four, three, and two data
sources, respectively. Also, in each query the join conditions share a common data
source. For instance, in Q1 UniProt is joined with InterPro, pdb, and embl. Simi-
larly, in Q2 UniProt is joined with InterPro and embl. Consequently, each of these
queries can be represented as a star-shaped query graph where a node represents a
data source and an edge represents existence of a join expression between a pair
of sources. We refer to such queries as multi-source star twig queries (star queries
for brevity). In this paper, we focus on fast evaluation of this type of queries in a
relational environment.

At first glance, it may seem that we can efficiently evaluate star queries by
leveraging on an existing relational XQuery processor, c.f., [10, 16] and relying
on its query optimization capabilities. Specifically in an XQuery processor, an
XQuery query is often rewritten to an equivalent, logically simpler XQuery and
then translated to a single, complex sql query, c.f., [10]. Optimization of an
XQuery query is achieved in two stages. Logical query optimization (sometimes
also called query rewrite) [10, 15–17] results in rewrites of XQuery statements to
avoid duplicate and full navigations. On the other hand, physical query optimiza-
tion depends on the storage method of the data being queried. For instance, we can
store and query xml representations of interpro, UniProt, pdb, and embl using the
xml query processor of an industrial-strength rdbms denoted as xdb (Due to legal
restrictions, this processor is anonymously identified as xdb in the sequel).

Unfortunately, query performance still remains a bottleneck. To get a better
understanding of this problem, we experimented with the datasets in Figure 3(a)
and queries Q1 – Q3. Figure 3(b) shows the query evaluation times in xdb. Observe
that it can take from 4 minutes to more than 30 minutes to evaluate these queries.
Is it possible to design a scheme that can address this performance bottleneck? In
this paper, we demonstrate that techniques built on top of an existing off-the-shelf
rdbms can make up for a large part of the limitation. In particular, we show that the

3



uniprot

entry

name

dbReference

@type

@id

organism

name

12S1_ARATH

InterPro

IPR710

dbReference

@type

@id

EMBL

X14312HUMAN

entry

name
dbReference

@type @id

organism

name14332_ORYSJ

PDB 1BV8

dbReference

@type @id

InterPro IPR123

HUMAN

entry

name dbReference

@type

@id

organism

name

A2MG_HUMAN

H-InvDB

HIX002

dbReference

@type

@id

KEGG

hsa:2HUMAN

(a) UNIPROT XML

interprodb

interpro

@id

IPR100

name

Kringle

pub_list

publication

journal year

J. Mol. Evol. 1987

publication

journal year

Structure 2002

interpro

@id

IPR123

name

PAS

pub_list

publication

journal year

Structure 2002

interpro

@id

IPR500

name

P2Y4 
purinoceptor

pub_list

publication

journal year

Protein Eng. 1994

publication

journal year

Cell. Signal 2000

interpro

@id

IPR710

name

Carboxyl transferase

pub_list

publication

journal year

Nature 2001

publication

journal year

Science 2000

(b) INTERPRO XML

@created

1991

@created

2001

@created

2001
1

2

5

6

9

10

1

2 3 4 5

6

7
8

9

10
11

12
13

14

15 16 17 18

3
4

7
8

11 12

b

d

Figure 1: xml representations of Uniprot and Interpro data sources.

above queries can be evaluated in less than a minute.

1.1 Overview

We take an alternative non-traditional strategy that bypasses logical XQuery op-
timization and relies solely on the relational optimizer to achieve superior perfor-
mance for evaluating star queries. This approach is perhaps surprising because
the design goals of our strategy seem to be diametrically opposite to traditional
relational XQuery processors. Specifically, given a star query Q, our proposed
algorithm translates it into a list of sql queries without undertaking any logical
query optimization over a path materialization-based storage scheme [8]. First, sql
queries for materializing the identifiers of nodes or subtrees satisfying the expres-
sions in the return clause are generated. Based on these materialized identifiers,
sql queries for non-join expressions in the where clause are generated followed
by queries for join expressions. These queries are executed in sequence and the
results are materialized in temporary tables. The identifiers of nodes (subtrees)
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01  for $entry in fn:collection('Uniprot')/uniprot/ entry,

02      $ip in fn:collection('InterPro')/interprodb /interpro

03  let $id := $entry/dbReference/@id

04  where $entry/organism/name = 'HUMAN'

05    and $entry/@created = '2001'

06    and $ip/pub_list/publication/journal = 'Struc ture'

07    and $ip/pub_list/publication/year = '2002'

08    and $ip/@id = $id

09  return <result><entry_name>{$entry/name}</entry _name> 

                   <protein_name>{$ip/name}</protei n_name></result>;

Q2

01  for $entry in fn:collection('UNIPROT')/uniprot/ entry,
02      $interpro in fn:collection('INTERPRO')/inte rprodb/interpro,
03      $embl in fn:collection('EMBL')/EMBL_Service s/entry
04  let $ref2EMBL := $entry/dbReference[@type="EMBL "]/@id
05  let $ref2InterPro := $entry/dbReference[@type=" InterPro"]/@id
06  let $temp:=$embl/@created
07  where $entry/keyword = 'ATP-binding' 
08    and $entry/organism/name = 'Human'
09    and $interpro/pub_list/publication/journal = 'Science' 
10    and fn:starts-with(xs:string($temp), '1996')
11    and $interpro/@id = $ref2InterPro and $embl/@ accession= $ref2EMBL
12  return $entry/name;

4

Q1

01  declare namespace PDBx = 'http://deposit.pdb.or g/pdbML/pdbx.xsd'; 
02  for $entry in fn:collection('UNIPROT')/uniprot/ entry,
03      $interpro in fn:collection('INTERPRO')/inte rprodb/interpro,
04      $embl in fn:collection('EMBL')/EMBL_Service s/entry,
05      $pdb in fn:collection("PDB")/PDBx:datablock
06  let $ref2PDB := $entry/dbReference[@type="PDB"] /@id
07  let $ref2EMBL := $entry/dbReference[@type="EMBL "]/@id
08  let $ref2InterPro := $entry/dbReference[@type=" InterPro"]/@id
09  let $temp:=$embl/@created
10  where $entry/keyword = 'ATP-binding' 
11      and $entry/organism/name = 'Human'
12      and $interpro/pub_list/publication/journal = 'Science' 
13      and fn:starts-with(xs:string($temp), '1996' )
14      and $pdb/PDBx:citationCategory/PDBx:citatio n/PDBx:country  = "US" 
15      and $pdb/PDBx:citationCategory/PDBx:citatio n/PDBx:year = "1997" 
16      and $pdb/PDBx:cellCategory/PDBx:cell/@entry _id = $ref2PDB
17      and $interpro/@id = $ref2InterPro 
18     and $embl/@accession= $ref2EMBL
19  return $entry/reference/citation/title;

64

Q3 26

QID Query # of 
Results

Figure 2: Examples of star twig queries.

satisfying Q are then computed from these materialized results. A key feature of
these materialized results is that we only store minimal information (identifiers of
nodes) required for evaluating Q. This obviously has positive impact on the stor-
age and query processing costs of temporary tables as we can efficiently store large
intermediate result nodes for a given query. Finally, the last step of the algorithm
is to issue an sql query to retrieve complete information from the base table(s)
containing xml documents by matching the identifiers of the result subtrees.

It may seem that the above strategy of translating an xml query into a list of
sql queries instead of a single complex sql query has been adequately addressed
before in the context of xml publishing environment [7, 11]. In this environment,
data is originally in relational form and is viewed and queried as xml. In contrast,
our proposed technique is built on top of xml storage environment where data is
originally in xml format and is stored and queried in an rdbms. Due to the mismatch
in the environment, the techniques used for sql translation in xml publishing cannot
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Source Size
No. of 
Files

No. of 
Attributes

No. of 
Nodes Level

UNIPROT 1.4 GB 1 38,380,645 28,247,711 6

INTERPRO 50 MB 1 944,564 754,607 5

PDB 613 MB 70 1,521,615 12,535,308 4

EMBL 1.28 GB 10 13,311,359 16,707,319 6

(a) Real World Data Sets

QID XDB2

Q1 1,421.16

Q2 238.73

Q3 DNF

(b) Query Evaluation 
Time (in sec.)

* DNF means that the query evaluation did not finish in 30 mins

Figure 3: Dataset and query evaluation times in xdb.

be directly mapped to the xml storage environment [12]. This is because these
techniques generate optimal list of sql queries by exploiting either the query cost
estimates from the target query optimizer [7] or relational integrity constraints [11].
Unfortunately, such cost estimates are not readily available as the relational engine
does not understand tree-shaped data. Furthermore, any sql generation technique
requires understanding of the structural relationships of xml elements. This is not
necessary in xml publishing environment as the underlying data is relational in
nature. We elaborate on the differences further in Section 2.

Our proposed algorithm is built on top of the Sucxent++ system [2, 18], a
path materialization-based approach [8] designed primarily for read-mostly work-
loads. Based on the encoding scheme of Sucxent++, we demonstrate the use of
“XQuery-to-list of sql” translation strategy to accelerate evaluation of star queries
in a widely available commercial rdbms (denoted as sdb in the sequel). In particu-
lar, our proposed approach has excellent real-world performance. It is significantly
faster than xml support of xdb (highest observed factor being 158 times), which re-
lies on conventional XQuery optimization techniques. Somewhat unexpectedly, we
shall also show that the proposed technique outperforms a state-of-the-art column
store-based XQuery processor (monetDB/XQuery [3]) for several queries (highest
observed factor being 46 times)!

The rest of our paper is organized as follows. We compare our approach with
related work in Section 2. Section 3 formally defines the notion of multi-source
star twig queries. Sections 4 and 5 present in detail the algorithm for evaluating
star queries on top of a path materialization-based relational storage. We evaluate
and compare the performance of our proposed technique through an extensive set
of experiments in Section 6. Section 7 concludes the paper and suggests future
work.

2 Related Work

XPath and XQuery processing and optimization. There is a wealth of work on
evaluating XPath expressions in a tree-unaware rdbms [2, 8, 9, 18, 21, 22] and tree-
aware environment [3, 8]. However, these efforts mainly focus on various XPath
axes and not on xml join operation. In particular, the work reported in this paper
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differs from efforts related to Sucxent++ [2,18] in the following ways. Firstly, [18]
focused on evaluating ordered axes in linear XPath expressions. In [2], Bhowmick
et al. described efficient technique for evaluating twig queries having parent-child
relationships. In contrast, in this paper we focus our attention to complex XQueries
containing xml joins. Secondly, like many other works, the sql translation algo-
rithms in [2,18] generate a single complex sqlwhereas here we focus on generating
a sequence of sql queries. Consequently, in this paper we materialize minimal sub-
tree information to reduce the size of the intermediate tables generated by the list
of sql queries. Complete information related to subtrees that satisfy the query is
only retrieved during the final step of query execution. Such “lazy” approach to re-
trieve subtree information is not necessary in approaches that are based on a single
sql query. Also, in contrast to previous efforts, the proposed algorithm is sensi-
tive to the order of evaluation of different components (i.e., return clause, join
expressions, non-join expressions) of the star XQueries.

Several works on XQuery processing and optimization adopt a traditional ap-
proach based on rewrite rules. In [5, 10, 15–17, 19], the authors discuss various
rules for XQuery normalization or for transformation tasks such as XQuery-to-
sql translation, elimination of unnecessary ordering operations or introduction of
a tree-pattern operator in query plans. In [14], xml document projection is used
for query optimization. Given an XQuery expression Q over a document D, these
works focus on identifying and projecting out the parts of D that are not useful
for the evaluation of Q. These efforts focus on general XQuery or a proper subset
of it. In contrast, we present techniques for optimizing performance of a special
type of XQuery (star queries) in a tree-unaware environment by decomposing a star
query into a sequence of sql queries instead of a single complex sql. Furthermore,
several of the tree-unaware approaches are orthogonal to the proposed technique
presented here.

Query translation in xml publishing environment. There has been efforts
related to translating xml queries to sql in xml publishing environment. A detailed
description of some of the existing work on xml-to-sql query translation is given
in [12]. In XPeranto [19], a general framework for processing arbitrarily complex
XQuery queries over xml view is presented. An XQuery query is transformed into
an Xml Query Graph Model (xqgm) and composed with the view definition. A
set of rewrite optimization techniques are proposed for elimination of intermediate
xml fragments construction and to push down predicates. Then it is translated to
a single “outer union” sql query to be evaluated inside the relational engine. The
Agora [13] project uses local-as-view (lav) approach and provides an algorithm to
translate XQuery flwr expressions into sql in two steps. First, it translates the xml
query into a sql query over virtual relational schema and then it rewrites this sql
query into a query over the real relational schema. mars [6] uses both local-as-view
and global-as-view (gav) approaches to translate an XQuery query to sql. It first
compiles the queries, views and constraints from xml into the relational framework
and then takes a cost-based approach to determine all minimal reformulations of
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the relational queries under the relational integrity constraints. In contrast, our
approach is built on top of xml storage framework and translates a specific type of
XQuery query to a list of sql queries instead of a single sql query.

More germane to this work is efforts in the xml publishing environment that
translate an xml query to a list of sql queries [7, 11]. In [7], relational schema to
the xml view mapping is specified using a declarative query language rxl. In
order to create the xml view, optimal set of sql queries are generated to extract
and group data from the underlying relational engine. The authors propose a plan
generation technique that partitions a view tree into one or more subtrees; for each
subtree, one sql query is generated. In general, there are 2|E | possible translations
of an rxl query into one or more queries, where |E | is the number of edges in the
query’s view tree. In contrast, the number of sql queries in our approach is linear
to the number data sources to be joined and the number of output expressions in
the query. Furthermore, [7] supports xml-ql instead of XQuery. It is not clear what
subset of xml-ql is handled by the current solution.

Krishnamurthy et al. [11] proposed a translation technique that exploits the
relational integrity constraint information to obtain optimized sql queries. Note
that such integrity constraint information are not usable in a tree-unaware, schema-
oblivious xml storage environment. Additionally, this approach only supports sim-
ple path expressions whereas we support more complex join XQueries. Further-
more, no published performance study is available of this approach. On the other
hand, we undertake an exhaustive performance study to demonstrate the superiority
of our approach.

3 Multi-source Star Twig Pattern

3.1 Multi-source Twig Pattern

Most xml processors, both native and relational, have overwhelmingly focused on
single-source twig queries modeled as a twig pattern tree [8]. A single-source twig
query is evaluated on a set of documents represented by a single xml schema or dtd.
However, as discussed in Section 1, related data in many real-world applications
may span across multiple data sources with different schemas. Consequently, our
query model should support queries over such multiple data sources using joins.
We refer to such twig queries as multi-source twig patterns.

A multi-source twig pattern Q is a graph with four types of nodes: tag node
(QNode), value node (VNode), logical-and node (ANode), and return node (RNode).
Each QNode represents a node test (i.e., the corresponding element or attribute label
in Q). A VNode is a leaf node in Q and consists of two components: (a) a string
value v and (b) a comparison operator or XQuery function op (e.g., contains) over
v. Each Q has a single node of type RNodewhich represents the output node. While
labels of ANode is always “and”, QNodes’ and RNodes’ labels are tags. An edge
in Q can be of two types, namely, axes edge and join edge. The former represents
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parent-child or attribute relationship 1 between a pair of nodes belonging to the
same source whereas the latter connects two nodes from two different sources2.
Specifically, a join edge (q1, q2) asserts that q1 and q2 have equal value 3. We
denote the RNode by underlined tag; and axes and join edges as direct and dashed
lines, respectively.

3.2 Representing MUST Pattern using XQuery

Observe that a multi-source twig query can be represented by an XQuery query
Q = (F ,L,W,R) where F is a set of for clause items, L is a set of expressions
defined using the let clause,W is a set of predicates in the where clause, and R is
an output expression specified in the return clause. Note that a path expression in
these clauses can easily be constructed from a must pattern Q by concatenating the
sequence of QNodes representing node tests and axes edges representing location
steps (we ignore the ANode nodes) in a root-to-node path in Q4. Specifically, the
syntax of Q is as follows.

for $x1 in p1, . . . , $xn in pn
let $y := q1
let . . .
where W
return r

Note that there must be at least two for clause items in Q that are bound to two
different document sources. The let clause simply declares a variable and gives it
a value. We categorize the where-expressions inW into two types, namely join ex-
pressions and non-join expressions. A join expression p1 = p2 involves predicates
that express join conditions over two document sources represented by the path
expressions p1 and p2. Each join edge in a must pattern creates a join expression
connecting two path expressions. On the other hand, a non-join expression p op v
expresses a filtering condition on a single document source. Note that op and v are
represented by a VNode in a must pattern. Note that a join expression can also be
expressed in a for clause using qualifier. In this paper, we ignore join expressions
in the for clause, which can always be reformulated away using where clause.
Finally, an output expression r in the return clause is of type RNode.

Definition 1 [XQuery Representation of Multi-source Twig] Let var be the name
of variable binding, exp be a path expression, op ∈ {=,,, >,≥, <,≤} be an oper-
ator, and val be a value. Given an expression exp, the function source(exp) maps
exp to the document source D over which exp is valid. Then, an XQuery query
Q = (F ,L,W,R) is a multi-source twig query if the followings are true.

1We consider XPath navigation only along the child (/) and attribute (/@) axes. Extension to other
navigation axis is orthogonal to the proposed technique.

2Note that our model can be trivially extended to support join between same sources.
3We only supports equality join condition but inequality join condition can be supported trivially.
4For clarity, we shall add the XQuery doc function as prefix to a path expression in a for clause whenever

appropriate.
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• F is a set of for clause items such that |F | ≥ 2. An item f ∈ F is a triple
(var, dsName, exp), where source(exp) = dsName. Furthermore, ∃ fi ∈ F
∧ f j ∈ F such that fi.dsName , f j.dsName for i , j and 1 < i, j ≤ |F |.

• L is a set of let clause items where l ∈ L is a 2-tuple (var, exp).

• Let S and T be path expressions containing var = f .var or var = l.var where
f ∈ F , l ∈ L. Then,W is a set of conjunctive predicates in the where clause
whereW = J ∪C and J ∩C = ∅. J is a non-empty set of join expressions
where b ∈ J is of the form S op T . C is a set of non-join expressions where
c ∈ C is of the form S op val.

• R is a set of output expressions in the return clause. Each output expression
r is a 2-tuple (var, exp) where var = f .var or var = l.var, f ∈ F , and l ∈ L.
�

Example 1 The query Q3 in Figure 2 consists of the followings.

• F = { f1, f2} where f1.var = “$entry”, f2.var = “$ip”, f1.dsName =
“Uniprot”, f2.dsName = “InterPro”, f1.exp = “/uniprot/entry”, and
f2.exp = “/interprodb/interpro”.

• L = {l1} where l1.var = “$id” and l1.exp = “$entry/dbReference/@id”.
• In the where clause,J = {b1} andC = {c1, c2, c3, c4}where b1 = (“$ip/@id”,

“=”, “$id”), c1 =(“$entry/organism/name", “ = ”,“HUMAN”), c2 =

(“$entry/@created”, “=”, “2001”), c3 =(“$ip/pub list/
publication/journal”, “=”, “Structure”), and c4 =(“$ip/pub list/
publication/year”, “=”, “2002”).

• R = {r1, r2} where r1 = (“$entry”, “/name”) and r2 = (“$ip”,“/name”)

3.3 Star Twig Pattern

An XQuery representation of a multi-source twig query can be conveniently repre-
sented using an XQuery graph. Similar to a query graph of an sql query, an XQuery
graph is an undirected graph with nodes D1 . . . Dn. For every join expression be-
tween the document sources Di and D j, we add an edge between Di and D j. This
edge is labeled by the join expression. The nodes are labeled with corresponding
non-join expressions.

An XQuery graphs can have many different shapes such as chain queries, star
queries, tree queries, cyclic queries, clique queries, etc. Note that these classes
are not disjoint and that some classes are subsets of other classes. In this paper, we
focus on star queries joining different xml documents. Intuitively, in a multi-source
star twig query all join expressions share a common document source and hence
forms a star-shaped query graph. For example, queries in Figure 2 are examples of
star twig queries. Formally, it is defined as follows.
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Algorithm 1: The StarTwig2SQL algorithm.
Input: Star twig query Q
Output: A list of sql queries SQLList

1 Initialize SQLList = ∅;
2 (F ,W,R)← parseXQuery(Q) /* Phase 1*/;
3 SQLList.add(outputExp2SQL(R)) /* Phase 2 */;
4 (J ,C)← distinguishExp(W ) /* Phase 3 */;
5 SQLList.add(whereExp2SQL(F ,J ,C,R));
6 SQLList.add(finalResultQueryGen(R)) /* Phase 4 */ ;
7 return SQLList

Definition 2 [Multi-source Star Twig Query] Let Q = (F ,L,W,R) be a multi-
source XQuery query. Then Q is called a multi-source star twig query if any one
of the following conditions is true: (a) |J| = 1 and source(b.S) , source(b.T )
where b ∈ J . (b) If |J| > 1 then ∀ i , j source(bi.S) = source(b j.S) and
source(bi.S) , source(bi.T ) where bi ∈ J , b j ∈ J and 1 ≤ i, j ≤ |J|. �

4 Star Twig Query Evaluation

In this section, we shall elaborate on the algorithm for translating a star twig query
to a list of sql queries over relational framework. State-of-the-art relational ap-
proaches for xml storage can be broadly classified into four types, namely, node ap-
proach, edge approach, path materialization (pm) approach, and dtd approach [8].
For the sake of generality, in this paper we assume that the xml data are schemaless.
Since the pm approach has advantages over the rest when xml data are schema-
less [8], our proposed algorithm is built on top of this storage approach. Impor-
tantly, we present a generic algorithm that is independent of any specific pm ap-
proach. We assume that paths, contents of leaf nodes, and attributes associated
with a xml tree are materialized in Paths, PathsContent, and Attributes relations, re-
spectively. In the next section, we shall give an example of how various subroutines
in the algorithm can be realized on a specific pm approach.

The algorithm for sql translation is shown in Algorithm 1. It consists of four
phases: the XQuery parsing phase, the OutputExp2SQL translation phase, the
WhereExp2SQL translation phase, and the Final results generator phase. We shall
elaborate on these phases in turn. In the sequel, we shall use the query Q3 in Fig-
ure 2 as our running example to facilitate our discussion.

4.1 Phase 1: XQuery Parsing

In the first phase, a multi-source star twig query Q is parsed using XPath 2.0/XQuery
1.0 Parser Build [1] (Line 02). During the parsing process, the algorithm iden-
tifies different components of Q based on the star twig query model discussed
in the preceding section. Also, the algorithm replaces the variable references in
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Algorithm 2: The outputExp2SQL algorithm.
Input: A set of output expressions R
Output: A list of sql queries SQLList

1 Initialize SQLList = ∅;
2 for (each r ∈ R) do
3 Initialize SQL = ∞;
4 if (r is an attribute node) then
5 PathExp← pathExpOfParentNode(r);
6 else
7 PathExp← r.absExp;

8 PathIDs← getAllPathID(PathExp);
9 Level ← getNodeLevel(PathExp);

10 Source = r.dsName;
11 SQL.genSQL(PathIDs, Level, Source);
12 Add SQL into SQLList;

13 return SQLList

Q with the expressions defined in the let clause (if any). The output of this
phase are a set of for clause items F , a set of where-expressions W, and a
set of output expressions R.In addition, we also determine the absolute path ex-
pressions of r ∈ R, c ∈ C, and b ∈ J . The absolute path expression of r
is denoted by r.absExp. For example, consider r1 = ($entry, “/name”) in Q3.
Then r1.absExp is “/uniprot/entry/name” as $entry is bound to the expression
“/uniprot/entry”.

4.2 Phase 2: OutputExp2SQL Translation

In this phase, the algorithm analyzes each output expression r ∈ R and gener-
ates an sql query for materializing the identifiers of the xml subtrees that satisfy r
(Line 03). An identifier of a node n in an xml tree D (denoted by nId) is one or
more attributes of n that can uniquely identify n in D. The materialized identifiers
of r are stored in a temporary relation PathU(DocId, nId). Note that we materialize
the identifiers instead of entire subtrees because it is more space-efficient (the size
of materialized identifier table is always smaller than or equal to the table contain-
ing entire materialized subtrees). Also, we do not need to materialize the level of
r explicitly as it can be computed on-the-fly in a pm-based storage approach. It is
worth mentioning that the identifier scheme is not tightly coupled to any specific
numbering scheme as any scheme that can uniquely identify nodes in an xml tree
can be used as an identifier. For instance, the preorder and dewey order values of
nodes can be used for region encoding and dewey number-based labeling schemes,
respectively [8].

Given a set of output expressions R, the outputExp2SQL algorithm depicted in
Algorithm 2 works as follows. For each output expression r ∈ R, the algorithm
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Algorithm 3: The whereExp2SQL algorithm.
Input: F , J , C, R
Output: A list of sql queries SQLList

1 Initialize SQLList = ∅;
2 for (each r ∈ R) do
3 for (each f ∈ F ) do
4 C f ← getNonJoinExp( f .var, C);
5 if ( f .var = r.var) then
6 SQL← translateWhereNonJoin(r, f , C f );
7 else
8 SQL← translateWhereJoin(r, f , C f , J);

9 SQL← INSERT INTO T “ +R.indexOf(r)+ “ ”+F .indexOf( f )+ “ ”
+SQL;

10 SQLList.add(SQL);

11 return SQLList

first determines whether r involves an attribute node (Line 04). If it does, then
the algorithm retrieves the absolute path expression of its parent node (Line 05).
Otherwise, the absolute path expression of r is used (Line 07). This expression is
stored in the variable PathExp. Based on PathExp, a set of path ids is retrieved from
the Paths table (Line 08). Also, the algorithm computes the node level of r using
PathExp. Then the sql query for materializing nodes satisfying r (PathU table) is
generated by exploiting the Paths, Attributes, and PathsContent relations.

4.3 Phase 3: WhereExp2SQL Translation

Here, we translate the where-expression into a list of sql queries. The result of
each sql query is stored in a temporary table that is an instance of the relation
TempTable(DocId, nId). This phase starts by distinguishing the join and non-join
expressions followed by invocation of the whereExp2SQL algorithm (Lines 04–05,
Algorithm 1). Intuitively, for each pair of output expression r and an item f of the
for clause expressions it generates an sql query. If r and f refer to the same data
source D then it generates a non-join query that evaluates the conditions specified in
the where-expression related to D. Otherwise, if r and f refer to different sources,
namely D1 and D2, respectively, then a join query is generated that satisfies the join
predicate(s) as well as non-join predicates on D2.

The whereExp2SQL algorithm is depicted in Algorithm 3. For each r ∈ R it
performs the following steps. For each f ∈ F , first, it retrieves C f ⊆ C, where
∀c ∈ C f c.var = f .var (Line 04). Then, it determines whether r and f are bound
to the same data source by comparing r.var and f.var. If r.var = f .var, then join
across data sources is not necessary. In this case, the algorithm will invoke the
translateWhereNonJoin algorithm (Line 06). Otherwise, it invokes the translate-
WhereJoin algorithm (Line 08). We shall elaborate on these algorithms later. The
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Algorithm 4: The translateWhereNonJoin algorithm.
Input: An output expression r, a for clause item f , C f

Output: An sql query SQL

1 Initialize selectClause, f romClause, whereClause, optionClause;
2 dataS← source(r.var);
3 for (i = 1 to |C f |) do
4 c = C f [i];
5 if (c is a condition on attribute) then
6 Generate sql statements for f romClause and whereClause;
7 else
8 Add sql statements to whereClause;

9 Add instance of PathsContent representing dataS to the f romClause;
10 if (i > 1) then
11 whereClause.add(evalTwig(c.absExp, C f [i − 1].absExp));

12 Add instances of PathsContent to f romClause;
13 whereClause.add(evalTwig(r.absExp, c.absExp));
14 Add nId, docId to selectClause;
15 SQL = selectClause + f romClause + whereClause;
16 return SQL

generated sql query is stored in a variable called SQL. Next, an INSERT statement
is appended to the generated sql query so that the results of the query can be di-
rectly stored in the temporary table. The modified SQL is then added to SQLList.

The translateWhereNonJoin Algorithm: Given a pair of (r, f ) representing the
same source, the translateWhereNonJoin algorithm (Algorithm 4) generates a non-
join sql query. For each where-expression c ∈ C f , the algorithm first checks
whether c is specified on an attribute. If it is, then it will add sql statements to
the where and from clauses of the translated sql query by exploiting the Paths and
Attributes relations (Line 06). These statements retrieve path ids based on c.absExp
satisfying the value conditions on the attributes. If c is not specified on an attribute
then these expressions are added to the where clause (Line 08). If there are more
than one conditions in C f , then it represents a twig query pattern. Consequently,
sql statement for evaluating the twig pattern is added using evalTwig procedure
(Line 10). Next, the algorithm specifies the condition between these expressions
and r using evalTwig procedure (Line 11) as we are interested in only those nodes
that satisfy the output expression. The PathU table is used for this purpose. The
generated sql query returns the identifiers of nodes satisfying r that satisfy expres-
sions in C f .

The translateWhereJoin Algorithm. Given a pair of (r, f ) representing two dif-
ferent sources, the translateWhereJoin algorithm (Algorithm 5) generates the join
query. First, the sql fragment for evaluation of non-join conditions on the source
represented by f is generated as we are interested in those joinable nodes that
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Algorithm 5: The translateWhereJoin algorithm.
Input: An output expression r, a for clause item f , C f , J
Output: An sql query SQL

1 Initialize selectClause, f romClause, whereClause, optionClause;
2 processExpressions(C f );
3 i = |C f | + 1;
4 J f ←J .getJoinExp( f );
5 Jr ←J .getJoinExp(r);
6 if (J f ∩ Jr = ∅) then
7 processJoinExp(J f .getS(), J f .getT(), i, C f [|C f |].absExp);
8 processJoinExp(Jr.getS(), Jr.getT(), i, C f [|C f |].absExp);
9 else

10 Jx = J f ∩ Jr;
11 processJoinExp(Jx.getS(), Jx.getT(), i, C f [|C f |].absExp);

12 i = i + 1;
13 Add instances of PathsContent relation to f romClause;
14 whereClause.add(evalTwig(r.absExp, T.absExp));
15 Add nId, docId to selectClause;
16 SQL = selectClause + f romClause + whereClause;
17 return SQL

satisfy the predicates on this source. The steps for this are encapsulated in the pro-
cessExpression function and are same as the ones in Lines 03–11 of Algorithm 4.
The next step is to general the sql fragment for the join expressions (Lines 04–11).
First, the algorithm creates two subsets of J , namely J f and Jr, containing sets
of join expressions involving the sources of f and r, respectively (Lines 04–05). If
(J f ∩ Jr = ∅), then the algorithm processes each of the join expressions by in-
voking the processJoinExp algorithm twice (Lines 07–10). The functions getS and
getT return the S and T components of a join expression S op T , respectively (see
Definition 1). Let us elaborate on this scenario with an example. Consider a query
Q that contains f .var ∈ { f1, f2, f3}. Let J in Q contains two join expressions,
namely S1 = T and S2 = T where S1, S2, and T are path expressions representing
three different data sources and contain f2.var, f3.var, and f1.var, respectively. Let
R = {r} where r.var = f3.var. Now consider the pair (r, f2) in the context of Algo-
rithm 5. Here J f = {“S1 = T ”} and Jr = {“S2 = T ”}. Since J f ∩ Jr = ∅, Lines
07–08 are executed. In this case, the algorithm processes the join between S1 and
T first followed by the join between S2 and T . Note that there is no join expression
of the form “S1 = S2”. On the other hand, if (J f ∩ Jr , ∅), then the algorithm
will retrieve the common join expressions (denoted by Jx) between J f and Jr,
and process them by invoking the processJoinExp procedure (Lines 11). To elab-
orate further, consider the pair (r, f1) in the context of the above example. Here
J f = Jr = {“S1 = T ”}. Hence, Line 11 is executed. The objective of processJoin-
Exp procedure is to generate the sql fragments involving the join expressions. For
each join expression S op T , it checks the type of node (attribute or element) in
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S and T and corresponding sql fragments are added to where and from clauses.
Lastly, Algorithm 5 evaluates the twig fragment consisting of the join expression
and the output expression r using evaluateTwig procedure. Note that this procedure
is similar to the one discussed in the context of TranslateWhereNonJoin algorithm.

Example 2 Consider the query Q3 in Example 1. Consider the scenario when
r1 = “$entry/name” and f1 = “$entry”. In this case, the set of non-join ex-
pressions are C f = {$entry/organism/name = ‘HUMAN’, $entry/@created
= ‘2001’} (Line 4, Algorithm 3). Since the document sources of r1 and f1 are
identical ($entry), the algorithm concludes that no join is needed and invokes the
translateWhereNonJoin algorithm. When f2 = “$ip”, then C f = {$ip/pub list
/publication/journal =‘Structure’, $ip/pub list /publication/

year =‘2002’}. As the data sources of r1 and f2 are now different, join is re-
quired. In this case, b = “$ip/@id = $entry/dbReference/@id”. Conse-
quently, the algorithm invokes the translateWhereJoin procedure.

Similarly, the above steps are repeated for r2 = “$ip/name”. Now the data
sources are different for f1. Hence, join operation is needed using the join ex-
pression b. As a result, the algorithm invokes translateWhereJoin. Lastly, for f2
the sources of r2 and f2 are identical. Consequently, translateWhereNonJoin is
invoked.

4.4 Phase 4: Final Results Generator

Finally, this phase generates a set of sql queries for retrieving the final results
in two steps. The first step is to combine the results of sql queries generated
in Phase 3 (Line 02). Note that the results of these queries can be combined by
performing intersection operation over them. The results of the sql queries gen-
erated in this step are sets of identifiers satisfying the output expression r stored
in the PathUFinal(DocId, nId) table. In the second step the algorithm retrieves com-
plete information related to these nodes (remaining attributes in PathsContent) for
generating the final result. Specifically, it generates an sql query by joining the
PathUFinal and PathsContent tables. The results are sorted in document order.

Theorem 1 Let Q = (F ,L,W,R) be a multi-source star twig query involving
n different data sources. Let p be the number of output expressions in R that do
not contain attribute nodes. Let q be the number of output expressions in R that
contain attribute nodes. Then, the total number of sql queries generated from Q is
(n + 3)p + (n + 4)q.

Proof 1 In Phase 2, the algorithm generates (p + q) sql queries. Note that |R| =
p + q. Furthermore, (n×(p + q)) sql queries are generated in Phase 3. The last
phase results (2p + 3q) sql queries. The total number of sql queries generated
from Q is (p + q) + (np + nq) + (2p + 3q) = (n + 3)p + (n + 4)q. �
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Figure 4: Encoding scheme of sucxent++.

5 Implementing Star Twig Query Evaluation on SUCX-
ENT++

In this section, we shall elaborate on how our proposed star twig query eval-
uation algorithm introduced in the preceding section is implemented on a path
materialization-based (pm) xml storage scheme. We begin by briefly describing a
pm-based storage scheme called Sucxent++ [2,18], which we shall be using as the
framework for evaluating star twig queries.

5.1 SUCXENT++

We begin by providing an overview of the encoding scheme used in Sucxent++
for xml trees. Note that the scheme does not require a relational back-end to sup-
port sql/xml standard or xml data type. Consider Figure 4. Each level ℓ of a xml
tree is associated with an attribute called RValue (denoted as Rℓ). Each leaf el-
ement node n is associated with four attributes, namely LeafOrder, BranchOrder,
DeweyOrderSum, and SiblingSum. Each non-leaf element node n′ is implicitly as-
signed the DeweyOrderSum of the first descendant leaf node for reasons discussed
later. Each attribute node (denoted as ai) is associated with AttrOrder, LeafOrder of
its parent node, and its PathId. We now elaborate on these attributes in the context
of the relational schema of Sucxent++.

The schema of Sucxent++ [2, 18] is as follows.

• Document(Docid,Name)
• Path(PathId,PathExp)
• PathValue(DocId,DeweyOrderSum,PathId,BranchOrder, LeafOrder,SiblingSum, LeafValue)
• Attribute(DocId, LeafOrder,PathId, LeafValue,AttrOrder)
• DocumentRValue(DocId, Level,RValue)

Document stores the document identifier Docid and the name Name of a given
input xml document D. We associate each distinct root-to-leaf path appearing in D,
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PathID PathExp
1 .uniprot#.entry#.@created#
2 .uniprot#.entry#.name#
3 .uniprot#.entry#.organism#.name#
4 .uniprot#.entry#.dbReference#.@type#
5 .uniprot#.entry#.dbReference#.@id#
6 .uniprot#.entry#.dbReference#

DocID Level RValue
1 1 4
1 2 1
1 3 1

DocID
Leaf

Order
PathID

Attr
Order

LeafValue

1 1 1 1 1991
1 3 4 2 InterPro
1 3 5 3 IPR710
1 4 4 4 EMBL
1 4 5 5 X14312
1 5 1 6 2001
1 7 4 7 PDB
1 7 5 8 1BV8
1 8 4 9 InterPro
1 8 5 10 IPR123
1 9 1 11 2001
1 11 4 12 H-InvDB
1 11 5 13 HIX002
1 12 4 14 KEGG
1 12 5 15 hsa:2

DocID
Leaf

Order
Branch
Order

PathID
Dewey
Order
Sum

Sibling
Sum

LeafValue

1 1 0 2 0 0 12S1_ARATH

1 2 2 3 1 0 HUMAN

1 3 2 6 2 0 NULL

1 4 2 6 3 1 NULL

1 5 1 2 7 7 14332_ORYSJ

1 6 2 3 8 7 HUMAN

1 7 2 6 9 7 NULL

1 8 2 6 10 8 NULL

1 9 1 2 14 14 A2MG_HUMAN

1 10 2 3 15 14 HUMAN

1 11 2 6 16 14 NULL

1 12 2 6 17 15 NULL

Uniprot_DocumentRValue

Uniprot_Path

Uniprot_Attribute

Uniprot_PathValue

Figure 5: Storage of shredded xml document in Figure 1(a).

DocID Level RValue
1 1 77
1 2 10
1 3 2
1 4 1

PathID PathExp
1 .interprodb#.interpro#.@id#
2 .interprodb#.interpro#.name#
3 .interprodb#.interpro#.pub_list#.publication#.journal#
4 .interprodb#.interpro#.pub_list#.publication#.year#

DocID LeafOrder PathID AttrOrder LeafValue
1 1 1 1 IPR100
1 6 1 2 IPR123
1 9 1 3 IPR500
1 14 1 4 IPR710

DocID
Leaf

Order
Brach
Order

PathID
Dewey
Order
Sum

Sibling
Sum

LeafValue

1 1 0 2 0 0 Kringle
1 2 2 3 19 0 J. Mol. Evol.
1 3 4 4 20 0 1987
1 4 3 3 22 3 Structure
1 5 4 4 23 3 2002
1 6 1 2 153 153 PAS
1 7 2 3 172 153 Structure
1 8 4 4 173 153 2002
1 9 1 2 306 306 P2Y4 purinoceptor
1 10 2 3 325 306 Protein Eng.
1 11 4 4 326 306 1994
1 12 3 3 328 309 Cell. Signal
1 13 4 4 329 309 2000
1 14 1 2 459 459 Carboxyl transferase
1 15 2 3 478 459 Nature
1 16 4 4 479 459 2001
1 17 3 3 481 462 Science
1 18 4 4 482 462 2000

Interpro_DocumentRValue

Interpro_Path

Interpro_Attribute

Interpro_PathValue

Figure 6: Storage of shredded xml document in Figure 1(b).

namely PathExp, with an identifier PathId and store this information in Path table.
Essentially each path is a concatenation of the labels of the elements in the path
from the root to the leaf. An example of the Path table containing the root-to-leaf
paths of Figure 1(b) is shown in Figure 6. Note that we use ‘#’ as a delimiter of
steps in the paths instead of ‘/’ for reasons described in [22].

For each element leaf node n in D, we shall create a tuple in the PathValue
table which stores the LeafOrder, BranchOrder, DeweyOrderSum, and SiblingSum
values of n. The data value of n is stored in LeafValue. We now elaborate on these
attributes. Given two element leaf nodes n1 and n2, n1.LeafOrder < n2.LeafOrder
iff n1 precedes n2 in document order. LeafOrder of the first leaf node in D is 1
and n2.LeafOrder = n1.LeafOrder+1 iff n1 is a leaf node immediately preceding n2.
For example, the superscript of each leaf element node in Figure 1 denotes its
LeafOrder value. Given two element leaf nodes n1 and n2 where n1.LeafOrder+1 =
n2.LeafOrder, n2.BranchOrder is the level of the nearest common ancestor (nca) of
n1 and n2. Note that the BranchOrder of the first leaf node is 0.

The BranchOrder has an interesting property. Let s be a non-leaf node at level
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ℓ. Let n1 be the first descendant leaf node of s. Then, except for n1, BranchOrder
values of all the descendant leaf nodes of s are at least ℓ. The BranchOrder of n1 is
less than ℓ. Observe that the nca of n1 and its immediately preceding leaf node is
not a descendant of s. This property will be exploited later to implicitly encode the
non-leaf nodes.

Each level ℓ of an xml tree is associated with an attribute called RValue (de-
noted as Rℓ). We first introduce the notion of maximal k-consecutive leaf-node
list which is used to define RValue. Consider a list of consecutive leaf node S:
[n1, n2, n3, . . . , nr] in D. Let k ∈ [1,Lmax] where Lmax is the largest level of D.
Then, S is called a k-consecutive leaf-node list of D iff ∀0 < i ≤ r ni.BranchOrder
≥ k. S is called a maximal k-consecutive leaf-node list, denoted as Mk, if there
does not exist a k-consecutive leaf-node list S′ such that |S|<|S′|. For example, M2
in Figure 1(b) contains four leaf nodes as |S| = 4 for M2.

The RValue of level ℓ, denoted as Rℓ, is defined as follows: (i) If ℓ = Lmax − 1
then Rℓ = 1; (ii) If 0 < ℓ < Lmax − 1 then Rℓ = 2Rℓ+1 × |Mℓ+1| + 1. For example,
consider Figure 1(b). Here Lmax = 5. The values of |M1|, |M2|, |M3|, and |M4|
are 17, 4, 3, and 1, respectively. Then, R4 = 1, R3 = 2 × 1 × |M4| + 1 = 3,
R2 = 2 × 3 × |M3| + 1 = 19, and R1 = 2 × 19 × |M2| + 1 = 153. In order
to facilitate evaluation of XPath queries, the RValue attribute in DocumentRValue
stores Rℓ−1

2 + 1 instead of Rℓ (denoted as R′ℓ). For instance, in Figure 6 the RValue
of level 1 is stored as 77 instead of 153.

DeweyOrderSum is used to encode a node’s order information together with its
ancestors’ order information using a single value. Let parent(w) denote the parent
of an node w. Consider a leaf node n at level ℓ in D. Then, for 1 < k ≤ ℓ, Ord(n, k)
= i iff (i) there exists an node a at level k which is either an ancestor of n or n itself;
and (ii) a is the i-th child of parent(a). For example, consider the rightmost year
leaf node in Figure 1(b) (denoted as d). Ord(d, 2) = 4 as the node b in the second
level is an ancestor of d as well as the fourth child of the root. Similarly, Ord(d, 3)
= 2.

Then DeweyOrderSum of n, n.DeweyOrderSum, is defined as
∑ℓ

j=2 Φ( j) where
Φ( j)=[Ord(n, j)-1]×R j−1. The DeweyOrderSum of the first leaf node is 0. Con-
sider the rightmost leaf node in Figure 1(b). It has a Dewey path “1.4.2.2.2”.
DeweyOrderSum of this node is: n.DeweyOrderSum = (Ord(n, 2) − 1) × R1 +

(Ord(n, 3) − 1) × R2 + (Ord(n, 4) − 1) × R3 + (Ord(n, 5) − 1) × R4 = 3 × 153 +
1 × 19 + 1 × 3 + 1 × 1 = 482. The DeweyOrderSum of remaining nodes are shown
in the DeweyOrderSum attribute of the PathValue table in Figure 6. The SiblingSum
is used to compute position-based predicates with name tests. We do not elaborate
further as it is beyond the scope of the paper.

Comparison of ordering of non-leaf nodes: Sucxent++’s strategy for com-
paring the order of non-leaf nodes is based on the following observation. If node n0
precedes (resp. follows) another node n1, then descendants of n0 must also precede
(resp. follow) the descendants of n1. Therefore, instead of comparing the order be-
tween non-leaf nodes, the order between their descendant leaf nodes is compared.
For this reason, the first descendant leaf node of a non-leaf node n is defined as
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the representative leaf node of n. Here the property of BranchOrder as discussed
earlier is exploited to identify the first descendant leaf node. The DeweyOrderSum
of the representative leaf node is conceptually propagated to its ancestor non-leaf
nodes. Hence, each non-leaf node is implicitly assigned the DeweyOrderSum of
the first descendant leaf node. Note that these values are not stored explicitly in
Sucxent++ as they can be retrieved from the DeweyOrderSum of representative
leaf nodes.

Lastly, the Attribute table stores the attribute nodes. As a non-leaf node can
be represented by the first descendant leaf nodes, an attribute node is identified
by DocId and LeafOrder of parent node and its PathId. In addition to these at-
tributes, we store another attribute called AttrOrder to encode the total ordering of
the attributes in the entire xml document. Given two attribute nodes n1 and n2,
n1.AttrOrder < n2.AttrOrder iff n1 precedes n2 in document order. AttrOrder of the
first attribute node is 1 and n2.AttrOrder = n1.AttrOrder+1 iff n1 is an attribute node
immediately preceding n2.

Figure 6 depicts an example of storage of xml representation of Interpro data
source (Figure 1(b)) in Sucxent++. Note that for each data source, we create an
instance of the schema. We store large text content (e.g., protein sequences) in a
separate relation called TextContent that has same schema as PathValue.

Computation of NCA. We now briefly discuss how to compute the nca of two
nodes efficiently in Sucxent++ using the following lemma and theorem.

Lemma 1 Let n1 and n2 be two distinct leaf nodes in an xml tree. If |n1.DeweyOrderSum
- n2.DeweyOrderSum| < Rℓ−1

2 + 1 then the level of the nca is greater than ℓ. �

Theorem 2 Let n1 and n2 be two distinct leaf nodes in an xml tree and ℓ > 0. If
Rℓ+1−1

2 + 1 ≤|n1.DeweyOrderSum - n2.DeweyOrderSum| < Rℓ−1
2 + 1 then the level of

the nca of n1 and n2 is ℓ + 1. �

The reader may refer to [2] for proofs. Consider the last leaf node in Fig-
ure 1(b) (denoted by d). The DeweyOrderSum of this node is 482. Let X be the
DeweyOrderSum of leaf nodes that have nca at level 4. Using the above theorem,
X falls within the following range: (R4 − 1)/2 + 1 ≤ |X − 482| < (R3 − 1)/2 + 1
⇒ 1 ≤ |X − 482| < 2 which returns the 17th leaf node (DeweyOrderSum is 481).
Similarly, when the nca is at level 3 the 15th and 16th nodes are returned as they
satisfy (R3 − 1)/2 + 1 ≤ |X − 482| < (R2 − 1)/2 + 1⇒ 2 ≤ |X − 482| < 10. Note
that Theorem 2 can also be used for internal nodes as Sucxent++ represents each
internal node with its first descendant leaf node.

Corollary 1 Let n1 and n2 be two distinct leaf nodes in an xml tree. If
|n1.DeweyOrderSum - n2.DeweyOrderSum| ≥ R1−1

2 + 1 then the nca of n1 and n2
is the root node. �

For example, consider the leaf nodes with LeafOrder values 2 and 6 (in Fig-
ure 1(b)) and DeweyOrderSums 19 and 153, respectively. Since 153− 19 > 77, the
nca is the root node (interprodb).
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01 INSERT INTO PathU_1

02 SELECT DOCID, DEWEYORDERSUM 

FROM UNIPROT_PATHVALUE

03 WHERE PATHID IN (2) 

04   AND BRANCHORDER < 3;

05 INSERT INTO PathU_2

06 SELECT DOCID, DEWEYORDERSUM 

FROM INTERPRO_PATHVALUE

07 WHERE PATHID IN (2) 

08   AND BRANCHORDER < 3;

01 INSERT INTO T_1_1

02 SELECT DISTINCT V3.DOCID, V3.DEWEYORDERSUM

03 FROM  UNIPROT_ATTRIBUTE A1, UNIPROT_PathValue V1 , UNIPROT_PathValue V2, PathU_1 V3

04 WHERE A1.PATHID IN (1) AND A1.LEAFVALUE = '2001'  

05   AND A1.LEAFORDER = V1.LEAFORDER

06   AND V2.PATHID IN (3) AND V2.LEAFVALUE = 'HUMAN '

07   AND V2.DeweyOrderSum BETWEEN V1.DeweyOrderSum –

CAST(4 as BIGINT) + 1 AND V1.DeweyOrderSum + CAST(4  as BIGINT) – 1

08   AND V3.DeweyOrderSum BETWEEN V2.DeweyOrderSum –

CAST(4 as BIGINT) + 1 AND V2.DeweyOrderSum + CAST(4  as BIGINT) – 1

09 OPTION (FORCE ORDER); 

01 INSERT INTO T_1_2

02 SELECT DISTINCT V5.DOCID, V5.DEWEYORDERSUM

03 FROM INTERPRO_PATHVALUE V1, INTERPRO_PathValue V 2, 

INTERPRO_PathValue V3, INTERPRO_ATTRIBUTE A3, 

UNIPROT_ATTRIBUTE A4, UNIPROT_PathValue V4, 

PathU_1 V5

04 WHERE V1.PATHID IN (3) AND V1.LEAFVALUE = 'Struc ture'

05   AND V2.PATHID IN (4) AND V2.LEAFVALUE = '2002'

06   AND V2.DeweyOrderSum BETWEEN 

V1.DeweyOrderSum - CAST(10 as BIGINT) + 1

AND V1.DeweyOrderSum + CAST(10 as BIGINT) – 1

07   AND V3.DeweyOrderSum BETWEEN 

V2.DeweyOrderSum - CAST(77 as BIGINT) + 1

AND V2.DeweyOrderSum + CAST(77 as BIGINT) – 1

08   AND A3.LEAFORDER = V3.LEAFORDER AND A3.PATHID IN (1)

09   AND A3.LEAFVALUE = A4.LEAFVALUE AND A4.PATHID IN (5)

10   AND A4.LEAFORDER = V4.LEAFORDER

11   AND V5.DeweyOrderSum BETWEEN 

V4.DeweyOrderSum - CAST(4 as BIGINT) + 1

AND V4.DeweyOrderSum + CAST(4 as BIGINT) – 1

12 OPTION (FORCE ORDER); 

(a) Phase 2: Generate SQL Queries (b) Phase 3: Generate SQL Query (1)

(c) Phase 3: Generate SQL Query (2)

01 INSERT INTO T_2_2

02 SELECT DISTINCT V3.DOCID, V3.DEWEYORDERSUM

03 FROM INTERPRO_PATHVALUE V1, INTERPRO_PathValue V 2, PathU_2 V3

04 WHERE V1.PATHID IN (3) AND V1.LEAFVALUE = 'Struc ture' AND V2.PATHID IN (4) AND V2.LEAFVALUE = '2002 '

05   AND V2.DeweyOrderSum BETWEEN V1.DeweyOrderSum - CAST(10 as BIGINT) + 1 AND 

V1.DeweyOrderSum + CAST(10 as BIGINT) – 1

06   AND V3.DeweyOrderSum BETWEEN V2.DeweyOrderSum - CAST(77 as BIGINT) + 1 AND 

V2.DeweyOrderSum + CAST(77 as BIGINT) – 1

07 OPTION (FORCE ORDER); 

01 INSERT INTO T_2_1

02 SELECT DISTINCT V5.DOCID, V5.DEWEYORDERSUM

03 FROM UNIPROT_ATTRIBUTE A1, UNIPROT_PATHVALUE V1,  

UNIPROT_PathValue V2, UNIPROT_PathValue V3, 

UNIPROT_ATTRIBUTE A3, INTERPRO_ATTRIBUTE A4, 

INTERPRO_PathValue V4, PathU_2 V5

04 WHERE A1.PATHID IN (1) AND A1.LEAFVALUE = '2001'  

05   AND A1.LEAFORDER = V1.LEAFORDER

06   AND V2.PATHID IN (3) AND V2.LEAFVALUE = 'HUMAN '

07   AND V2.DeweyOrderSum BETWEEN 

V1.DeweyOrderSum - CAST(4 as BIGINT) + 1 AND

V1.DeweyOrderSum + CAST(4 as BIGINT) – 1

08   AND V3.DeweyOrderSum BETWEEN 

V2.DeweyOrderSum - CAST(4 as BIGINT) + 1 AND

V2.DeweyOrderSum + CAST(4 as BIGINT) – 1

09   AND A3.LEAFORDER = V3.LEAFORDER AND A3.PATHID IN (5)

10   AND A3.LEAFVALUE = A4.LEAFVALUE AND A4.PATHID IN (1)

11   AND A4.LEAFORDER = V4.LEAFORDER

12   AND V5.DeweyOrderSum BETWEEN 

V4.DeweyOrderSum - CAST(77 as BIGINT) + 1 AND

V4.DeweyOrderSum + CAST(77 as BIGINT) – 1

13 OPTION (FORCE ORDER); 

(d) Phase 3: Generate SQL Query (3)

(e) Phase 3: Generate SQL Query (4)

Figure 7: Generated sql queries.

Note that the above theorem and corollary involve non-identical elements. When
the pair of elements are identical, then the nca is computed as follows. (a) If n1 and
n2 are non-leaf elements and their representative leaf elements are identical, then
the level of the nca of n1 and n2 is MIN(level(n1), level(n2)). (b) Suppose that n1
is a non-leaf element and n2 is a leaf element. If the representative leaf element of
n1 is identical to n2, then the level of the nca of these elements is the level of n1.
(c) If n1 and n2 are identical leaf elements then the nca level is the level of n1 or n2.

5.2 Translation to A List of SQL

We now describe how the list of sql queries are generated in Sucxent++. Specif-
ically, we focus on Phases 2 to 4 of our proposed algorithm. Note that the Paths,
PathsContent, and Attributes relations introduced in Section 4 refer to Path, PathValue,
and Attribute relations in Sucxent++, respectively. In the sequel, we preprocess the
PathId and RValue to reduce the number of joins in the translated sql queries.
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(i) Output Node: $entry/name (j) Output Node: $ip/name

Figure 8: The generated temporary relations and final results.

Phase 2: OutputExp2SQL Translation. Recall that in this phase, the algorithm
analyzes each output expression r ∈ R and generates an sql query for materializing
the identifiers of the xml subtrees that satisfy r. Since the relational backend is
based on Sucxent++, for a given document we use the DeweyOrderSum attribute
as the identifier of a leaf node. If r is an internal node, then the level information
of r (using BranchOrder) and DeweyOrderSum attribute of its left-most descendant
leaf node is used as its identifier. Recall that the BranchOrder of the left-most
descendant leaf node is less than the level of r. For an attribute node, the identifier
of its parent node is used. The materialized identifiers of r are stored in a temporary
relation PathU(DocId,DeweyOrderSum). We do not need to materialize the level of
r explicitly as it can be computed on-the-fly. The sql query for materializing nodes
satisfying r is generated using the following query template QT1:

INSERT INTO PATHU
SELECT DocID,DeweyOrderSum
FROM [Source] PATHVALUE
WHERE PathID IN ([PathIDs])

AND BranchOrder < [Level]

Note that [param] in QT1 is replaced by the value of param from the algorithm.

Example 3 Reconsider Q3 and Algorithm 2. We have two output expressions
r1 = {$entry, “/name”} and r2 = {$ip, “/name”}. Consider r1. The algorithm
sets PathExp to “/uniprot/entry/name”. As r1 is not an attribute node, it will
fetch a set of path ids from the Path table that matches PathExp. Consequently,
PathIDs={2}. Here the Level is equal to 3. The generated sql query for mate-
rializing nodes satisfying r1 is shown in Lines 01–04 of Figure 7(a). Similarly,
Lines 05–08 represent the query for materializing r2. Figures 8(a) and (b) depict
two tables generated by the sql statement in Figure 7(a). Note that this phase can
be efficiently evaluated as typically the size of the Path table is relatively small.
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Algorithm 6: The translateWhereNonJoin algorithm on Sucxent++.
Input: An output expression r, a for clause item f , C f

Output: An sql query SQL

1 Initialize selectClause, f romClause, whereClause, optionClause;
2 dataS← source(r.var);
3 for (i = 1 to |C f |) do
4 c = C f [i];
5 if (c is a condition on attribute) then
6 whereClause.add(“A” +i + “.PathId IN (“+ getPathId(c.absExp) + ”)

”);
7 whereClause.add(“A” +i + “.LeafValue” + c.op + “ ” + c.val);
8 whereClause.add(“A” +i + “.LeafOrder = “V” + i + “.LeafOrder”);
9 f romClause.add(dataS + “ Attribute A” + i);

10 else
11 whereClause.add(“V” +i + “.PathId IN (“+ getPathId(c.absExp) + ”)

”);
12 whereClause.add(“V” +i + “.LeafValue” + c.op + “ ” + c.val);

13 f romClause.add(dataS + “ PathValue V” + i);
14 if (i > 1) then
15 whereClause.add(evalTwig(c.absExp, C f [i − 1].absExp));
16 if (more than one documents in the collection) then
17 f romClause.add(dataS + “ DocumentRValue R” + i);

18 f romClause.add(“PathU ” + r + “V” + (i + 1));
19 whereClause.add(evalTwig(r.absExp, c.absExp));
20 if (more than one documents in the collection) then
21 f romClause.add(dataS + “ DocumentRValue R” + (i + 1));

22 selectClause.add(“V” + (i + 1) + “.DocID, V” + (i + 1) + “.DeweyOrderSum”);
23 optionClause.add(“Option (Force Order)”);
24 SQL = selectClause + f romClause + whereClause + optionClause;
25 return SQL

Phase 3: WhereExp2SQL Translation. In this phase, we translate the where-
expression into a list of sql queries. Recall that it consists of the translateWhereNon-
Join and translateWhereJoin procedures. We now elaborate on how these two pro-
cedures are implemented on Sucxent++.

The translateWhereNonJoin Algorithm: Given a pair of (r, f ) representing the
same source, the Algorithm 6 generates a non-join sql query. For each where-
expression c ∈ C f , the algorithm first checks whether c is specified on an attribute.
If it is, then it will add sql statements to the where and from clauses of the trans-
lated sql query (Lines 06-09). Note that the getPathID function in Lines 06 and 11
is used to retrieve path ids based on c.absExp. Line 07 specifies the condition on
the LeafValue. The expression in Line 08 binds the attribute nodes to their parent
nodes. If c is not specified on an attribute then two sql expressions are added to
the where clause (Lines 11-12). If there are more than one conditions in C f , then
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Algorithm 7: The processJoinExp algorithm on Sucxent++.
Input: S and T of a join expression, table index i
Output: Updated f romClause, whereClause, and i

1 i = i + 1;
2 if (S.exp involves attribute node) then
3 whereClause.add(“A” +i + “.PathId IN (“+ getPathId(S.exp) + ”) ”);
4 whereClause.add(“A” +i + “.LeafOrder = “V” + i + “.LeafOrder”);
5 f romClause.add(source(S) + “ Attribute A” + i);
6 f romClause.add(source(S) + “ PathValue V” + i);
7 tempExp = “A” + i + “.LeafValue”;
8 else
9 whereClause.add(“V” +i + “.PathId IN (“+ getPathId(S.exp) + ”) ”);

10 f romClause.add(source(S) + “ PathValue V” + i);
11 tempExp = “V” + i + “.LeafValue”;

12 i = i + 1;
13 if (T.exp involves attribute node) then
14 whereClause.add(“A” +i + “.PathId IN (“+ getPathId(T.exp) + ”) ”);
15 whereClause.add(“A” +i + “.LeafOrder = “V” + i + “.LeafOrder”);
16 whereClause.add(tempExp + .op “A” + i + “.LeafValue”);
17 f romClause.add(source(T ) + “ Attribute A” + i);
18 f romClause.add(source(T ) + “ PathValue V” + i);
19 else
20 whereClause.add(“V” +i + “.PathId IN (“+ getPathId(T.exp) + ”) ”);
21 whereClause.add(tempExp + .op “V” + i + “.LeafValue”);
22 f romClause.add(source(T ) + “ PathValue V” + i);

23 return f romClause, whereClause, i

it represents a twig query pattern. Consequently, Theorem 2 can be used to effi-
ciently evaluate the twig pattern. Hence the algorithm translates Theorem 2 into
corresponding sql statements (Lines 14–17) using evalTwig procedure. Note that
as twig evaluation is orthogonal to star query processing, we do not elaborate on
this (See [2] for details).

Next, the algorithm specifies the condition between these expressions and r
using evalTwig procedure (Lines 18–21) as we are interested in only those nodes
that satisfy the output expressions. The PathU r table is used for this purpose. The
sql query generated by the translateWhereNonJoin algorithm will only return the
identifiers of nodes satisfying r that satisfy expressions in C f (Line 22). Finally,
Line 23 enforces the join order option because of performance benefits discussed
in [9, 18].

The translateWhereJoin Algorithm. The main step in this procedure is the pro-
cessJoinExp algorithm which is used to generate the sql fragments involving the
join expressions. Algorithm 7 outlines the implementation of this procedure on top
of Sucxent++. For each join expression S op T , it checks the type of node (at-
tribute or element) in S and T (Lines 2 and 13 in Algorithm 7) and corresponding
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01  INSERT INTO PATHUFINAL_1

02  SELECT A.* FROM

03     (SELECT * FROM T_1_1 INTERSECT  SELECT * FRO M T_1_2) AS A ;

04  INSERT INTO PATHUFINAL_2

05  SELECT A.* FROM

06     (SELECT * FROM T_2_1  INTERSECT  SELECT * FR OM T_2_2) AS A ;

07  SELECT V.DOCID, V.LeafOrder, V.DeweyOrderSum, V .PathID, V.LeafValue

08  FROM PATHUFINAL_1 AS P, UNIPROT_PATHVALUE V

09  WHERE V.PATHID IN (2)

10    AND V.DeweyOrderSum BETWEEN P.DeweyOrderSum - CAST(4 as BIGINT) + 1

AND P.DeweyOrderSum + CAST(4 as BIGINT) – 1

11  ORDER BY V.DOCID, V.DEWEYORDERSUM

12  OPTION (FORCE ORDER);

13  SELECT V.DOCID, V.LeafOrder, V.DeweyOrderSum, V .PathID, V.LeafValue

14  FROM PATHUFINAL_2 AS P, INTERPRO_PATHVALUE V

15  WHERE V.PATHID IN (2)

16    AND V.DeweyOrderSum BETWEEN P.DeweyOrderSum - CAST(77 as BIGINT) + 1

AND P.DeweyOrderSum + CAST(77 as BIGINT) – 1

17  ORDER BY V.DOCID, V.DEWEYORDERSUM

18  OPTION (FORCE ORDER);

Figure 9: Generated sql (Phase 4).

sql fragments are added to where and from clauses. Observe that the join between
two sources is specified in Line 16.

Example 4 For example, reconsider Example 2. Consider the scenario when r1 =

“$entry/name” and f1 = “$entry”. Since in this case no join is needed, the trans-
lateWhereNonJoin algorithm is invoked. This returns the sql query in Figure 7(b).
When f2 = “$ip”, the translateWhereJoin function is invoked which returns the
sql query in Figure 7(c). Similarly, for r2 = “$ip/name”, translateWhereJoin
and translateWhereNonJoin are invoked for f1 and f2, respectively, generating the
queries in Figures 7(d) and 7(e).

Phase 4: Final Results Generator. Finally, we generate a set of sql queries
for retrieving the final results of the query. In the first step we combine the re-
sults of sql queries generated in Phase 3 by performing intersection operation
over them. The results of the sql queries generated in this step are stored in the
PathUFinal r(DocId,DeweyOrderSum) table (Figures 8(g) and 8(h)). In the sec-
ond step complete information related to these nodes (remaining attributes in the
PathValue table) are retrieved for generating the final result. Note that if the output
expression r contains attribute nodes, then there will be two sql queries generated
for retrieving all result nodes. Otherwise, only one sql query is generated. The
resultant relations will be used to restructure the results according to the output
structure. Figure 9 depicts the final sql queries generated by Phase 4 for Q3.

Consider Q3 in Figure 2. Here n = 2, p = 2, and q = 0. Therefore, based on
Theorem 1, the number of sub-queries evaluated by our approach is (2+3)×2 = 10.
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QID Query

Q4

for $entry in fn:collection('UNIPROT')/uniprot/entr y,
$interpro in fn:collection('INTERPRO')/interprodb/i nterpro

let $ref2Interpro := $entry/dbReference[@type="Inte rPro"]/@id
where $entry/keyword = 'Cell wall' and $interpro/@i d = $ref2Interpro

and $interpro/pub_list/publication/journal = "Bioin formatics"
return $entry/protein;

Q5

for $entry in fn:collection('UNIPROT')/uniprot/entr y,
$interpro in fn:collection('INTERPRO')/interprodb/i nterpro

let $ref2Interpro := $entry/dbReference[@type="Inte rPro"]/@id
where $entry/keyword = 'Vision' and $entry/organism /name = 'Human'

and $interpro/pub_list/publication/journal = "Natur e" and $interpro/@id = $ref2Interpro
return $entry/gene;

Q9

declare namespace PDBx='http://deposit.pdb.org/pdbM L/pdbx.xsd';
for $entry in fn:collection('UNIPROT')/uniprot/entr y,

$pdb in fn:collection('PDB')/PDBx:datablock
let $ref2PDB := $entry/dbReference[@type="PDB"]/@id
where $entry/keyword = '3D-structure' and $entry/or ganism/name = 'Human'

and $pdb/PDBx:citationCategory/PDBx:citation/PDBx:y ear  = "2005" 
and $pdb/PDBx:cellCategory/PDBx:cell/@entry_id = $r ef2PDB

return $entry/sequence;

Q7

declare namespace PDBx='http://deposit.pdb.org/pdbM L/pdbx.xsd'; 
for $entry in fn:collection('UNIPROT')/uniprot/entr y,

$interpro in fn:collection('INTERPRO')/interprodb/i nterpro,
$pdb in fn:collection('PDB')/PDBx:datablock

let $ref2PDB := $entry/dbReference[@type="PDB"]/@id
let $ref2Interpro := $entry/dbReference[@type="Inte rPro"]/@id
where $entry/organism/name="Mouse" and $interpro/pu b_list/publication/journal = "Nature" 

and $interpro/@id = $ref2Interpro
and $pdb/PDBx:citationCategory/PDBx:citation/PDBx:c ountry  = "US" 
and $pdb/PDBx:cellCategory/PDBx:cell/@entry_id = $r ef2PDB

return $entry;

Q6

for $entry in fn:collection('UNIPROT')/uniprot/entr y,
$interpro in fn:collection('INTERPRO')/interprodb/i nterpro

let $ref2Interpro := $entry/dbReference[@type="Inte rPro"]/@id
where $entry/keyword = "Vision" and $entry/organism /name = "Human"

and $interpro/pub_list/publication/journal = "Natur e"
and $interpro/pub_list/publication/year = "1990" an d $interpro/@id = $ref2Interpro

return $entry/gene; 

Q10

for $entry in fn:collection('UNIPROT')/uniprot/entr y,
$embl in fn:collection('EMBL')/EMBL_Services/entry

let $ref2EMBL := $entry/dbReference[@type="EMBL"]/@ id
let $temp:=$embl/@created
where $entry/keyword = 'ATP-binding' and $entry/org anism/name = 'Human'

and fn:starts-with(xs:string($temp), '1996') and $e mbl/@accession= $ref2EMBL
return $entry/gene;

Q8

declare namespace PDBx='http://deposit.pdb.org/pdbM L/pdbx.xsd'; 
for $entry in fn:collection("UNIPROT")/uniprot/entr y,

$interpro in fn:collection("INTERPRO")/interprodb/i nterpro,
$pdb in fn:collection("PDB")/PDBx:datablock

let $ref2PDB := $entry/dbReference[@type="PDB"]/@id
let $ref2Interpro := $entry/dbReference[@type="Inte rPro"]/@id
where $entry/organism/name="Human" and $interpro/pu b_list/publication/journal = "Nature"

and $interpro/pub_list/publication/year = "2000"
and $pdb/PDBx:citationCategory/PDBx:citation/PDBx:c ountry  = "UK" 
and $pdb/PDBx:citationCategory/PDBx:citation/PDBx:y ear = "2002" 
and $interpro/@id = $ref2Interpro and $pdb/PDBx:cel lCategory/PDBx:cell/@entry_id = $ref2PDB

return $entry/gene; 
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Figure 10: Query set.
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Figure 11: Query evaluation times (in sec., log-scale).

6 Experimental Results

Prototype for star query evaluation system was implemented on top of a pm-based
xml database system called Sucxent++ [2, 18] (denoted by sx) using Java JDK
1.6. The experiments were conducted on an Intel machine with Core2 Duo E6550
2.33GHz processor and 3.25gb ram. The operating system was Windows XP Pro-
fessional SP3.

We compare our approach with xdb. For sx and xdb, appropriate indexes were
created. Prior to our experiments, we ensure that statistics had been collected. The
bufferpool of the rdbms was cleared before each run. The queries in sx were exe-
cuted in the reconstruct mode [21] where not only the internal nodes are selected,
but also all descendants of those nodes. Each query was executed 6 times and the
results from the first run were always discarded. All rows were fetched from the
answer set; however, they were not sent to output.

We would also like to observe how “far off” our approach is from one of
the fastest and scalable XQuery processor monetDB/XQuery [3], designed on top
of column-oriented store [4, 20]. Hence, we used the Windows version of mon-
etDB/XQuery (denoted as mx) downloaded from monetdb.cwi.nl/XQuery/Download/
index.html (Win32 builds) for our study.

6.1 Query Evaluation Times on Real Datasets

In our experiments, we used real datasets from life sciences domain as star twig
queries are prevalent in this domain. Specifically, we use the xml representations
of uniprot, pdb, interpro, and embl downloaded from their official websites. The
features of these datasets are given in Figure 3(a). We chose ten multi-source
star twig queries as shown in Figures 2 and 10 that join up to four data sources,
and have between three to nine expressions in the where clause. We transform
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QID

Z1

Query

for $entry in fn:collection('UNIPROT')/uniprot/entry, 
$interpro in fn:collection('INTERPRO')/interprodb/interpro

where $entry/keyword = '                 '  and $entry/organism/lineage/taxon = '             '
and $interpro/pub_list/publication/journal = "The Journal"
and $interpro/@id = $entry/dbReference[@type="InterPro"]/@id

return $entry/name;

Z2

for $entry in fn:collection('UNIPROT')/uniprot/entry, 
$interpro in fn:collection('INTERPRO')/interprodb/interpro

where $entry/keyword = '                 ' and $entry/organism/lineage/taxon = '              '
and $entry/gene/name= '           '
and $interpro/pub_list/publication/journal = "The Journal"
and $interpro/@id = $entry/dbReference[@type="InterPro"]/@id

return $entry/name;

Z3

for $entry in fn:collection('UNIPROT')/uniprot/entry, 
$interpro in fn:collection('INTERPRO')/interprodb/interpro

where $entry/keyword = '                 '  and $entry/organism/lineage/taxon = '             '
and $entry/gene/name= '           '
and $entry/reference/citation/authorList/person/@name = '              '
and $interpro/pub_list/publication/journal = "The Journal"
and $interpro/@id = $entry/dbReference[@type="InterPro"]/@id

return $entry/name;

QID

Y1

Query

for $entry in fn:collection('UNIPROT')/uniprot/entry, 
$interpro in fn:collection('INTERPRO')/interprodb/interpro

where $interpro/@id = $entry/dbReference[@type="InterPro"]/@id
and $entry/organism/lineage/taxon = 'The Taxon'
and $interpro/pub_list/publication/journal = '                ' 
and $interpro/pub_list/publication/year = '           '

return $entry/name ;

Y2

for $entry in fn:collection('UNIPROT')/uniprot/entry,   
$interpro in fn:collection('INTERPRO')/interprodb/interpro

where $interpro/@id = $entry/dbReference[@type="InterPro"]/@id
and $entry/organism/lineage/taxon = 'The Taxon'
and $interpro/pub_list/publication/journal = '               ' 
and $interpro/pub_list/publication/year = '           '
and $interpro/taxonomy_distribution/taxon_data/@name = '             '
return $entry/name ;

(b) Query Set 1

(d) Query Set 2

14MB 140MB 1.4GB

K 5 - 500 50 – 5,000 500 – 50,000

500KB 5MB 50MB

K 10 - 75 100 - 750 1,000 – 7,500

(a) Values of K (1) (c) Values of K (2)

TaxonKeyword

Keyword Taxon

Gene

Keyword Taxon

Gene
Person

Year
Taxon

Journal

Year

Journal

Figure 12: Synthetic query sets and the K parameter.

these queries to our model (Section 3) if necessary. Observe that the queries are
highly selective (small result size). In the next subsection, we shall investigate the
effect of increasing query result size (increasing size of temporary relations) on the
performance using synthetic data.

Figure 11 depicts the query evaluation times of sx and xdb. Note that we did not
show any results of mx as it is vulnerable to the virtual memory fragmentation in
Windows environment. Consequently, it failed to shred Uniprot xml (1.4gb in size).
Observe that sx significantly outperforms xdb for all queries. Q3 is not plotted for
xdb due to dnf (recall that the symbol dnf means that the query evaluation did not
finish in 30 mins). It is worth mentioning that unlike sx, xdb generates a single
query.

6.2 Query Evaluation Times on Synthetic Datasets

We now report results related to the experiments conducted on synthetic datasets.
The main objective here is to study the effects of the size of intermediate results
on the query evaluation times. We compare sx, xdb, and mx. Note that due to
the GDKmallocmax error in mx for some queries, we rewrote all queries in mx
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declare namespace PDBx='http://deposit.pdb.org/pdbML/pdbx.xsd';
for $entry in fn:collection('UNIPROT')/uniprot/entry, 

$interpro in fn:collection('INTERPRO')/interprodb/interpro,
$pdb in fn:collection('PDB')/PDBx:datablock

where $entry/keyword = '                 '  and $entry/organism/lineage/taxon = '             '
and $interpro/pub_list/publication/journal = "The Journal" and $interpro/@id = $entry/dbReference[@type="InterPro"]/@id
and $pdb/PDBx:cellCategory/PDBx:cell/@entry_id =$entry/dbReference[@type="PDB"]/@id

return $entry/name;

QID

W1

Query

W2

declare namespace PDBx='http://deposit.pdb.org/pdbML/pdbx.xsd';
for $entry in fn:collection('UNIPROT')/uniprot/entry, 

$interpro in fn:collection('INTERPRO')/interprodb/interpro,
$pdb in fn:collection('PDB')/PDBx:datablock

where $entry/keyword = '                 ' and $entry/organism/lineage/taxon = '              '  and $entry/gene/name= '           '   
and $interpro/pub_list/publication/journal = "The Journal"  and $interpro/@id = $entry/dbReference[@type="InterPro"]/@id
and $pdb/PDBx:cellCategory/PDBx:cell/@entry_id = $entry/dbReference[@type="PDB"]/@id

return $entry/name;

W3

declare namespace PDBx='http://deposit.pdb.org/pdbML/pdbx.xsd';
for $entry in fn:collection('UNIPROT')/uniprot/entry, 

$interpro in fn:collection('INTERPRO')/interprodb/interpro,
$pdb in fn:collection('PDB')/PDBx:datablock

where $entry/keyword = '                 ' and $entry/organism/lineage/taxon = '              '
and $entry/gene/name= '           '  and $entry/reference/citation/authorList/person/@name = '              '
and $interpro/pub_list/publication/journal = "The Journal"  and $interpro/@id = $entry/dbReference[@type="InterPro"]/@id
and $pdb/PDBx:cellCategory/PDBx:cell/@entry_id = $entry/dbReference[@type="PDB"]/@id

return $entry/name;

Keyword

Keyword Taxon Gene

Keyword Taxon

Gene Person

Taxon

declare namespace PDBx='http://deposit.pdb.org/pdbML/pdbx.xsd';
for $entry in fn:collection('UNIPROT')/uniprot/entry, 

$interpro in fn:collection('INTERPRO')/interprodb/interpro,
$pdb in fn:collection('PDB')/PDBx:datablock, 
$embl in fn:collection('EMBL')/EMBL_Services/entry

where $entry/keyword = '                 '  and $entry/organism/lineage/taxon = '             '
and $interpro/pub_list/publication/journal = "The Journal"  and $interpro/@id = $entry/dbReference[@type="InterPro"]/@id
and $pdb/PDBx:cellCategory/PDBx:cell/@entry_id = $entry/dbReference[@type="PDB"]/@id and $embl/@accession = $entry/dbReference[@type="EMBL"]/@id

return $entry/name;

QID

V1

Query

V2

declare namespace PDBx='http://deposit.pdb.org/pdbML/pdbx.xsd';
for $entry in fn:collection('UNIPROT')/uniprot/entry, 

$interpro in fn:collection('INTERPRO')/interprodb/interpro,
$pdb in fn:collection('PDB')/PDBx:datablock, 
$embl in fn:collection('EMBL')/EMBL_Services/entry

where $entry/keyword = '                 '  and $entry/organism/lineage/taxon = '             '  and $entry/gene/name= '            ' 
and $interpro/pub_list/publication/journal = "The Journal"  and $interpro/@id = $entry/dbReference[@type="InterPro"]/@id
and $pdb/PDBx:cellCategory/PDBx:cell/@entry_id = $entry/dbReference[@type="PDB"]/@id  and $embl/@accession = $entry/dbReference[@type="EMBL"]/@id

return $entry/name;

V3

declare namespace PDBx='http://deposit.pdb.org/pdbML/pdbx.xsd';
for $entry in fn:collection('UNIPROT')/uniprot/entry, 

$interpro in fn:collection('INTERPRO')/interprodb/interpro,
$pdb in fn:collection('PDB')/PDBx:datablock, 
$embl in fn:collection('EMBL')/EMBL_Services/entry

where $entry/keyword = '                 '  and $entry/organism/lineage/taxon = '             '
and $entry/gene/name= '           '  and $entry/reference/citation/authorList/person/@name = '              '
and $interpro/pub_list/publication/journal = "The Journal"  and $interpro/@id = $entry/dbReference[@type="InterPro"]/@id
and $pdb/PDBx:cellCategory/PDBx:cell/@entry_id = $entry/dbReference[@type="PDB"]/@id and $embl/@accession = $entry/dbReference[@type="EMBL"]/@id

return $entry/name;

Keyword

Keyword Taxon Gene

Keyword Taxon
Gene Person

Taxon

(a) Query Set 3

(b) Query Set 4

Figure 13: Synthetic query sets.

into sequential ones5. In sequential queries, non-join expressions are specified as
qualifiers in path expressions of for clause items instead of specifying them in the
where clause. In the sequel, we denote the mx system with the rewritten queries as
mx-r.

To the best of our knowledge, there does not exist any benchmark dataset de-
signed for evaluating star twig queries. Hence, we used Uniprot and Interpro
datasets and modified them accordingly (discussed below) so that the size of inter-
mediate results can be controlled. We set Uniprot as the output data source.

Varying intermediate results of Uniprot. We vary the size of Uniprot docu-
ments from 14mb to 1.4gb and fix the size of Interpro dataset to 50mb. We control
the intermediate result size by varying the number of subtrees (denoted as K) that

5This error occurred because the system cannot allocate certain amount of memory specified in the error
message.
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Figure 14: Query evaluation times (in sec., log-scale) on Uniprot.
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Figure 15: Query evaluation times (in sec., log-scale) on Interpro.
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matches a non-join twig query in the xml document(s). The variation of K for
different dataset sizes is depicted Figure 12(a). Figure 12(b) depicts the query set
used in this set of experiments. These queries are chosen by varying the number
of predicates on Uniprot dataset from 2 to 4. We vary the result size of the high-
lighted predicates in the where clause. For instance, in Z1 we vary the number of
subtrees (K) returned by the following non-join twig condition: $entry/keyword
=‘Keyword’ and $entry/organism/lineage/taxon =‘Taxon’.

Figure 14 reports the query evaluation times. Note that we do not compare mx
and/or mx-r in Figures 14(b) and 14(c) as it is vulnerable to the virtual memory
fragmentation. We can make the following observations. Firstly, the cost of query
evaluation increases with the size of intermediate results for all approaches. Sec-
ondly, sx performs better than xdb for all queries. For instance, sx is 158 times
faster than xdb for Z1 when K = 5, 000 (Figure 14(b)). Thirdly, for certain queries
sx is faster than mx. It is faster than mx for all queries for 14mb dataset (highest
observed factor being 14.8 times). On the other hand, mx-r is faster than sx for
13 out of 24 queries (highest observed factor being 17.9 times). Interestingly, sx
outperforms mx-r for remaining queries (up to 46 times faster). We also observe
that rewriting the queries to sequential ones in mx-r performs better than mx and it
can evaluate queries that previously cannot be evaluated by mx.

Varying intermediate results of Interpro. We now fix the Uniprot dataset size
to 140mb and vary the Interpro document sizes from 500kb to 50mb. The values
of K for this set of experiments are depicted Figure 12(c). Figure 12(d) presents
the query set. The numbers of predicates on Interpro dataset are set to 2 and 3
for Y1 and Y2, respectively. Figure 15 reports the query evaluation times. Similar
to above results, sx is faster than xdb for all queries (highest observed factor being
82.7 times). However, mx performs better than sx for all queries (up to 4.8 times
faster). Interestingly, we observe that mx-r cannot evaluate 10 out of 18 queries
because of GDKmallocmax error. For the remaining queries, sx outperforms mx-r
for 7 out of 8 queries (highest observed factor being 8.2 times). Hence, it is evident
that rewriting XQueries to sequential ones in mx-r may not always be a beneficial
strategy.

Varying number of data sources. Next, we vary the number of data sources
involved in joins. Note that this also varies the number of sub-queries generated
during the evaluation (Theorem 1). In addition, we also vary the intermediate
result size of nodes (subtrees) of uniprot satisfying output expressions as depicted
in Figure 12(a). We used query sets shown in Figures 13(a) and (b) joining three
and four data sources, respectively. Figures 16 and 17 show the evaluation times of
these queries. Note that we do not compare mx and mx-r in Figure 17 due to virtual
memory fragmentation problem. Also, the results of mx and mx-r in Figures 16(b)
and 17(a)–(b) are not shown because of GDKmallocmax error. Notice that sx is
faster than xdb for all queries. Furthermore, the number of data sources involved
in the join influences the query evaluation time in all approaches. On average, the
performance of sx becomes 2.16 and 3.76 times slower when the numbers of data
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sources are increased to three and four data sources, respectively. In the similar
case, xdb is, on average, 3.19 and 14.51 times slower (without considering dnf
queries).

Varying number of output expressions. In this set of experiments, we shall
present the evaluation times of queries with different numbers of output expres-
sions. We vary the values of p and q. Recall that p and q are the numbers of output
expressions inR that do not contain attribute nodes and that contain attribute nodes,
respectively. We use the query templates QT2 and QT3 as depicted in Figures 18(a)
and (b), respectively. Note that QT2 and QT3 join three and four data sources, re-
spectively. The “[ReturnClause]” in QT2 and QT3 will be replaced by the return
clauses shown in Figure 18(c).

Figure 19 depicts the evaluation times of the queries using query templates QT2
and QT3. Note that we do not show the results of mx and mx-r due to GDKmalloc-
max error. In Figure 19(a), we notice that sx outperforms xdb for 5 out of 9 queries
(highest observed factor being 1.83 times, without considering dnf). For the rest
of the queries, xdb is only up to 1.13 times faster than sx. We also observe that the
query evaluation times of xdb show anti-monotonic behavior. In Figure 19(b), sx
is faster than xdb for all queries (highest observed factor being 7.5 times).

Evaluation times of sub-queries. The above results confirm the strengths of our
approach. We now explore further the reasons behind such superior performance
by investigating the contributions made by individual sub-queries to the execution
costs of the translated sql queries. We chose Z2 and Y2 as our test queries. The
translated sql query of Z2 and Y2 each consists of five sub-queries (denoted as SQ1
to SQ5). SQ1 is used to fetch the identifiers of the output nodes (Phase 1). SQ2
and SQ3 materialize the results for non-join and join expressions (Phase 3). The
PathUFinal relation is generated by SQ4. SQ5 retrieves the complete subtrees in-
cluding the necessary attributes for reconstruction and all the descendant node if
the output node is an internal node. We evaluate the evaluation time of each sub-
query using sx as shown in Figure 20. Observe that relatively the most expensive
query is SQ3 for both cases. However, the evaluation time is still below 15s (sig-
nificantly lower than the evaluation times of xdb). On the other hand, SQ1, SQ2,
SQ4, and SQ5 are highly efficient for almost all cases. This is primarily due to (a)
efficient support of twig pattern evaluation in a pm-based xml storage approach, (b)
space-efficient storage of intermediate results of the queries, and (c) small queries
are less likely to stress the query optimizer.

7 Conclusions and Future Work

In this paper, we take a non-traditional approach in evaluating multi-source star
twig queries on top of a path-based tree-unaware xml database. Our scheme is
built on top of Sucxent++ [18]. We take a non-traditional approach in evaluating
such queries. Rather than generating one huge complex sql query, we translate a
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Figure 16: Query evaluation times (3 data sources, in sec.).
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Return Clause

xquery declare namespace PDBx='http://deposit.pdb.o rg/pdbML/pdbx.xsd'; 

for $entry in db2-fn:xmlcolumn('U1400.CONTENT')/uni prot/entry,

$interpro in db2-fn:xmlcolumn('INTERPRO.CONTENT')/i nterprodb/interpro,

$pdb in db2-fn:xmlcolumn('PDB.CONTENT')/PDBx:databl ock

let $ref2PDB := $entry/dbReference[@type="PDB"]/@id

let $ref2Interpro := $entry/dbReference[@type="Inte rPro"]/@id

where $interpro/@id = $ref2Interpro and $pdb/PDBx:c ellCategory/PDBx:cell/@entry_id = $ref2PDB

and $entry/keyword = "Phosphoprotein" and $entry/or ganism/name = "Human"

and $interpro/pub_list/publication/journal = "J. Bi ol. Chem."

and $pdb/PDBx:citationCategory/PDBx:citation/PDBx:c ountry  = "US" 

[ReturnClause][ReturnClause]

(a) Query Template QT2

S1 return <result><uniprot>{$entry/gene/name}</uniprot ></result>;

QID

S2
return <result><uniprot>{$entry/organism/name}</uni prot>

<interpro>{$interpro/pub_list/publication}</interpr o></result>;

S3
<result><uniprot>{$entry/organism/name}</uniprot>

<interpro>{$interpro/pub_list/publication}</interpr o>
<pdb>{$pdb/PDBx:pdbx_database_statusCategory}</pdb> </result>;

S4 return <result><uniprot>{$entry/name}</uniprot></re sult>;

S5
return <result><uniprot>{$entry/name}</uniprot>

<interpro>{$interpro/pub_list/publication}</interpr o></result>;

S6
return <result><uniprot>{$entry/name}</uniprot>

<interpro>{$interpro/pub_list/publication}</interpr o>
<pdb>{$pdb/PDBx:pdbx_database_statusCategory}</pdb> </result>;

S7 return <result><uniprot>{$entry/name}</uniprot><int erpro>{$interpro/name}</interpro></result>;

S8
return <result><uniprot>{$entry/name}</uniprot><int erpro>{$interpro/name}</interpro>

<pdb>{$pdb/PDBx:pdbx_database_statusCategory}</pdb> </result>;

S9
return <result><uniprot>{$entry/name}</uniprot><int erpro>{$interpro/name}</interpro>

<pdb>{$pdb/PDBx:citationCategory/PDBx:citation/PDBx :title}</pdb></result>;

(c) Return Clause
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declare namespace PDBx = 'http://deposit.pdb.org/pd bML/pdbx.xsd'; 
for $entry in fn:collection('UNIPROT')/uniprot/entr y,

$interpro in fn:collection('INTERPRO')/interprodb/i nterpro,
$embl in fn:collection('EMBL')/EMBL_Services/entry,
$pdb in fn:collection("PDB")/PDBx:datablock

let $ref2PDB := $entry/dbReference[@type="PDB"]/@id
let $ref2EMBL := $entry/dbReference[@type="EMBL"]/@ id
let $ref2InterPro := $entry/dbReference[@type="Inte rPro"]/@id
let $temp:=$embl/@created
where $entry/keyword = 'ATP-binding' and $entry/org anism/name = 'Human'

and $interpro/pub_list/publication/journal = 'Scien ce' and fn:starts-with(xs:string($temp), '1996')
and $pdb/PDBx:citationCategory/PDBx:citation/PDBx:c ountry="US" 
and $pdb/PDBx:cellCategory/PDBx:cell/@entry_id = $r ef2PDB
and $interpro/@id = $ref2InterPro and $embl/@access ion= $ref2EMBL

[ReturnClause][ReturnClause]

(b) Query Template QT3

Figure 18: Query Templates QT2 and QT3, and Various Return Clause.

star XQuery into a list of sql queries. This is surprising, because when only one sql
query is generated, it has the greatest potential for optimization by the rdbms. We
showed that by exploiting the encoding scheme of Sucxent++ as well as material-
izing only minimal information of underlying xml subtrees as intermediate results
we can “turbo-charge” star query processing. Though not elaborated in this paper,
it is easy to see that our approach is also applicable to a host of xml databases using
relational backend as well as wide varieties of complex xml queries. Our results
showed that our proposed technique has excellent real-world performance, outper-
forming xml join support of db2 for many queries. Although monetDB/XQuery is
often the best in terms of query performance [3], surprisingly, our results show that
our scheme outperforms it for several queries. As part of future work, we would
like to extend our approach to larger subset of xml queries.
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Figure 19: Query evaluation times (in sec.).
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