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ABSTRACT

Canned patterns (i.e., small subgraph patterns) in visual graph query
interfaces (a.k.a gui) facilitate efficient query formulation by en-
abling pattern-at-a-time construction mode. However, existing guis
for querying large networks either do not expose any canned pat-
terns or if they do then they are typically selected manually based
on domain knowledge. Unfortunately, manual generation of canned
patterns is not only labor intensive but may also lack diversity for
supporting efficient visual formulation of a wide range of subgraph
queries. In this paper, we present a novel generic and extensible
framework called Tattoo that takes a data-driven approach to
automatically selecting canned patterns for a gui from large net-
works. Specifically, it first decomposes the underlying network into
truss-infested and truss-oblivious regions. Then candidate canned
patterns capturing different real-world query topologies are gener-
ated from these regions. Canned patterns based on a user-specified
plug are then selected for the gui from these candidates by maxi-
mizing coverage and diversity, and by minimizing the cognitive load
of the pattern set. Experimental studies with real-world datasets
demonstrate the benefits of Tattoo. Importantly, this work takes a
concrete step towards realizing plug-and-play visual graph query
interfaces for large networks.

1 INTRODUCTION

A recent survey [39] revealed that graph query languages and us-
ability are considered as some of the top challenges for graph pro-
cessing. A common starting point for addressing these challenges is
the deployment of a visual query interface (a.k.a gui) that can enable
an end user to draw a graph query interactively by utilizing direct-

manipulation [41] and visualize the result matches effectively [1, 36].
A useful component of such a gui is a panel containing a set of
canned patterns (i.e., small subgraphs) which is beneficial to visual
querying in at least three possible ways [9, 26, 27]. First, it can
potentially decrease the time taken to visually construct a query by
facilitating pattern-at-a-time query mode (i.e., construct multiple
nodes and edges by performing a single click-and-drag action) in
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Figure 1: Q12 in BSBM and canned patterns.

lieu of edge-at-a-time mode. Second, it can facilitate “bottom-up”
search when a user does not have upfront knowledge of what to
search for. Third, canned patterns (patterns for brevity) may alle-
viate user frustration of repeated edge construction especially for
larger queries.

Example 1.1. Consider the real-world subgraph query in Figure 1
from bsbm [2] (QueryQ12). SupposeWei, a non-programmer, wishes
to formulate it using a gui containing a set of canned patterns (a
subset of patterns is shown). Specifically, he may drag and drop p2
and p3 on the Query Canvas, merge the yellow vertex of p3 with the
center vertex of p2, add a vertex and connect it with the grey vertex
of p2. Finally, Wei can assign appropriate vertex labels. Observe that
it requires five steps to construct the topology. On the other hand,
if Wei takes an edge-at-a-time approach to construct the query,
it would require 23 steps. Clearly, canned patterns enable more
efficient (i.e., fewer number of steps or lesser time) formulation of
the query.

It is worth noting thatWeimay not necessarily have the complete
query structure “in his head” during query formulation. Hemay find
p3 interesting while browsing the pattern set, which may initiate
his bottom-up search leading to the query. Clearly, without the
existence of a pattern set, such bottom-up searchwould be infeasible
in practice.

Data-driven selection of relevant canned patterns for a gui (e.g.,
p1, p2, p3 in Fig. 1) is important to facilitate efficient query formula-
tion [9, 26]. In particular, data-driven selection paves the way for
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plug-and-play visual graph query interfaces, which are like a plug-
and-play device that can be plugged into any kind of socket (i.e.,
graph data) and used. A plug-and-play gui is dynamically built from
a high-level specification of canned pattern properties known as
the plug (detailed in Section 3). Specifically, given a network G and
a plug b, the gui is automatically constructed by populating its vari-
ous components (e.g., node/edge attributes, canned patterns) fromG
without the need for manual gui coding. This enhances portability
and maintainability of guis across different data sources [9].

In this paper, we present a novel framework called Tattoo (daTa-
driven cAnned paTtern selecTiOn from netwOrks) that takes a
data-driven approach to the canned pattern selection (cps) problem
for large networks. Given a networkG , a user-specified plug specifi-
cationb which is the number of canned patterns to display and their
minimum and maximum permissible sizes, Tattoo automatically
selects canned patterns from G that satisfy b.

The cps problem is technically challenging. First, it is a NP-hard
problem [26]. Second, the availability of query logs can facilitate
the selection of relevant patterns as they provide rich information
of past queries. In practice, however, such information is often
publicly unavailable (e.g., none of the networks in snap [5] reveal
query logs) due to privacy and legal reasons. Hence, we cannot
realistically assume the availability of query logs to select patterns.
Furthermore, users may demand a gui prior to querying a network.
Hence, there may not exist any query log prior to the creation of
a visual query interface. Third, it is paramount to find unlabeled

patterns (e.g., Example 1.1) that are potentially useful for query
formulation (detailed in Sec. 4). However, the selection of such
patterns is challenging as there is an exponential number of them
in a large network. Fourth, these selected patterns should not only
be topologically diverse so that they are useful for a wide variety of
queries but they should also impose low cognitive load (i.e., mental
load to visually interpret a pattern’s edge relationships to determine
if it is useful for a query) on users. In particular, large graphs over-
load the human perception and cognitive systems, resulting in poor
performance of tasks such as identifying edge relationships [25, 46].

At this point, a keen reader may wonder why building blocks of
real-world networks (e.g., paths of length k , triangle patterns) [33,
45] cannot be simply utilized as canned patterns since they have
high coverage and low cognitive load. However, it may take a
larger number of steps to formulate a variety of queries using these
patterns due to their small size. For instance, reconsider Example 1.1.
Suppose the pattern set consists of an edge, a path of length 2 (i.e., 2-
path), a triangle, and a rectangle. In this case,Q12 may be formulated
by dragging and dropping the rectangle once, the 2-path three times,
construction of a single node and two edges, along with three node
mergers. That is, it takes 10 steps altogether, which is more than
using the patterns in Figure 1. Furthermore, these patterns do not
expose “interesting” substructures to facilitate bottom-up search as
they occur in almost all large real-world networks.

Tattoo addresses the aforementioned challenges as follows. It
exploits a recent analysis of real-world query logs [12] to classify

topologies of canned patterns into categories that are consistent
with the topologies of real-world queries (detailed in Section 5).
This enables us to reach a middle ground where Tattoo does not
need to be restricted by the availability of query logs but yet ex-
ploit topological characteristics of real-world queries to guide the

Figure 2: Overview of TATTOO.

selection process. Next, it realizes a novel and efficient candidate
canned pattern generation technique based on the classified topolo-
gies to identify potentially useful patterns. Lastly, canned patterns
are selected from these candidates for display on the gui based on
a novel pattern set score that is sensitive to coverage, diversity, and
cognitive load of patterns. Specifically, we leverage recent progress
in the algorithm community to propose a selection algorithm that
guarantees 1

e -approximation [13]. Figure 2 depicts an overview of
the Tattoo framework. Experiments with several real-world large
networks and users reveal that Tattoo can select canned patterns
within few minutes. Importantly, these patterns can reduce the
number of steps taken to formulate a subgraph query and query
formulation time by up to 9.7X and 18X, respectively, compared to
several baseline strategies.

In summary, this paper makes the following contributions: (1)
We describe Tattoo, an end-to-end canned pattern selection frame-
work for any plug-and-play visual graph query interface for large
networks independent of domains and data sources. A video of a
plug-and-play interface that incorporates Tattoo can be viewed
at https://youtu.be/sL0yHV1eEPw. (2) We formally introduce the
cps problem for large networks (Sec. 4) and present a novel cate-
gorization of potentially useful canned patterns in Section 5. (3)
We present an efficient solution to select canned patterns for a
gui (Sec. 6 - 7). Specifically, we present a novel candidate pattern
generation framework that is grounded on topologies of real-world
subgraph queries. Furthermore, for the first time in graph querying
literature, we utilize the recent technique in [13] from the algorithm
community to select canned patterns with good theoretical quality
guarantees. (4) Using real-world networks, we show the superiority
of our proposed framework compared to several baselines (Sec. 8).

Proofs of theorems and lemmas are provided in Appendix A.

2 RELATEDWORK

Most germane to our work is our prior efforts on data-driven con-
struction of visual graph query interfaces in [10, 26, 48]. The work
in [27] focuses on the maintenance of canned patterns for evolving
data graphs. Our work differs from these efforts in the following
ways. First, we focus on selecting unlabelled canned patterns from
large networks in contrast to labelled patterns from a collection of
small- or medium-sized data graphs in [10, 26, 27, 48]. Specifically,
existing efforts such as Catapult [26] first partitions a collection
of data graphs into a set of clusters and summarizes each cluster to
a cluster summary graph (csg). Then, it selects the canned patterns
with the aforementioned characteristics from these csgs using a
weighted random walk approach. This clustering-based approach is
prohibitively expensive for large networks as detailed in Sec. 8. Sec-
ond, these approaches do not exploit characteristics of real-world
subgraph queries for selecting canned patterns. In contrast, we
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utilize topological characteristics of real-world queries to guide
our solution design. Third, we present a novel real-world query
topology-aware candidate pattern generation technique and a se-
lection technique that provides quality guarantee. No theoretical
guarantee is provided in [10, 26, 48] for selecting canned patterns.
Lastly, as detailed in Sec. 7, the computation of pattern score to
assess the quality of canned patterns is different as the computation
of cognitive load and diversity is different from [26] due to the
nature of large networks. Furthermore, in this work we provide a
theoretical analysis of the pattern score.

Motif discovery techniques [21, 33] do not consider diversity
and cognitive load. Sizes of these motifs are generally bounded in
the range of [3-7] in real applications [21, 33]. For the same reason,
it is difficult to use graphlets [7, 23, 38] as patterns. Also, frequent
subgraphs [17] may not constitute good canned patterns [9] and
are prohibitively expensive to compute for large networks (detailed
in Sec. 8).

3 BACKGROUND

We first introduce several graph terminologies that we shall be
using subsequently. Next, we formally define the notion of plugs.
Finally, we briefly describe the desirable characteristics of canned
patterns as introduced in [26].

3.1 Terminology

We denote a graph or network as G = (V ,E), where V is a set of
nodes/vertices and E ⊆ V ×V is a set of edges. Vertices and edges
can have labels as attributes. The size of G is defined as |G | = |E |.
The degree of a vertex v ∈ V is denoted as deд(v). In this paper,
we assume that G is an undirected, unweighted graph with labeled
vertices.

A triangle is a cycle of length 3 in G. The support of an edge
e = (u,v) ∈ E (denoted by sup(e)) is the number of triangles in G
containing u and v [43]. GS = (VS ,ES ) is a subgraph of G (denoted
by GS ⊆ G) if VS ⊆ V and ES ⊆ E. Consider another graph G ′ =
(V ′,E ′) where |V | = |V ′ |. G and G ′ are isomorphic if there exists
a bijection f : V → V ′ such that (u,v) ∈ E iff (f (u), f (v)) ∈ E ′.
Further, there exists a subgraph isomorphism from G to a graph Q
if G contains a subgraph GS that is isomorphic to Q . We refer to
GS as the embedding of Q in G.

Given G, the k-truss of G is the largest subgraph G ′ = (V ′,E ′)
of G in which every edge e ∈ E ′ is contained in at least k − 2
triangles within the subgraph. A 2-truss is simply G itself. We
define the trussness of an edge e as t(e) = max{k |e ∈ ETk } where
Tk = (VTk ,ETk ) is the k-truss in G. Further, kmax denotes the
maximum trussness.

3.2 Plugs

Recall that data-driven selection of canned patterns facilitates the
construction of a plug-and-play visual graph query interface. A
plug is a high-level specification of the patterns in a gui. Given the
specification, Tattoo dynamically generates the canned patterns
satisfying it from the underlying network. Formally, it is defined as
follows.

Definition 3.1. [Plug] Given a network G and a gui I, a plug

b = (ηmin ,ηmax ,γ ) where ηmin > 2 (resp. ηmax ) is the minimum

(resp. maximum) size of a pattern, γ > 0 is the number of patterns to

be displayed on I.

Essentially a plug1 is a collection of attribute-value pairs that
specifies the high-level content of a canned pattern panel in a gui.
For example, b = (3, 15, 30) is a plug. Accordingly, the minimum
and maximum sizes of patterns in I are 3 and 15, respectively, and
the total number of patterns to be displayed is 30. Observe that
there can be multiple plugs for G as well. Similarly, the same plug
can be used for differentG . Hence, different guis can be constructed
by different plug specifications.

A plug should possess the following properties. (a) Data inde-

pendence - A plug should not depend upon a specific network (i.e.,
socket). The specification of plug enables this by not admitting
any network-specific information. Observe that this property is
important for plug-and-play interfaces as a plug can be used on dif-
ferent network data across different application domains. (b) Able to
select canned patterns with the required specifications - The resulting
canned pattern selection mechanism should select patterns exactly
as specified by the plug.

3.3 Characteristics of Canned Patterns

Since it is impractical to display a large number of patterns in a
visual graph query interface I, the number of patterns should be
small and satisfy certain desirable characteristics as introduced
in [26].

High coverage. A pattern p ∈ P coversG ifG contains a subgraph
s that is isomorphic to p. Since p may have many embeddings in
G, the pattern set P should ideally cover as large portion of G as
possible. Then a large number of subgraph queries on G can be
constructed by utilizing P.

High diversity. High coverage of patterns is insufficient to fa-
cilitate efficient visual query formulation [26]. In order to make
efficient use of the limited display space on I, P should be struc-
turally diverse to serve a variety of queries. This also facilitates
bottom-up search where a user gets a bird’s-eye view of the diverse
substructures in G.

Low cognitive load. Cognitive load refers to the memory demand
or mental effort required to perform a given task [25]. A topologi-
cally complex pattern may demand substantial cognitive effort from
an end user to decide if it can aid in her query formulation [26].
Hence, it is desirable for the canned patterns inP to impose low cog-
nitive load on an end user to make browsing and selecting relevant
patterns cognitively efficient during visual query formulation.

4 THE CPS PROBLEM

Given a data graph or network G = (V ,E), a visual graph query
interface I and a user-specified plug b, the goal of the canned pattern
selection (cps) problem is to select a set of unlabelled patterns P for
display on I, which satisfies the specifications in b and optimizes

coverage, diversity and cognitive load of P.
Observe that our cps problem differs from [26] in two key ways.

First, we focus on a single large network instead of a large col-
lection of small- or medium-sized data graphs. Second, we select
unlabelled patterns instead of labelled ones. In large networks, a
1Additional constraint on the distribution of the patterns which is application specific can be in-
cluded in the plug.



subgraph query may not always contain labels on its vertices or
edges. Specifically, unlabelled query graphs are formulated in the
subgraph enumeration problem [6] whereas query graphs are la-
belled in the subgraph matching problem [42]. Hence, by selecting
unlabelled patterns Tattoo facilitates visual formulation of both
these categories of queries. In particular, one may simply drag-and-
drop specific vertex/edge labels from the Attribute panel of a gui
to add labels to the vertices/edges of a pattern (e.g., Example 1).

We now formally define the cps problem addressed in this pa-
per. We begin by introducing coverage, diversity, and cognitive

load of canned patterns. Let S(p) = {s1, · · · , sn } be a bag of sub-
graphs in G isomorphic to p (i.e., embeddings of p) where vertex
labels in G = (V ,E) and p = (Vp ,Ep ) are assumed to be the same
and si = (Vi ,Ei ). We say an edge e ∈ Ei is covered by p. The
coverage of p is given as cov(p) = |

⋃
i ∈ |S (p) | Ei |/|E |. Similarly,

cov(P) = |E† |/|E | (i.e., fcov (P)) where every e ∈ E† is covered by
at least one p ∈ P. Since |E | is constant for a given G, coverage
can be rewritten as cov(p) = |

⋃
i ∈ |S (p) | Ei | and cov(P) = |E† |. The

diversity of p w.r.t to P is the inverse of similarity of p. In par-
ticular, the similarity of a set of canned patterns P is denoted as
fsim (P) =

∑
(pi ,pj )∈P×P sim(pi ,pj ) where sim(pi ,pj ) is the simi-

larity between patterns pi and pj (detailed in Sec. 7). Finally, we
measure cognitive load of p (denoted by coд(p)) based on the size,
density, and edge crossings in p (detailed in Sec. 7) as a user tends
to spend more time identifying relationships between vertices in
denser graphs with more edge crossings [24, 25, 46]. The cognitive
load of P (i.e., fcoд(P)) is given as

∑
p∈P coд(p).

Definition 4.1. [CPS Problem] Given a network G, a gui I, and
a plug b = (ηmin ,ηmax ,γ ), the goal of canned pattern selection

(CPS) problem is to find a set of unlabelled canned patterns P from

G that satisfies

max fcov (P),−fsim (P),−fcoд(P)
subject to |P | = γ ,P ∈ U

(1)

where P is the solution;U is the feasible set of canned pattern sets in

G; fcov (P), fsim (P) and fcoд(P) are the coverage, similarity, and

cognitive load of P, respectively.

Remark. Observe that cps is a multi-objective optimization
problem as our goal is to maximize coverage and diversity (i.e.,
minimize similarity) of canned patterns while minimizing their
cognitive load. Hence, we address it by converting cps into a single-
objective optimization problem using a pattern score (detailed in
Section 7). Also, observe that we aim to find patterns of size greater
than 2 (i.e., ηmin > 2). Small-size patterns that are basic building
blocks of networks [33, 45] (e.g., edge, 2-path, triangle) are provided
by default for all datasets (i.e., default patterns).

The cps problem is shown to be NP-hard in [26] by reducing it
from the classical maximum coverage problem.

Theorem 4.2. The cps problem is NP-hard.

5 CATEGORIES OF CANNED PATTERNS

In theory, numerous different patterns can be selected from a given
network. Which of these are “useful” for subgraph query formu-
lation in practice? In this section, we provide an answer to this
question.

Path BigRDFBench S1
|V|=3, |E|=2

(a) BigRDFBench S4
|V|=6, |E|=5

(b)

Tree BigRDFBench C2

|V|=9, |E|=8
(c) BigRDFBench C3

|V|=6, |E|=5
(d)

Star-like

BigRDFBench C4

|V|=13, |E|=12
(e)

BSBM Q2

|V|=14, |E|=13
(f)

Cycle-like

BigRDFBench C7
|V|=9, |E|=9

(g)

RAPID MG18

|V|=13, |E|=13
(h)

Flower-like

BSBM Q12

|V|=11, |E|=12
(i)

DBpedia most 
frequent query

|V|=15, |E|=16

(j)

Figure 3: Examples of real-world query topologies.

5.1 Topologies of Real-world Queries

Although basic building blocks of networks [33, 45] are presented as
default patterns in our gui, as remarked earlier, they are insufficient
as they do not expose to a user more domain-specific and larger
patterns in the underlying data. Such larger substructures not only
facilitate more efficient construction of subgraph queries but also
guide users for bottom-up search by exposing substructures that are
network-specific. However, which topologies of these substructures
should be considered for canned patterns?

Ideally, real-world subgraph query logs can provide guidance
to resolve this challenge. However, as remarked in Section 1, such
data may be unavailable. Hence, we leverage results from a re-
cent study [12] that analysed a large volume of real-world sparql
query logs. It revealed that topologies of many real-world subgraph
queries map to chains, trees, stars, cycles, petals, and flowers2 [12].
Figure 3 depicts examples of these topologies in real-world subgraph
queries extracted from BigRDFBench [40], BSBM [2], Rapid [4], and
DBPedia [18]. Consequently, canned patterns in any gui should
facilitate efficient construction of these topologies.

5.2 Topologies of Canned Patterns

We consider the following types of topological structures of canned
patterns in order to facilitate construction of the above query sub-
structures.

Path and cycle patterns. A subgraph query may contain paths
of different lengths (i.e., chain) and/or cycles. Figure 3 depicts some
examples. Hence, our canned patterns should expose representative
k-paths and k-cycles in the underlying data. Given a graph G =
(V ,E), a k-path, denoted as Pk = (Vk ,Ek ), is a walk of length k
containing a sequence of vertices v1,v2, · · · ,vk ,vk+1 where Ek ⊆
E, Vk ⊆ V such that all vertices in Vk are distinct. A k-cycle is
simply a closed (k − 1)-path where k ≥ 3.

Star and asterism patterns. Intuitively, a star is a connected
subgraph containing a vertex r where the remaining vertices are
connected only to r (i.e., neighbors of r ). A k-star is a single-level,
rooted tree Sk = (V ,E) where V = {r }

⋃
L, r is the root vertex

and L is the set of leaves such that ∀e = {u,v} ∈ E, u = r , v ∈ L
and |V | = k + 1. We refer to the root as the center vertex. Note that

2A petal is a graph consisting of a source node s , target node t and a set of at least 2 node-disjoint
paths from s to t . A flower is a graph consisting of a node x with three types of attachments: chains
(stamens), trees that are not chains (the stems), and petals. A flower set is a graph in which every
connected component is a flower.
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Table 1: No. of steps for constructing queries.

ID Edge-at-

a-time

Default patterns Canned patterns

(c) 17 6 [2 2-path + 1 square - 1 5 [4-path + 2 2-path + 2 merge]
edge + 1 edge + 1 merge] 5 [4-star + 1 2-path + 1 node + 2 edge]

(e) 25 11 [5 2-path + 1 node + 2 1 [A6,7]
edge + 3 merge] 3 [5-star + 6-star + 1 edge]

(g) 18 8 [4 2-path + 1 edge + 3 3 [5-cycle + 4-star + 1 merge]
merge] 4 [6-path + 2-path + 1 edge + 1 merge]

(i) 23 10 [square + 3 2-path + 1 5 [4-CP + 6-star + 1 node + 1 edge + 1 merge]
node + 2 edge + 3 merge] 5 [CCPno (4,4) - 2 edge + 5-star + 1 merge]

k ≥ ϵ where ϵ is the minimum value of k for which the single-level
rooted tree is considered a star.

Real-world queries may contain multiple k-stars that are com-

bined together. For instance, the query topology in Figure 3(e)
is a combination of 6-star and 7-star by merging on a pair of
edges. Hence, our canned pattern topology also involves stars that
form an asterism pattern by merging them on a pair of edges. For-
mally, given n stars S = {Sk1 , · · · , Skn } and n − 1 merged edges
Em = {em1 , · · · , emn−1 } where Ski = (Vi ,Ei ) and emi ∈ Ei , let
R = {r1, · · · , rn } be the center vertices such that ri ∈ Vi . The aster-
ism pattern of S is defined asAS = (V ,E)where ei = (ri ,vi ), ei+1 =
(ri+1,vi+1), E =

⋃
1≤i<n ({(ri , ri+1)}

⋃
(Ei \ {ei })

⋃
(Ei+1 \ {ei+1})),

V =
⋃

1≤i<n ((Vi \ {vi })
⋃
(Vi+1 \ {vi+1})), ki ≥ ϵ and |E | ≤ ηmax .

k-chord and composite chord patterns. Observe that tree-
structured queries can be constructed by combining chains and stars
(e.g., Figure 3(c)-(d)). However, they are insufficient to construct
more complex petal and flower queries efficiently. In particular,
petal and flower queries may often contain triangle-like structures.
For example, the query in Figure 3(i) contains two triangles. Hence,
at first glance it may seem that we can simply select different k-
trusses (k > 2) of sizes within the plug specification b as canned
patterns. However, a subgraph query may not necessarily always
contain k-trusses. For instance, the query in Figure 3(j) contains
multiple “triangle-like” structures as some common edges of trian-
gles are missing. Consequently, the use of only k-truss as a canned
pattern may make query formulation inefficient as it demands dele-
tion of multiple edges in order to construct a triangle-like query
topology. This increases the number of steps required to formulate
a query, thereby increase the formulation time. Hence, it is desirable
to have “k-truss-like” substructures as patterns.

To this end, we extract two types of k-truss-based structures as
canned patterns, namely, k-chord patterns (k-cp) and composite chord

patterns (ccp). Intuitively, a k-cp is a connected graph containing
a truss edge e (i.e., edge belonging to a k-truss) and k-2 triangles

Algorithm 1 The Tattoo algorithm.
Require: Data graphG , plug b = (ηmin, ηmax , γ );
Ensure: Canned pattern set P;

1: GT , GO ← GraphDecomposition(G)
2: Pcp , f r eq(Pcp ) ← GenChordPatterns(GT , t (e)) /*Alg. 2*/
3: Pccp , f r eq(Pccp ) ← GenCombChordPatterns(GT , t (e)) /*Alg. 3*/
4: Ps , f r eq(Ps ) ← GenStarPatterns(GO ) /*Alg. 4*/
5: GR ← RemoveStarPatternEdges(GO , Ps )
6: Pr , f r eq(Pr ) ← GenSmallPatterns(GR , b) /*Alg. 5*/
7: Pcand ← Pcp

⋃
Pccp

⋃
Ps

⋃
Pr

8: f r eq(Pcand ) ← f r eq(Pcp )
⋃
f r eq(Pccp )

⋃
f r eq(Ps )

⋃
f r eq(Pr )

9: P ← SelectCannedPatterns(Pcand , f r eq(Pcand ), b)

of e . Formally, given a k-truss Gk = (Vk ,Ek ) for k > 2, the k-
chord pattern (k-cp) Ck = (Vck ,Eck ) associated with every edge
e = (u,v) ∈ Ek where u,v ∈ Vk is defined as Vck = {u,v}

⋃
V ′ck

and Eck = {(u,v)}
⋃

E ′ck where V ′ck = {wi : 0 ≤ i ≤ k − 2} and
E ′ck = {(u,wi ), (wi ,v) : 0 ≤ i ≤ k − 2}. k-cp can be considered
as a building block of k-trusses since it is found with respect to
each edge in a given k-truss. Examples of k-cps (4-cp and 5-cp) are
illustrated in Figure 4. We refer to the edge in a k-chord pattern that
is involved in (k-2) triangles as a truss edge and the remaining edges
as non-truss edges. For example, in Figure 4, edges (A1,B1) and
(A2,B2) are truss edges whereas (A1,C1) and (B2,D2) are non-truss
edges. Correspondingly, vertices of a truss edge (e.g., A1, B1, A2,
B2) are referred to as truss vertices. Observe that we can formulate
a simple petal query in two steps by selecting the 4-cp pattern and
deleting the truss edge.

To select larger canned patterns with greater structural diversity,
we combine k-cps to yield additional composite chord patterns (ccp)
that occur in the underlying network. Observe that combining a
set of k-cps in different ways results in different patterns as demon-
strated in Figure 4. However, this is an overkill as they are not only
expensive to compute but also may generate patterns with higher
density (higher cognitive load) or are larger than ηmax . Hence, we
focus on the ccp generated by merging a single edge of two k-cps
as it not only reduces the complexity of ccp generation, but also
produces ccps with lower density.

Unique small graph patterns. Lastly, we find small connected
subgraphs that do not fall under above categories but occur multiple
times in the underlying network.

Table 1 reports the number of steps taken by various modes of
query construction of selected query topologies in Fig. 3. Observe
that query construction using canned patterns often takes fewer
number of steps compared to construction using only default pat-
terns, emphasizing the need for patterns beyond the default ones.
One can also formulate a specific query following multiple alterna-
tives, i.e., using multiple sets of patterns (canned and default). This
gives users the flexibility to formulate a query using these patterns
in many ways, all of which often take fewer steps compared to the
edge-at-a-time or default pattern-based modes.

6 CANDIDATE PATTERNS GENERATION

In the preceding section, we classified the topologies of canned
patterns broadly into “k-truss-like” and “non-k-truss-like” struc-
tures. In this section, we describe how candidate canned patterns
conforming to these topological categories are extracted from the
underlying network G.



Table 2: TIR and TOR graphs in real networks.

Data Name |V | |E | % (GT ) % (GO )

BK loc-Brightkite 58K 214K 67.3 32.7
GO loc-Gowalla 197K 950K 78.2 21.8
DB com-DBLP 317K 1.05M 93 7
AM com-Amazon 335K 926K 77.2 22.8
RP RoadNet-PA 1.09M 1.54M 12.7 87.3
YT com-Youtube 1.13M 2.99M 46.8 53.2
RT RoadNet-TX 1.38M 1.92M 12.5 87.5
SK as-Skitter 1.7M 11M 79.1 20.9
RC RoadNet-CA 1.97M 2.77M 12.6 87.4
LJ com-LiveJournal 4M 34.7M 83.2 16.8

We begin by providing an overview of the Tattoo algorithm.
Algorithm 1 outlines the procedure. It first decomposes G into truss-

infested and truss-oblivious regions (Line 1) and then generates “k-
truss-like” and “non-k-truss-like” candidate patterns from these
regions, respectively (Lines 2-8). Finally, it selects the canned pattern
set from these candidate patterns based on the plug specification
(Line 9). We discuss the decomposition ofG and candidate pattern
generation in turn. In the next section, we shall elaborate on the
selection of canned patterns from the candidate patterns.

6.1 Truss-based Graph Decomposition

In order to extract “non-k-truss-like” and “k-truss-like” structures
as candidate patterns, we first decompose a networkG into sparse

(containing non-trusses) and dense (containing trusses) regions. The
latter region is referred to as truss-infested region (tir graph) and
the former truss-oblivious region (tor graph), and are denoted by
GT andGO , respectively. Table 2 reports the sizes ofGT andGO in
several real-world networks measured as the percentage of the total
number of edges. We observe GT basically consists of relatively
large connected subgraphs that comprise multiple k-trusses. On
the other hand, GO mainly consists of chains (i.e., paths), stars,
cycles, and small connected components. Furthermore, although
some networks have smallGO (e.g., com-DBLP), there are networks
whereGO is large (e.g., RoadNet-CA), encompassing up to 87.5% of
the total number of edges. Consequently, by decomposing a network
into GT and GO , we can improve efficiency by limiting the search
for k-truss-like patterns in GT instead of the entire network and
extract non-truss-like patterns from GO . Additionally, generating
candidate patterns of aforementioned topological categories from
both tir and tor graphs enables us to select a holistic collection of
patterns having higher coverage and diversity. Cognitive load of
the pattern set is often reduced when patterns from both regions
are considered due to the sparse structure of tor.

Tattoo utilizes the state-of-the-art truss decomposition approach
in [44] to decomposeG intoGT andGO . Briefly, this approach iden-
tifies k-trusses (k ∈ [2 − kmax ]) inG iteratively by removing edges
with support less than k − 2 from G. Hence, our graph decomposi-
tion algorithm adapts it to assign 2-truss as GO and the remaining
k-trusses as GT .

We keep track of the edge trussness (denoted as t(e)) inGT . Since
the goal is to select canned patterns with maximum size ηmax , the
upper bound of edge trussness is set to this value. The algorithm
first identifies the support of each edge. Then, regions of the data
graph are iteratively extracted by removing edges with the lowest
support, starting from the sparsest (i.e., sup(e) = 0) to the densest.
In particular, Tattoo considers all edges with sup(e) = 0 as sparse

v1 v2

v5 v3 v6

e

v4

Given: t(e)=4 NBCC(4,e)={v3}

NBCC(3,e)={v3,v4}

EBCC(4,e)={(v1,v3),(v2,v3)}

EBCC(3,e)={(v1,v3),(v2,v3),(v1,v4),(v2,v4)}

Figure 5: k-CCP node and edge neighbourhoods.

Algorithm 2 GenChordPatterns.
Require: tir graphGT = (VT , ET ), trussness of all edges T (e);
Ensure: Set of k -chord patterns Pcp = {Ck |3 ≤ k ≤ kmax } and frequency f r eq(Pcp );

1: for k = 3 to kmax /∗generate k -chord patterns ∗ / do

2: Ck = (Vck , Eck ) ← ϕ
3: Vck ← {u, v }
4: Eck ← {(u, v)}
5: i ← k
6: while i ≥ 3 do
7: Vck ← {wi−2 }
8: Eck ← {(u, wi−2), (wi−2, v)}
9: i ← i − 1
10: end while

11: f r eq(Ck ) ← 0
12: end for

13: for each e ∈ ET /∗compute frequencies using edge trussness ∗ / do

14: k ← t (e)
15: while k ≥ 3 do
16: cov(Ck ) ← f r eq(Ck ) + 1
17: Pcp ← Pcp

⋃
Ck

18: k ← k − 1
19: end while

20: end for

regions and these edges form the tor graph GO . The remaining
edges form the tir graph GT .

In summary, the above approach makes the following two simple
modifications to the truss decomposition technique in [44]: (1)
instead of storing each k-truss as a separate graph, it stores 2-truss
as GO and the remaining k-trusses are combined as a single graph
GT ; (2) it assigns a trussness value t(e) to every edge inGT andGO .
The worst-case time and space complexities of this algorithm are
O(|E |1.5) and O(|V | + |E |), respectively [44].

6.2 Patterns from a TIR Graph

Next, we generate k-cps and ccps as candidate patterns from a tir
graph. For each pattern we also compute its frequency as it will
be used subsequently to measure its coverage. We discuss them in
turn.

Generation of k-chord patterns. Algorithm 2 describes gen-
eration of the k-cps. In particular, we can find k-cps with respect
to each edge in a given k-truss. For instance, every edge in a 4-
truss and a 5-truss is part of at least 2 and 3 triangles, respectively.
Observe that the 2-chord pattern of an edge e is simply the edge
itself. Hence, Tattoo generates k-cps for k ≥ 3. The frequency

of a k-cp is measured by the frequency of the pattern occurring
in GT , which is essentially the number of edges having trussness
greater than or equals to k (Lines 13 to 20). Formally, given a tir
graph GT = (VT ,ET ) and a k-chord pattern Ck = (Vck ,Eck ), the
frequency of Ck is defined as f req(Ck ) = |{e ∈ E |t(e) ≥ k}|. Then,
the set of k-cps of a GT is simply the set of patterns Ck whose
frequency is greater than 0. We first generate k-chord patterns in
GT and then compute their frequencies using edge trussness.

Lemma 6.1. The worst-case time and space complexities of k-cp
generation are O(kmax |ET |

1.5) and O(|VT | + |ET |), respectively.

Generation of composite chord patterns. Next, we generate
the ccps. Specifically, we generate the following categories of ccps
based on different ways of merging truss and non-truss edges.



Definition 6.2. Let Ck1 = (Vck1 ,Eck1 ) and Ck2 = (Vck2 ,Eck2 ) be
two k-chord patterns where s, t ∈ Vck1 and u,v ∈ Vck2 are truss

vertices. Then, we can generate the following categories of composite

chord patterns of Ck1 and Ck2 by merging Ck1 and Ck2 as follows:

(1) CCPtn (k1,k2): merge the truss edge of Ck1 with a non-truss

edge of Ck2 .
(2) CCPnt (k1,k2): merge the truss edge of Ck2 with a non-truss

edge of Ck1 .
(3) CCPno (k1,k2): merge a non-truss edge ofCk1 with a non-truss

edge of Ck2 such that there is an overlapping truss vertex.

(4) CCPnn (k1,k2): merge a non-truss edge ofCk1 with a non-truss
edge of Ck2 such that there is no overlapping truss vertex.

Figure 4 depicts examples of these four categories of ccps. When
the context is clear, we shall simply refer to a ccp as CCPi . A keen
reader may observe that it is possible to create another ccp by
merging the truss edge of Ck1 with the truss edge of Ck2 . However,
this ccp is in fact a k-cp where k = k1 + k2 − 2. For instance, when
C4 andC5 in Figure 4 are merged on their truss edges, the resultant
pattern is a 7-cp. Also, combining two 3-cps always yields a 4-cp
(Lemma 6.3). Since k-cps have already been handled earlier, these
combinations are ignored.

Lemma 6.3. Two 3-cps always yield a ccp that is 4-cp.

We now elaborate on how the ccps and their frequencies are com-
puted in Tattoo efficiently. We shall introduce two terminologies
related to node and edge neighbourhoods of a ccp to facilitate exposi-
tion. Given an edge e = (u,v) in ak-truss, thek ′-ccp node neighbour-
hood (denoted as NBcc (k

′, e)) of e is a set of verticesW adjacent to
u and v such that ∀w ∈W , t((u,w)) ≥ k ′ and t((w,v)) ≥ k ′ where
k ′ ≤ k . The k ′-ccp edge neighbourhood (denoted as EBcc (k ′, e)) of
e is the set of edges S adjacent to e such that ∀(u,x1), (x2,v) ∈ S ,
x1,x2 ∈ NBcc (k

′, e) where k ′ ≤ k . Figure 5 illustrates examples
of k ′-ccp node and edge neighborhoods. For instance, NBcc (4, e)
consists of v3 since t(v1,v3) ≥ 4 and t(v2,v3) ≥ 4.

Lemma 6.4. Given a truss edge e , there is at least a k-chord pattern
Ck on e if |NBcc (k, e)| ≥ (k − 2).

Frequencies of CCPtn (k1,k2) and CCPnt (k1,k2). Consider two dif-
ferent k-cps. CCPtn and CCPnt involve merger of a truss edge be-
longing to onek-cp with a non-truss edge belonging to anotherk-cp.
Given two k-cpsCk1 andCk2 , let edges e1 and e2 be the truss edges
ofCk1 andCk2 , respectively. Intuitively, a pattern is aCCPtn (k1,k2)
if it contains an embedding of Ck1 and of Ck2 whereby there is an
edge em in the pattern that belongs to the two embeddings such
that em is a truss edge of Ck1 ’s embedding and is a non-truss edge
of Ck2 ’s embedding, respectively. In other words, Ck1 and Ck2 can
form a ccp (CCPtn (k1,k2)) by merging a truss edge e1 from Ck1
with a non-truss edge from Ck2 if the following conditions are sat-
isfied: (a) Condition 1: There is a Ck1 pattern on e1 containing e2.
(b) Condition 2: There is a Ck2 pattern on e2 where e2 , e1.

Note that due to Lemma 6.4, Condition 1 holds if
|NBcc (k2, e2) \ {u,v}| ≥ (k2 − 2) where e1 = (u,v). Further, if
|NBcc (k1, e1)

⋃
NBcc (k2, e2) \ {u,v}| ≥ (k1 − 2) + (k2 − 2)), then

the pattern CCPtn (k1,k2) must exist. Hence, Tattoo checks the
conditions iteratively on decreasing k2 and skips checks for k ′2 < k2
if the conditions are satisfied for k2. The frequency ofCCPtn (k1,k2)
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Figure 6: (a) A GT ; (b) Skeleton structure of CCPnn ; (c) Skele-
ton structure of CCPno . e1 and e3 are truss edges.

is simply the number of such e1 edges. For CCPnt (k1,k2), the ap-
proach is the same by swapping Ck1 with Ck2 .

Frequencies of CCPnn (k1,k2) and CCPno (k1,k2). Recall that (Def. 6.2)
a single-edge merge can also involve the merger of two non-truss
edges, each from a different k-cp. Each non-truss edge contains a
truss vertex. There are two ways in which two non-truss edges can
merge as shown in Figures 6(b) and (c). In the former (resp. latter),
vertex pairs (w1,w2) (resp. (w2,u1)) and (u1,u2) (resp. (w1,u2)) are
merged. Hence, a pattern is a CCPnn if it contains at least one em-
bedding of a structure shown in Figure 6(b) which we refer to as
the skeleton structure of CCPnn (denoted as Snn ). Hence, we can
search for the Snn of a CCPnn in a tir graph to compute its occur-
rence and frequency. Specifically, a CCPnn can be obtained if the
followings are satisfied: (a) Condition 1: There is a Ck1 pattern on
its truss edge e1 = (u1u2,v) which contains e2 = (u1u2,w1w2). (b)
Condition 2: There is a Ck2 pattern on its truss edge e3 = (w1w2,x)
which contains e2.

Note that Condition 1 holds if |NBcc (k1, e1) \ {u1u2,w1w2}| ≥
(k1 − 3) (Lemma 6.4). Similarly, Condition 2 holds if
|NBcc (k2, e3) \ {u1u2,w1w2}| ≥ (k2 − 3). Further, if
|NBcc (k1, e1)\{u1u2,w1w2}

⋃
NBcc (k2, e3)\{u1u2,w1w2}| ≥ (k1−

3) + (k2 − 3), then the pattern CCPnn must exist. The frequency of
a CCPnn is simply the number of skeleton structures Snn in a tir
graph.

CCPno is very similar to CCPnn except that the truss vertices of
the merged edges are not combined during the merger. Figure 6(c)
illustrates the skeleton structure of a CCPno (Sno ), which occurs in
all CCPno . The frequency of a CCPno is the number of skeleton
structures Sno .

Observe that f req(CCPnn (k1,k2)) = f req(CCPno (k2,k1)) since
k1 and k2 can be swapped. The same is true for CCPtn and CCPnt .
Hence, when combining two k-cps, we only consider the case when
k1 ≥ k2.

Algorithm. Putting the above strategies together (outlined in
Algorithm 3), the ccps are computed as follows. For each edge in
GT , compute the k1-ccp node and edge neighbourhoods (Lines 4-5).
Next, it computes the four types of ccps (Lines 6-13) based on the
aforementioned strategies. Note that the smallest ccp generated is
a ccp(3,4) due to Lemma 6.3. Also, we only computeCCPtn (k1,k2)
instead of both CCPtn (k1,k2) and CCPnt (k1,k2) as CCPnt (k1,k2)
is covered when k2 and k1 are swapped.

Theorem 6.5. The worst-case time and space complexities of the

ccp generation technique areO(k2max |ET | |EBmax |
2) andO(kmax |ET |+

|VT |), respectively.

6.3 Patterns from a TOR Graph

Generation of candidates from a tor graph consists of two phases:
star pattern extraction and small pattern extraction. The former ex-
tracts star and asterism patterns. Subsequently, the edges involved



Algorithm 3 GenCombChordPatterns.
Require: tir graphGT = (VT , ET ), trussness of all edges T (e);
Ensure: Composite chord patterns P = {CCPtn

⋃
CCPnn

⋃
CCPno } and frequency

f r eq(P ) where CCPtn = {CCPtn (k1, k2) |3 < k1 ≤ kmax , 3 ≤ k2 ≤ kmax },
CCPnn = {CCPnn (k1, k2) |3 < k1 ≤ kmax , 3 ≤ k2 ≤ kmax } and CCPno =
{CCPno (k1, k2) |3 < k1 ≤ kmax , 3 ≤ k2 ≤ kmax };

1: CCPtn ← ϕ ,CCPnn ← ϕ ,CCPno ← ϕ
2: for e1 ∈ ET do

3: k1 ← t (e1)
4: Compute NBcc (k1, e1) /* compute k -ccp node neighbourhood*/
5: Compute EBcc (k1, e1) /* compute k -ccp edge neighbourhood*/
6: while k1 ≥ 4/∗find composite chord patterns ∗ / do

7: for e2 ∈ EBcc (k1, e1) do
8: k2 ← Min(t (e2), kmax − k1)
9: CCPtn, f r eq(CCPtn ) ← GetT N (GT , e1, k1, e2, k2)
10: CCPnn, f r eq(CCPnn ) ← GetNN (GT , e1, k1, NBcc (k1, e1),

EBcc (k1, e1), e2, k2, NN)
11: CCPno, f r eq(CCPno ) ← GetNN (GT , e1, k1, NBcc (k1, e1),

EBcc (k1, e1), e2, k2, NO)
12: end for

k1 ← k1 − 1
13: end while

14: end for

Algorithm 4 GenStarPatterns.
Require: tor graphGO = (VO , EO )
Ensure: Stars and asterisms Ps and frequency f r eq(Ps );

1: Ps ← ϕ
2: for v ∈ VO do

3: if deд(v) ≥ ϵ then

4: Ps ← Ps
⋃
Sdeд(v )

5: f r eq(Sdeд(v )) ← f r eq(Sdeд(v )) + 1
6: Q ← ϕ/∗Q is a queue ∗ /
7: SC ← InsertLast(SC, v)/∗v is appended to SC , a vector of nodes ∗ /

8: Q ← Enqeue(Q, SC)
9: whileQ , ϕ do

10: SCcurr ← Deqeue(Q )
11: u ← GetLast(SCcurr )/∗retrieve last element in SCcurr ∗ /
12: for z ∈ Neighbours(u) do
13: if z < SCcurr and deд(z) ≥ ϵ and Size(SCcurr )+ Size(Sdeд(z)) − 1 ≤

ηmax then

14: SCcurr ← InsertLast(SCcurr , z)
15: Ps ← Ps

⋃
ASCcurr

16: f r eq(ASCcurr ) ← f r eq(ASCcurr ) + 1
17: Q ← Enqeue(Q, SCcurr )
18: end if

19: end for

20: end while

21: end if

22: end for

in these patterns are removed from GO resulting in further decom-
position of the tor graph. The resultant graph is referred to as
the remainder graph (GR ). Then, the second phase extracts paths,
cycles, and small connected subgraphs from GR .

Extraction of star and asterism patterns. The frequencies
of these patterns can be derived directly from their definitions
(Sec. 5.2). Specifically, f req(Sk ) = |{v |v ∈ VO ,deд(v) = k}| and
f req(AS ) = f req({Em = {em1 , . . . , emn−1 })where emi = (ri , ri+1) ∈
EO , {k,ki } ≥ ϵ , deд(ri ) = ki and deд(ri+1) = ki+1. Algorithm 4
outlines the procedure. The star and asterism patterns are extracted
in Lines 2 to 22 and Lines 6 to 20, respectively. Briefly, asterism
patterns are found using breadth-first search (bfs). A vector of
vertices is used to keep track of star centers in an asterism pattern.
We “grow” the pattern by adding a neighbouring vertex z of the
current star center being considered only if deд(z) ≥ ϵ and when
the size of the grown pattern is less than or equals to ηmax .

Lemma 6.6. The worst-case time and space complexities of star

and asterism pattern extraction are O(|VO |
2) and O(|EO | + |VO |),

respectively.

Extraction of small patterns. The remainder graph GR is pri-
marily composed of small connected components such as paths,
cycles, and subgraphs with unique topology. Algorithm 5 outlines
the extraction of these small patterns and we denote k-cycle as Yk
and subgraphs with unique topology asU . Given a graphG = (V ,E),
a k-path, denoted as Pk = (Vk ,Ek ), is a walk of length k containing
a sequence of vertices v1,v2, · · · ,vk ,vk+1 where Ek ⊆ E, Vk ⊆ V
such that all vertices in Vk are distinct. A k-cycle is simply a closed
(k − 1)-path where k ≥ 3. We refer to small subgraph patterns as
connected components in GR that are neither k-paths nor k-cycles.
Note that 1-path, 2-path, 3-cycle and 4-cycle are basic building
blocks of real-world networks [33]. Recall that in Tattoo, we con-
sider them as default patterns and they are not part of the candidate
canned pattern set. Hence, we extract all k-paths for k > 2 (Lines 19-
21) and k-cycles for k > 4 (Lines 22-24) and their frequencies. After
that, small connected subgraphs and their corresponding frequen-
cies are extracted.

Lemma 6.7. Worst-case time and space complexities to find small

patterns are O(ηmax |VR |ηmax !) and O(|ER | + |VR |), respectively.

Remark. Exponential time complexity of the small pattern ex-
traction phase is due to the isomorphism check. The time cost is
small in practice due to the small size of candidate patterns and
their number is typically small in GR .

7 SELECTION OF CANNED PATTERNS

In this section, we describe the algorithm to select canned pattern
set P from the generated candidate patterns. We begin by present-
ing the theoretical underpinning that influences the design of our
algorithm.

7.1 Theoretical Analysis

Due to the hardness of the cps problem, we design an approxi-
mation algorithm to address it. We draw on insights from a re-
lated problem, team formation problem (tfp) [11, 14], which aims
to hire a team of individuals T from a group of experts S for a
specific project where T ⊆ S . Bhowmik et al. [11] proposed that
several aspects should be considered in tfp, namely, skill coverage
(skill), social compatibility (social), teaming cost (team) and mis-
cellaneous aspects such as redundant skills avoidance (red) and
inclusion of selected experts (exp). The formulation of tfp is given
as s(T ′) = αskill fskill (T

′)−αsocial fsocial (T
′)−αteam fteam (T

′)−

αr ed fr ed (T
′)+αexp fexp (T

′)were αskill , αsocial , αteam , αr ed and
αexp are non-negative coefficients that represent the relative im-
portance of each aspect of team formation [11]. The goal is to find
a team T ′ ⊆ S where the non-negative and non-monotone func-
tion s(T ′) is maximized. According to [11], this formulation can
be posed as an unconstrained submodular function maximization

problem which is NP-hard for arbitrary submodular functions.
Selecting a set of canned patterns in cps is akin to hiring a

team of individuals in tfp where fskill , fr ed , fteam correspond
to fcov , fsim and fcoд , respectively. Hence, cps can be formulated
in the form s(P ′) = αfcov fcov (P

′) − αfsim fsim (P
′) − αfcoд fcoд(P

′)

(Definition 7.1) where P ′ is the set of candidate patterns which
yields an optimized s(P ′).

Definition 7.1. [Pattern Set Score] Given a pattern set P ′, the

score ofP ′ is s(P ′) = 1
3 |P′ | (fcov (P

′)− fsim (P
′)− fcoд(P

′)+2|P ′ |)



Algorithm 5 GenSmallPatterns.
Require: Remainder graph GR = (VR, ER ), pattern budget b =

(ηmin, ηmax , γ )
Ensure: Small patterns Pr = {P

⋃
Y
⋃
U } and frequency f r eq(Pr )

where P = {Pk |k ≥ 3}, Y = {Yk |k ≥ 5};
1: Pr ← ϕ , P ← ϕ , Y ← ϕ , U ← ϕ
2: UCmaxID ← 0 /∗maximum ID of UC ∗ /
3: for v ∈ VR do

4: set v as unvisited
5: end for

6: for v ∈ VR do

7: if v is not visited then

8: find component C = (VC , EC ) containing v
9: ndeд1 ← 0 /∗num of nodes with deg=1 ∗ /
10: ndeд2 ← 0 /∗num of nodes with deg=2 ∗ /
11: for u ∈ VC do

12: if deд(u) = 1 then
13: ndeд1 ← ndeд1 + 1
14: else if deд(u) = 2 then
15: ndeд2 ← ndeд2 + 1
16: end if

17: set u as visited
18: end for

19: if ndeд1 = 2 and ndeд2 = |VC | − 2 and |VC | , 2 and |VC | , 3
then

20: P ← P
⋃
P |VC |−1

21: f r eq(P |VC |−1) ← f r eq(P |VC |−1) + 1
22: else if ndeд1 = 0 and ndeд2 = |VC | and |VC | , 3 and |VC | , 4

then

23: Y ← Y
⋃
Y|VC |

24: f r eq(Y|VC |) ← f r eq(Y|VC |) + 1
25: else if |EC | ≥ b .ηmin and |EC | ≤ b .ηmax then

26: if IsIsomorphic(C, U ) = true then

27: Ucurr ID ← GetID(C, U )
28: f r eq(Ucurr ID ) ← f r eq(Ucurr ID ) + 1
29: else

30: U ← U
⋃
(C, UmaxID )

31: f r eq(UmaxID ) ← 1
32: UmaxID ← UmaxID + 1
33: end if

34: end if

35: end if

36: end for

where fcov , fsim and fcoд are the coverage, similarity and cognitive

load of P ′, respectively.

Definition 7.2. [Good Candidate Pattern] Given a pattern set

P ′ and two candidate patterns p1 and p2, p1 is considered a good

candidate pattern if s(P ′
⋃
p1) > s(P ′

⋃
p2) and is added to P ′

instead of p2.

Note that Definition 7.2 can be utilized for determining inclusion
of a candidate pattern in P. Next, we analyze the properties of fcov ,
fsim , fcoд , and the pattern score.

Lemma 7.3. Coverage of a pattern set P, fcov (P), is submodular.

Lemma 7.4. The similarity (resp. cognitive load) of a pattern set

P, fsim (P) (resp. fcoд(P)), is supermodular.

Theorem 7.5. The pattern set score s(P ′) in Definition 7.1 is a

non-negative and non-monotone submodular function.

Similar to s(T ′) in tfp, s(P ′) in cps is non-negative and non-
monotone. However, unlike tfp, cps imposes a cardinality con-
straint where |P | is at most γ . Thus, cps can be posed instead as a
maximization of submodular function problem subject to cardinal-
ity constraint [13].

7.2 Coverage, Cognitive Load, and Similarity

Next, we quantify the coverage, cognitive load, and similarity mea-
sures used in the pattern score s(P ′).

Coverage. Recall from Section 4, we can compute the cover-
age of a pattern p as covp = |

⋃
i ∈ |S (p) | Ei |. Since the edge sets

of GT = (VT ,ET ) and GO = (VO ,EO ) are mutually exclusive,
we further modify covp to include a weight factor to account for
effects exerted by the sizes of GT and GO . Specifically, covp =
|
⋃
i ∈ |S (p) | Ei |

|Gx |
|E | where Gx ∈ {GT ,GO } for patterns obtained

from Gx . However, exact computation of coverage for each can-
didate pattern is prohibitively expensive. Hence, we approximate
covp as follows: covub(p) = |Ep | × f req(p) × |Gx |

|E | . Observe that
covub(p) is in fact the upper bound of covp when no isomorphic
instances of p in G overlap. Any superior upper bound that can be
computed efficiently can be incorporated. Unlike covp , computa-
tion of covub(p) requires only f req(p), which is significantly more
efficient.

The order of pattern extraction in GO (e.g., extracting stars and
asterisms before small patterns) may affect the frequency of the
extracted patterns. Hence, normalization of covub is performed for
each class of patterns (k-cp, ccp, star, asterism, and small pattern)
as follows:

covub(p) =
cov ′ub(p) −Min(cov ′ub (Pt )) + 1

Max (cov ′ub (Pt )) −Min(cov ′ub (Pt )) + 1
(2)

where t ∈ {k − CP ,CCP , star ,asterism, small} represents a class
of pattern. Specifically, we compute k-cps and ccps in GT . Stars,
asterisms and small patterns are computed in GO . The normalized
covub is in [0-1].

Cognitive Load. [26, 27] measure cognitive load based on size
and density only, ignoring edge crossings. Since it is designed for a
collection of small- or medium-sized data graphs, it is a reasonable
measure as in many applications such data graphs have very few
edge crossings (e.g., chemical compounds), if any. In contrast, edge
crossings occur frequently in large networks and hence cannot be
ignored in our context. In fact, Huang and colleagues examined
the effect of edge crossings on mental load of users and found
that cognitive load displays a relationship with edge crossings that
resembles the logistic curve [24] f (x) = L

1+e−k (x−x0) where L is the
curve’s maximum value, x0 is the x value of sigmoid’s midpoint
and k is the logistic growth rate [47].

Lemma 7.6. The crossing number ( i.e., number of edge crossings)

of any simple graph G = (V ,E) with at least 3 vertices satisfies

cr ≥ |E | − 3|V | + 6.

Hence cognitive load of a pattern p is computed based on the
size (szp = |Ep |), density (dp = 2 |Ep |

|Vp |( |Vp |−1) ) and edge crossing
(crp ). crp = 0 if p is planar. Otherwise, it is crp = |Ep | − 3|Vp | + 6.
We modelled the normalized cognitive load function in Tattoo
according to the logistic curve:



coдp = 1/(1 + e−0.5×(szp+dp+crp−10)) (3)

Parameters of coдp are set empirically to ensure even distribution
within the range of [0 1].

Similarity. Given a partial pattern set P ′ and two candidate
patterns p1 and p2, Tattoo selects p1 preferentially to add to P ′
if maxp∈P′ sim(p1,p) < maxp∈P′ sim(p2,p). To this end, we utilize
NetSimile, a size-independent graph similarity approach based on
distance between feature vectors [8]. It is scalable with runtime
complexity linear to the number of edges.

7.3 CPS-Randomized Greedy Algorithm

The canned pattern selection algorithm is as follows. First, it re-
trieves the default pattern set (1-path, 2-path, 3-cycle and 4-cycle).
Next, it prunes candidate patterns whose sizes do not satisfy the
plug specification or are “nearly-unique” (i.e., f req(p) < δ where δ
is a pre-defined threshold). Note that the latter patterns have very
low occurrences inG and are unlikely to be as useful for query con-
struction in their entirety3. Then, it selects P from the remaining
candidates.

Recall from Section 7.1, the cps problem can be cast as a max-
imization of submodular function problem subject to cardinality
constraint. Recently, the algorithm community has proposed a tech-
nique with quality guarantee in [13] to address it. We exploit this
approach, referred to as CPS-Randomized Greedy (CPS-R-Greedy,
Algorithm 6), in our cps problem. To the best of our knowledge,
this approach has not been utilized for graph querying.

In particular, CPS-R-Greedy extends the discrete greedy algo-
rithm [34] using a randomized approach. At every step, a random
candidate pattern is chosen from a set of “reasonably good” candi-
dates (Lines 19-22). Intuitively, these candidates should have very
few edge crossings, good coverage and are different from patterns
already in P. These candidates are identified as follows. For ev-
ery candidate pattern p, we compute the pattern set score (Defini-
tion 7.1) assuming p is added to the canned pattern set. A “good”
candidate p improves on the score of the set when it is added (Def-
inition 7.2). Note that covub , coд, and sim changes as P changes.
Hence, we recompute them at every iteration. Then, we randomly
select a “good” candidate and assign it to P. The algorithm termi-
nates either when the set contains the desired number of patterns or
when there exists no more good candidates. The following quality
guarantee can be derived from [13].

Theorem 7.7. CPS-R-Greedy achieves 1
e -approximation of cps.

Theorem 7.8. CPS-R-Greedy has worst-case time and space com-

plexity ofO(|Pcand |γ |Vmax | |Vmax |!) andO(|Pcand |(|Vmax |+|Emax |)),

respectively, where |Vmax | and |Emax | are the number of vertices and

edges in the largest candidate pattern.

Example 7.9. Consider a gui I and a plug b = (3, 11, 6). Suppose
there are four default patterns and five candidate patterns (i.e.,
Pcand ) as depicted in Figure 7. Let δ = 10. The algorithm first
removes p4 since f req(p4) < δ . Then, for the remaining patterns
in Pcand , each is considered in turn to be added to P by exploiting
CPS-R-Greedy technique. It first considers adding p1 to P and
computes the resulting coverage (fcovub(P⋃

p1)), cognitive load
3In the case, a user is interested in patterns with low coverage, δ can be set to 0 along with the
reduction in αfcov (P

′) in s(P ′) (Defn. 7.1).
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Figure 7: Default patterns and candidate patterns.

Algorithm 6 CPS-R-Greedy.
Require: Candidate pattern set Pall and its frequency f r eq(Pall ), pattern budget b =

(ηmin, ηmax , γ );
Ensure: Canned pattern set P;

1: sbest ← 0
2: while γ > 0 do
3: pbest ← ϕ
4: smap ← ϕ
5: C ← ϕ /∗list of good candidates ∗ /
6: for p ∈ Pall do
7: fcovub(p⋃

P) ← GetCoverage(p, P, f r eq(P
⋃
{p }))

8: fcoд(p⋃
P) ← GetCognitiveLoad(p, P)

9: fsim(p⋃
P) ← GetSimilarity(p, P)

10: s ← 1
3 (fcovub(p

⋃
P) − fsim(p⋃

P) − fcoд(p⋃
P) + 2)

11: if s > sbest and |P | = 0 then
12: sbest ← s
13: pbest ← p
14: else if s > sbest then

15: smap ← UpdateScore(smap , s, p)
16: C ← C

⋃
{p }

17: end if

18: end for

19: if |C | > 0 then
20: pbest ← RandomChoose(C)
21: sbest ← GetScore(smap , pbest )
22: end if

23: if pbest , ϕ then

24: P ← P
⋃
{pbest }

25: Pall ← Pall \ {pbest }
26: γ ← γ − 1
27: else

28: break
29: end if

30: end while

(fcoд(P⋃
p1)) and similarity (fsim(P⋃

p1)). The pattern set score of
P
⋃
p1 is then computed using Defn. 7.1. The scores of the other

candidate patterns are computed similarly. Suppose the scores are
0.72, 0.63, 0.54, 0.68 for p1, p2, p3, p5, respectively. Then, in the first
iteration, p1 is selected (and removed from subsequent iterations)
and the current best score sbest is updated to 0.72. In the next (i.e.,
final) iteration, the candidates are again considered in turn to be
added to P and corresponding pattern set scores are computed.
However, unlike the first iteration, only those candidates whose
scores are greater than sbest are considered. Let the scores of p2,
p3 and p5 be 0.81, 0.7 and 0.77, respectively. Then, a candidate will
be randomly selected from p2 or p5. Suppose p2 is chosen, then the
final pattern set is {d1,d2,d3,d4,p1,p2}.

8 PERFORMANCE STUDY

Tattoo is implemented in C++ with GCC 4.2.1 compiler. We now
report the key performance results of Tattoo. All experiments are
performed on a 64-bit Windows 10 desktop with Intel(R) Core(TM)
i7-4770K CPU (3.50GHz) and 16GB RAM.



8.1 Experimental Setup

Datasets.We evaluate Tattoo’s performance using 10 large net-
works (Table 2) from snap (http://snap.stanford.edu/data/index.
html) containing up to 34.7 million edges.

Algorithms. State-of-the-art guis for large networks [36, 37]
do not support canned patterns. Hence, we compare Tattoo with
the following baselines: (a) Catapult [26]: We assign same labels
to all nodes of a network and partition it into a collection of small-
or medium-sized data graphs using Metis [31]. Then the algorithm
in [26] is used to select canned patterns. (b) Use graphlets, frequent
subgraphs, random patterns, default patterns, and edge-at-a-time

( i.e., pattern oblivious): x-node graphlets where x ∈ [2 − 5] are gen-
erated using the approach in [15]. Random patterns are generated
by randomly selecting subgraphs of specific sizes from a network.
The number of candidates per size follows a uniform distribution.
Frequent subgraphs are generated using Peregrine[29] (downloaded
from [3]). These subgraphs are considered as candidates fromwhich
the canned patterns are selected using our algorithm in Section 7.3.

Query sets and GUI. We use different query sets for the user
study and automated performance study. We shall elaborate on
them in respective sections. The gui used for user study is viewable
at https://youtu.be/sL0yHV1eEPw.

Parameter settings. Unless specified otherwise, we set ηmin =

3, ηmax = 15, γ = 30, δ = 3, and ϵ = 5.
Performance measures. We measure the performance of Tat-

too using the followings: (1) Run time: Execution time of Tattoo.
(2) Memory requirement (mr): Peak memory usage when executing
Tattoo. (3) Reduction ratio (denoted as µ): Given a subgraph query
Q , µ = steptotal−stepP

steptotal
where stepP is the minimum number of

steps required to construct Q when P is used and steptotal is the
total number of steps needed when edge-at-a-time approach is used.
Note that the number of steps excludes vertex label assignments
which is a constant for a given Q regardless of the approach. For
simplicity in automated performance study, we follow the same
assumptions in [26]: (1) a canned pattern p ∈ P can be used in Q
iff p ⊆ Q ; (2) when multiple patterns are used to construct Q , their
corresponding isomorphic subgraphs in Q do not overlap. In the
user study, we shall jettison these assumptions by allowing users
to modify the canned patterns and no restrictions are imposed (i.e.,
stepP does not need to be minimum). Smaller values of div imply
better pattern diversity. For ease of comparison, the diversity plots
are based on the inverse of div .

8.2 User Study

We undertake a user study to demonstrate the benefits of using
our framework from a user’s perspective. 27 unpaid volunteers
(ages from 20 to 35), who were students of, or, researchers within
different majors took part in the user study. None of them has used
our gui prior to the study. First, we presented a 10-min scripted
tutorial of our gui describing how to visually formulate queries.
Then, we allowed the subjects to play with the tool for 15 min.

For each dataset, 5 subgraph queries with size in the range [10-
28] are selected. These queries mimic topology of real-world queries
containing various structures described in Section 5.2. To describe
the queries to the participants, we provided printed visual subgraph
queries. A subject then draws the given query using a mouse in our
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gui. The users are asked to make maximum use of the patterns to
this end. Each query was formulated 5 times by different partici-
pants. We ensure the same query set is constructed in a random
order (the order of the query and the approach are randomized) to
counterbalance learning effects.

The canned patterns on the gui are grouped by size and dis-
played using ForceAtlas2 layout [28] in different pages according
to their sizes. This multi-page-based organization yields faster av-
erage query formulation time and fewer steps compared to other
alternatives.

Display layout of canned patterns. We first explore 3 different
graph layout algorithms, namely, ForceAtlas2 [28], Fruchterman

Reingold (fr) [19] and Dagre [35] to determine the most suitable
layout for displaying canned patterns our gui. Ten participants
were asked to construct a set of 5 queries each for the Amazon and

http://snap.stanford.edu/data/index.html
http://snap.stanford.edu/data/index.html
https://youtu.be/sL0yHV1eEPw
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YouTube datasets. Each participant repeated this experiment 3 times
where a different graph layout was used on the canned pattern set
each time. Figures 8 and 9 plot the average query formulation time
and average number of steps. In general, the ForceAtlas2 layout
yielded faster average qft compared to fr and Dagre. Participants
also took fewer steps using ForceAtlas2 compared to the rest. Hence,
in subsequent experiments, Tattoo leverages ForceAtlas2 layout to
display the canned patterns.

Learning effect. Since the same query set is used repeatedly for
each approach, there may be a learning effect where volunteers
start to commit the query set to memory if the study is conducted
in a fixed order. Particularly, approaches that are tested latter in
the study may gain an unfair advantage over earlier approaches.
We investigate it further with an experiment. Ten participants (Uf )
were asked to construct 5 queries on the Amazon and YouTube

datasets in a fixed order while another ten participants (Ur where
Uf ∩ Ur = ∅) were asked to construct the same query set in a
random order (the order of the query and the approach are random-
ized) to minimize learning effects. Figure 10 reports the average
time taken for query formulation. Interestingly, formulation time
is generally faster using Tattoo’s canned patterns compared to
graphlets regardless of the order on the query and approach. We
further examined the difference in average formulation time (i.e.,
tGraphlet − tTattoo) across queries and datasets for these two or-
ders. In particular, the average time difference for Amazon (resp.
YouTube) is 5.5s (resp. 5.5s) and 5.9s (resp. 3.7s) for fixed order and
random order, respectively. This is possibly due to the learning
effect. Hence, in subsequent experiments we follow the randomized
order to minimize learning effect.

Visual mapping time. In order to use canned patterns for query
formulation, a user needs to browse the pattern set and visually
map them to her query. We refer to this as visual mapping time

(vmt). For each pattern used, we record the pattern mapping time

(pmt) as the duration when the mouse cursor is in the Pattern Panel

to the time a user selects and drags it to the Query Canvas. The
vmt of a query is its average pmt. Intuitively, a longer vmt implies
greater cognitive load on a user. Figure 11 shows the vmt of tattoo
patterns, graphlets, frequent subgraphs, and random patterns on
am and yt datasets. On average, Tattoo patterns consume the least
vmt.

We investigate the effect of various gui canned pattern layout
options (i.e., single page (SP ); group by size (GS); 4 per page (4P );
8 per page (8P ); 16 per page (16P ); sort by cognitive load (SL),
diversity (SD) and sort by coverage (SC)) on vmt for AM and YT

datasets. Note that SP arranges the patterns in the order that they
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are identified. The plug was set to b = (4, 15, 30, ⌈ 3012 ⌉). Figure 12
shows that the average vmt for layout options with multiple pages
tends to be shorter (up to 33.1%) than those in a single page (i.e.,
SP , SL, SD and SC). When the patterns are organized in pages, an
increased number of pages reduces the need for a user to scroll and
browse the patterns on a particular page and increases the need to
toggle between various pages to identify useful patterns. Compared
to single page options, the multi-page options (GS , 4P , 8P , 16P )
achieve superior performance primarily due to the former. Hence,
the multi-page-based organization is used for our user study.

Query formulation time (qft) and number of steps. Figures 13 and 14
plot the average qft and the average number of steps taken, re-
spectively, for am and yt. Note that a qft includes the vmt and
the steps include addition/deletion of nodes and edges and merger
of nodes. As expected, the edge-at-a-time approach took the most
steps. Paired t-test shows that the superior performance of Tattoo
is statistically significant (p < 0.05) for 79.4% of the comparisons
(Figure 15). In particular, it takes up to 18X, 9.3X, 6.7X, 8X, 9X, and
9X fewer steps compared to edge-at-a-time, default pattern, ran-
dom patterns, graphlet, frequent patterns, and Catapult-generated
patterns, respectively. For qft, Tattoo is up to 9.7X, 8.6X, 9X, 6.6X,
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7.1X, and 7.4X faster, respectively. The results are qualitatively sim-
ilar in other datasets. Note that we can run Catapult only on am
for reasons discussed later.

Effect of |P |. The number of patterns on a gui may also impact
a user cognitively as larger |P | means a user needs to browse more
patterns to select relevant ones. Hence, we investigate the effect
of |P | on qft and the number of steps (Figure 16). Interestingly,
qft and steps are reduced by average of 12% and 22% (maximum
reduction of 77% and 80%), respectively, when |P | is increased
from 5 to 30. Increase in |P | exposes more patterns that could
be leveraged for query formulation, reducing query formulation
steps. Further, it results in two opposing effects: (1) longer time
needed to browse and select appropriate patterns (longer vmt)
and (2) potentially more and larger patterns available for query
construction resulting in fewer construction steps and shorter qft.
The latter effect dominates.

Qualitative evaluation.We also conducted a post-study question-
naire to gain some qualitative feedback on Tattoo. Overall, all
participants prefer to use pattern-at-a-time approach compared to
edge-at-a-time approach and Tattoo’s canned patterns are rated
the most useful with average rating of 4.5 on a 5-point Likert scale.
Graphlets, frequent and random patterns have average ratings of
3.5, 4 and 1.75, respectively.

In addition, participants were queried using an adapted nasa-
tlx [22] questionnaire (on a 5-point Likert scale) regarding the
mental demand, performance and frustration level of query formu-
lation using canned patterns generated from various approaches.
Briefly, nasa-tlx is a commonly used tool for assessing perceived
workload based on user inputs in the form of a questionnaire and

Table 3: Examples of user comments.

Index Comment

1 I like to use canned patterns to draw a query graph because it
is faster and less tedious. Constructing the query graph each
vertex and each edge at a time is just too tedious and boring!

2 The random and graphlet patterns appear very cluttered and
confusing!. It takes me considerable time to figure out if I can
use them or not for my query.

3 The default patterns are simple and easy for me to figure out.
But I need to choose several of them repeatedly for a large
query. The Tattoo patterns are a great complement to the
default patterns to make the drawing faster.

4 Tattoo patterns are more varied and I can usually find some
patterns to use for drawing subgraph queries.

5 I find it easy to map the Tattoo patterns to a query compared
to other patterns like the random ones. It is actually much
faster to construct a query using them than if I were to draw
the vertices and edges one at a time.

6 I like the ease of use of the gui. I can just use one interface
to query different datasets. I don’t need to switch to different
interfaces for different sources.

7 The default patterns are very useful for extending other bigger
patterns like those from Tattoo and graphlets when I draw a
subgraph query.

consists of ratings for 6 categories4, namely, mental demand, phys-
ical demand, temporal demand, performance, effort and frustration.
Since we do not impose a time limit on the query formulation task,
there is no temporal demand. Physical demand is also negligible
in our problem setting. In particular, effort and mental demand are
equivalent in this case and can be associated directly with cognitive
load. The mental demand is 2.5, 3, 3.5 and 4.25 for Tattoo, frequent
patterns, graphlets and random patterns, respectively, where larger
values imply greater mental demand. In terms of performance, it is
4.25, 4, 4 and 3.75, respectively, where larger values are associated
with better performance. The frustration level is 2.75, 2.75, 3 and 4,
respectively, where larger values relates to more frustration. This
highlights the benefits of canned patterns generated by Tattoo.

Some users elaborated on their preferences. Table 3 lists the key
comments by these users. Several users highlighted that they found
edge-at-a-time approach tedious to use compared to pattern-at-a-
time approach due to the repetitive task of drawing vertices and
edges. This is consistent with hci research as remarked in Section 1.
They also felt that canned patterns of Tattoo are more diverse and
easy to map to the query graphs. Hence, using them during query
construction do not require much effort, and the patterns are useful
in speeding up query formulation. Lastly, several users highlighted
the usefulness of default patterns in extending other larger canned
patterns during query formulation.

4Mental demand can be interpreted as the cognitive load on the user; Physical demand assesses the
amount of physical activity required for the task; Temporal demand is related to the time pressure
experienced based on the pace of the task; Performance measures a user’s satisfaction with perfor-
mance of the task; Effort can be interpreted as the overall mental and physical demand needed to
perform the task; Frustration level sets out to measure user’s feelings (i.e., irritated, stressed and
annoyed versus content, relaxed and complacent) during performance of the task.



8.3 Automated Performance Study

In this section, we evaluate Tattoo from the following perspectives.
First, we compare the runtime and quality of patterns of Tattoo
with the baseline approaches (Exp 1, 2). Second, we present results
that support our design decisions (Exp 3, 4, 5). To this end, we
generate 1000 queries (size [4-30]) for each dataset where 500 are
randomly generated and remaining (evenly distributed) are path-
like, tree, star-like, cycle-like and flower-like queries.

Exp 1: Run time. First, we evaluate the generation time of dif-
ferent patterns types in canned pattern sets. Figure 17 (top) shows
the results. In particular, generation of chord-like patterns requires
significantly more time (up to 146% more for lj) than other pattern
types. This is primarily due to checks for different types of edge
merger required for ccps. Figure 17 (bottom) reports the time taken
by various phases of Tattoo as well as runtime of Catapult. Tat-
too selects canned patterns efficiently within a few minutes. Observe
that the time cost for the small pattern extraction phase is small in
practice. In general, pattern selection is the most expensive phase
and requires a couple of minutes or less. Results are qualitatively
similar for other datasets. Figure 18 plots the memory requirement
for Tattoo. It is largely dependent on the size of the dataset where
the largest dataset LJ has the greatest memory cost.

Lastly, observe that Tattoo is 735X faster than Catapult, which
is not designed for large networks. Except am, other datasets either
cannot be processed by Metis or fail to generate patterns in a
reasonable time (within 12 hrs) due to too many possible matches
of unlabelled graphs that require expensive graph edit distance
computation. In the sequel, we shall omit discussions on Catapult.

Exp 2: Comparison with graphlets, frequent subgraphs,

and random patterns. Next, we compare Tattoo’s patterns with
those of graphlets (30 patterns derived from graphlets). Figure 19
reports the results. Observe that Tattoo’s patterns are superior
to graphlets in all aspects. The results are qualitatively similar for
other datasets. Note that coverage is not examined since it is 100%
in all cases as all queries can be constructed using 2-node graphlet.

We compare the canned pattern set derived from frequent sub-
graphs generated by Peregrine (denoted as PP ) to those generated
by Tattoo. We observe that Peregrine failed to extract larger size
patterns (i.e., |V | ≥ 8) within 12 hrs for all networks. Specifically,
for rp, rc, and rt (resp. am), it was able to extract frequent patterns
of size |V | ≤ 7 (resp. |V | ≤ 6) within 2.5 hrs. For bk and db (resp. yt,
lj, sk, and go) it can extract upto size |V | ≤ 5 (resp. |V | ≤ 4) within
2.5hrs. However, it took around 39 hrs on am to yield a meaning-
ful number of candidate patterns (994 patterns with size |V | ≤ 7
and |E | ≤ 21) when the minimum threshold is set to 100. Hence,
Tattoo is orders of magnitude faster than frequent pattern-based

solution. Consequently, we restrict the canned pattern sets of both
Tattoo and PP to 30 patterns with |V | ≤ 7 and |E | ≤ 21 for am
in our experiments for fair comparison. Consistent with our user
study, Tattoo’s pattern set is superior to PP in most aspects. The
average coverage, cognitive load, diversity and µ for Tattoo (resp.
Peregrine) are 0.3 (resp. 0.27), 0.15 (resp. 0.14), 0.64 (resp. 0.59) and
0.23 (resp. 0.24), respectively.

The comparison with random patterns are reported in Figure 20.
We observe that Tattoo’s patterns result in higher µ, and are sig-
nificantly lower in cognitive load (up to 3.2X) when compared to
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random patterns. Tattoo’s patterns is up to 9% less diverse com-
pared to random patterns. The greater diversity of the random
pattern set is likely due to the unrestricted way in generating the
random patterns as compared to pattern generation of Tattoo
which are partially derived from defined structures such as trusses,
paths, cycles and stars. Despite the greater diversity, random pat-
terns are more difficult to use in practice (Section 8.2) likely due to
the greater cognitive load necessary to interpret the patterns.

Exp 3: Measuring cognitive load.We now justify the choice
of our proposed cognitive load measure. Specifically, we compare
several ways of measuring cognitive load of a pattern p, namely,
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fcoд1 =
1
3
∑
x ∈{szp,dp,crp }(1−e

−x ); fcoд2 = 1/(1+e−0.5×(szp+dp+crp−10));
fcoд3 = szp + dp + crp ; fcoд4 = szp × dp (used in [26]); and
fcoд5 = crp (recall szp , dp , crp from Sec. 7.2). 20 volunteers were
asked to rank the visual representations of six graphs (Figure 21) of
varying sizes and topology, in terms of cognitive effort required to
interpret these graphs. A “ground truth” ranking for these graphs
is obtained based on the average ranks assigned by the volunteers.
Then, the graphs are ranked according to the five cognitive load
measures and compared against the ground truth using Kendall’s
τ [32]. fcoд2 and fcoд3 achieve the highest τ = 1. We select fcoд2
as the cognitive load measure since it is in the range of [0, 1] and
facilitates easy formulation of a non-negative and non-monotone
submodular pattern score function (Theorem 7.5).

Exp 4: Chord patterns vs k-trusses. Next, we show the ben-
efits of using k-cp/ccps (i.e., k-truss-like structures) compared to
simply utilizing k-trusses as topology for canned patterns (recall
from Section 5.2). We generate 100 random queries of size [4-30]
from GT and these yielded 11 k-cp/ccps and 3 k-trusses. Observe
that k-cp/ccps improve both µ and diversity but have poorer cog-
nitive load (Figure 22). Here the cognitive load and diversity of a
pattern set is the average value for respectivemeasures. Importantly,
more k-cp/ccps than k-trusses satisfying the plug are generated
due to relaxed structure of the former. For instance, the rp dataset
produces 266.67% more k-cp/ccps due to the small size of GT (see
Table 2). That is, k-trusses may not result in sufficient number
of canned patterns on a gui. Hence, chord patterns improve the
quality of canned patterns in terms of µ and diversity compared to
k-trusses and yielded more candidate patterns.

Exp 5: Generating patterns from GT and GO . Lastly, we ex-
amine the (a) benefits brought by graph decomposition on pattern
extraction and (b) the characteristics (i.e., average cognitive load, µ,
and average diversity) of canned pattern sets generated from GT
and GO and compare them with the default patterns (i.e., GT - and
GO -oblivious). Graph decomposition reduces the pattern extraction
time for k-truss-like structures, as well as, stars and small patterns
across all datasets (Figure 23). The effect is most prominent for
extraction of k-truss-like structures where it is up to 81.5X faster
when graph decomposition is applied. For extraction of stars and
small patterns, it is up to 24.3X faster with graph decomposition.

Hence, this justifies our decision to perform truss-based graph
decomposition.

Figure 24 reports the characteristics of the canned pattern sets.
Note that coverage is 100% for the three cases as all queries can be
constructed using the default pattern D1 (Figure 7). On the other
hand, Tattoo’s canned patterns achieve 49% and 78% average cov-
erage of GT and GO , respectively. Observe that patterns obtained
from GO and GT contribute to higher µ and greater diversity over
the default patterns, respectively. That is, despite 100% coverage of
the latter, it is less efficient (i.e., more number of steps for query
formulation) than the former. Also notice the increase in cognitive
load due to the inclusion of chord-like patterns as they are likely to
be denser than others. Hence, patterns fromGT andGO complement

the default patterns by improving µ and diversity.

9 CASE STUDY

In this section, we describe the application of Tattoo for visual
query formulation on the Amazon and RoadNet-TX datasets. We
generate 30 canned patterns of sizes between 4 and 15 from each of
these datasets. Figures 25(a) and 25(b) depict some of the patterns
selected from Amazon and RoadNet-TX, respectively. Observe that
the patterns are different for different datasets. Specifically, patterns
in red rectangle boxes in Figures 25(a) are not found in Figures 25(b)
and vice versa. This emphasizes the fact that different datasets may
expose different collection of canned patterns to aid efficient query
formulation. Second, observe that the patterns have low cognitive
load as one can easily recognize their topology with a quick glance.
In particular, patterns encapsulated by blue ellipses (solid lines) in
Figures 25(a) and (b) are examples of some patterns derived from
GT .

We now illustrate efficient query construction using canned pat-
terns. Suppose one is interested in making a new movie involving
Ben Affleck and Matt Damon. She would like to identify other ac-
tors that have prior working experience with these two actors. She
may construct a subgraph query such as the one in Figure 25(c) to
query the Amazon dataset containing movie titles and associated
actors. Query formulation takes 8 steps (∼ 20s) by utilizing one
canned pattern (highlighted by green ellipse with broken line in
Figure 25(a)) and adding an edge. Note that the steps taken include
vertex label assignment. In comparison, edge-at-a-time requires a
total of 20 steps (∼ 39s).

10 CONCLUSIONS & FUTUREWORK

Canned patterns play a pivotal role in supporting efficient visual
subgraph query formulation using direct-manipulation interfaces.
We present Tattoo, which takes a data-driven approach to select-
ing them from the underlying network by exploiting real-world
query characteristics and optimizing coverage, diversity, and cog-
nitive load of the patterns. Our experimental study demonstrates
superiority of our framework to several baselines. As part of future
work, we plan to explore the problem in a distributed settings.
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A PROOFS

Proof of Theorem 4.2 (Sketch). The cps is a multi-objective op-
timization problem which can be reformulated as a constrained
single-objective optimization problem where the objective function
is max fcov and the constraints are min(fsim , fcoд). This reformu-
lated problem (i.e., max fcov ) can be reduced from the maximum
coverage problem, which is a classical NP-hard optimization prob-
lem [30]. In particular, given a number k and a collection of sets
S , the maximum coverage problem aims to find a set S ′ ⊂ S such
that |S ′ | ≤ k and the number of covered elements is maximized. In
cps, the collection of sets S is the set that consists of all possible
subgraphs of the graph dataset D. The subset S ′ is the canned pat-
tern set and k is the size of the canned pattern set. The number of
covered elements corresponds to the number of covered subgraphs
in D. Note that the reformulated optimization problem is at least
as hard as the maximum coverage problem since optimizing the
objective may result in solutions that are sub-optimal with regards
to additional imposed constraints.

Proof of Lemma 6.1 (Sketch). In Algorithm 2, the worst-case
time complexity is due to Lines 13 to 20 which computes the
trussness of each edge e ∈ ET (O(|

√
ET |) [44]), updates f req(Ck )

and stores Ck in the candidate pattern set. Hence, the worst-case
time complexity is O(|ET |1.5 + |ET |kmax ) since upper bound of
k is kmax . Algorithm 2 uses O(|ET | + |VT |) and O(|ET |) space to
hold GT and t(e), respectively. Further, all possible k-chord pat-
terns (3 ≥ k ≥ kmax ) and its frequency have to be stored in
the worst-case (O(kmax )). Hence, worst-case space complexity is
O(|ET |+ |VT |) since |ET |+ |VT | ≫ kmax for large graph in practice.

Proof of Lemma 6.3 (Sketch). The simple 3-truss pattern C3 =
(Vc3,Ec3) is simply a triangle. Hence, ∀e = (u,v) ∈ Ec3, there is
a vertex w that is adjacent to both u and v . That is, all edges in
C3 have similar structure. Hence, all different types of single edge
merger between two C3 produces a pattern with a merged edge

em = (x ,y) and vertices x andy have two common adjacent vertices
w1 andw2 which is essentially C4 where its truss edge correspond
to the merged edge of the two C3(Figure 26).

Proof of Lemma 6.4 (Sketch). Observe that k-chord pattern on
an edge e = (u,v) implies that k-2 triangles in the graph contains e .
Since nbcc (k, e) is the set of nodesW adjacent to u and v such that
∀w ∈W , t((u,w)) ≥ k and t((w,v)) ≥ k , |nbcc (k, e)| is equivalent
to the number of triangles around e . Hence, when |nbcc (k, e)| ≥
(k − 2), a k-chord pattern must exist on e .

Proof of Theorem 6.5 (Sketch). In Algorithm 3, for each edge
e ∈ ET , there are k1 × |ebcc (k1, e1)| iterations that computes the
procedures GetTN (O(kmax )), GetNN (O(kmax |ebmax |)) where
ebmax is the k-CCP edge neighbourhood with the largest size.
The worst-case time complexity is O(k2max |ET | × |ebmax |

2) since
kmax is the upper bound of k1. Algorithm 3 requiresO(|VT | + |ET |)
and O(kmax |ET |) to store GT and nb, respectively. In the worst-
case, all possible combinations of CCPtn(k1,k2), CCPno(k1,k2) and
CCPnn(k1,k2), and their respective frequency are stored
(O(kmax

kmax−3
2 )). The worst-case space complexity is

O(kmax |ET | + |VT |) since kmax |ET | + |VT | ≫ kmax
kmax−3

2 for
large graph in practice.

Proof of Lemma 6.6 (Sketch). In the worst-case, finding the stars
and asterism patterns requires performing bfs for each vertex in
VO . In the worst case, the graph is strongly connected and every
other vertex in VO is visited during the bfs. Hence, the worst-case
time complexity is O(|VO |2). Algorithm 4 requires O(|VO | + |EO |)
space for storingGO . In the worst-case, there aredeдmax −ϵ+1 and
deдmax−ϵ+1

2 (1+ (deдmax −ϵ + 1)) possible Sk andAS , respectively.
Since deдmax occurs when every node v ∈ VO is connected to ev-
ery other nodes in VO , deдmax has worst-case complexity O(|VO |).
Hence, storage of Sk and AS requires O(|VO |) and O(|VO |

2), re-
spectively and Algorithm 4 requires O(|VO | + |EO |) space in the
worst-case.

Proof of Lemma6.7 (Sketch). In Algorithm 5, theworst-case time
complexity is due to the graph isomorphism check (O(ηmax !ηmax )

[16]) on Line 26 which is within a for-loop with maximum of |VR | it-
erations. Hence, theworst-case time complexity isO(ηmax |VR |ηmax !).
Algorithm 5 requires O(|VR | + |ER |) space for storing GR . Since ev-
ery k-path (Pk ), k-cycle (Yk ) and subgraphs with unique topology
(U ) consists of multiple nodes, the number of possible Pk , Yk and
U is less than |VR | and the storage required will be O(|VR |). Hence,
the worst-case space complexity is O(|VR | + |ER |).

Proof of Lemma 7.3. Submodular functions satisfies the property
of diminishing marginal returns. That is given a set of n elements
(N ), a function f (.) is submodular if for everyA ⊆ B ⊆ N and j < B,
f (A

⋃
{j})− f (A) ≥ f (B

⋃
{j})− f (B). Given a graphG and canned

pattern sets PA and PB where PA ⊆ PB , let the coverage of PA
and PB be fcov (PA) and fcov (PB ), respectively. Observe that PB
consists of PA and additional patterns (i.e., P ′ = PB \PA). For each
canned pattern p ∈ P ′, we let s = min(| fcov (p)|, | fcov (PA)|) andK
denotes the overlapping set fcov (p)

⋂
fcov (PA). The coverage of p

falls under one of four possible scenarios, namely, (1) K = fcov (p)
if s = | fcov (p)|, (2) K = fcov (PA) if s = | fcov (PA)|, (3) K is an
empty set and (4) otherwise (i.e., 0 < | fcov (p)

⋂
fcov (PA)| < s).



In the case where coverage of every p falls under scenario 1, then
fcov (PA) = fcov (PB ). Should any p falls under scenario 2, 3 or
4, then fcov (PA) ⊂ fcov (PB ). Hence, fcov (PA) ⊆ fcov (PB ). Con-
sider a canned pattern p′ < PB , let t = min(| fcov (p′)|, | fcov (PA)|).
Suppose fcov (p′)

⋂
fcov (PA) = fcov (p

′)where | fcov (p′)| < | fcov (PA)|
(Scenario 1), then fcov (PA

⋃
{p′}) − fcov (PA) is an empty set.

Note that we use the minus and set minus operator interchange-
ably in this proof. Since fcov (PA) ⊆ fcov (PB ), fcov (PB

⋃
{p′}) =

fcov (PB ). Hence, fcov (PA
⋃
{p′}) − fcov (PA) = fcov (PB

⋃
{p′})

− fcov (PB ).
Now, consider fcov (p

′)
⋂

fcov (PA) = fcov (PA) where
| fcov (p

′)| > | fcov (PA)| (Scenario 2). fcov (PA
⋃
{p′}) − fcov (PA)

= fcov (p
′)− fcov (PA)where fcov (PA) ⊂ fcov (p

′). Let L andM be
fcov (p

′)\ fcov (PA) and fcov (PB )\ fcov (PA), respectively. Observe
that, similar to previous observation, it is possible for (1) L to be fully
contained inM if |L| < |M |, (2)M to be fully contained in L if |M | <
|L|, (3) L

⋂
M to be empty or (4) otherwise (i.e., 0 < |L

⋂
M | < t

where t = min(|L|, |M |)). Hence, |L
⋂

M | ∈ [0, t]. When |L
⋂

M | =
0, fcov (PA

⋃
{p′})− fcov (PA) = fcov (PB

⋃
{p′})− fcov (PB ). Oth-

erwise, there are some common graphs covered by L andM , result-
ing in fcov (PB

⋃
{p′})−fcov (PB ) = L\(L

⋂
M). Hence, | fcov (PA

⋃
{p′})

− fcov (PA)| > | fcov (PB
⋃
{p′}) − fcov (PB )|. Taken together, for

scenario 2, | fcov (PA
⋃
{p′}) − fcov (PA)| ≥ | fcov (PB

⋃
{p′}) −

fcov (PB )|.
For scenario 3, it is similar to scenario 2 where L is fcov (p

′)

instead of fcov (p′)\ fcov (PA). fcov (PA
⋃
{p′})− fcov (PA) = L and

fcov (PB
⋃
{p′}) − fcov (PB ) = L \ (L

⋂
M). Since |L

⋂
M | ∈ [0, t],

| fcov (PA
⋃
{p′}) − fcov (PA)| ≥ | fcov (PB

⋃
{p′}) − fcov (PB )|.

For scenario 4, it is the same as scenario 3 except that L =
fcov (p

′) \ (fcov (PA)
⋂

fcov (p
′)). Observe that | fcov (PA

⋃
{p′}) −

fcov (PA)| ≥ | fcov (PB
⋃
{p′}) − fcov (PB )| due to |L

⋂
M | ∈ [0, t].

Hence, in all cases, | fcov (PA
⋃
{p′}) − fcov (PA)| ≥

| fcov (PB
⋃
{p′}) − fcov (PB )| applies and fcov (.) is submodular.

Proof of Lemma 7.4.We begin by stating the first order difference.
Given a submodular function f (.), for every PA ⊆ PB ⊆ D and
every p ⊂ D such that p < PA,PB , the first order difference states
that f (PA

⋃
{p}) − f (PA) ≥ f (PB

⋃
{p}) − f (PB ).

Given a graph G, a canned pattern p < PB and canned pat-
tern sets PA and PB where PA ⊆ PB , let the similarity of PA
and PB be fsim (PA) and fsim (PB ), respectively. fsim (PB

⋃
{p})−

fsim (PB ) =
∑
pi ∈PB sim(p,pi ) and fsim (PA

⋃
{p}) − fsim (PA) =∑

pi ∈PA sim(p,pi ). Since sim(pi ,pj ) ≥ 0 ∀pi ,pj ⊂ G , PA ⊆ PB and
by definition of the first order difference, fsim (.) is supermodular.
The proof is similar for fcoд(.).

Proof of Theorem 7.5 (Sketch). Consider a partial pattern set
P ′ and a candidate pattern p. Suppose p does not improve the set
coverage of P ′ and adds a high cost in terms of cognitive load and
diversity. Then, s(P ′) > s(P ′

⋃
{p}). Hence, the score function s(.)

is non-monotone. Since fcov (P
′), fsim (P

′), fcoд(P
′) ∈ [0, |P ′ |],

fcov (P
′)− fsim (P

′)− fcoд(P
′) is in the range [-2|P ′ |,|P ′ |]. Hence,

1
3 |P′ | (fcov (P

′) − fsim (P
′) − fcoд(P

′) + 2|P ′ |) (Definition 7.1) is
in the range [0, 1] and is non-negative. Since supermodular func-
tions are negations of submodular functions and that non-negative

weighted sum of submodular functions preserve submodular prop-
erty [20], s(P ′) is submodular. Note that adding a constant (i.e.,
2
3 ) does not change the submodular property [11] and ensures
that s(P ′) is non-negative. The scaling factors of αfcov = αfsim =

αfcoд =
1

3 |P′ | further bounds s(P
′) within the range [0, 1].

Proof of Lemma 7.6. Consider a graph G = (V ,E) with cr cross-
ings. Since each crossing can be removed by removing an edge
from G, a graph with |E | − cr edges and |V | vertices containing
no crossings (i.e., planar graph). Since |E | ≤ 3|V | − 6 for planar
graph (i.e., Euler’s formula), hence, |E | − cr ≤ 3|V | − 6 for |V | ≥ 3.
Rewriting the inequality, we have cr ≥ |E | − 3|V | + 6.

Proof of Theorem 7.7. Let Ai be an event fixing all the random
decisions of Greedy for every iteration i and Ai be the set of all
possibleAi events. We denote s(Pi−1

⋃
{pi })−s(Pi−1) as spi (Pi−1).

Further, let the desired size of P be γ , 1 ≤ i ≤ γ and Ai−1 ∈
Ai−1. Unless otherwise stated, all the probabilities, expectations
and random quantities are implicitly conditioned onAi−1. Consider
a setM ′i containing the patterns ofOPT \Pi−1 plus enough dummy
patterns to make the size ofM ′i exactly γ .

Note that E[spi (Pi−1)] = γ−1 ·
∑
p∈Mi sp (Pi−1) ≥ γ−1 ·

∑
p∈M ′i

sp (Pi−1) = γ−1 ·
∑
p∈OPT \Pi−1 sp (Pi−1) ≥

s(OPT
⋃
Pi−1)−s(Pi−1)
γ

[13], where the first inequality follows from the definition ofMi (i.e.,
set of “good” candidate patterns) and the second from the submodu-
larity of s(.) Unfixing the eventAi−1 and taking an expectation over
all possible such events,E[spi (Pi−1)] ≥

E[s(OPT
⋃
Pi−1)]−E[s(Pi−1)]
γ ≥

(1− 1
γ )

i−1 ·s(OPT )−E[s(Pi−1)]
γ , where the second inequality is due to

observation that for every 0 ≥ i ≥ γ , E[s(OPT
⋃
Pi )] ≥ (1 − 1

γ )
i ·

s(OPT )[13].
We now prove by induction thatE[s(Pi )] ≥ i

γ ·(1−
1
γ )

i−1 ·s(OPT ).
Note that this is true for i = 0 since s(P0) ≥ 0 = 0

γ ·(1−
1
γ )
−1 ·s(OPT ).

Further, we assume that the claim holds for every i ′ < i . Now,
we prove it for i > 0. E[s(Pi )] = E[s(Pi−1)] + E[spi (Pi−1)] ≥

E[s(Pi−1)] +
(1− 1

γ )
i−1 ·s(OPT )−E[s(Pi−1)]

γ = (1 − 1
γ ) · E[s(Pi−1)] +

γ−1(1 − 1
γ )

i−1 · s(OPT ) ≥ (1 − 1
γ ) · [

i−1
γ · (1 −

1
γ )

i−2 · s(OPT )] +

γ−1(1− 1
γ )

i−1 ·s(OPT ) = [ iγ ]·(1−
1
γ )

i−1 ·s(OPT ). Hence, E[s(Pk )] ≥
γ
γ · (1 −

1
γ )

γ−1 · s(OPT ) ≥ e−1 · s(OPT ). That is, Alg. 6 achieves
1
e -approximation of cps.

Proof of Theorem 7.8 (Sketch). Let Gmax = (Vmax ,Emax ) be
the largest candidate pattern in Pall . In the worst-case, time com-
plexity of Algorithm 6 is O(|Pall |γ |Vmax |!|Vmax |) since there are
|Pall | candidate patterns and the while-loop in Algorithm 6 iter-
ates at most γ times. For each iteration, the score function requires
computation of coverage, cognitive load and redundancy which
requires O(|Vmax |!|Vmax |), O(|Vmax | + |Emax |) and O(|Vmax | +

|Vmax |loд(|Vmax |) [8], respectively. Note that |Vmax |loд(|Vmax |) ≈

|Emax | in real-world graphs [8]. The space complexity is due to
storage of all candidate patterns. Hence, Algorithm 6 has space
complexity of O(|Pall |(|Vmax | + |Emax |)).
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