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Abstract

Target characterizatioffior a biochemical network is a heuristic evalua-
tion process that producesharacterization modehat may aid in predicting
the suitability of each molecule for drug targeting. Thgsgraaches are typ-
ically used in drug research to identify novel potentiafj&s using insights
from known targets. Traditional approaches that charietéargets based
on their molecular characteristics and biological funetiequire extensive
experimental study of each protein and are infeasible fatuating larger
networks with poorly-understood proteins. Moreover, tlfi@y to exploit
network connectivity information which is now availableifin systems biol-
ogy methods. Adopting a network-based approach by chaizioggtargets
using network features provides greater insights that ¢ement these tradi-
tional techniques. To this end, we preseBNET, a network-based approach
that characterizes known targets in signaling networksgugipological fea-
tures. TENET first computes a set of topological features and then leesrag
a svM-based approach to identifyredictive topological featurethat char-
acterizes known targets. éharacterization modék generated and it spec-
ifies which topological features are important for discriating the targets
and how these features should be combined to quantify tkeéhdod of a
node being a target. We empirically study the performancEexNeT from
a wide variety of aspects, using several signaling netwfsdm BioModels
with real-world curated outcomes. Results demonstraeffigstiveness and
superiority in comparison to state-of-the-art approaches



1 Introduction

Complex intra- and inter-cellular signaling drives vasgdiiological processes such
as growth, proliferation and apoptosis within systems. yistems biology, these
molecular interactions are typically modelled as sigriphetworks [50] that pro-
vide a holistic view of the various interactions betweefedént molecular players
in the system. As signaling networks become an increasiagtgptable way for
representing biological systems, varioustwork-basedomputational techniques
have been developed to analyze these networks with the jaabwering biolog-
ical needs such as target characterization [16] and targedvwery [105]. In this
paper, we focus on the target characterization problem fgnaling networks

Target characterizatiomdentifies characteristice (g, topological features) that
distinguishegargets(i.e., nodes) from other nodes in the network. These charac-
teristics can be summarized as models which we refer éhasacterization mod-
els Traditionally, targets are characterized based on thelecoular characteristics
(e.g, structure and binding sites of targets [62]) and bioldgigaction (e.g, reg-
ulation of apoptosis [104]). These traditional approacioesis primarily on the
target alone and are oblivious to the presence of otheraictieg molecules in the
system. However, understanding how a target interacts etiter molecules in
a biological system may provide valuable and holistic ihtsdor superior target
characterization. For example, the degree centrality afget may be leveraged
to assess potential toxicity of targets since high degrelesitend to be involved
in essential protein-protein interactions [37] and areptélly toxic as a result. In
particular,network-basedarget characterization techniques can exploit such topo-
logical features for superior characterization of targets

Recently, there have been increasing efforts toward deyisétwork-based tar-
get characterization techniques [41, 65, 108]. These rdstfaxus on using topo-
logical features to characterize targets of protein-fpmdtéeraction epri) networks.
Specifically, McDermotet al. performed characterization of targetspirotein co-
abundance networkausing several topological features such as degree céytrali
Although this study suggests that multiple topologicaltdieas can be combined
for superior target characterization, it did not explorevitbese topological fea-
tures should be combined towards this goal. In contrast,rndweaal. concluded
that bridging centralityis useful in identifying targets irP1 networks. However,
the complexity and diversity of biological networks makegtg characterization
using a single feature challenging since in some networkllosen feature may
perform poorly. Indeed, Chugt al.[16] showed that bridging centrality performs
well in the MAPK- PI 3K network, but not in thgyl ucose metabolism network.
Zhanget al. proposed the use of machine learning techniques such asrswpp-
tor machines gvM) and logistic regression for characterizing known targeta
manually curated humappri network using 15 topological features. In contrast
to [65], their goal was to identify topological charactéds of drug targets in gen-

The protein co-abundance networkse essentially protein-protein interactiopP() networks constructed
by identifying highly differentially regulated proteinsoin proteomics data using specific filters.



Symbol | Description

O Degree centrality of node. The in, out and total degree centralities are denotéd,as,), 0w s (u)
andfotai(w), respectively.

Qy Eigenvector centrality of node.

Bu Closeness centrality of node

Yu Eccentricity centrality of node.

u Betweenness centrality of node

Ty, Bridging coefficient of nodex.

Cu Bridging centrality of node.

Ku Clustering coefficient of node. The undirected, in, out, cycle and middleman clusteringffeo
cients are denoted &S, ,dir(w)s Kin(u)s Fout(u)s Keye(u) ANAKmid(w), respectively.

L Proximity prestige of noda.

Wy, Target downstream effect of node

Table 1: Topological features.

eral, instead of for specific diseases. However, charactgritargets in general
assumes that targets of different diseases share simiget zharacteristics, which
may not always be true. Indeed, as we shall see in Sectiono#yrktargets in

signaling networks tend to be characterized by differeits sé topological fea-

tures. Consequently, target characterization based dvidodl disease-specific
networks may yield better characterization that is spetifitie disease.

A common thread running through the aforementioned targatacterization
techniques is their focus arpinetworks. Surprisingly, similar systematic study in
curated signaling networks has been lacking in the liteeatGompared to signal-
ing networks,PPI networks may contain many false-positiwel in the sense that
although these proteins can truly physically bind they mayen do so inside cells
due to different localization or they are not simultanepesipressed. Furthermore,
PPInetworks are static. That is, the edge®im networks are undirected; there is
neither flow of information nor mass between nodes. Heneag, dck of knowl-
edge of the underlying mechanisrtine(, actual signal flow) causing the disease.
Since network quality directly affects the results of natwwbased target charac-
terization, the aforementioned limitations e#1 networks may adversely impact
the search for superior characteristics of targets. Siggaletworks, however,
model the dynamic interaction of the biological systems ardent an attractive
alternative tappInetworks.

In our recent work [16], we took the first step to demonstraier Bignaling
networks can be effectively leveraged to identify topotadjifeatures that ardis-
criminative of targets using the Wilcoxon test. However, similar to [68]s work
does not shed any insight ompeedictive modeto combine these features for iden-
tifying potential targets. In this paper, we address thisithtion by presenting
TENET (Target charadrization usingNEtwork Topology), a network-based ap-
proach that characterizes known targets in signaling nésvasing topological
features. Specifically, we usesw¥M-based approach to identify the set of topo-
logical features (referred to gwedictive topological featur@ghat characterizes
known targets and to generatelmaracterization modalsing these features. The
model specifies which topological features are importandifgcriminating the tar-



gets and how these features should be combined to produ@mtitgtivescorethat
identifies the likelihood of a node being a target. In patiguTENET usesfeature
selectionto selectpredictive topological featureand weighted misclassification
costto handlesvm training issues such as noisy labels and imbalanced data. Ou
empirical study on four real-world curated signaling natkgodemonstrates the
effectiveness and superiority oERET.

The rest of the paper is organized as follows. In Sect#@nwe define some
terminology and introduce the topological features beiogsiered and the tar-
get curation process that is used for identifying knowndtggised subsequently
for validation. Then, we formally define the target chardztgion problem and
describe the ENET algorithm in Section 3. Finally, we present the experimienta
results in Section 4 and conclude the paper in Section 5.

2 Preliminaries

In this section, define some terminology and topologicatuiess, and introduce
the target curation process that we shall be using in theetequ

2.1 Terminology

A biological signaling network can be modelled as a dirediggergraphG =
(V, E)) [50] where the node¥” represent moleculeg.@, proteins) and thayper-
edgeskE represent biochemical reactions and processes. A hypeoeaimects one
node sel to anothedV, whereU, W C V. For instance, in the activation @Rk,
the setU in the hyperedge consists @Rk and its kinase, phosphorylategk
whereaslV contains the phosphorylateeRk (ERKPP). Analysis of directed hy-
pergraphs is generally more complex than graphs and map @tgorithms can-
not be used directly on hypergraphs. Hence, they are ofdesfirmed into graphs
containing simple edges for analysis. Methodg( bipartite and substrate graph
representation) exist for such transformation [50]. I f/aper, we use the bipartite
graph representation as it retains the original inforrmatibthe hypergraph [50].
Signaling networks generally contain characteristichagfeedback and feedfor-
ward loops which are common in complex regulatory contr@].[SThese loops
in turn give rise to graph characteristics such as stronghnected components
(sco.

The activity of nodes in the signaling network are genergdlyerned by com-
plex interconnectivity of various nodes in the same netwbivk refer to a node as
a candidate targeif when perturbed, it modulates the activity of a specific @od
(referred to aglisease node A disease nodés a protein that is either involved
in some biological processes which may be deregulatedliresin manifestation
of a disease, or be of interest due to its potential role irdikease. For instance,
in the MAPK- PI 3K network [36] that is often implicated in canc&RKPP can
be considered as a disease node due to its role in proldaraGiven a signaling
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Figure 1:MAPK- P1 3K network adapted from [36].

networkG = (V, E) and a disease nodec V, let the set of nodes having a path
leading tox be denoted a¥,, C V. Then, the set ofandidate targehodes inGG
relevant tar is denoted ag), C V.

Network-based analysis can be applied to signaling netsvarktudy the char-
acteristics and properties of these networks. In this paperexamine a total of
sixteen topological features that are summarized in Tab¥hé&se features are se-
lected based on their role in measuring relative importarieéenode in a signaling
network. The formal definitions as well as motivation foresgiing these features
are given in [16] (also detailed in Section 2.2).

2.2 Topological Features

In this subsection, we introduce the 16 topological featdhat we study. These

features are selected based on their role in measuring/esiiaiportance of a node

in a signaling network. Theiapk- PI 3K network (Figure 1) is used as a running
example to illustrate the features.

Degree Centrality. It is a local centrality measure based on the number of edges
a node has [32]. For directed networks such as the signaghgank, there are
three variants oflegree centralitynamely,in degree out degreeandtotal degree
centralitywhich consider only in-going edges, only out-going edged, all edges

of a node, respectively.

Definition 1 Given a signaling network: = (V, E), in degree centralityof a
nodeu € V is defined a9;,,(,) = >_,cy levu| Wheree,,, € E'is the edge connect-
ing nodev € V tou. Out degree centralitandtotal degree centralityre denoted



MAPK- PI 3K (I1)

G ucose-Stimulated
I nsul i n Secretion (k)

Endonmesoder m Gene
Regulation (I3)

G ucose Metabolism (14)

BioModel ID

BIOMD0000000146

BIOMD0000000239

BIOMD0000000235

BIOMD0000000244

Related disease or biological process

Ovarian cancer

Type 2 diabetes mellitus

Embryonic development

G ucose toacet at e metabolism

No. of targets

9

6

206

16

Repository used for curation

ClinicalTrials.gov

PubMed

PubMed

ClinicalTrials.gov

Keywords used for curation

ovarian cancer drug type 2 diabetes mellitus drug

Date of Curation 29 Apr 2014 25 Jan 2013 28 Oct 2013 14 Nov 2013
Unique Drugs Curated 458 617 - -
Relevant Drugs Curated 22 16

Table 2: Summary of the curation results.

as@om(u) = Zve\/ |€uv| and Htotal(u) = Hm(u) + 90ut(u)1 respectively.

Generally, a node with higtegree centralitfhub) is considered an important
node. In particular, studies have found that biologicalmoeks resemblescale-
free networkg475] in that they are robust against random perturbationoofhub
nodes [1]. Specifically, a higim degreenode acts as a signal integrator by integrat-
ing multiple signals while a highut degreenode acts as a signal differentiator. For
instance, double phosphorylategk (MEKPP) is an out degree hub and functions
as a signal differentiator.

Eigenvector Centrality. Nodes with higteigenvector centralitare well-connected
to other central nodes [5]. In a signaling network, theseesddnd to be located in
the network where signals either converge or diverge dapgrah whether these
central nodes have high in-degree or out-degree. For ioestactivateder bB4
receptor RP) which has higheigenvector centralitys connected to many other
central nodes such as 3k*, and provides a means for converging and diverging
the various signals passing through the network.

Definition 2 Given a signaling network: = (V, E), let N,, be the set of neigh-
bors of nodeu € V. Then, theeigenvector centralityof « is defined asy,
1+ 3 en, G Where) is a constant.

According to the Perron—Frobenius theorem, in the abovaitiefi A has to
be the largest eigenvalue of the adjacency matrixif the centralities are to be
non-negative [71].

Closeness Centrality, Eccentricity Centrality and Proximity Prestige. These
features are based on the proximity of a node to other nodég inetwork.Close-
ness centralityassigns node centrality value using the sum of the shorsistdis-
tance [32] whileeccentricity centralityuses the largest shortest path distance [103].
In contrast tocloseness centralityhich uses the set of nodes that a nadean
reach (influence rangedroximity prestigeassesses importance based on the set of
nodes that can reaeh(influence domain).

2The adjacency matrid = {a;;} specifies the connectivity of the network such thgt = 1 implies an
edge connecting nodgo ;.

sea urchin endomesoderm E Coli glucose metabolism to acetate




Definition 3 Given a signaling network; = (V, E), let I, C V be the set of
nodes having at least one path leading to nadand [, be the shortest path
length between nodes and v, whereu,v € V. Then, thecloseness centrality
By, €ccentricity centralityy,, and proximity prestigeu,, of nodeu are defined as
T
1% = ,
Bu = ZLV' T Yu = mamhw}, andyu, = 727‘1‘;} , respectively.

[Tu]

In a signaling network, the above measures of a node can bdwusetermine
how central it is to the regulation of other nodes in the nekwWB6]. For instance,
Shs which lies near the center of the network is well connectethémy other
nodes in the network. Hence, it has higlorseness centralitpompared to other
nodes €.g, vkP3) that lie near the boundary of the network. Also, nodes with
high eccentricity centralityare likely to be influential signal transmitters, regulat-
ing many other nodes [86]. For instanea,3k* which lies near the center of the
network has higher eccentricity centrality compared teofninge nodes such as
ERK since the fringe nodes tend to be further away from other s\othe network.

Betweenness Centrality This feature assigns node centrality value based on the
ease in which a node can reach other nodes in the network [6].

Definition 4 Given a signaling networky = (V, E), let ds(v) be the number of
shortest paths from nodesto ¢ passing throughy wheres,¢,v € V. Then, the
betweenness centralityf v is defined ag, = >, ;e dj—jj’).

In a signaling network, these nodes can be considered eff@rel crucial sig-
nal transmitters as they tend to lie on a majority of the ssbpaths between node
pairs in the network. For instancakt pI P3, a hub node, has high betweenness
centrality in the network as it is well connected to many ottentral nodes, hence
providing fast access to other nodes in the network. Contipalyg nodes €.g,
MKP3) that lie on the fringe of the network has low betweennessrakty.

Bridging Centrality and Bridging Coefficient. The bridging centralityidenti-
fies bridging nodeqgnodes with highoridging centralityvalue) which are located
between functional modules in the signaling network andiatedignal flow be-
tween the modules [41]. THwidging coefficienmeasures the average probability
of a node transmitting signals to its direct neighbourhood.

Definition 5 Given a signaling networks = (V, E), let 64,4,y be the total de-

gree of nodev € V, N, be the set of neighbors @f andn; be the number of

outgoing edges of node wherei € N,,. Then, thebridging coefficientof a node
i i — 1 i

vis deflned a@’v o Gtotal(v) ZiENU70total(i)>1 etotal(i)_l ’

Definition 6 Given the inverses of betweenness centrality rank and imgdzpeffi-

cient rank of node denoted a@% andy 1, respectively, theridging centrality

is defined ag, = z/% XY



Ovarian Cancer Drugs in [73] Mechanism of Action Targetin |1
Lapati ni b (PhaseI) [82] Bind to ATP-binding site of receptorR), preventing its autophosphorylation RP

Sor af eni b (Phaser) [100] Bind to ATP-binding site ofRaf , preventing activation dRaf Raf *

I s1's 5132 (Phasel) [18] Bind to Raf mRNA to downregulatdraf expression Raf
AzD6244 (Phasal) [107] Bind and lockMEK into inactive conformation MEKPP
XxL147 (Phase I) [72] Bind to ATP-binding site ofp1 3K, preventing activation ofI 3K PI 3K*

Peri f osi ne (Phase I) [54]

Bind to lipid-binding PH domain ofAkt

Akt PI P, Akt PI PP, Akt PI P3

ECO- 4601 (Phase I) [7,72] DegradeRaf 1 throughpr ot easonal -dependent mechanism Raf

PKI - 587 (Phase I) [96 Inhibits P1 3k andnm OR kinases PI 3K*

PKI - 179 (Phase I) [72 Small-molecule mimetic oATP that inhibitsPI 3K andmr or kinases PI 3K*

BKkML20 (Phase I) [72] ATP competitive inhibitor ofPI 3K kinase PI 3K*

AzD5363 (Phase ) [2,72] ATP-competitive parAkt inhibitor Akt

BYL719 (Phase I1) [72] Specifically inhibitspi 3K in the P1 3k/Akt kinase signaling pathway, thereby p1 3k*
inhibiting the activation of thee! 3K signaling pathway

Dabr af eni b (Phase lji) [72] Selectively binds to and inhibits the activity of B-raf, whimay inhibit the | Raf *
proliferation of tumor cells which contain a mutatedAF gene

GSk1120212 (Phase Ij1) [42 Potent and selective allosteric inhibitor @fk1/ 2 MEKPP

GSk2110183 (Phase 1j1) [88 ATP-competitive parAkt inhibitor Akt

GSk2141795 (Phase 1) [2] ATP-competitiveAkt inhibitor Akt

MEK162 (Phase I) [72] Non-competitive withaTp. Binds to and inhibits the activity aiek1/ 2 MEKPP

MK- 2206 (Phasal) [106] Oral panAkt inhibitor Akt

Pi maserti b (Phasel)[72] Selectively binds to and inhibits the activity ®Ek1/ 2, preventing the activa{ MEKPP
tion of MEK 1/2-dependent effector proteins and transcription factor

SAR245409 (Phasal) [72] Inhibits bothpi 3K kinase andrr orR kinase PI 3K*

Tranet i ni b (Phasal) [72 Specifically binds to and inhibitsek 1 and2 MEKPP

Triciribine(Phase lj1)[72] | Inhibits the phosphorylation, activation, and signallofgdkt - 1, - 2, and- 3 Akt

Table 3: Ovarian cancer drugs in [73] and their targets inAieKk- P 3K network

[36].
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Figure 2: The sea urchiBndo16 regulatory pathway. The nodes in this pathway
are targets for regulatingndo16 in |3.

For instancep! P3 hashigh bridging coefficienandbridging centralitysince
it is positioned at the boundary of a strongly connected aompt 6cc) within
the network and helps to transmits signal between node&leutesccand those

within it.

Clustering Coefficient. This feature determines how well the neighbourhood of a
node is connected [99] by considering how close the neigtiioma is to being a




T2DM Drugs/Food Constituents in | Mechanism of Action Targetin | 2
[73]
Alcohol (Phasel) [22] Causes hyperglycemia gl ucose
Avandanet (Rosiglitazone + | Rosiglitazone s a highly selective and potent agonist for #eeary. Met form n | gl ucose
Met f or m n) (Phasev) [83] decreases hepatig ucose production, decreases intestinal absorptioglaiicose and

increases periphergl ucose uptake and utilization
Met f or m n (Phasav) [51, 98] Inhibit respiratory-chain complex 1 of mitochondria, thiey reducing cellular energy gl ucose

transiently and activatingMpPK. Increase periphergl ucose uptake and utilization

Benf | uor ex (Phasal) [53]

Reduceg-oxidation (process by which fatty acid molecules break miam mitochon-
dria to generatecet yl - CoA) rates and ketogenesis. Reduce gluconeogenesis
| act at e/pyruvat e

acet yl - CoA, gl ucose
rom

Ber ber i ne (Phasaii) [90]

Mimick i nsulin action, improvei nsul i n action by activatingAmMPK, reduce
i nsul i n resistance througlkkc-dependent up-regulation efnsul i n receptor ex-

inhibition of bPP- 4

pression, inducing glycolysis, promoting. P- 1 secretion and modulating its release

i nsulin,glucose

Cod (Phase!) [57]

Increase nsul i n-stimulatedgl ucose uptake

intracellulargl ucose

Deproteinised hemoderivative of cal
blood (Act ovegi n) (Phasair) [61]

f Act ovegi n is composed of small molecules present under normal plogsaall con-
ditions, therefore pharmacokinetic and pharmacodynainigiess to determine its active
substance are not feasible. Incregé@icose uptake and improve oxygen uptake und
conditions of ischemia

gl ucose

b

er

Tagat ose (Phasell) [25]

Interfere with carbohydrate absorption by inhibiting sttraldi sacchari dases and
gl ucose transport

plasmagl ucose

Vinegar [45]

Reduce plasma eni n activity and al dost er one concentration.
gl ucose

Reduce serumserumgl ucose

Rice [40] Increase dietary glycemic load bloodgl ucose
Cs- 917 (Phasat) [24] Competitively inhibitsf r uct ose- 1, 6- bi sphosphat ase (FBpPase) at the AMP | activatedrBpPase
binding site
MB07803 (Phasal) [95] Fruct ose- 1, 6- bi sphophat ase (FBPase) inhibitor activatedrFBpase
G ycerol [59] Synthesized frongl ycer ol usinggl ycerol ki nase gl ycerol - 3- phosphate
Met hyl cobal am n [30] Provideset hyl group that couples taoto synthesizecet yl - CoA acetyl - CoA

Gynost emma Pent aphyl | um tea
(Phasat) [4,67]

Increasesuper oxi de di smut ase (sop). Strong inhibition oni L- 6 and Pt gs2
MRNA expression and weak inhibition amF-a MRNA expressionGypenosi des, the
major components oBynost enma pent aphyl | um increaseBax, reduceBcl - 2
and stimulate release @fyt ochr one c, Al F (apoptosis-inducing factor), arithdo
G (endonucl ease G from mitochondria. Ferricytochrone c reduction to
ferrocytochrone c may be required for depolarization of the mitochondrial

ferrocytochrone c

Xant hohunol [4,19]

Binds annexi n v- FI TC, cleavesPARP-1 and activatespr ocaspases-3, -8
and- 9. Depolarizes mitochondrial leading to releaseceft ochr ome c. Inhibits
Akt , NFkB, nTOR, Bcl -2 andsurvivin. Ferricytochronme c reduction to

ferrocytochrone ¢

ferrocytochrone c may be required for depolarization of the mitochondrial

Table 4:72DMm drugs or food constituents in [73] and their targets ingheicose-

stimulatedi n

sul i n secretion network [44].

In Out Cycle Middleman

853D 806 6080 606

Figure 3: Directed triangle graphs adapted from [26].

clique where every node within the clique is connected toyesther node in it [1].
The original definition was meant for undirected graph. Aietsrof definition
exists [26] when edge directions are considered (Figure 3).

Definition 7 Given a signaling networky = (V, E), lete;; € E denote an edge
connecting nodesto j wherei,j € V and A = {a;;} be the adjacency matrix
wherea;; = 1if and only if3e € {e;5,e;,} € E and zero otherwise. Then,
the undirected; in-, out-, cycle-and middleman-clustering coefficientf a node

u € V denoted aS,,dir(u)s Kin(u)s Fout(u)r Keye(u) @8N Kmid), respectively, are

defined ass<,,qir(u)

(A%)ii
etotal(u) (Gtotal(u) - 1)

(AT A?);

v Rin(uw) =

10

Kout(u)




Target 1D in BIOMD 0000000244 (I) | Name Reference
ACT acetate *

GLC gl ucose *

G5P gl ucose- 6- phosphat e 109]

I CT isocitrate 94]
PEP phosphoenol ypyruvat e 10,27]
AceB mal at e synt hase A 77]
Acoa2act enzyme for reaction frolACoAto ACT 9]
Cya adenyl ate cycl ase 76
Fdp fructose-1, 6-bi sphosphat ase | 78
lcd unphosphorylatedsoci trat e dehydrogenase | [46
lcdP phosphorylated soci trat e dehydr ogenase 46
Pdh pyruvat e dehydrogenase 69
Ppc phosphoenol pyruvat e car boxyl ase 27
PpsA phosphoenol pyruvat e synt hase 74
EIIA unphosphorylate@Ts proteinel | A 43

El | CB PTS proteinkl | CB (pt sG 79

Table 5: Targets that are crucial facet at e production in thegl ucose
metabolism network in [55]. * indicates targets that arduded by default due
to their direct involvement (either as input or output) ie tihhetabolic reaction be-
ing studied.

(A2AT), . _ (A% (AAT A)y
Gout(u)(eout(u)_l)’ Cyc(u) B ein(u)eout(u)_Aii e’i’rb(u)eout(u)_Aii
Oin(u)s Oout(u) @Nd O1oq1(w) @re the in, out and total degree of respectively;A”
is the transpose aofi; A" is the matrix product of. copies ofA4; and A;; denotes

thei’* element of the main diagonal df.

and K,iq(u) = where

Note that in the above definition, the neighbourhood sizetineigreater than
one. For smaller neighbourhood sizéé,(= 0 andNV,, = 1), the coefficients are
set to zero.

Target Downstream Effect (TDE). TDE assesses the potential impact on the net-
work when a node is perturbed based on the probability ofiggrg a downstream
node w and the likelihood ofw causing off-target effect [15].

Definition 8 Given a signaling networks = (V, E), let W be the set of down-
stream nodes of € V \ W. Letp,,, be the probability of perturbingy € W
when target node is perturbed and;,;;(.,) be the total degree ab. Thetarget
downstream effecof v is defined asv, = >, cy (Pv.w X Orotai(w))-

2.3 Target Curation Process

In this section, we describe the target curation process ts@lentify the set of
benchmark targets required byeWET. Manual curation of literature generates
substantially lower error rates than text mining-based@gghes [89]. In this arti-
cle, we study two categories of networks: networks assediaith human diseases

3Nodew is downstreanof v if there exists a path from to w.
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and networks describing biological processes. Table 2 sanmas the curation re-
sults of the four signaling networks we studied.

Human Disease-Related Networks.Amongst the four networks we study,
two are associated with human diseases. These networksanerk- Pl 3K [36]
and thegl ucose-stimulatedi nsul i n secretion networks [44]. The curation
process for these networks is as follows:

1. Obtain a list of unique drugs and compounds relevant tdtimean disease
from clinical trial database [73].

2. Obtain the targets of these drugs and compounds via diatgdedatabases
[102] and literature survey.

3. Identify the targets that are in the scope of the signaiigtgvork.

Biological Process-Related Networks.The remaining networks we studied
describe specific biological processes of particular asgas. The curation process
for these networks is as follows:

1. Obtain a list of unique molecules (genes or proteinsyeagieto the biologi-
cal process of the specific organism frétubMedusing specific keywords.

2. Identify the molecules that are in the scope of the siggatietwork.

The curated targets are listed in Tables 3 to 5 and Figure 2.

3 Target Characterisation

In this section, we formally define the target characteioraproblem and describe
the TENET algorithm.

3.1 Topological Feature-based Target Characterization

Intuitively, the goal of topological feature-based targlearacterization is to use a
set of predictive topological featureto characterize known targets in a network.
Hence, theopological feature-based target characterization peshican be for-
mulated as a supervised learning problem. In a superviseditg problem, a
training set{ (x;, f(z;))} is given wheref (z;) is the predictor of:; and the goal is
to learn some target functiofi: X — Y which can be applied to predict unseen
dataw. The problem can be subdivided into two categories: regnesghen the
predictor yields a continuous outcome and classificatioemthe outcome is dis-
crete. A regression problem can be converted into a binaigsiflcation problem
by specifying a threshol@ and assigninge; with f greater tharh to one class
and the remaining to the other class. We advocate thatof@ogical feature-
based target characterization problambest represented as a regression problem.
In this problem, we are interested in finding out how likelyeamode is a target
relative to another node based on a set of predictive topmabégatures. This is
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different from the target classification problem where watta find out the class

membership of a node. Note that the regression problem camteerted into

a classification problem by specifying a threshalénd assigning nodes having

target function greater thanto the target class and the rest to the non-target class.
Although we examine sixteen topological features, as wk sba later, not all

features are relevant to a given signaling network. In factrporating irrelevant

features may adversely impact the performance of the gredimodel. Hence, it

is important to learn a set of predictive topological featuthat best characterizes

targets (referred to @spological feature selectigrior a given network. Formally,

it is defined as follows.

Definition 9 Given a signaling network' = (V, E') and a disease nodec V, let
T, C V andX,; denote the set of known targets@hrelevant tox, and the set of
topological features of7, respectively. Then, the goal tfpological feature se-
lection is to find a set opredictive topological featuresF C X,; that maximizes
the prediction accuracy fof(¢(u, F)) subject to the following conditions:
f(u,F)) =1 whenu e T,, )
f(&(u, F)) =0 otherwise

Then thetopological feature-based target characterization perhis formally
defined as follows.

Definition 10 Given a signaling network: = (V, F), a disease node € V, T,
andX,;;, let 7 denote the set of predictive topological features. Thema thresh-
old h, the goal of thdopological feature-based target characterization probém
is to identify a set of predictive topological featur8sC X,; using topological
feature selection and learncharacterization model g({(u, F)) subject to the
conditions

9(&(u, F)) € R,
g(&(u, F)) > h  whenu € T, )
g(&(u, F)) < h otherwise

that maximizes the target prediction @€ (u, F)).

Figure 4 depicts a pictorial overview of the topological ttea-based target
characterization problem. For example, givenia@k- P 3K signaling network,
its associated disease nodrkPP, the set of known targets in this network, and
the topological features in Table 1, the goal of this probleno produce the fol-
lowings: (a) Identify the set of predictive topological fegesF = {9, 7, 0in, Oout }
and (b) learn a characterization mogéf(ErRkPP, F)). Note that in Definition 10,
there is no need to explicitly specify a threshaldf we are only interested in ob-
taining the relative rankings of the nodes. The threshoteédgsiired if we want to
assign class labelg g, target class) to the nodes.
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3.2 SVM-based Target Characterization

We employsupport vector classificatiofsvC) to select predictive topological fea-
tures andsupport vector regressio(sVvR) to generate the characterization model.
The svc andsvRr are typically formulated as constrained optimization jeols
and solved using thieagrangian multiplier methadin general,svM models con-
tain multiple parameters, such as the cost parantétend parameters related to
the kernel function, that affect the learning and perforogenf the models [11]. We
follow the method in [39] for training thevm. The feature values are scaled lin-
early to the range of [0, 1] for each signaling network to dveiatures with larger
ranges dominating those with smaller ranges. We use stditifross-validation
(described below) and grid-search [39] on the training tlatdentify the best val-
ues of the model parameters. Note that cross-validatigpshed to avoid the issue
of overfitting the data whereas stratification enables ustpkhe percentage of
targets in the different folds similar to the original datas The best parameter
is the one that yields the best average prediction accumané cross-validation
process. Wherever possiblewe use a 10-fold stratified cross-validation since
larger fold numbers reduce pessimistic bias and 10 foldergdly give good per-
formances [52].

Several non-trivial issues, namely, irrelevant or redumdaatures, noisy la-
bels and imbalanced data set, need to be addressed in¢réneiavm model for
characterizing targets. In particular, we use featurecieleto select for appropri-
ate features to be used in thgm model and cost-sensitive learning to handle the
issue of noisy labels and imbalanced data set. We examiee feature selection
approaches, namely, backward stepwise eliminatgse) [63], Wilcoxon-ROC
based eliminationWRE) and WRE-BSE. BSE is classifier-awarewhereaswRrE is
classifier-independentvrEe-BSE which performsvrEe followed byBskeis a hybrid
approach. Note that compared to classifier-independertiaust classifier-aware
methods interact with the classifiers and such interactioniead to better classifi-
cation results [84]. However, they are typically computa#illy expensive and run
the risk of model-overfitting. Cost sensitive learning isadgorithmic approach
that chooses an appropriate strategy specific to the cixstifovercome the bias
introduced by imbalanced data and the noise caused by ammdgrin labelling.
We useweighted misclassification coftvmc), an approach that proportionates
the misclassification cost of the training data accordinglass. In particular, we
use a variabl€’; as the cost parametér.

Ct ify, =+1
C = "= 3)
C™ ify;=-1

subject to the constrainE* + C~ = 1, CT > 0 andC~ > 0 wherey; is the

“The training data was sampled from the original data sudtttileaatio of the targets to non-targets is similar
to that of the original data.

SIn our study, we set a lower bound of one target in all our tets.s
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Table 6: Test set ofilto 1,. Nodes marked with are known targets.

class predictor an@’* andC~ denote the misclassification cost of the target and
non-target classes, respectively.

Data partitioning (stratified sampling). Note that for the networks studied,

the target class for all nodes including the test set is kndiiis is for the purpose
of validating our approach later in the experiments. Weitpamt the data into
training and test set by following two rules. First, therewd be at least one target
in the test set. This allows us to determine #NET is able to rank the curated
target higher than other nodes. Second, the ratio of targgéshto non-target
nodes should mirror that of the original data set as closessilple. This ensures
the real distribution of targets versus non-targets in #tevarks is retained. Using
these two rules, we determine the number of targets andargets in the test set
for each network. Then, the targets and non-targets aremnalgdselected from
the original data set to generate the test set. Finally,@ah®ining nodes form the
training set. The test set of to I, are provided in Table 6. Note that these same
rules are followed when generating individual folds frora thaining set.

Cross validation. We use cross validation (illustrated in Figure 5) for tragi

the svm. Briefly, the training data (two matric&sone for candidate targets and
one for candidate non-targets) is partitioned using $edtsampling into multiple

5The rows represent nodes and columns represent topoldgatates
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Figure 5: Example of a 10-fold cross validation (best viewedolour).

folds. For the training, multiple iterations are neededxpl@re different sets of
SVM parameters. In each iteratianmodels corresponding to the number of folds
are generated. For each model, one of the folds is excluteah the training and
used for validating the model. Then, the model accuraciesageraged. Cross
validation terminates when trevm parameters have been satisfactorily explored.
In TENET, we use the grid-search approach (detailed in [39]) foraiml thesvm
parameters. The besvm model is the one with parameters yielding the highest
average model accuracy.

3.3 The TENET algorithm

Given a signaling networks = (V| E), a disease node € V, a known target set
T, C V, a set of topological feature¥,; and a step-size of the misclassification
costs, TENET identifies the set of predictive structural features andaraitteri-
zation model that best characterizes these known target® tNatX,;; ands are
optional inputs and are set to default vafidsthey are not given. The known
targetsT, can be extracted by following the curation process desgribd16]
(Section 2.3).The ENET algorithm is given in Algorithms 1 to 5 and is comprised
of three phases, namely, tipeuning phasgAlgorithm 2), thefeature extraction
phaseand themodel training phase First, thepruning phasddentifies relevant

"Note that each fold is being excluded only once fromshke training.
sXa” is set to the 16 topological features given in Table 1 whesgaset to 0.1.
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Algorithm 1: Algorithm TENET

Input: Signaling network’, disease node, target sefl;;, topological feature set,;; (optional) and
step-size of the misclassification caesfoptional).
Output: Predictive topological feature sét and characterization modaH.

1 F, M, Xy < INITIALIZE (F, M, X,11)

2 Veandidate < FILTERCANDIDATE (G, x); /1l Phase 1
3 H +EXTRACTFEATURE(G, V.gndidate, Xall); /1 Phase 2
4 F, M < TRAINMODEL(H, Ty, s); /1 Phase 3

Algorithm 2: ProcedurerILTERCANDIDATE

Input: Signaling network’, disease node.
Output: Candidate target node S8t qidate-
1 G < CONVERT2BIPARTITEGRAPH(G)
2 Gpac < CONVERT2DAG(Gei)
3 U +GETROOTNODEYGpac)
4 foreachiterationi=1to |U| do
5 |_ GDAG <—|NDEX(GDA(37 UL', nU“)

6 Veandidate < ASSESREACHABILITY (Gpac, )

nodes (denoted ag....q4idate) that shall be used for training theevym. Then, the
feature extraction phasextracts all the topological features (denotedgg) of
each candidate node and stores them|ii.@,4idate| X |Xau| matrix H. Finally, in
the model training phaseTENET learns the optimal set of predictive topological
featuresF and the best model parameters of the characterization medelVe
shall now describe these phases in turn.

Phase 1: Pruning.In this phase, ENET prunes nodes that do not have paths
leading to the disease node This phase yields a set of potential candidate nodes
Veandidate € V and is used to reduce the subsequent computation. In theagrun
process, the given networK is first preprocessed into a bipartite graph and then
converted into airected acyclic graph(DAG) (Algorithm 3), a graph with con-
sistent topological ordering, to facilitate indexing ofdes (Algorithm 4). Note
that the node indices shall be used subsequently to perfeachability check to
identify the nodes to be pruned. We adopt the method in [23bijgartite graph
conversion. In order to convert the bipartite graph intmits representation, we
adopt the approach in [92] to identifyccs and replace eackicc with a repre-
sentative node (referred to aweta nodg Then, we adopt the indexing approach
of [13] to index theDAG. This indexing approach performs depth-first traversal
to assign each node a preorder index(whenw is first visited) and gostorder
index(when all descendent nodesw#fre visited). Finally, an index-based reach-
ability algorithm is used to determine if there exists a pfatim each node» to
the disease node (denoted a3 — z). Given a nodev and z, let w be the
descendent of that is not in thespanning tredreferred to asion-spanning tree
nodg andv.preorder andv.postorder denote the preorder and postorder indexes
of v, respectively. A pathh — z exists if any of the following conditions are
satisfied [13]:

1. v.preorder < x.preorder andv.postorder > x.postorder
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Algorithm 3: ProcedurecONVERT2DAG

Input: Bipartite graphGei = (Vai, Esl).
Output: Directed acyclic graphoAG) Gpac .-
1 Gons < Gai
2 GDAg.SCC(—GETSCC(GDAG)
3 foreachiteration =1 to |Gpas.SCd do
V' «+—INSERTNODE(V, Umeta:i)
X < GETNODESINSCC(Gpac-SCG)
foreachiteration j=1to | X | do
N <GETNEIGHBOURSNOTINSCC(Xj, X)
foreach iteration k=1to |N| do
\; E +REPLACEEDGE(E, (X, Ni.), (Vmeta:i, Ni))

© o N o g b

E < REPLACEEDGE(E, (Nk, X;), (Nk, Umeta:i))

11 V +REMOVENODE(V, X ;)

Algorithm 4: ProcedureNDEX

Input: DAG Goas = (Voac, Foac), child nodeu, parent node.
Output: DAG Gpac-

1 if v.preorder=null then

2 v.preorder <—SETTONEXTINDEX(v.preorder)

3 foreach iteration =1 to |Vpac | do

4 w <—GETCHILD NODE(v)
5

6

7

8

Gpoac < NDEX(GDAG7 w, U)

v.descendents < INSERTNODE(v.descendents,w)
v.descendents < v.descendents| J w.descendents
v.NSTNodes < v.NSTNodes | Jw.NSTNodes

9 v.postorder < SETTONEXTINDEX(v.postorder)

10 else ifv.preorder # null andu # null then

11 u.descendants < INSERTNODE(u.descendents,v)
12 u.NSTNodes <—INSERTNODE(u.NSTN odes, v)

13 if u # null then

14 u.descendents < u.descendents|Jv.descendents
15 u.NSTNodes < u.NSTNodes | J v.NSTNodes

2. w.preorder < x.preorder andw.postorder > x.postorder
Note that the pruning step is beneficial in improving exexutiime for larger
sparsely connected networks and for disease node that siteoped further up-
stream. For instance, in theaPK- PI 3K network, no nodes are pruned when we
selecterRkPP (downstream) as the disease node whereas 17 nodes (47.2%) ar
pruned when activateldas (Ras GTP) (upstream) is selected.

Phase 2: Feature Extraction.In this phase, for all nodes W..,,didate: TENET
extracts all the topological features in Table 1 for chaazing the known targets.

Phase 3: Model Training. Given a matrix of topological feature valués, a
target sefl}, and a step-size of the misclassification cgshis phase identifies a
set of predictive topological featurgsand the best parameters for configuring the
characterization modeW. First, the misclassification cost of the target class
is initialized to a default value of 0.5. Then, feature sttecis used to obtain the
predictive topological feature sgt. We iterate over three different feature selec-
tion approachessGE, WRE and WRE-BSE). Next, the step-size is used to step
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Algorithm 5: ProcedurerRAINMODEL

Input: Matrix of topological feature value&, known target sef’; and step-size of the
misclassification cost.
Output: Predictive topological feature st and characterization modaH.
1 Ct <« INITIALIZE ()
2 Gpest, F, M +SELECTFEATUREYH,T:,C7T)
3 foreach iterationi=1to 2 — 1 do
Ct+ixs

4

5 Geurr < TUNESVM(F, T, CT)

6 if ¢cu7‘r > (z)best then

7 Dbest < Peurr

8 M «SETBESTPARAMWEIGHT(M,CT)

Algorithm 6: Algorithm wWRE

Input: Matrix of topological feature valueH, target sefl’; and misclassification cost for target class
c+.

Output: Prediction accuracy, predictive topological feature sét and characterization modah.

Rwilcozon <WILCOXONFILTER(H,T%)

Rroc < ROCFILTER(H, T%)

F RW’Llcozon n RROC

¢, M +—TUNESVM(F, T, C™)

E N

through the range of misclassification cost (0 — 1). In eastaiion, the misclas-
sification cost of the target clags™ is incremented according to the number of
iterations completed, before tsem training (Algorithm 5) is performed to obtain
the parameter settings of the characterization m@dekith the best accuracy.
TheBsEapproach is a well-known greedy approach that progreysigetoves
features from the naivevm model (built using all topological features) and trains
a new best model after each feature removal. The eliming@tiooess stops when
removal of additional features result in a worse averageracy of the valida-
tion set prediction. In contrast, there approach (Algorithm 6) performs two
statistical tests, namely, one-tailed Wilcoxon Rank-Stefe¢red to as Wilcoxon)
and receiver operating characteristics (referred te@s. The results are used to
eliminate features that do not discriminate between targetl non-targets in a sig-
nificant manner (based on Wilcoxon) and that do not clasaifyets well (based on
ROC). Note that we perform two 1-tailed Wilcoxon tests and fartetest;p-values
smaller than 0.05 are considered significant. Hence, wettakdifference of the
p-values for both test hypotheses (referred tgpaslue difference) and remove
features withp-value difference less than 0.9. For tRec analysis, features with
AuUC less than 0.7 [38] are considered poor performers and areviesin The best
characterization model is found by training them using the remaining features.
ThewRE-BSE approach (Algorithm 7) first performsRrE followed byBSE.
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Algorithm 7: Algorithm WRE-BSE

Input : Matrix of topological feature valueH, target sefl};, misclassification cost for target clags"
Output: Prediction accuracy, predictive topological feature s, characterization mode\1.
Rwilcozon WILCOXONFILTER(H,T%)
Rroc < ROCFILTER(H, T%)
F RW’Llcozon m RROC
(bpre'uBestyparamprevBest %TUNESVM(F, va C+)
repeat

foreachiteration =1 to | F'| do

| ¢i,param; < TUNESVM(F — F;, Ty, CT)

Fiy eurrBests PATAM ey rr Best < GETFEATURET OREMOVE(¢;, param;)
9 if ¢cu7‘r'Best > ¢pr'ez/Best then
10 F <+ F\F;
11 L M < param;

N o g A~ WwN P

o)

12 until ‘]:| =1lor ¢cu7‘r'Best < d)p'r‘e’uBest;

Structural Features Time Complexity
Degree centrality o(lV])
Eigenvector centrality O([V]?) [49]
Closeness centrality O(IV]?) [48]

Eccentricity centrality o(
Betweenness centrality | O(

Bridging centrality O([VI2 + |E])
Bridging coefficient o] )
Clustering coefficient O([V]?373) [101]

Proximity prestige o(
Target downstream effect O(

Z—‘,—E)
Z+E)

Table 7: Time complexity for computing the different feasir The proofs of those
algorithm complexities that are provided without citateme given in Section 3.4.

EEEEEEEEEE
&
c

3.4 Complexity Analysis

In this subsection, we present the complexity analysis ©fdT. We start by
providing the complexity analysis for the computation of thpological features
considered (summarized in Table 7) iBENET.

Degree Centrality.

Theorem 1 Computation of degree centrality requiré€¥|V|) time in the worst
case.

Proof 1 It takesO(|V|) time to iterate through all the nodes in the graph since it
requires constant time to retrieve the number of edges &tsocto each node.

Bridging Coefficient.

Theorem 2 Computation of bridging coefficient requir€x |V |?) time in the worst
case.

Proof 2 For each node in the network, the computation of the bridgioefficient
iterates through all the neighbours of the node (Definitidnlb the worst case, the
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network is a single strongly connected component whergyéaate is a neighbour
of all other nodes. Hence, calculating the bridging coedfitiof all nodes in the
network require)(]V|?) in the worst case.

Bridging Centrality

Theorem 3 Computation of bridging centrality require3(|V|?) time in the worst
case.

Proof 3 For each node in the network, the computation of the bridgieatrality
is a product of the inverse of the betweenness rank and tdgibg coefficient rank
(Definition 6). Hence, computation requir€g |V |2 + |V | + | E|) time in the worst
case. This can be further simplified inf(|V'|? + |E|).

Proximity Prestige

Theorem 4 Computation of proximity prestige requireX |V |2 + | E|) time in the
worst case.

Proof 4 In Definition 3, the set of nodes having at least one path gath node

u (I,,) and the shortest path distance are needed for calculatiegtestige value.
Using theASSESREACHABILITY procedure in Algorithm 2 to obtai, requires
O(|[V|? + |E|) time. space is required to store the node and edge informatio
of the input graph. The shortest path distance can be foumugudijkstra’s
algorithm [20] and the computation require®@(|E| + |V |log2|V'|) time using
Fibonacci heaps [31]. In the worst cas€(|V|? + |E|) time is needed since
O([V[?) > O([V]loga|V]).

Target Downstream Effect

Theorem 5 Computation of target downstream effect requitg$V | + | E|) time
in the worst case.

Proof 5 According to Definition 8, the computation of the target detream ef-
fect for each node requires iterating through each of its dstream nodes. The
downstream nodes can be found by usingABSESIREACHABILITY procedure
in Algorithm 2. The time required to compute the reachapibf the nodes is
O(|V|? + |E]). In the worst case, the network is a single strongly conmkcten-
ponent where every node has a path leading to all other nddesce, calculating
the target downstream effect of all nodes in the networkireg®(2|V |> + | E|)

in the worst case and can be simplified®|V|? + |E|).

TENET Algorithm

Theorem 6 Given a signaling networks, a disease node, a target sefl,, a fea-
ture setX,;; and the step-size of the misclassification eoshe AlgorithmTENET
has worst-case time complexity((|V| + |E|)? + O(G (X)) + O(T (+))) where
G(X,y) is the worst-case time complexity for extracting the fesgandO (7 (-))
is the worst-case time complexity of the feature selectiethad used.
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Proof 6 In the FILTERCANDIDATE algorithm, the conversion of the input signal-
ing networkG = (V, E) to a bipartite graphGg, = (Vg,, Eg,) takesO(|Vg| +
|Egi|) time. INDAG conversionO(|Vg | + |Es|) time is required for findingscc
using [92]. In the worst case, the signaling network is a ctatgpdirected graph
and CONVERT2DAG takesO(|Vg | + | Eg |) time since| Vg | < |Va|?. In the in-
dexing of theDAG graph Gpac = (Voae, Ebac), the depth-first traversal requires
O(|Voac| + |Ebac|) time while computing the set of nodes that can reathkes
O(|Voas|) time. HenceFILTERCANDIDATE algorithm takesO(|Vg |2 + |Eei|)
time sinceVa| = [V|+ |E|, |[Ba|l = Y (Ul +|W|) and(|Va| + |Eail) >
(UW)eE
([Voac| + [Eonc|)-

The time complexity of treXTRACTFEATURE procedure (denoted a3(G(+)))
depends on the features to be extracted. Amongst the featwreonsider, close-
ness centrality has the highest time complexi?y| (' |?)) (Table 7).

The time complexity of theERAINM ODEL procedure is dependent on the time
complexities of the feature selection approach (denoted(d5(-))) and the train-
ing of the misclassification cost. Three feature selectigpreaches are explored.
In BSE, a greedy approach is used for selecting a feature for reftratveach itera-
tion and a newsvm model is trained and tuned accordingly using theNeSVM
procedure. TUNESVM uses the grid search approach described in [8] to tune
the svm parameters. The tuning process take&” x k) wherei, p and k are
the number of iteratiorfsrequired for the grid search, the number of parameters
to be tuned, and the time complexity of training\am, respectively. According
to [93], standardsvMm training takesO(m?) time wherem is the training set size.
Hence, TUNESVM hasO(i? x |V|?) time complexity since the training set size is
approximately equal to the data set siz€|). In the worst case, algorithrBSe
removes all but one feature. This take§X,;|? x iP x |V |?) time whereY,; is the
set of topological features. IWRE, the statistical-based filter requires two steps,
namely,wiLCOXONFILTER and ROCFILTER to find the predictive feature set. Per-
forming the Wilcoxon test for a particular topological fee requiresO((gh)?)
time [70] whereg andh are the target and non-target class sizes, respectively, an
|V| = g+h. Generatingrocfor a particular topological feature require®(|V|?)
time [28]. HencewILCOXONFILTER andROCFILTER require O((gh)?|X,;|) and
O(|V|?|X,,|) time complexities, respectively. The intersection of e sets of
features generated byILCOXONFILTER and ROCFILTER takesO(|V]) time in
the worst case [21]. HenceyRE requiresO(|V |?| X,y |+ x |[V'|3) time. This can
be further simplified t® (i x |V |?) since|V| > |X,;| in most signaling networks.
The time complexity oWvRE-BSE is O(| X,y |* x i x [V[?), the maximum of the
time complexities oBSE and WRE. The training of the misclassification cost takes
O((% —1)(i* x [V]3)). Hence, taken togetherRAINMODEL procedure has time

complexity oD(O(T(+)) + (£ = 1)(i x [V ?)).

%The number of iterationsneeded for the grid search is dependent on the number ofjtiaval/, the range
of the parameter to be searchednd the step size during the seakctiFormally, it is defined as =1 x .
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Network notation T B I3 [ Ci [ Co [ Cs [ Ca
Data set (BioModel | maPK- PI 3K | gl ucose-stimulated | endomesoder m gl ucose All networks
ID) (0000000144) i nsul i n  secretion| gene regulatory| metabolism
(0000000239) (0000000235) (0000000244)
Disease node(s) ERKPP ATPomitochondrial Prot ei n EEEndol6| acetate {ERKPP, ATP,nitochondrial, P Ot €i N_LE_.End016, acet at e}
No. of nodes in data | 36 59 622 47 764 764 764 764
set
No. of hyperedges in| 34 45 778 109 966 966 966 966
data set
No. (%) of targets in | 9 (25%) 6 (10.2%) 206 (33.1%) 16 (34%) 237 (31%) | 237 (31%) 237 (31%) 237 (31%)
data set
Cross validation 8-fold 5-fold 10-fold 10-fold 10-fold 10-fold 10-fold 10-fold
Test set Table 6 MAPK- PI 3K gl ucose-stimulated | endomesoder m| gl ucose
i nsul i n secretion gene regulatory | metabolism
No. (%) of targets in | 1 (25%) 1 (10%) 21 (34.4%) 2 (40%) 9 (25%) 6 (10.2%) 206 (33.1%) 16 (34%)
test set
Table 8: Data set.

Variant BSE | WRE | WRE-BSE | WMC Weights Ratioio | CT [ C—

TENET-naive 1 0.1 | 09

TENET-B 4 2 02 | 08

TENET-R vV 3 0.3 [ 0.7

TENET-H vV 4 04 | 0.6

TENET-W vV 5 05 [ 05

TENET-WB ¥ Vv 6 06 | 04

TENET-WR vV v 7 0.7 [ 03

TENET-WH 8 08 | 0.2

+/ indicates the approach(es) used in the variant. 9 09 |01

Table 9: TENET variant andvmc weight ratios used in experiment.

O(T()+(

Taken together, thEENET algorithm requiresO (V|2 + | Egi |+ O(G (X)) +

1

S

1)(i? x [V |?))) time for computation. In the worst case, the signaling

network is a single strongly connected component with edgasecting every pair
of nodes. Such a network implies tia¢|Es |) = O(|Va|?). Hence, in the worst
case, the time complexity GENET is O((|V'| + |E|)? + O(G(Xun)) + O(T(+)))

since|Vg | = |V| + |E|.

4 Results and discussion

TENET is implemented using Java. We shall now present the expetamemn-
ducted to study the performance oENET and report some of the results here
(additional results are given in Supplementary Materitlje experiments are per-
formed on a computer system using a 64-bit operating systi#mB&s RAM and a
dual core processor running at 3.60GHz. We characterizesignaling networks
(referred to asndividual network}¥in BioModels(l; to 14 in Table 8) and aom-
bined networkhat is generated by iteratively performing a union of thdewand
edges in individual networks. The resulting combined nekw® a graph consist-
ing of four disconnectéd subgraphs, each representing one individual network.
For the combined network, we use each of the signaling n&tasrthe test set
in turn (G to C4 in Table 8) and examine the effects of generating charaeteri
tion models from individual networks and from the combinedwork. Pruning

%The node and edge sets of the individual networks are disjoin
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Kernel Formula Parameters
Linear uTv -
Polynomial 'y(uTv + cg)d v, d, co
Radial Basis FunctiorrsF) e—lu—vl? y

Sigmoid tanh(yuTv +co) | 7, co

Table 10:svM kernel types and their associated parameters [66].

Parameters Type Range Tested
C SVM parameter [2—2=217]

~ kernel parameter [27T2=217]

d kernel parameter [2-6]

co kernel parameter [2—2=217]

Table 11:svM kernel types and their associated parameters [66]. Noddsetha
with # are known targets.

in TENET is performed on each individual network within the combimedwork.
Section 3.2 describes the generation of the training andiéda. We study differ-
ent variants of ENET (Table 9) by varying thesvm training approach.

4.1 Performance Metrics

We evaluate the performance oENET based on predictioaccuracy! (¢), sen-
sitivity (TPR), specificity(TNR) andprecision(PPV) of the generated characteriza-
tion models using the same training and test set. The defisitare as follows:
b= rorraray TPRE ey, TNR=IE and PPV=-F whereTp, TN, FP and

FN denote true positive, true negative, false positive argkfakgative prediction,
respectively. Note thatpv is set to 0 when the classifier did not make any posi-
tive prediction. We include an additional metf@ature reduction facto(FRF) to
compare the performance of the feature selection methaatsndfly, FRF=1-+ S 'l
whereX,;; is the entire set of features considered in the study. TH@rmance

of different characterization models is compared usingntagrated performance
scord? P = >\, val, where M = {¢(val), ¢(test), TPR, TNR, PPV} and
valy, is the value of metrien. Note that a larger score indicates better perfor-
mance.

4.2 Kernel Selection

We experimented with several kernels: linear, radial bfasistion (RBF), sigmoid
and polynomial. The parameters relevant to each kernel @aypkethe ranges of
these parameters that we tested are found in Tables 10 amdspictively. Fig-
ure 6 plots the results of ENET-naive (which considers all structural features)

MThe accuracy for the validation and test sets are denoteéd@sal) and¢ x (test), respectively, wherel
indicates the method used for training #em model. Average prediction accuracy is denotedas

12This score can be modified according to the needs of the aiplic
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Figure 6. Performance of different kernels using tleNET-naive approach.
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Best model Parameters| 11 B [ 13 [ 14
RBF Kernel

Best modelC 2704 2~10 2108 28
Best modely 2-12 210 2-12 210
Sigmoid Kernel

Best modelC 204 2-10 2108 28
Best modely 2—12 2-10 2—12 2-10
Best modelCoe f0 2-12 2-10 2-12 2-10
Polynomial Kernel

Best modelC 204 2-10 2108 28
Best modely 2-12 210 2-12 2~ 10
Best modelCoe f0 2-12 2-10 2-12 2-10
Best modelDegree 2 2 2 2

Table 12: Best model parameters for the various signalirtgzarés using the
TENET-naive approach with different kernels. The parametergie TENET-
naive approach with linear kernel is found in Table 13.

using the various kernels. The choice of kernel did not affiee accuracy of the
validation and the test sets. This implies that the traidiaiz is likely to be linearly
separable. The execution time, however, is affected by tineber of parameters
involved in the kernels and the training set size [80] (sizeedwork). Henceforth,
we shall use the linear kernel for the rest of the experimeimise it yielded the
same accuracy as other kernels but is faster in terms ofrtcagpeed. The param-
eters for the best models in this experiment is reported leTd2. Note that inyl,
the sensitivity tPR) and precisionKpPV) are zero irrespective of the kernels. This
highlights a need to use additional techniqueg ( feature selection) to improve
the characterization models. For subsequent experimsatase the linear kernel
as it yielded the same accuracy as other kernels but is tastiein.

4.3 Feature selection

First, we examine the performance of different featurectiele approaches @NET-
B, TENET-R and TENET-H) and compare it with ENET-naive for different signal-
ing networks. Note that in this set of experiments, we stheyefffect of the feature
selection approaches in isolation. The effect of incorfgawmc into the svm
shall be investigated later. Table 14 reports the predid®ature sets for each net-
work using different approaches. In total, 24 experimengsenconducted since
there are three feature selection methods and eight nedwirko I, and G to
C4). Amongst these 24 experiments, 25% of the predictive featats consist of
only one feature while the remaining had multiple featurasdging from 4 to 15
features). This supports our previous observation [1&]ratiple features result
in better prediction of known target®bserve that in Table 14, bridging centrality
is not always in the predictive feature setd., I5). Figure 7 plots the performances
of different feature selection approaches. We can makeaeMaservations. First,
no single approach performs consistently well on all penfamce metrics. In fact,
network topology plays an important role in feature setattiFor instancelhas
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Best modelC'

| I | I2 | I3 | l4
TENET-W
wMcC Ratio ID=1 2>—10 2—10 | >—10 >~ 10
wMcC Ratio ID=2 2-10 2-10 [ 28 210
wMcC Ratio ID=3 210 210 | 232 510
wMC Ratio ID=4 20 2-10 1 272 210
wMc Ratio ID=5 (TENET-naive) | 2= 04 | 210 | 210.8 28
wMC Ratio ID=6 2—408 [ =10 [ 2238 256
wMmcC Ratio ID=7 2—5.76 | 2—10 | 20.08 26
wMcC Ratio ID=8 20 2—10 | 256 268
wMC Ratio ID=9 208 206 28 28
TENET-WB
wMcC Ratio ID=1 27 2-10 [ p—10 284
wMcC Ratio ID=2 262 2-10 | 28 5116
wMcC Ratio ID=3 26 2—10 | 20-16 2108
wMmcC Ratio iID=4 22.4 2—=10 [ 22 2102
WMC Ratio ID=5 (TENET-B) 27 210 [ 2838 212
wMC Ratio ID=6 2% 2—10 | 20 5104
wwMmc Ratio ID=7 22 2—10 | 208 282
wMC Ratio ID=8 24 2—10 | pI0 oTT.2
wMcC Ratio ID=9 2438 2z 276 510
TENET-WR
wwMmc Ratio ID=1 2-10 2—10 | o—10 5—10
wMcC Ratio ID=2 210 2-10 | 28 2—10
wMcC Ratio ID=3 210 210 | p7-52 =10
wMcC Ratio ID=4 2% 2-10 | 230 5—10
wMcC Ratio ID=5 (TENET-R) 26 2-10 ] 284 2-10
wMC Ratio ID=6 2-36 2-10 | 2552 | 210
wMcC Ratio ID=7 2-372 20 5024 | 24
wMmc Ratio ID=8 21.84 2—10 | 21.96 2-10
wMcC Ratio ID=9 210 28 26 5—10
TENET-WH
wMcC Ratio ID=1 210 2-10 [ p—10 5>—10
wMC Ratio ID=2 26 2-10 | 20 5=T10
wMcC Ratio ID=3 2% 2—10 | 268 5—10
wMcC Ratio ID=4 28.08 2—10 | 224 2—10
wMcC Ratio ID=5 (TENET-H) 210 28 2116 210
wMcC Ratio ID=6 210 22 2T 5—10
wwMmc Ratio ID=7 210 22 >—T.76 | o4
wwMmc Ratio ID=8 210 27 262 2—10
wMcC Ratio ID=9 28 210 2% 5—10

Table 13: Best model’ parameter for the various signaling networks using various
approaches with linear kernel.

Data| TENET-B TENET-R TENET-H
I 0,7,0in,00ut 6!<!Byl9100’ll/tVIJ‘!N’U,’I’J,IM:T‘ 0,(,B8,9
I Oin 0,8y KundirKeye0in Kinfhkmid:bout btotal | TiBsKeye Kundir

0,(,,B Ky 0Kin KmidithKout Bout W,0total Fundir

0,(.0,6midbouts Orotal WiKundir

6,(,19,@,‘901:1& Ototal Kundir

Iy Cvﬁy"icycﬁyayﬁinv’{midrﬂxwﬁautyeoutﬁtumlr Rundir w w

Cy 5vgv7rvﬁvl{(iycyl91a16inv EmidiBout o Kundir 0,6,m,8:9,0Kmid: Kundirs Qout ¢ m9,0,00ut, Kundir

Co | 0.4mBikcye¥0in, KmidOout Kundir 0.6, Kmidfout W Ototals Kundir 0,8, X K mid Wy Kundir

Cs | Oin 9 ¢

Cy Crﬂrﬁr’@cymﬂyayﬁinﬂinxwrmoutaemmhetotalx Rundir 5v<rﬂr'ﬁxaaﬁmidxenutvwv Ototal Kundir Cvﬂ'vﬂlalnundi’r‘1w!007l,f4!0t0tﬂ.liﬁ/7nid

Table 14: Features selected by various feature selectipmaghes.

extremely high density of edges (ratio of edges to nodes)aped to other net-
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Figure 7: Performance of different feature selection apgines.
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works. The connectivity features of such networks becoras ieformative and
other features such as target downstream effect becomesimportant. Hence,
the most appropriate feature selection approach is depenole the signaling net-
work. However, we note that for larger sized networks, a largentmer of features
are informative (regardless of feature selection appnoaktis is perhaps because
larger networks provide greater richness of context anerdity of structure in the
sub-networks. Since network sizes are growing and netwaallyais demands ap-
plicability to larger networks, future methods might benp#rticularly from the
use of multiple features. Secorfdature selection generally led to an improvement
in prediction accuracy{87.5% for validation data set and 50% in test data set) over
the naive approach. An exception igi@ which feature selection resulted in poorer
performance. In ¢ the characterization model is generated usind.land k as
training data whereag Is used as the test data. The characteristics of the known
targets in the training data may be quite different from tifahe test data. Indeed,
from Table 14, we observe that bridging coefficients included in the predic-
tive topological feature set of £but not in |;. Including redundant features may
lead to poorer performance. Third, the models generallg agh specificity due
to imbalanced data set. FourtheNET-R has the best runtime performance, fol-
lowed by TENET-H and TENET-B. The poorer performance ofENET-B is due to
the interaction of the feature selection approach with tasstfier (classifier-aware
approach) which is different fromeaNET-R where the feature selection approach
is a wrapper layer that sits on top of the classifier. Fin#llg, size of the networks
used for training affects the runtime performance. In galndarger size networks
require longer runtime. In Section 4.7, we repoBNETS performance on the
human cancer signaling network containing more than 25@@%0

4.4 Effect of varyingwmc

Intuitively, when we vary thevmc, we expect that as the target misclassification
costC'T increases, the prediction accuracy, sensitivity, spéyifand precision
would display a negative skewed, increasing, decreasidgasitive skewed dis-
tribution, respectively. This is because a lafge eventually results in a model that
is likely biased towards classifying data as targets. Thecebdf varying thewmc
are reflected in Figures 8 to 15. From the figures, we noteddifening trends.
First, amongst the individual networks, only (Figure 10) displays the expected
trends. This could be due to the extreme small target size 2) m the test set
that resulted in extreme fluctuations in the performanceiosednd deviation from
the expected trends. Hence, the target size of the testsétava significant im-
pact on the observed results. Second, the performance aebthbined networks
C, (Figure 12), G (Figure 13) and ¢ (Figure 15) resembles that of,possi-
bly due to the large size of ldominating over other networks used for training.
This implies large training networks can have undue infleemc the characteri-
zation model. Third, sensitivity generally improves wherepecificity generally
deteriorates when the target misclassification cost isigaehthan the non-target
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Figure 10: Performance of ENET variants incorporating feature selection ap-
proach andvmc for theendonesoder mgene regulatory network.
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Figure 11: Performance of ENET variants incorporating feature selection ap-
proach andvmc for thegl ucose metabolism network.

misclassification cost{™ > (™). The choice of an appropriate model depends on
the application. Fourth, the prediction accuracy tendsdplay a skewed distribu-
tion where accuracy initially increases (or remains cart¥taith increasingC'™,
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Figure 12: Performance of ENET variants incorporating feature selection ap-
proach andvmc for C;.

and then decreases with increasifig. Fifth, individual networks and combined
networks behave differently. In individual networks, gotidn accuracy, sensitiv-
ity and precision generally improve wherit is set larger thai€'—. However, in
combined networks, sensitivity improves whereas otheflopmance criteria dete-
riorates whenC'" is set larger thar€'~. Hence,there is no single universal best
value ofC* and the choice of’* depends on the network

45 Best TENET variant

We identify the best ENET variant (Table 15) using the integrated performance
scoreP. We note the following. First, the beseENET variant is network depen-
dent. Secondyariants incorporating bothvmc and feature selection generally
perform well Specifically, setting”* greater tharC'~ led to better results. Third,
TENET variants based on individual networks (b 1) outperforms that based on
combined network&C; to C,). The poorer performance of the combined networks
may be due to insufficient number of training networks, imappate or insuffi-
cient features used for training or that signaling netwdrksature have distinct
characteristics and it is just not possible to have a geimethimodel. Finally, the
predictive topological features differ across networkah{€s 14 and 15). Hence,
as we mentioned in Section &,single set of predictive topological features may
not effectively characterize known targets in all signglinetworks When we
compare the results with that in our previous work, we not the set of predic-
tive topological features are different from the discriative topological features
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Figure 15: Performance of ENET variants incorporating feature selection ap-
proach andvmc for C,.

I1 |2 |3 |4 C1 C2 C3 C4
Best Approaches TENET-BF, TENET- | TENET-WH TENET-WB TENET-WB TENET-WH TENET-RF TENET-WR TENET-

we (C1=0.1,0.2,0.3,| (C*t=0.9) (C*+=0.7) (C*+=0.2,0.3,0.4,| (C*+=0.6") (C*+=0.8"), TENET- | naivé

0.4) 0.6,0.9) WH (C1=0.8)
P 4.935 4.109 3.86 49 3.08 3.022 3.268 2.917
b(val) [Ad(val)] | 0.935[0.16] 0.82[-0.087] | 0.747 [-0.02] | 0.9[0.268] 0.734[-0.013]| 0.711[-0.052] | 0.561[-0.274] 0.757 [0
d(test) [Ag(test)] | 1[0 0.9[0] 0.803[0.088] | 1[0.667] 0.694[0.136] | 0.78[0.070] 0.72410.097] 0.609 [0
TPR [ATPR] 1[0 1 [oo"] 0.905[0.462] | 1[1] 0.410.333] 0.5[0.502] 0.602 po*] 0.313[0
TNR [ATNR] 1[0 0.889[-0.111] | 0.75[-0.063] | 1[0.499] 0.808[0.105] | 0.811[0.048] | 0.788[-0.212] 0.767 [0
PPV [APPV] 1[0 0.5 [0"] 0.655[0.058] | 1[1] 0.44410.48] | 0.231[0.615] | 0.593 po*] 0.471 [0

Table 15: Summary of besteNET variant for different networksC* values are
provided in bracket besides approaches usingc. A, = 2 —neive where

Tpest AN

natve

are the values of performance metriof the best ENET variant

and TENET-naive, respectively: marks instances where, ; = = 0 and* marks
the best models selected for generating the characterizatodel.

(DTF) identified in [16] although there was an overlap of at le@$t5of the fea-
tures3. The difference is due to the different approach used tdiiyehe features.
The characterization modéfsgenerated by theseTFs also yielded poorer aver-
ageRoOC (0.873) than that generated usingNET (0.913) (Approach DFFER in
Figure 16).

B\we consider only 1 to I3 and exclude 4 from this comparison as nbTF was found ap-value less than

0.05

we usesvm with wmc andwRE to generate the characterization models.
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Figure 16: Performance of different prioritization approes.

4.6 Comparison with state-of-the-art approaches

In this subsection, we describe the experiments that camfeMET against other
state-of-the-art approaches. We perform three sets ofriexgets for compari-
son withnetwork-unawargechniquespPi network-based techniques ametwork-
awaretarget prioritization approaches. Recall that statehetdrt techniques such
as [41, 65, 108] focus onpPI networks instead of signaling networks. To the best
of our knowledge, there does not exist any target charaet&n technique for
signaling networks. However, one way to investigate thégperance of ENETis
to examine how well the characterization model generateitl fjoritizes known
targets. Intuitivelytarget prioritization aims torank the nodes according to their
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Network

Targets in review article

Total
targets

% of TENET top-
10 ranked nodes
overlapping  with
review targets

RAB25, PRKCI, EVI 1, PI K3CA, FGF1, MYC, PI K3R1, AKT2%, AURKA, KRASF,
BRAF!, CTNNB1, CDKN2A, APC, KI T, SMAD4, | GF2, SAT2, ARHI , PEG3, PLAGL1,
RPS6KA2, TP53, BRCALl, BRCA2, PTEN, OPCML, WWOX, DAPK1, CDH13, MLHL,
| CAML, DNAJ C15, MUC2, PCSK6, CDKN1A, RASSF1, SOCS1, SOCS2, PYCARD, SFN

41

50%

GLP-1, GLP-1 receptor, DPP-4, NEP-24.11, SGLT, anylin, PPAR,
ATP-sensitive pot assi um channel, o-gl ucosi dase, gl ucoki nasef,
AMP_ ki nasef, carnitine pal mtoyltransferase-1, gl ycogen
synt hase ki nase- 3, PTP- 1B, pyruvat e dehydrogenasef,
fructose- 1, 6- bi sphosphat ase?, 113- hydr oxyst eroi d
dehydr ogenase 1, sirtuin 1, acyl - CoA-di acyl gl ycerol
acyltransferase 1, phosphoenol pyruvat e carboxyki nasef,
gl ucose- 6- phosphat ase, PPARy coactivator le,
acetyl - CoA car boxyl asef, mitochondrial r ot enone-sensitive
NADH:ubi qui t one oxi dor educt ase (complex ) leptin,
ghrelin, resistin, C-peptide, protein kinase C, AGE, RAGE,
gl ut am ne:fruct ose- 6- phosphat e, PARP, VEGF, al dose reduct asef,
vitamin C, vitamin E, GPR40, GPR119, GPR41l, GPR43, GPR120, GPR109A,
dopani ne- 2 receptorym8 subtypenuscar i ni c receptor, SAydr oxyt r ypt am ne
2c subtypeser ot oni n receptor,i m dazol i ne, gl ucagon receptor,reti noi d
Xreceptorcol eseval am 1 L- 13, chenpki ne receptor 2angi ot ensi n receptor,
t hi or edoxi n-interacting protein,Kv2. 1 channel, FBF21, w — 3 PUFA, ZnT8,
di acyl gl ycerol acyl transferase 1

60

50%

Gsk- 3%, frizzl ed?, ng- Tcrf, HesC?, Wit 8%, Hox11/ 13b%, Su(H) ¥, Bl i np1¥,
O x*, Br a¥, FoxA?, Gat aEf, Genff, Not ch

14

90%

ack, pta, acs?, poxB¥, pykA, pykFF, fadR, ppcF, pyc, zwf, ptsf, gal P,
gl ucoki nasef, gl ucoset

14

50%

Table 16: Summary of targets obtained from review articldargets that are
present in the network and inENET top-10 ranked nodes are marked?aand

underlined, respectively.

potential of being a target based on sam@ortance measurgg.g, gene expres-
sion level [14]. In the following, we first describe the comipans withnetwork-
unawaretechnigues, then that witbp1 networks and finally that with theetwork-

awaretarget prioritization approaches.

4.6.1 Comparison with network-unaware approaches

We compared ENET's prediction against those derived from non-network-dase
approaches, specifically, targets that were predicted hgusexperimental tech-
niques and consolidated within review articles. The tarfmtl;, |5, Is and |, were
derived from [3], [97], [60] and [87], respectively. Tablé 4dummarizes the targets
found in the review articles (referred to eview targets In general, there is an
overlap between the targets in the network and those in thews. Note that in
signaling networks, the same gene and protein often existuliple forms and
such representations may be manifested in the top-10 ramdaek. For instance,
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Figure 17: Proportion of top-10 ranked nodes that overlajs meview targets
(top) and review and curated targets (bottom)

in TENET top-10 ranks of 4, there are multiple versions of3- Tcr®. When we
take this multiple forms into consideration, the perceataf TENET top-10 ranks
overlapping with review targets are 50%, 50%, 90% and 50% fol,, 13 and
l4, respectively. Next, we examine if the remaining targetskaologically rele-
vant by checking for correspondence with our curated targe$ection 2.3. Only
three target$ do not correlate with curated targets. This implies thatraking
nodes in ENET correlate well with existing biological knowledge. Thattisere is
good correspondence betweeBNET top-10 ranked nodes and existing biological
knowledge. Note that ENET also out-performs other state-of-the-art approaches
in terms of the overlap achieved between the top-10 rankddsiand the review
targets and curated targets (Figure 17).

4.6.2 Comparison withpri-based approaches

Following which, we comparedBNET with severalPPrbased target prioritization
tools, namelyNetworkPrioritizer [47], ToppGeng12] and ProphNet[64]. The
comparison witiNetworkPrioritizeris presented and discussed in the main text.
The ToppNetfeature inToppGenas used to prioritize the nodes.

Note thatToppNetrequires a set of training and test nodes as inputs for analy-
sis. These node sets have to be provided as either satsnaf, Entrez Ensembl

lsnﬁ- TCFis presentaprotein P nB3- TCF,protein M ngB- TCFandprotei n E ng- TCF which
represenh 3- TCF in protein form inPmc, mesoderm and endoderm cells, respectively.

pp2ain 11 andferri cytochrome c, di hydr oxyacet one- phosphat e andsucci nyl - CoA
from I
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RefSeqpr UniProt identifiers. We annotate the nodes in the four networks us-
ing UniProt and Entrezidentifiers when majority of the nodes are proteins and
genes, respectively. For clarity, networkslh and |, are annotated usingniProt
whereas 4 is annotated usingntrez We follow the following rules during anno-
tations:

1. When multiple annotation are available, select the omie evganism match-
ing that of the given network.

2. When a node does not have a valid annotation, it inheritaramtation
(where available) related to an edge that the node is asedordth. For
example,gl ucose do not have a correspondirigniProt identifier. It is
involved in a reaction whergl ucoki nase (UniProt ID=P52792) cat-
alyzesgl ucose to gl ucose- 6- phosphat e. Hence, it shall inherit the
UniProt identifier ofgl ucoki nase.

3. When a node is a result of post-translational modificateog, phosphory-
lation), it inherits the annotations of the original nodear Example, phos-
phorylatederk shall have the same annotations as unphosphorykted

ToppNet which prioritizes nodes based on functional annotatioetjrns no re-
sults for all four networks and is excluded from Figure 16isT¢ould imply that
the databasé in ToppNetare lacking in functional annotations related to these
networks. UnlikeToppNetwhose analysis is reliant on the quality of its functional
annotations databasegWET analysis depends only on the structure of the network
which is inherent in the signaling network given by the user.

ProphNetprovides several prioritization features. In particulag are inter-
ested in prioritization of a given set of nodes and pricaiian of aProphNet
generated node set for a given disease and we refer to thélhropsNetA and
ProphNetB, respectivelyProphNetA returns no results for Ito 1, whereadroph-
NetB returns a prioritizedProphNetgenerated node set farand L when “ovarian
fibromata” and “diabetes mellitus, insulin-dependent, Zrevgiven as the input
disease, respectively. Note that fgrdnd |, we were not able to find a related
disease tag ifProphNetB for a meaningful query. ThErophNetgenerated and
prioritized node sets (referred to RsophNetnodes) where mapped to the nodes
in 11 and b. The mapping is performed according to the following rules:

1. When a node does not have a clear, unambiguoufrbfihNetnode map-
ping, itis mapped to a relatd@fophNetode. For exampless (G b2- sos)
is mapped ontd’rophNetnodesGRB2, sosl and sos2 and inherit the
ProphNetscore of these nodes.

2. When multipleProphNetnode versions are available, &fophNetnodes
are mapped to the network node. For example, diffeRmophNetnodes

17ToppNetdatabase contain human and mouse genes anda@es functional annotations whereastd |4
are networks related to mouse @nd k), sea urchin ) andE. Col i (l4).

38



such as°PP2R5E, PPP2R3A andPPP2R2B are used to represent different
components oPP2A. All of these ProphNetnodes and their values are
mapped tPP2A.

This mapping resulted in some nodes being mapped to one a RrophNet
nodes. Ambiguity in the node prioritization occurs when aeds mapped to
multiple ProphNetnodes. We resolve this ambiguity by generating two new set of
prioritization ranks calle®ProphNet(MaxandProphNet(Sum)in the former rank,

a node will be assigned the highd3tophNetranks among the mappderoph-
Netnodes. In the latter rank, a node will be given a score thdtéssum of the
ProphNetvalues for all the mappeHrophNetnodes. Then, the nodes are ranked
in decreasing order of this score. Note that node mappings twabe performed
either during annotations fdioppNetor when comparing the prioritizerophNet
nodes. Ambiguity arise when the signaling networks cortiagnsame protein or
gene in different forms or cells as different nhodes wherbastdols expect each
node to represent a different protein or gene. Hence, a danparison between
TENET and these two approaches becomes difficult. Note that in lhodimd |,
(Figure 16), EENET outperformsProphNetin terms ofROC AuC and AUPR. For
execution time, ENET also outperform$rophNetwhen training was performed
offline. Hence, in subsequent experiments, we shall focusoomparing ENET
and other signaling network-based approaches (randomitization, DIFFER, LSA
andNetworkPrioritize).

4.6.3 Comparison with network-aware target prioritization approaches

Target prioritizationis the process of ranking nodes in a network according to thei
likelihood of being a target based on some critega( sensitivity, gene expres-
sion level, score generated by a characterization modk8t i§, given a signaling
network G = (V, E), the target prioritization problem assigns aarget rank

r, for each node, € V. Givenu,v € V, u is more likely thanv to be a target

if r, < ry,. Itis potentially useful in helping to plan experimentscgresources
are limited and experiments can be costly and time-intensithis is especially
true in drug development [68]. Note that target characion do not generate
“new” targets, but instead produces a model that charaeteiknown targets. In
contrast, target prioritization may generate “new” tasdey virtue of the fact that
high ranking nodes that are not in the set of known targets besater potential to

be “new” targets. Characterization models (described tti@e 3.1) generated by
TENET can be used for generatipgioritization scorego rank nodes in a signaling
network. Recall that ENET generates characterization models using an approach
based on support vector machinesi¢). svMm (e.g, e-support vector regression)
can yield models that produce a continuous outconeg (egression scores) in-
stead of discrete outcomegq,, classes). Hence, the regression scores can then be
used for prioritizing nodes. Figure 18 depicts the overvadvhe target prioriti-
zation process using the output oENET. Specifically, TENET produces a char-
acterization model when given a signaling netwaelg( MAPK/ PI 3K network),

39



_". Characterization
§ . model (obtained
Disease node ° from TENET)
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Figure 18: Target prioritization USINgENET.
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Figure 19: Normalized rank of nodes in test set;of |

a relevant disease node.q, ERKPP) and a list of known targets(g, Akt , Raf ,
etc) as inputs. This characterization model can then be appliedny signaling
networkG to obtain a regression score for each nod€'irFinally, the nodes g~
are ranked in decreasing order of the regression score. \bdeare ranked top
but not in the set of known curated targets may be potental"riargets.

For our study, we compareeNET with severalnetwork-awaretarget priori-
tization approaches, namely, random prioritizatioga [33] and NetworkPriori-
tizer[47]. In random prioritization, the nodes were randomlyigresd a rank in the
range [14V|] where|V/| is the number of nodes in the network and we assume that
no ranking ties are presentsA was performed usingGopasi[85] with the follow-
ing configuration:{task=sensitivities; subtask=time series; function=alliables
of the model; and variable=all parameter valuedVe consider bothVeighted
Borda FusqwsF) andWeighted AddScore Fu$easF) in NetworkPrioritizerand
consider all features provided. Note that uniform weightsewsed for rank ag-
gregation since we do not have prior knowledge of the begghtgior features to
consider. For ENET, we use the characterization model to generate prioiibizat
ranks of known targets. Specifically, we apply thiem models to obtain these
ranks. ThesvMm type is set toe-support vector regressior-§VR)*® with default
e value (1x103) and thesvm parameters are set according to the best models for
each network (Tables 13, 15 and 17). Note that the nodesrateddn decreasing
order of the regression score and higher ranked nodes aeelikay to be targets.

First, the experimental results reveal that tleemalized rank®f a given node
vary widely using different approaches. Figures 19, 20 angl@t thenormalized

181y e-sVR, the error function is aa-insensitive loss function and error smaller thas ignored [8].
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Best modelC' [ C. [ Co [Cs [ Ca
TENET-W

wwMmc Ratio ID=1 2-10 2—10 2—10 | o—10
wMC Ratio ID=2 2-10 2—10 2—10 | =10
wMC Ratio ID=3 2-10 2-10 210122
wMcC Ratio ID=4 204 2-1.92 | p—10 | 9.2
wMcC Ratio ID=5 (TENET-naive) | 210-1 256 2-10 1 276
wwMmc Ratio ID=6 20 21192 2—10 | pL.02
wMcC Ratio ID=7 2064 | pl04 5—10 | 5—0.08
wMcC Ratio ID=8 28 262 228 8
wwMmc Ratio ID=9 296 26 26 28
TENET-WB

wMcC Ratio ID=1 210 2~ 10 5—10 | >—10
wMmcC Ratio ID=2 210 2—10 5—10 | 5—10
wwMmc Ratio ID=3 2-10 2—10 2—10 | o—10
wMcC Ratio ID=4 24 288 2—10 | 236
wMC Ratio ID=5 (TENET-B) 292 2536 2~ 10 | 276
wMcC Ratio ID=6 6.4 > 510 [ 5—032
wwMmc Ratio ID=7 22 262 2—10 | 2108
wMC Ratio ID=8 211 296 2710128
wMcC Ratio ID=9 26 26 5>—10 [ 278
TENET-WR

wMcC Ratio ID=1 210 2—10 5—10 [ o—10
wMC Ratio ID=2 2-10 2—10 2—10 | =10
wMcC Ratio ID=3 210 2~ 10 5—10 | 5—10
wMcC Ratio ID=4 2% 2—-10 >=T0 | 28
wMC Ratio ID=5 (TENET-W) 20 26 2-10 1 276
wwMmc Ratio ID=6 2—0.I6 | 5-5.76 | >—10 | >—2
wMmcC Ratio ID=7 20-70 2—36 5—10 | 210
wMcC Ratio ID=8 20.62 2z 22 5108
wwMmc Ratio ID=9 20.35 26 5—10 | 248
TENET-WH

wMmcC Ratio ID=1 210 2—10 5—10 | >—10
wMmC Ratio ID=2 210 210 5—10 | 5—10
wwMmc Ratio ID=3 2-10 2—10 2—10 | o—10
wMcC Ratio ID=4 210 2—10 =10 | 244
wMcC Ratio ID=5 (TENET-W) 26 28 2~ 10 | 276
wMcC Ratio ID=6 2256 | 2=5.6 2-10 [ 2—0.32
wMcC Ratio ID=7 2—136 | =392 [ =10 | 20
wMC Ratio ID=8 224 20 22 28
wMcC Ratio ID=9 210 2~ 10 >—10 | 212

Table 17: Best model’ parameter for the various combined signaling network
variants (G to C,) using different approaches with linear kernel.

ranksof all nodes in the test sets of,lls and |, respectively. For the remaining
networks, due to the larger size of the test sets, we onlytbéatormalized ranks
of selected nodes in the test sets in Figure 22 and FiguresZR {Thenormalized
rank of a nodeu for a particular approach is denoted a¥,,,,.,,(»)., and defined

as follows.
\IIZCZ’U,

= 4
MAX ey (U, : 4) )
whereV..,, is the rank ofu based on, V' is the set of nodes in the given signal-

ing network andvAx (+) is the maximum operator. We use the normalized rank for
comparison since the range of ranks for each approach esetiff. In these figures,

v

norm(z):u
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I1 l2 I
Best Approaches WRE WRE WRE

(C*=0.9) (C*=0.8) (C+=0.4)
P 4.843 2.798 3.097
(val) 0.843 0.898 0.688
P(test) 1 0.9 0.672
TPR 1 0 0.095
TNR 1 1 0.975
PPV 1 0 0.667
SVM cost parameterC' | 2° 2-10 212

Table 18: Summary of bestiIEFER characterization model for different networks.
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Figure 23: Normalized rank of nodes in test set f C

we mark the known targets in the figures usirg for ease of reading. TheIB-
FER approach refers to the method used to find discriminativeltgical features
(DTF) in our previous work [16]. Specifically, we perforsvm usingwmc and
WRE. We use thevRE feature selection approach to ensure thaithes are used
specifically for training thesvm and tested the entire rangewfc (i.e., [0-1]).
The characterization model with the best performance sBdsgthen used to gen-
erate the prioritization ranks ofIBFER. Table 18 provides a summary of the best
characterization models ofIEFER. Compared to ENET, the performance scores
of DIFFER's characterization models are consistently lower. Notd #n ideal
ranking approach should assign higher normalized ranksesented by shorter
histogram, to known targets. From these figures, we notenihiahalized ranks
of a given node can vary widely using different prioritizetiapproaches. For in-
stance, in Figure 24, the normalized ranka&pP, a known target, is relatively
high when prioritized using @NET, random prioritization andsA. However, it is
given relatively low ranking bywBF andwAsF. In another network C(Figure 23),
WBF andwASF assigned higher ranks Raf *, another known target, compared to
TENET and random prioritization. Hence, an approach that peddyetter for one
particular network can perform poorly in another.
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Next, we discuss the ability of each method to predict kncavgets in the test
set of two networks (l and L) in particular. For a given network = (V, E),
containing a set of known targefs C V, an ideal target prioritization approach
should rank all targets high€rthan non-targets. That is, the set of targets should
be contained within the top% x 100)% ranks of the network. For clarity, a target

t € V is correctly predicted if it is given a rank within the tor%% x 100)%. In

themapk/ PI 3k network (), all approaches excepsa? correctly predicted the
known target KEKPP) (Figure 19). In another networlgl ucose metabolism
network, ) (Figure 21), TENET performed the best as it correctly predicted the
two known targets€l | A andi soci trate). In contrast, random prioritiza-
tion andwAsF correctly predictectl | A but missed soci tr at e (ranked third
and fourth in random prioritization andASF, respectively). The remaining ap-
proaches performed worse and missed both targets. and wBF rankedEel | A
andi soci t r at e as second and fifth, respectively whereasHRR did not yield
any results as no discriminative topological featursss) were found for this net-
work. Note that theRoC AuC is generally used to compare the performance of
different characterization models and the results ofRbe Auc can be found in
Figure 16. From this figure, we observe th&NET outperforms other approaches
in terms of the quality of the prioritization results, padarly for individual net-
works, and is comparable in terms of runtime performancervge training is
performed offline (ENET (Regression only)).

4.7 Scalability

Although existing signaling networks tend to be small (temBundreds of nodes)
in size, they are expected to grow. We testaeNET to assess its scalability to
larger networks. The largest curated signaling network tataio from Biomod-
els.net wasl3, endonesoder mgene regulatory network with over 600 nodes
(previous experiments). We further testedNET on a larger network with 2635
nodes and 43735 edges. This network is obtained from a huigaaliag net-
work [58] curated by Edwin and colleagues and is implicatechincer. The targets
(324 nodes, 12.3% of dataset) in this network that are deesledant to cancer
are reported in [17]. We performed 10-fold cross validagiand the test set (239
nodes) contains 27 targets (11.3% of test seENAT took 2 days for the analysis
using the following configuration: C parameter ran@e2 — 28], libsvm shrink-
ing parameter=1ljbsvmsvm type=Nu_svc, Ct=0.7. Note that we use thisvm
configuration to avoid numeric instability when performiagm training for the
larger network. The weighted misclassification cost wads€ 7 as larger val-
ues in the range of [0.6 - 0.8] were found to perform bettebl@® in main text).
The bestsvMm model has C paramet@® and has associated predictive features
X\ The need for multiple predictive features may be due to tiesgnce

19Note that in real situations, it is unlikely for us to know tireact ranks within the set of targets.
20 Lsa, MEKPP is ranked third out of four nodes in the test set.
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Approach ROC AUC AUPR
TENET 0.718 0.251
Random 0.54 0.127
DIFFER 0.627 0.215

Table 19: Comparison of different approaches on a largearktw

of different types of cancer targets.g, different hallmarks) which may be char-
acterized differently. Hence, we performed further experits by classifying the
targets based on 8 different hallmarks suggested in [35]chadacterizing each
hallmark category. The hallmark targets were curated usifogmation from the
oMIMm database [34]. The results from hallmark-based charaatern are similar
to our previous results. That is, predictive features renaait,; \0;, regardless
of hallmarks. This further highlights the need of using npldt predictive features
to characterize targets and a single featarg,(bridging centrality) may not be
effective. In addition, we note that certain topologicalttees €.g, closeness cen-
trality) we study requires the computation of the shorteghpvhich has Qy’|*)
time complexity using Floyd-Warshall algorithm [29] whé#é| is the size of the
network. Hence, this may impose an upper limit on the sizénefrtetwork that
TENET can handle. We can address this limitation by extendiey &t with tech-
niques that estimate shortest path for large networks ssif8l@and [110].

Finally, we compared ENET to other state-of-the-art signaling network-based
approaches. Note that comparison could not be performed mandNetworkPri-
oritizer. For the former, no dynamic information of the large canagtimork was
available whereas for the latter, the program did not cotaglee analysis due to
memory issues. We observe thatNET (ROC AUC=0.718 andauPr=0.251) out-
performs other approaches in termsrafc Auc andAuUPR (Table 19).

5 Conclusions & Future Work

We propose ENET, asvM-based approach that characterizes known targets in sig-
naling networks using topological features by identifyamget of predictive topo-
logical features and using them to generate a charactenzatodel. TENET uses
feature selection to remove redundant features, therepgoiing prediction accu-
racy of the characterization models amaic to improve other performance criteria
(e.g, sensitivity). Our empirical study reveals that the chesazation models gen-
erated by ENET outperforms state-of-the-art approaches in prioritizignaling
andppinetworks. In summary, the contribution of this work is a maeHearning-
based framework that affords flexibility in characterizisignaling networks of
different sizes and with different number of known targefdthough TENET is
evaluated on a sma&l number of signaling networks, it can easily incorporate ad-
ditional signaling networks without any modification to thhamework. As part

of future work, we intend to explore how the characterizatinodels learnt by

Manual target curation, a time-intensive process, is reeénlé@entify known targets of signaling networks
for validating our experimental results.
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TENET can be leveraged for target prioritization of signalingwarks with un-
knowntargets.
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