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Abstract

Recently, there is an increasing research efforts in XML data mining. These efforts largely assumed

that XML documents are static. However, in many real applications, XML data are evolutionary in nature.

In this paper, we focus on mining evolution patterns from historical XML documents. Specifically,

we propose a novel approach to discoverfrequently changing structures(FCS) from a sequence of

historical versions of unordered XML documents. The objective is to extract substructures that change

frequentlyandsignificantlyby analyzing structural evolution patterns of XML documents. We propose

two algorithms based on a set ofevolution metricsto extract FCS from the historical XML data. We also

present a battery of optimization techniques to improve the space efficiency of our algorithms. Note that

such structures cannot be extracted accurately and efficiently by repeatedly applying existing frequent

substructure mining techniques on a sequence of snapshot data. FCS can be useful in several applications

such as monitoringinteresting structuresin a specific domain, FCS-based classifier, indexing XML

documents, and evolution-conscious XML query caching. Extensive experiments with both synthetic and

real data show that the proposed algorithms are efficient and scalable and can discover FCS accurately.

Keywords: XML, evolutionary features, structural delta, evolution metrics, frequently chang-

ing structures, applications, data mining.

I. I NTRODUCTION

XML has emerged as the leading textual language for representing and exchanging data over

the Web. Due to staggering growth of XML data in different domains, mining XML data has

increasingly become an interesting and important research problem in the data mining community

[2], [13], [15], [28], [23], [26], [30], [17], [31], [19]. Existing works on mining XML data can

Preliminary version of this work was done prior to Kambayashi’s sad demise on 6th, Feb, 2004 and was published in [33].
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be broadly classified into three categories:XML association rule mining[4], [32], frequent

substructure mining[2], [13], [15], [28], [23], [26], [30], andXML classification/clustering[19].

Among these, thefrequent substructure miningis the most well researched topic. The basic idea

is to extract substructures (subtrees or subgraphs), which occur frequently among a set of XML

documents or within an individual XML document. For example, suppose there is a collection

of XML documents that describe information about university professors. Figures 1(a) and (d)

are the tree representations of two XML documents (partial view only). By applying existing

state-of-the-art data mining techniques, frequent substructures among them can be discovered.

For example, by applying the gSpan [28] mining approach, the structures shown in Figures 1(b)

and (c) will be returned as frequent substructure mining results. These frequent substructures

have been found useful in several applications such as efficient querying [29] and classification

of XML documents [31].

A. Motivation

Our initial investigation revealed that majority of the existing approaches of XML mining

focus only on snapshot XML data, while in real life XML data is dynamic in nature. That

is, XML data may evolve at any time in different ways. For example, consider document 2 in

Figure 1(d). Thepublication and activity of a professor may change over time. Figures 1(e),

(f), (g) are the tree representations of three versions of document 2. The black and gray circles

represent the newly inserted nodes (elements/attributes) and deleted nodes, respectively. The bold

circles are nodes whose contents have been updated. It can be observed from the above example

that there are primarily two types of changes to XML data: changes todata content(leaf nodes)

and changes to thestructureof XML data (internal nodes). Content changes occur when the data

values of elements (attributes) are modified over time. Whereas structural changes to an XML

document occur due to insertion/deletion of elements (attributes).In this paper, we focus on the

structural evolution of XML data only.Note that there are many applications where structural

representation of data is important, e.g. chemical compounds, biological data, computer network,

and web browsing history [28]. Also, in archive-based applications such as the SIGMOD record

and DBLP XML documents, content changes are rare compared to structural changes.

The evolutionary nature of structure of XML documents leads to two challenging problems in

the context of data mining. The first one is to maintain the previously discovered knowledge. For

September 6, 2006 DRAFT



3

Professor

Bio Activity PublicationProject

Edu

Academic Industry Paper Paper
Author

Year Title Conf

…

…Phd from
UCLA

Assistant
Professor at

UIUC

IBM Almaden
Research

Center

Jack 2004 SIGMOD
04

SIGMOD

NSF001PC Chair

Professor

Activity

Project Publication

DM

XML

Paper

…

…

Bio

Edu

Academic

Industry Research

BS MS Phd

Paper Paper Paper
UCLA MIT CMU

Stanford IBM
Almaden

NSF002Editor

Bio

Edu Academic Industry

Professor

Bio

Activity

Publication

Project

Edu Academic Industry PaperPaper

(a) Tree Representation of XML Document 1 (d) Tree Representation of XML Document 2 (Version 1)

(b) Frequent substructure 1 (c) Frequent substructure 2

Professor

Activity

Project

…

…

Publication

DB AI

… …

Bio Research

DM

P1 P2 P3 P4 P6P5

XML

P1 P2 P3 P4

JournalConf
CFP

Professor

Activity

Project

…

…

Publication

Bio Research

Journal Conf
CFP

C1 J1 C2 C3 J2

…

Professor

Activity

Project

…

…

Publication

DB DM

… …

Bio Research

XML

P1 P2 P3 P4 P6P5

AI

P1 P2

Journal Conf
CFP

P3 P4 P1 P2

P2P

(e) Version 2 of Document 2

(f) Version 3 of Document 2

(g) Version 4 of Document 2

Fig. 1. An Example

instance, in frequent substructure mining, as the data source changes new frequent structures may

emerge and some existing ones may not be frequent anymore. The second one is to discover

novel knowledge by analyzing the evolutionary characteristics of historical XML data. Such

knowledge is difficult or even impossible to discover from snapshot data efficiently due to the

absence of evolution-related information. In this paper, we focus on the second issue. That is,

we present techniques to discover a specific type of novel knowledge by mining the evolutionary

features of XML data.

Let us elaborate informally on the types of novel knowledge one may discover by analyzing

evolutionary features of XML data. Consider the different versions of XML documents in

Figure 1. We may discover the following types of novel knowledge by exploiting the evolution-

related information associated with the documents. Note that this list is by no means exhaustive.

• Frequently Changing Structures (FCS):Evolution of XML documents over time is generally

heterogeneousin nature. That is, different parts of the XML documents may evolve in

different ways over time. Some parts of the XML document may evolve morefrequently

than other parts. Some parts may change moresignificantly in the history compared to

other parts that may only change slightly. We refer to structures that change frequently and

significantly in the history asfrequently changing structures. Here,frequentlyrefers to the
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large number of times the corresponding parts changed, whilesignificantly refers to the

large percentage of nodes that have changed in the corresponding subtree. For example, the

structure rooted atXML changed more frequently, while the structure rooted atBio never

changed in the history.

• Associative Evolutionary Structures:Similar to the transactional association rule, different

parts of the XML data may be associated in terms of their evolutionary features over time.

For example, assume that whenever the structure rooted atPublicationchanges frequently

and significantly, structureActivity also changes frequently and significantly. Then, an

association rulePublication → Activity (we use the root node to represent a changed

subtree) may be extracted with respect to some appropriately specified thresholds. We refer

to such structures asassociative evolutionary structures. Such structures can be useful in

applications such as XML search engine, XML clustering, XML query caching, etc. The

reader may refer to [5], [6] for further details.

Observe that the core foundation of associative evolutionary structures is also the notion of

frequently changing structures. Hence, in this paper, we focus on discovering the frequently

changing structures (FCS) from historical XML documents. As we shall see in Sections V

and VI, FCS can be useful in several applications such as monitoringinterestingstructures in

a specific domain that are important to the users, FCS-based classifier, XML indexing, and

evolution-conscious XML query caching.

B. Why Existing Techniques Fail to Discover FCS Efficiently and Accurately?

At first glance it may seem that if we apply existing state-of-the-art XML mining techniques

(such as gSpan [28]) repeatedly to a sequence of snapshots of XML data, then it may be possible

to extract the frequently changing structures. However, this is not the case as such knowledge

cannot be discovered accurately and efficiently by tweaking existing techniques on XML data

sequence. Let us elaborate on this by using gSpan [28] algorithm as an example. Suppose there

are n versions of XML documents denoted asX1, X2, · · · , Xn. For each version, gSpan is

applied and the sets of frequent structure mining results are denoted asM1, M2, · · · , Mn. By

postprocessing the sequence of mining results, we may find two sets of structures, denoted asI

andJ , whereI = M1 ∩M2 ∩ · · · ∩Mn is the set of structures that are frequent over all the time

points from1 to n; Jp,q = Mp −Mq (1 ≤ q < p ≤ n) is the set of structure that is frequent at
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time pointp but not frequent at time pointq whereJp,q ∈ J . However, such structures may not

reflect their evolution patterns and frequencies accurately. For example, structures inI may have

changed or may not have changed. Also, it is possible that some of them may have been deleted

from one position/document and inserted into another position/document. Similarly, structures in

J may have changed or may not have changed. It may be the result of other changes that affect

the computation of frequent structure such as such as changes to the total number of transactions,

changes to other parts of the documents, etc. Moreover, such mining and postprocessing efforts

are computationally expensive and as a result it will render FCS mining impractical. Hence,

there is a need to develop novel techniques to discover FCS.

C. Overview of our Approach

Given a sequence of versions of an XML document, the goal of FCS mining is to discover

all the substructures that changefrequently and significantly in the history. Specifically, the

significanceandfrequencyof frequently changing structures (FCS) are defined and measured by

a set ofevolution metrics. These metrics are used to measure the structural evolutionary features

of the XML documents. Based on such metrics, we propose two algorithms (based on top-

down and bottom-up traversals of an XML tree) to extract the frequently changing structures

by scanning the XML sequence only twice. Our proposed algorithms consist of two major

phases: theH-DOM constructionphase and theFCS extractionphase. In the first phase, given a

sequence of historical XML documents, theH-DOM (Historical Document Object Model) tree

is constructed to efficiently represent history of changes to XML data. The goal of second phase

is to extract the frequently changing structures by traversing the H-DOM tree in top-down or

bottom-up fashion. We also present a battery of optimization techniques to make the algorithm

more scalable by reducing the size of the H-DOM tree under various conditions.

Our experiment results show that the proposed algorithms can successfully extract all the

frequently changing structures efficiently. Also, the H-DOM tree is very compact, its size is

around 50% of the original size of the XML sequence. Moreover, the proposed space optimization

techniques can make the H-DOM tree more compact by around 30% and consequently make

the algorithms more scalable.

D. Contributions

The major contributions of this paper can be summarized as follows.
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• We introduce an approach that, to the best of our knowledge, is the first one to discover

novel knowledge from the evolution pattern of historical XML documents. Specifically, in

this paper we focus on discovering frequently changing structures (FCS).

• We propose a set of metrics to measure the evolutionary features of historical XML struc-

tures. Based on theevolution metrics, we present a set of algorithms and optimization

techniques to discover FCS efficiently.

• We show with illustrative examples that FCS are useful for several real life applications.

Specifically, we elaborate in detail on how FCS can be used as the framework for discovering

evolutionary characteristics ofinteresting FCSthat are of interest to a particular user group

in a specific domain.

• We present the results of extensive experiments with both synthetic and real datasets that

we have conducted to demonstrate the efficiency and scalability of the proposed algorithms

and novelty of the mining results.

E. Paper Organization

The rest of this paper is organized as follows. In Section II, we introduce a model to represent

the changes to historical XML documents and metrics used to detect FCS. In Section III, we

present our proposed techniques of miningfrequently changing substructures. Performances of

the FCS mining algorithms are evaluated using synthetic and real datasets in Section IV. In

Section V, we present some representative applications of FCS. In Section VI, we elaborate on

a specific application of FCS. Section VII reviews the related works. Finally, the last section

concludes this paper. A shorter version of this paper appeared in [33].

II. REPRESENTINGCHANGES TOHISTORICAL XML D OCUMENTS

In this section, the problem of how to model the historical XML documents and measure

their evolutionary features is discussed. We begin by discussing how an XML document is

represented in our approach. Next, we present different types of structural changes that may

occur in XML documents and how they are represented. Then, a set ofevolution metricsare

proposed to measure the structural evolutionary nature of the XML documents. Finally, our

representation technique to concisely record the information related to the evolution history of

XML documents is discussed.
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A. Representation of an XML Document

The structure of an XML document can be modeled as a tree according to the Document

Object Model (DOM) specification (hereafter calledXML trees). XML trees can be classified

into ordered trees, in which both the parent-child relationship and the left-to-right order among

siblings are important, andunorderedtrees, in which the parent-child relationship is significant,

while the left-to-right order among siblings is not important. In this paper, we focus on the

unordered XML documents. An unordered model is more suitable for most database applica-

tions [25]. However, our technique can easily be extended to ordered XML as well.

An XML document is denoted asT = (N, E, r), whereN is the set of labeled nodes,E

is the set of edges,r ∈ N is the root. Note that we do not distinguish between elements and

attributes, both of them are mapped to the set of labeled nodes. Each edge,e = (x, y) is an

ordered pair of nodes, wherex is the parent ofy in the XML tree. Thesizeof the structureT ,

denoted by|T |, is the number of nodes inN .

Next, we introduce the notion ofinduced subtreeof an unordered XML document. Given

two rooted tree representations for two unordered XML documentsT andT ′, T ′ is the induced

subtreeof T , denoted asT ′ ¹ T , if and only if: (1) V ′ ⊆ V and E ′ ⊆ E; (2) the labeling of

V ′ andE ′ is preserved inT ′. In the rest of the paper, unless otherwise specified, whenever we

refer to a subtree we refer to induced subtree.

B. Types of Structural Changes

Changes to an unordered XML document can be represented as five types of edit operations

as follows [25]. The first three are basic operations and the last two are composite operations

that can be represented as a list of basic operations.

• Insert(x(name, value), y): insert a nodex, with node namename and node valuevalue, as

a leaf child node of nodey.

• Delete(x): delete a leaf nodex.

• Update(x, newvalue): change the value of a leaf nodex to newvalue. Note that only the

value can be updated, but not its name.

• Insert(Tx,y): insert a subtreeTx, which is rooted atx, to nodey.

• Delete(Tx): delete a subtreeTx, which is rooted at nodex.
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Based on the above edit operations, anedit script is defined as a sequence of edit operations

that transform an XML document from one version to another [25]. However, not all the edit

operations can change the structure of the XML documents. For example, theUpdateoperation

will not change the structure of a document. Hence, corresponding to the structural changes, we

define thestructural edit scriptas a sequence ofbasicedit operations that converts the structure

of one version to the structure of another version. Note that it differs from the definition of edit

script in two ways. First, a structural edit script does not include any update operation. Second,

unlike edit script, it is composed ofbasic edit operations (insertion and deletion of a node).

Note that an edit script may contain composite edit operations. To make it easier to locate the

edit operation in the tree, anaffiliated nodeis defined for each edit operation. For the insertion

operation (Insert(x(name, value), y)), the affiliated nodeis y; for the deletion (Delete(x)) and

update operations (Update(x, newvalue)) the affiliated nodeis x.

Given two versions of an XML document, formally, thestructural deltabetween them is

defined as follows.

DEFINITION 2.1 (Structural Delta): Let Ti and Ti+1 be the tree representations of two ver-

sions of an XML document, denoted asXi and Xi+1. Let ti ¹ Ti. The corresponding structure

of ti in Ti+1 is ti+1, denoted asti+1 ¹ Ti+1. Thestructural delta for the subtreeti from Ti to

Ti+1, denoted as4i(t), is defined as a structural edit script〈o1, o2, · · · , om〉 that transform the

structure ofti into ti+1. That is,4i(t) = 〈o1, o2, · · · , om〉 whereok is a basic edit operation

∀ 0 < k ≤ m. The size of the structural delta4i(t), denoted as|4i(t)|, is m. That is,

|4i(t)| = m. Furthermore, the structural delta fromXi to Xi+1 is denoted as4i. ¤
Consider the previous examples in Figure 1. The structural delta from version 2 to version

3 is 42=〈Delete(C1), Delete(J1), Insert(C3(v1), CFP ), Insert(J2(v2), CFP )〉 and the value of

|42| is 4 since there are 4 basic edit operations shown as colored circles in Figure 1 (f). In

the above definition, the XML structural delta is defined for two consecutive versions of an

XML document. To represent the sequence of changes to more than two versions of an XML

document, we define the notion ofXML structural delta sequence.

DEFINITION 2.2 (Structural Delta Sequence): Let 〈T1, T2, · · · , Tn〉 be the sequence of tree

representations ofn historical versions of an XML documentX. Let t ¹ T1. Thestructural delta

sequencefor the subtreet from T1 to Tn is Ψt = 〈41(t), 42(t), · · · , 4n−1(t)〉, where4i(t) is

the XML structural delta fort from ith version to (i+1)th version. Also,Ψt is contained inΨX ,
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denoted asΨt ` ΨX , whereΨX is the structural delta sequence ofX and ΨX = 〈41, 42, · · · ,
4n−1〉. ¤

Reconsider the examples in Figure 1. For the substructure rooted at nodeActivity (denoted as

tact), the corresponding of structural delta is〈 41(tact),42(tact,43(tact) 〉 where41(tact) and

43(tact) are empty,42(tact) is the same as in the structural delta example.

C. Evolution Metrics

From the example in Figure 1, we observed that different substructures of the XML document

might change in different ways at different frequencies. Hence, in order to extract frequently

changing structures, it is important to define metric(s) that can quantify the evolutionary char-

acteristics of a specific XML document in history. Intuitively, the lower the degree of evolution

of a subtree in XML document, the less frequently and significantly the subtree changes in the

history. In this section, we introduce a set ofevolution metricsto measure this. Specifically,

three evolution metrics, namelystructure dynamic, version dynamic, and degree of dynamic,

will be discussed. We begin by defining the notion ofconsolidate structurewhich shall be used

subsequently.

DEFINITION 2.3: Consolidate Structure: Given two structuresti = (Nti , Eti , rti) and tj =

(Ntj , Etj , rtj) whererti = rtj , the consolidate structureof ti and tj, denoted asti ] tj, where

ti ] tj = (Nti]tj , Eti]tj , rti), Nti]tj = Nti ∪ Ntj and e = (x, y) ∈ Eti]tj , if and only if x is the

parent ofy in Eti or Etj . ¤
Consider the structures in Figure 1. For the substructures rooted at nodeBio in Figure 1(a)

and (d), the consolidate structure is the structure rooted at nodeBio in Figure 1(d). Next, we

define thestructure dynamicmetric.

DEFINITION 2.4 (Structure Dynamic): Let Ti and Ti+1 be the tree representations of two

versions of XML documents. Supposet ¹ Ti. The structure dynamicof t from Ti to Ti+1,

denoted asNi(t), is defined as:

Ni(t) =
|4i(t)|
|ti ] ti+1|

¤
Here Ni(t) is the structural dynamic oft from versioni to i + 1. By using the consolidate

structure, the total number of unique nodes in the two versions can be obtained as|ti ] ti+1|. It

includes not only nodes that are in versioni+1 but also nodes that have been deleted in version
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i. Ni(t) is the percentage of nodes that have changed fromXi to Xi+1 in t against the total

number of nodes in its consolidate structure. For example, consider the two structures shown in

Figures 1(d) and 1(e). We calculate the structure dynamic value for the substructure rooted at

nodeDM from version1 to version2. Based on the definition,|4DM1| = 2, |DM1]DM2| = 6.

Consequently,N1(DM) = 0.33 (2/6). It also can be observed thatNi(t) ∈ [0, 1]. If t is inserted

or deleted, then the corresponding value of structure dynamic is1 since4ti = ti ] ti+1 = t. If

t did not change from versioni to versioni + 1, then the value of structure dynamic is0 since

|4ti| is 0. Note that larger the value of structure dynamic of a substructure, more significantly

it changed. Next, we introduce the notion ofversion dynamic.

DEFINITION 2.5 (Version Dynamic): Let 〈 T1, T2, · · · , Tn 〉 be the sequence ofn versions of

an XML document. Supposet ¹ Tj (1 ≤ j ≤ n). Theversion dynamicof t, denoted asV (t),

is defined as:

V (t) =

∑n−1
i=1 vi

n− 1
where vi =





1, if |4i(t)| 6= 0;

0, if |4i(t)| = 0;

¤
Consider the 4 different versions of the XML document in Figure 1. We calculate the version

dynamic value for the substructure rooted at nodeXML. The n value here is4. For the first

delta,|4XML1| is not 0, sov1 = 1. Similarly, v2 = 0, v3 = 1. Then,
∑3

i=1 vi = 2. Consequently,

the version dynamic of this substructure is0.67 (2/3). It can be observed thatV (t) ∈ [0, 1]. If t

changed in every version in the history, then the corresponding value of
∑n

i=1 vi is n− 1, so the

version dynamic value is1. If t did not change in the history at all, then the value of
∑n

i=1 vi is

0 and version dynamic value is0. Also, it implies that larger the value of version dynamic is,

more frequently the substructure changed in the history.

Note that a substructure has one value for version dynamic and a sequence of values for

structure dynamic. Hence, we proposed another evolution metric calleddegree of dynamic,

denoted asDoD, to represent the overall significance of the structural changes in the history.

DoD is an extension of structure dynamic by incorporating the version dynamic metric.

DEFINITION 2.6 (Degree of Dynamic): Let 〈T1, T2, · · · , Tn 〉 be the sequence of tree rep-

resentations of n historical versions of an XML document. Supposet ¹ Tj (1 ≤ j ≤ n). The

degree of dynamic, DoD, for t is defined as:
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DoD(t, α) =

∑n−1
i=1 di

(n− 1) ∗ V (t)
where di =





1, if Ni(t) ≥ α

0, if Ni(t) < α

whereα is the user-defined threshold for structure dynamic. ¤
The metricDoD is defined based on the threshold of structure dynamic. It represents the

fraction of versions, where the structure dynamic values for the substructure are no less than the

predefined thresholdα, against the total number of versions in history where the substructure

has changed. Consider the examples shown in Figure 1. We can calculate theDoD value for

the substructure rooted at nodeXML. From the previous examples, we know that the structure

dynamic values of this substructure are0.75, 0, and 0.33. The version dynamic value is0.67.

Suppose the threshold for structure dynamic is set to0.30, then the value ofDoD is 1 (2/2).

If the threshold for structure dynamic is set to0.35, then the correspondingDoD value will be

0.5 (1/2). It is obvious that,∀ α, DoD(t, α) ∈ [0, 1]. Similar to the structure dynamic, the value

of DoD also implies the overall significance of the evolution of the substructure. The larger the

value is, more significant are the changes.

D. Representation of XML Document History

As our goal is to discover FCS from a sequence of versions of historical XML documents

during a specific time period, it is important to capture the historical information of structural

evolution of XML documents concisely to facilitate efficient computation of evolution metrics.

As we shall see in the next section, the values of the evolution metrics are used as the foundation

for detecting FCS.

Since, the structure of an XML document can be represented as a tree, naively, we can represent

the history of XML documents as a sequence of trees. However, this approach is not efficient

as there are often substantial overlaps among the different versions of XML trees. Furthermore,

in order to compute the evolution metrics we will need to navigate the sequence of trees which

is computationally expensive. Hence, we present a concise structure calledH-DOM tree, to

represent the history of evolution of XML data. Intuitively, the H-DOM tree is an extension of

the DOM tree with some historical properties so that it can compress the history of changes to

XML documents into a single tree. Formally, we define anH-DOM treeas follows.
DEFINITION 2.7: H-DOM: An H-DOM tree is a 4-tupleH = (N, A, v, r), whereN is a

set of object identifiers;A is a set of labeled, directed arcs(p, l, c) wherep, c ∈ N and l is a
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Fig. 2. Partial view of the H-DOM Tree.

string; v is a function that maps each noden ∈ N to a set of values(Cn, Cv), Cn is an integer

and Cv is a binary string;r is a distinguished node inN called the root. ¤
We now elaborate on the parametersCn andCv. The two parameters are introduced to record

the evolutionary features of each substructure.Cn is an integer that records the number of

versions that a substructure has changed significantly enough (the structure dynamic value is

no less than the corresponding threshold).Cv is a binary string that represents the historical

changes of a substructure. The length of the string is equal to the number of deltas in the XML

sequence. Theith digit of the string denotes the change status of the structure fromXi to Xi+1,

where the value of1 means that the particular structure has changed and the value of0 indicates

otherwise. In the H-DOM tree, theCv value for each structure is lastly updated by using the

formula: Cv(t) = Cv(t1) ∨ Cv(t2) ∨ · · · ∨ Cv(tj), wheret1, t2, · · · , tj are the substructures oft.
For example, Figure 2(a) is part of the H-DOM for the structure sequence in Figure 1. Suppose

the threshold for structure dynamic is0.30, the Cn value of nodeXML is 2, which means that

this structure has changed twice in the history with a structure dynamic value no less than0.30.

The Cv value100 of nodep3 means that this node has changed fromX1 to X2. The Cv value

of the internal nodes and root node are calculated according to the above formula. Using theCv

andCn values, the set of evolution metrics can be calculated as follows.

• Ni(t) =
∑

Cv(dj)[i]

|ti]ti+1| , wheredj is the list of descendant nodes oft, Cv(dj)[i] is the ith digit

of Cv(dj).

• V (t) =
∑n−1

i=1 Cv [i]

n−1
, whereCv[i] is the ith digit of Cv(t); n is the total number of XML

documents.
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• DoD(t) = Cn∑n−1
i=1 Cv [i]

, whereCv[i] is the ith digit of Cv(t); n is the total number of XML

documents.

It is worth mentioning that the H-DOM tree structure is inspired by the FP-Tree data structure

used in association rule mining [12]. It is designed to preserve and compress the historical

structural information of XML versions. The H-DOM tree compresses historical structural data

by representing identical nodes only once in the H-DOM tree, while the relevant historical

information is preserved using a binary string and an integer. Compared to the FP-Tree, the

compactness of H-DOM should be higher since the same nodes may appear more than once

with h-links in the FP-tree. Moreover, the FCS can be extracted without any candidate generation

process by traversing the H-DOM exactly once, while in FP-Tree there is a conditional FP-Tree

generation process. Additionally, the H-DOM tree stores the temporal features of the XML

structures.

III. FCS MINING

In this section, we present the algorithm for discovering frequently changing structures (FCS).

We begin by formally defining FCS.

A. Frequently Changing Structures

The problem of frequently changing structure mining is to discover those structures that

changed significantly and frequently in the history. Based on the set of evolution metrics discussed

in the preceding section, the frequently changing structure is defined as follows.

DEFINITION 3.1 (Frequently Changing Structure (FCS)): Let 〈T1, T2, · · · , Tn〉 be the tree

representations for versions of an XML documentX. Let the thresholds of structure dynamic,

version dynamic, and degree of dynamic beα, β, γ respectively. A structuret ¹ Tj (1 ≤ j ≤ n)

is a frequently changing structurein this sequence iff:Ψt ` ΨX , V (t) ≥ β, andDoD(t, α) ≥ γ.

¤
The FCS is defined based on the predefined thresholds of the evolution metrics. The signifi-

cance of changes is defined by the structure dynamic and degree of dynamic thresholds, while

the frequency of changes is defined by version dynamic threshold. For example, an example of

the frequently changing structure in Figure 1 will be the structure rooted at nodeXML as shown

in Figure 1(d). This structure may indicate that the corresponding professor is very active in the

research area ofXML.
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Input:
   A sequence of XML versions <X1,X2,...Xn>

Threshold of structure dynamic: 

Output:
   H-DOM tree: H

Description:
1: H is initialized as (T1)
2: for all k = 2, k  n do
3:   Delta = SX-Diff(Xk, X(k-1))
4:   H = Mapping(H, Delta) //Algorithm 2
5:   k++
6: end for
7: Return(H)

(a) Algorithm 1: H-DOM Construction

Input:
   H-DOM tree: H
   Structural delta: Delta
   Threshold of structure dynamic:

Output:
   Updated H-DOM tree: H

Description:
 1: for all ni 2 Delta do 
 2:   if ni 6= then
 3:     for all ni 2 H do
 4:       update Cn(ni)
 5:       if Ni(ni) ? ? then
 6:         update Cv(ni)
 7:         ni = Ni.parent(H)
 8:       end if
 9:     end for
10:   end if
11: end for
12: Return(H)

(b) Algorithm 2: Mapping

Fig. 3. FCS Mining algorithms.

B. FCS Mining Algorithms

We now present the algorithms for discovering FCS. Given a sequence of XML document

versions, the FCS mining algorithm consists of two main phases: theH-DOM tree construction

phase and theFCS extractionphase.

The H-DOM Tree Construction Phase: Figure 3(a) describes the process of H-DOM tree

construction. Given a sequence of historical XML documents, the H-DOM tree is initialized as

the structure of the first version. After that, the algorithm iterates over all the other versions

by extracting the structural deltas and mapping them into the H-DOM tree. Given two versions

of an XML document, the SX-Diff function is a modification of the X-Diff [25] algorithm

that generates only the structural changes. The structural delta is mapped into the H-DOM tree

according to mapping rules as described in Figure 3(b). This process iterates until no more XML

document is left in the sequence. Finally, the H-DOM tree is returned as the output of this phase.

Figure 3(b) describes the mapping function. Given the H-DOM tree and the structural changes,

the objective of this function is to map the deltas into the H-DOM tree and return the updated

H-DOM tree. The idea is to update the corresponding values of the nodes in the H-DOM tree for

all the nodes in the structural delta. The values of the nodes are updated according to following

rules:

1) If the node does not exist in the H-DOM tree, then the node is inserted. The value ofCv

is set to000 · · · 1 where theith digit of the string is set to1 and i is the version number
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of the structural delta. In addition, the value ofNi is calculated. IfNi ≥ α, thenCn is set

to 1 and theCn values of its parent nodes are incremented by 1 ifNi is no less thanα.

Otherwise,Cn is set to0 and the process terminates.

2) For nodes that exist in the H-DOM, the value ofCv is updated by inserting a1 at theith

digit of Cv wherei is the version number of the structural delta. The value ofCn is also

updated based onNi and α. Similarly, If Ni ≥ α, thenCn is incremented by1 and the

Cn values of its parent nodes are updated based on the same rule untilNi is less thanα.

Otherwise,Cn does not change and the process terminates.

The FCS Extraction Phase: The objective of this phase is to extract FCS from the H-

DOM tree representation. Specifically, given the H-DOM tree, the values of structure dynamic,

version dynamic, and degree of dynamic for each node are calculated and compared against the

predefined thresholds. Since for a FCS, both its version dynamic and degree of dynamic should be

no less than the thresholds, we first calculate only one of the parameters and determine whether

it is necessary to calculate the other parameter. This is because if any of the two parameters

does not satisfy the definition, then the substructure is not a FCS. In our algorithm, the version

dynamic for a node is checked against the corresponding threshold first. If it is no less than the

threshold, then we check its degree of dynamic. Based on the traversal strategy of the H-DOM

tree, two variants of the algorithm can be designed for FCS extraction: thebottom-up(level by

level) approach and thetop-down(breath first) approach. Before we discuss these two strategies

in detail, we present two lemmas that will be used to make the extraction phase more efficient.

LEMMA 3.1: Let ni, nj ∈ N be any two nodes. The substructures rooted atni and nj are

denoted astni
and tnj

respectively. Ifni is the ancestor ofnj, thenV (tni
) ≥ V (tnj

).

PROOF 3.1: The proof is intuitive. Based on the previous definition, once a node changes,

superstructures that include this node are considered as changed. It indicates that the number of

versions a superstructure has changed should be no less than its substructures. Consequently, it

can be concluded that the version dynamic of a superstructure should be no less than the version

dynamic of its substructures, while the total number of versions is the same. ¥
LEMMA 3.2: Let t1 and t2 be any two structures andt2 ¹ t1. Given the threshold forDoD

as γ, the necessary condition for structuret1 to be a FCS is thatCn(t1) ≥ γ×V (t2)× (n− 1).

PROOF 3.2: From Lemma 3.1, we can infer thatV (t1) ≥ V (t2). The necessary condition for

September 6, 2006 DRAFT



16

Input:
   H-DOM tree: H
   Threshold of version dynamic:
   Threshold of degree of dynamic:   

Output:
   A set of FCS rooted nodes: F

Description:
 1: for all ni 6= do //Top-down BFS
 2:   if V(ni) ? ? then
 3:     if DoD(ni) ? ? then
 4:       F is updated by incorporating ni
 5:     end if
 6:   else
 7:     prune all descendants of ni
 8:   end if
 9: end for
10: Return(F)

(a) Algorithm 3: FCS Mining (top-down)

Input:
   H-DOM tree: H
   Threshold of version dynamic:
   Threshold of degree of dynamic:   

Output:
   A set of FCS rooted nodes: F

Description:
 1: for all ni 6= do //bottom-up BFS
 2:   if Cn <    V(tni) then
 3:     ni = ni.next
 4:   else
 5:     if V(ni) then
 6:       if DoD(ni) then
 7:         F is updated by incorporating ni
 8:       end if
 9:     end if
10:   end if
11: end for
12: Return(F)

(b) Algorithm 4: FCS Mining (bottom-up)

Fig. 4. FCS Mining algorithms (FCS extraction phase).

structuret1 to be a FCS is that its degree of dynamic is no less than the thresholdγ, which is

γ ≤ Cn(t1)
V (t1)×(n−1)

. Then,Cn(t1) ≥ γ × V (t1) × (n − 1), while V (t1) ≥ V (t2), it can be inferred

that Cn(t1) ≥ γ × V (t2)× (n− 1). ¥
Based on the above lemmas, we observed that it is not necessary to traverse the entire H-DOM

tree. We can skip checking some structures that cannot be FCS. Lemma 3.1 can be used in the

top-down traversal strategy. When we reach a node where its version dynamic is less than the

threshold, it is not necessary to further traverse down this substructure since the version dynamic

of its substructures will definitely be less than the threshold and hence these substructure cannot

be FCS. Lemma 3.2 can be used in the bottom-up traversal strategy. In this case, for any node,

rather than calculate its version dynamic value, theCn value of the node is checked against the

value ofγ×V (ti), whereti is any of its substructures. IfCn < γ×V (ti), then it is not necessary

to calculate the version dynamic and degree of dynamic for this structure since it cannot be a

FCS. Based on the above lemmas, the top-down and the bottom-up FCS mining algorithms are

presented in Figures 4(a) and 4(b).

Algorithm Analysis: We now analyze the time and space complexities of the FCS mining

algorithms. In Phase 1, the H-DOM tree is constructed based on the sequence of historical

XML documents. In this phase, each XML document is parsed once and only consecutive

versions are compared. Let〈 T1, T2, · · · , Tn 〉 denote the sequence of XML documents and

|Ti| denotes the number of nodes in theith document. The complexity of SX-Diff isO(|Ti| ×
|Ti+1|) × max{deg(Ti), deg(Ti+1)} × log2(max{deg(Ti), deg(Ti+1)})) [25]. The complexity of
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the mapping process isO(|ti|). The SX-Diff and mapping process iteratek−2 times in this phase,

while the cost of the initialization isO(|T1|). Since |ti| ≤ |Ti|, the dominant of this iteration

is the SX-Diff. Hence, the overall complexity of Phase 1 isO((k − 2)× max{ |Ti| × |Ti+1|)×
max{deg(Ti), deg(Ti+1)} × log2(max{deg(Ti), deg(Ti+1)})}), wherei ∈ [2, k − 1]. In Phase 2,

the H-DOM tree is traversed and the parameters for all the potential FCS are calculated and

compared against the predefined thresholds. No matter which traversal strategy we choose, the

upper bound of this phase isO(|T |), which is the cost of traversing the H-DOM tree, where|T |
is the total number of nodes in the H-DOM tree. In practice, the actual cost of this phase is

lesser than this as we use Lemmas 3.1 and 3.2 to reduce the traversal space.

In the FCS mining algorithms, the H-DOM tree is processed in memory. The space cost of

this algorithm is the size of the H-DOM tree. Based on the algorithm, we observed that the

size of the H-DOM tree depends on the amount of overlaps between the consecutive versions.

For the same number of XML documents with the same average number of nodes, the more

significantly they change, larger is the size of the H-DOM tree. Since only the structural data

are stored and each unique node is stored only once, the size of the H-DOM should be no

larger than the total size of the sequence of XML documents. However, as the sizes of the XML

documents increase or the changes become more significant, or the number of XML documents

increases, the size of H-DOM tree will increase accordingly. However, the upper bound of the

space requirement isO(|T1 ] T2 ] · · · ] Tn|).

C. Optimization Techniques

We now propose three optimization techniques, thecompression techniques, the build and

merge strategy, and theDTD-based pruning technique, to make the proposed algorithm more

scalable by reducing the size of the H-DOM tree.

Compression Technique:Suppose there aren versions of XML in the sequence. Then, for each

node a lengthn binary string is used to represent the history of changes in the H-DOM tree.

Observe that the size of the string can be very large. However, only2 out of n digits are useful

since each node itself in the H-DOM tree could change at most twice (insertionanddeletion).

Consequently, rather than using the binary string, we use two integers to represent the changes.

Consider the H-DOM tree in Figure 2 as an example. Suppose the nodep2 is deleted in thei+1th

version. Then theCv value of this node will be1000 · · · 01. Now suppose we only store two
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Input:
   H-DOM tree: H
   Structural delta: Delta
   Threshold of structure dynamic:

Output:
   Updated H-DOM tree: H

Description:
1: for all ni 2 Delta do
2:   if ni is deleted according to the DTD and 
      V(ni) <   then
3:     update(ni,H)
4:     prune all descendants of ni
5:   else
6:     update(ni,H)
7:   end if
8: end for
9: Return(H)

(a) Algorithm 5: Building and Merging

Input:
   H-DOM tree: H
   Threshold of version dynamic:
   Threshold of degree of dynamic:   
   User specified concept hierarchy: T

Output:
   A set of nodes where  -FCS rooted : F

Description:
 1: for all nj=Bottom-upTrav(H) null do
 2:   while Ti=Bottom-upTrav(T) null
 3:   if S(nj)   Si then
 4:     for all s  S(nj) do
 5:       if Cn <   V(t), {nj = nj.next, break}
 6:       if V(nj)   & DoD(nj)   , {F = F  nj}
 7:     end for
 8:     break; end if
 9: end for
10: Return(F)

(b) Algorithm 6:   -FCS extraction

Fig. 5. Optimization technique andi-FCS extraction algorithm.

integers1 and i to represent the changes. Using the proposed algorithm the space requirement

is i bits, but using this strategy it only requires 16 bits (for two integers). It is obvious that

when i > 16, the later strategy is more space efficient. Usually, to get useful knowledge from

the changes, the number of versions is greater than eight.

Building and Merging Strategy: We observed that for any structure that has been deleted their

Cn andCv values would not change since no change could happen to them again. Thus, whether

this deleted structure is a FCS or not can be determined by then. Hence, in this strategy we

propose not to keep all substructures in the H-DOM tree. If the structures are not a FCS when

they are deleted, only the root nodes are stored in the H-DOM, with the summarized historical

information. By using this strategy, the size of the H-DOM tree can be reduced. For example,

consider the H-DOM tree in Figure 2. Suppose in the next version the substructures rooted at

DM andDB are deleted. Assume that the substructureDM is a FCS while the substructureDB

is not. Then, rather than storing the entire substructure ofDM and DB, only the root node of

DM is stored along with summarized historical information. Similarly, the substructureDB is

merged into its parent node as shown in Figure 2(b). The algorithm based on this strategy is

shown in Figure 5(a).

DTD-based Pruning Technique:Our investigation of the history of structural changes to real

life XML documents revealed that often some of the nodes in the XML tree never change in

the history. Thus, it is not necessary to store such information since it does not play significant

role in FCS mining. If we can prune such nodes during the H-DOM construction phase, then
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the H-DOM tree will be more compact and the efforts of checking such nodes can be avoided.

However, the challenge is to identify such nodes efficiently. If the XML documents do not have

a DTD or XML schema then this is an expensive process as we have to analyze the documents

in the history to identify such nodes. On the other hand, if the XML documents are valid, then

we can extract information related to nodes that never change by analyzing the corresponding

DTD or XML schema. Specifically, we can categorize the elements and attributes in the XML

documents into two classes based on the DTD. Elements and attributes that can be inserted or

deleted belong to class 1, while elements and attributes that cannot be inserted or deleted are in

class 2. Using the DTD or XML schema, we can identify elements that can occur more than

once or are optional. The nodes representing these elements in the XML documents can be

inserted or deleted in the history. Similarly, instances of elements that are defined as “default”

and “required” and can occur exactly once cannot be deleted or inserted. Note that this approach

does not guarantee identification ofcompleteset of nodes that do not change. This is because,

although some of the nodes may not evolve in history, they can only be identified by analyzing

the actual documents rather than the DTD.

Our DTD-based pruning strategy maps only nodes that belong to class 1, while nodes in

class 2 are merged with their parent nodes to save space. For example, suppose elementsBS,

MS andPhD are defined as required subelements with exactly one occurrence for elementEdu

in Figure 1(d). Then, rather than store the entire substructure rooted at nodeEdu, it can be

represented as a single nodeEdu in the H-DOM tree.

IV. PERFORMANCEEVALUATION OF FCS MINING

In this section, we evaluate the FCS mining algorithms with extensive experiments.

A. Experimental Setup and Dataset

We have implemented FCS mining algorithms entirely in Java. We ran experiments on a PC

with Intel Pentium 4, 1.7GHz CPU, 256 RAM, 40G hard disk, and Microsoft Windows 2000.

For the FCS algorithm, we have implemented two “optimization-unconscious” algorithms, the

bottom-up based algorithm (FCS-BASIC-B) and the top-down based algorithm (FCS-BASIC-

T). We also create variants of these algorithms by incorporating the proposed optimization

techniques. Specifically, FCS-A denotes the algorithm that integrates all the three optimization
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Symbol Description

NoN Numbers of nodes

NoV Numbers of versions

PoC % of changes

Symbol Description

Threshold of Ni(t)

Threshold of V(t)

Threshold of DoD(t,    )

Data set NoN NoV PoC

1 10644 20 10% 0.2

2 21464 20 10% 0.2

3 43196 20 10% 0.2

4 87642 20 10% 0.2

SIGMOD2 - 30 10% 0.2

DBLP2 5743 - 10% 0.2

Synthetic2 1264 20 - 0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.4

0.4

0.4

Source Data NoN NoV PoC

SIGMOD1 1124 20 10% -

DBLP1 1143 20 10% 0.2

Synthetic1 1264 20 10% 0.2

0.2

-

0.2

0.4

0.4

-

(a) Statistic of Datasets

(b) Parameters (e) Description of Datasets

(c) Description of Datasets

Source Data NoN NoV PoC

(d) Description of Datasets

Fig. 6. Symbols, Descriptions, and Datasets.

techniques; FCS-C refers to FCS mining algorithm that incorporates the compression and the

building and merging techniques. Note that the optimization-based algorithms are implemented

using the bottom-up traversal strategy since the metrics can be calculated more efficiently in this

way.

We use synthetic XML delta sequences generated from three real and synthetic XML docu-

ments. The two real XML documents we use are DBLP and SIGMOD XML downloaded from

UW XML repository (http://www.cs.washington.edu/research/xmldatasets), while the synthetic

XML is generated using IBM XML Generator (http://www.alphaworks.ibm.com/tech/xmlgenerator).

From such XML documents, sequences of XML versions are generated by using our synthetic

XML delta generator. We do experiments by using datasets of different characteristics and varying

the parameters of each algorithm. For each algorithm, different XML datasets are used to show

how the datasets affect the performance. Experiments with the same dataset and all possible

variations of the parameters have also been done to show how the parameters can affect the

performance. The symbols for characteristics of the datasets and parameters of the algorithms

are shown in Tables 6(a) and 6(b) along with their descriptions.

B. Variation of Algorithm Parameters

We evaluate the performance of the four algorithms, FCS-BASIC-T, FCS-BASIC-B, FCS-A,

and FCS-C, by varying the thresholds of the three major parameters,α, β, and γ. Table 6(c)

shows the characteristics of the datasets and the values of the parameters used in our experiments.

Hereafter, we use the symbol “-” to denote the parameters or characteristics of the dataset that

will be varied in the experiments. Figure 7(a) shows the performance of the algorithms whenα

is varied onSIGMOD1 XML dataset. Figure 7(b) shows how the algorithms perform when the
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thresholdβ changes. We use theDBLP1 XML dataset. Figure 7(c) illustrates how the changes

to γ may affect the performance of the algorithms. In this case, we use theSynthetic1 XML

dataset. From the above figures, following observations can be made.

2526272829
303132

0 0.2 0.4 0.6 0.8 1Structure DynamicExecution Time
 (S) FCS-BASIC-T FCS-BASIC-BFCS-A FCS-C

(a) Variation ofα

252627282930
313233

0 0.2 0.4 0.6 0.8 1Version DynamicExecution Time
 (S) FCS-BASIC-T FCS-BASIC-BFCS-A FCS-C

(b) Variation ofβ

262830
32

0 0.2 0.4 0.6 0.8 1Degree of DynamicExecution Time
 (S) FCS-BASIC-T FCS-BASIC-BFCS-C FCS-A

(c) Variation ofγ
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Fig. 7. FCS Experiment Results

The overall observation is that as any of the thresholds increases, the execution time decreases.

This is due to the fact that when the threshold increases, the pruning techniques are more efficient

and the search space of FCS is reduced. The execution time does not change significantly with

the variation of thresholds because the major cost of the algorithms is the cost of SX-Diff, which

is independent of the thresholds. As shown in Figure 7(d), the SX-Diff cost is more than 50%

of the total cost. From Figure 7(d), we also observed that as the total number of nodes increases
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the percentage of SX-Diff cost also increases.

The FCS-BASIC-T algorithm is more stable than others asα changes, but it is more sensitive

to the variation ofβ. This is due to the fact that FCS-BASIC-T uses the heuristic in Lemma 3.1

to prune the H-DOM tree, and other algorithms use the heuristic in Lemma 3.2. Note that

Lemma 3.1 is solely based onβ and Lemma 3.2 is based onα.

For the same dataset, with the same parameters, we observed that the differences of execution

time for the four algorithms are in constant order. It means that although different traversal

strategies and optimization techniques are used, the time cost does not change significantly.

C. Characteristics of Datasets

We evaluate the performance of the four algorithms by varying the characteristics of the

datasets. Table 6(d) shows the values of the parameters and some of the characteristics of the

datasets used in our experiments. Figure 7(e) shows the performance of the algorithms using

SIGMOD2 by varying the average number of nodes in each XML document from 8,000 to

40,000 (the corresponding size of each XML document is from 3M to 15M). We fix the number

of versions to be 30 in the sequence. Figure 7(f) presents the performance of the algorithms

usingDBLP2 by varying the number of versions in the sequence from 30 to 150. The average

size of each XML document is 2.3M (5743 nodes) for this experiment. Figure 7(g) evaluates

the performance of the algorithms by varyingPoC. The Synthetic2 dataset is used. From the

above figures, several observations can be made.

As the average number of nodes in the XML document increases, the time cost increases.

Changes are more significant compared to the changes in Figures 7(f) and 7(g). It is because

when the average number of nodes increases, the SX-Diff cost increases as well as the pruning

and extraction cost.

As the total number of versions in the XML sequence increases, the execution times of the

algorithms increase too. It is obvious that when the total number of versions increases, the

number of comparison increases accordingly. Consequently, the cost for detecting the structural

changes increases. Compared to the variation ofNoN , the variation ofNoV do not affect the

performance significantly.

As the percentage of changes (PoC) in the XML sequence increases, the execution time

also increases. Since our FCS mining is actually dealing with the deltas rather than the original
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sequence, as thePoC increases, the size of the delta increases. Consequently, the cost of SX-Diff,

the pruning and extraction increases.

D. Compression Efficiency

We evaluate the space efficiency of the algorithms by comparing the compactness of the

H-DOM tree. Table 6(e) shows the characteristics of the datasets and parameters used in the

experiments. Figure 7(h) shows the size of the H-DOM trees for different datasets and different

algorithms. We can observe that compared to the original dataset, the H-DOM trees are very

compact. The compression rate of the H-DOM tree is almost 50% in the absence of any

optimization techniques. When the optimization techniques are incorporated, the FCS-C, and

FCS-A are more compact than the FCS-BASIC. Especially, the H-DOM tree that integrates

FCS-A is the most compact of all. The compression rate of FCS-A-based H-DOM tree is around

30% for the benchmark datasets. This fact also explains why the time cost of the FCS-C and

FCS-A are relatively more expensive as the saving of space incurs extract cost on calculating

the dynamic metrics shown in the results shown in Figures 7(a) to 7(g).

E. Summary

From the above experimental results, we can conclude that our proposed algorithms FCS-

BASIC-T and FCS-BASIC-B are efficient and scalable while the three optimization techniques

improved the space efficiency substantially. Based on the experimental results, if users want to

find out FCS with higher version dynamic, the FCS-BASIC-T is recommended. Otherwise, the

FCS-BASIC-B is the best choice, since the three optimization techniques work in a bottom-up

manner. The FCS-C algorithm can be applied to any XML documents history, while the FCS-A

can only be used for valid XML documents.

V. A PPLICATIONS OFFCS

Knowledge of FCS can be useful in several applications, such as monitoring interesting

structures in a specific domain, FCS-based classifier, evolution-conscious XML query caching,

and XML indexing. We briefly discuss below these representative applications. In the next

section, we shall elaborate in detail one of these applications.

Discovering interesting FCS:The FCS mining algorithms, introduced in the preceding section,

extractscompletecollection of FCS in the dataset. However, often users may not be interested
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in the complete collection especially when the number of frequently changing structures can be

very large. Typically, users in a particular domain may be interested in evolution characteristics

of structures that contain specific types of information. For instance, in the e-commerce domain,

the material control people may be more interested in the evolution pattern of substructures that

containproductsinformation; while the marketing people may be more interested in parts of the

document that containclientsinformation. We call such structures asinteresting FCS(i-FCS). In

the next section, we shall elaborate on how such structures can be discovered by incorporating

user-specifiedconcept hierarchyin the FCS mining framework.

FCS-based classifier:Classifying XML documents based on the structures embedded in doc-

uments is proposed in [31]. This approach focus on classifying structures based on snapshot

data only. Using a FCS-based classifier, we can classify subtrees in XML documents based on

their evolution patterns. For example, consider the evolution features of a set of structures in

Figure 11. It is possible to detect certain trend-based patterns from the evolution history of these

structures. For instance, one can observe that the structural dynamic values ofstampand TV

serieshave an increasing and decreasing trend, respectively. Also, thebook substructure shows

a periodic change pattern. Hence, we can build a classifier that can classify the collection of

FCS based on the nature of their evolution pattern.

FCS-based evolution-conscious XML query caching:Caching XML queries has been recog-

nized as an orthogonal approach to improve the performance of XML query engines [29]. One

of the efforts in this direction is to discover thefrequent query patternsfrom the historical query

log and cache the corresponding query results to reduce the response time for future queries

that are the same or similar [29]. The intuition behind this approach is that some query patterns

are more popular or important than others and they are expected to be issued more often in the

future with higher probabilities compared to others.

Our initial investigation revealed that existing XML caching strategies are solely based on

statistics obtained by treating historical XML queries as snapshot data. That is, the frequent

XML query patterns are based on only the number of occurrences of the query subtrees in the

history. The evolutionary nature of XML queries as well as the underlying XML documents are

not taken into consideration.

We believe that the results of FCS mining can be used for developing more effective caching
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strategy that takes into account the evolutionary properties of XML structures. Intuitively, our

strategy is based on the following principle. If the results of frequent query patterns contain FCS

then it should have lower caching priority compared to query patterns that return “FCS-free”

results. This is because, although the query patterns are frequent, the query results are expected

to change frequently and significantly in the future and hence these patterns should not have

higher caching priority. To differentiate the priorities among these two categories of frequent

query patterns, we rank the query patterns not only based on the number of occurrences but also

based on the evolution patterns of underlying documents.

XML indexing: One of the key issue of XML indexing is to identify the ancestor and descendant

relationship quickly. To this end, different numbering schemes have been proposed [18], [14].

Li and Moon proposed a numbering scheme in XISS (XML Indexing and Storage System)

[18] that uses anextended preorderand asize. The extended preorderallows additional nodes

to be inserted without reordering and thesizedetermines the possible number of descendants.

More recently, XR-Tree [14] was proposed to index XML data for efficient structural joins.

Compared with the XR-tree [14], XISS numbering scheme is more flexible and can deal with

dynamic updates of XML data more efficiently. However, Li and Moon did not highlight on

how much extra space should be allocated. Allocating too small reserved space will lead to the

ineffectiveness in maintaining the numbering scheme, whereas allocating too much extra space

will lead to too large numbers being assigned to nodes in a large XML document. Moreover, in the

XISS approach, the gaps are equally allocated, while in practice different parts of the document

change with different significance. Based on FCS mining results, the numbering scheme can

be improved by allocating the gaps in a more intelligent manner. For example, for the parts of

structure that change frequently and significantly, larger gaps are allocated while for structures

that do not evolve frequently, smaller gaps can be reserved. By using this strategy, the numbering

scheme should be more efficient in terms of both index maintenance and space allocation.

VI. EXTRACTION OF INTERESTINGFCS

In this section, we elaborate on how FCS mining framework can be used to extractinteresting

FCS (denoted asi-FCS). A set of user-specifiedconceptsis used to guide the interesting FCS

mining process. These concepts represent the semantic objects in the XML documents. There are

two approaches to obtain such concepts. The first approach is to extract interesting concepts from
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COMPANY
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Fig. 8. An Example of Concept Hierarchy

domain-specific ontology. The second approach is to build the concepts based on DTDs/XML

Schemas used in this domain to represent the collection of XML documents. We represent

interesting concepts in form of aconcept hierarchythat specifies the relation among them. Nodes

in the concept hierarchy can be classified asprimitive or nonprimitive. The primitive concepts,

which represent the basic elements in a domain, reside in the lowest level in the hierarchy; all

nonprimitiveconcepts, which consist of a conglomeration of the primitive concepts, reside in

the higher level of the hierarchy. The higher the node’s level, the more complex is the concepts

it represents. Figure 8 shows an example of concept hierarchy. The leaf nodes such asP-ID,

and P-NAME are primitive concepts; while internal nodes and root node such asCLIENT and

COMPANYare nonprimitive concepts. In ouri-FCS mining, we assume that the specified concept

hierarchy is provided by users.

Given the user-specified concept hierarchy, thresholds for evolution metrics, and a sequence

of versions of XML documents, the goal ofi-FCS mining is to discoverinteresting FCSfrom

the document collection. Given a conceptC in a specific domain, a structuret in an XML

document is aninterestingstructure with respect to conceptC, denoted ast ' C, if t provides

the required information of the conceptC. Furthermore, ift is a frequently changing structure

then it is calledinteresting FCS. We now elaborate on the algorithm for discoveringi-FCS.

A. i-FCS Mining Algorithm

The i-FCS mining algorithm is similar to the FCS mining algorithm and consists of two main

phases: theH-DOM tree constructionphase and thei-FCS extractionphase. As the H-DOM

tree construction phase is similar to the one discussed earlier, we focus on thei-FCS extraction

algorithm. The formal algorithm is shown in Figure 5(b).

Given the H-DOM tree, thei-FCS extraction algorithm is to extract alli-FCS based on the

user-defined concept hierarchy and evolution constraints. First the substructures are compared

September 6, 2006 DRAFT



27

<!ELEMENT root (category*)>
<!ELEMENT category (topic*)>
<!ELEMENT topic (item*)>
<!ELEMENT item(listing*)>
<!ELEMENT listing (seller_info,payment_types,shipping_info,
     buyer_protection_info,auction_info,bid_history,item_info)>
<!ELEMENT seller_info (seller_name,seller_rating)>
<!ELEMENT seller_name (#PCDATA)>
<!ELEMENT seller_rating (#PCDATA)>
<!ELEMENT payment_types (#PCDATA)>
<!ELEMENT shipping_info (#PCDATA)>
<!ELEMENT buyer_protection_info (#PCDATA)>
<!ELEMENT auction_info(current_bid,time_left,high_bidder,num_items,
     num_bids,started_at,bid_increment,opened,closed,id_num,notes)>
<!ELEMENT current_bid (#PCDATA)>
<!ELEMENT time_left (#PCDATA)>
<!ELEMENT high_bidder (bidder_name,bidder_rating)>
<!ELEMENT bidder_name (#PCDATA)>
<!ELEMENT bidder_rating (#PCDATA)>

<!ELEMENT num_items (#PCDATA)>
<!ELEMENT num_bids (#PCDATA)>
<!ELEMENT started_at (#PCDATA)>
<!ELEMENT bid_increment (#PCDATA)>
<!ELEMENT location (#PCDATA)>
<!ELEMENT opened (#PCDATA)>
<!ELEMENT closed (#PCDATA)>
<!ELEMENT id_num (#PCDATA)>
<!ELEMENT notes (#PCDATA)>
<!ELEMENT bid_history (highest_bid_amount,quantity)>
<!ELEMENT highest_bid_amount (#PCDATA)>
<!ELEMENT quantity (#PCDATA)>
<!ELEMENT item_info (color, weight, years, 
    brand, description)>
<!ELEMENT color (#PCDATA)>
<!ELEMENT weight (#PCDATA)>
<!ELEMENT years (#PCDATA)>
<!ELEMENT brand (#PCDATA)>
<!ELEMENT description (#PCDATA)>

Fig. 9. DTD of the real Yahoo auction data.

with the user-specified concept hierarchy as shown in line3 in Figure 5(b). If the structures are

instances of the concepts in the hierarchy, then the values of the required parameters (version

dynamic, and DoD) for each node are calculated and compared against the predefined thresholds

as shown in lines5 and6. Note that the comparison strategy of the evolution metrics is same as

that discussed in FCS mining. Also, we use the bottom-up traversal approach for traversing the

H-DOM tree since the set of interesting concepts is represented in a hierarchical manner with

primitive concepts in the lower level.

B. Performance Evaluation

In this section, we evaluate the performance ofi-FCS mining algorithm for extracting inter-

esting FCS. We use real datasets extracted from Yahoo! auction site (http://auctions.yahoo.com/)

for our performance study. A portion of the DTD of the XML view of the data is shown in

Figure 9. The maximum depth of the XML document is7 and the average depth is5.37. To

obtain different versions of the auction data, we issue queries related to all the five categories

(music, tv, movies, books, and collectibles) of products periodically and each result set is then

transformed into an XML document. For instance, we issue the five queries every hour and

convert the results into an XML document. In the following experiments, we assume that users

are interested in the following two concepts:product categoryandproduct. The dataset consists

of 120 versions of auction XML data and is shown in Figure 10 (a).

Efficiency and Scalability: First, we evaluate the efficiency and scalability of thei-FCS algo-

rithm and compare it with the FCS algorithm (FCS-BASIC-T).
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Figure 10(b) shows how the running time changes by varying the total number of nodes in

the XML documents. There are two ways of increasing the total number of nodes. One way

is to increase the number of versions (NoV) in the XML sequence, another way is to increase

the average number of nodes (NoN) in each version. To increase the number of versions, we

need to crawl the data more frequently, while to increase the size of each version, we need to

crawl the data less frequently. DatasetsD2 andD3 are used in this set of experiments. We set

α = β = γ = 0.2. Both results show good scalability with the total number of nodes, while

the running time is more sensitive to the number of versions in the XML sequence than the

average number of nodes in each version. The reason is that the change detection process is the

most expensive phase of the algorithm as shown in Figure 10(c). Moreover, thei-FCS mining

algorithm is around2 times faster than the FCS algorithm for the benchmark dataset as only a

portion of the H-DOM tree is processed.

Figure 10(c) shows the cost of each phase in thei-FCS mining algorithm. The datasetD1

is used andα = β = γ = 0.2. Similar to the FCS mining results, it can be observed that the

change detection phase takes a share of up to 40% of the cost. Compared to the cost of SX-Diff

in FCS algorithm in Figure 7(d), the percentage of cost for detecting changes decreases in the

i-FCS algorithm. This is because only changes to the user-specified interesting structures are

detected.

Effects of Parameters: Figure 10(d) shows how the running time changes by varying the

thresholds of evolution metrics. We use theD1 dataset. In the three experiments, we vary one

of the thresholds and fixed the thresholds for the other two to 0.2. It can be observed that the

running time does not change significantly when the thresholds of evolution metrics are varied.

This is due to the fact that the most expensive process, SX-Diff, is independent of the thresholds.

Figure 10(e) shows how the depth of the concept structure that users are interested in affect

the performance of thei-FCS algorithm. In this set of experiments, datasetD1 is used. Fixing the

thresholds of the evolution metrics to 0.2, the targeted concepts are varied from level 2 (denoted

as case 1), level 3 (denoted as case 2), level 2 and 3 (denoted as case 3), level 4 (denoted as

case 4), to level 3 and level 4 (denoted as case 5). It can be observed that the maximum level of

the concepts directly affects the performance of thei-FCS algorithm. The smaller the minimum

level, the more efficient is thei-FCS algorithm. For concepts that have the same maximum
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Fig. 10. Evaluation ofi-FCS.

level, the performance is quite similar as shown in this figure. This is because the maximum

level of the targeted concepts determines the maximum level thei-FCS algorithm explores for

both change detection and computation of values of evolution metrics.

Figure 10(f) shows the number of structures in the mining results using the above thresholds

for the evolution metrics. It shows that the number of structures ini-FCS mining result is reduced

by almost 40% compared to that of FCS mining result. This is because the search space for

discovering FCS is reduced considerably asi-FCS only process substructures that users are

interested in.
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Fig. 11. Evolutionary features of various categories.

Analysis of Mining Results: In the above experiments, we have successfully extracted interesting

concepts such asfrequently changing productsand frequently changing product categories. We

now show that these concepts are indeed FCS by analyzing some of the representative interesting

FCS in the actual data. Along with this, we also show the evolution patterns of some other

concepts that occurred in the auction datasets. These structures were not considered as FCS as

they did not satisfy the evolution metrics.

In Figures 11(a) and (b), we present thestructure dynamicvalues of three product categories

and three specific topics under these categories. Note that the datasets used in Figures 11(a) and

(b) are crawled every6 hours and every2 hours, respectively. Suppose thatα = β = γ = 0.2.

Then, booksand comicsare two interesting FCS. Note that the dotted lines in Figures 11(a)

and (b) are the thresholds for structure dynamic. A larger structure dynamic value indicates that

more elements are inserted and deleted under the corresponding subtree. For instance, the results

in Figure 11(a) indicate that thebooksis one of the very popular categories where people keep

bidding frequently and new products are inserted constantly. Figure 11(b) shows the historical

structure dynamic values for a set of products. It can be observed that some products became less

popular with time (such asTV series), some products became more popular (such asstamps),

and other products changed in various ways (such asmoney). Observed thatstampsis a FCS

when the threshold values are set to0.2.
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VII. R ELATED WORK

A. XML Data Mining

As XML has emerged as the leading textual language for representing and exchanging data

over the Web, the data mining community has been motivated to discover knowledge from

collections of XML documents. For example, there have been increasing research efforts in

mining frequent patterns [2], [13], [15], [28], [23], [26], [30] or sequential patterns [17] from

XML repositories, classifying [31] and clustering [19] XML documents. We review some of

these works here.

Most existing work focus on discovering the frequent substructures from a collection of

semi-structured data such as XML documents. Wang and Liu [26] developed an Apriori-like

algorithm to mine frequent substructures based on the “downward closure” property. They

first found the frequent1-tree-expressionsthat are frequent individuallabel paths. Discovered

frequent1-tree-expressions are joined to generate candidate2-tree-expressions. The process is

executed iteratively till no candidatek-tree-expressions is generated. AGM [13] is an Apriori-

based algorithm for mining frequent substructures. But the results of AGM is restricted to only

the inducedsubstructures. FSG [15] is also an Apriori-based algorithm for mining allconnected

frequent subgraphs. Experiments results in [15] show that FSG is considerably faster than AGM.

However, both AGM and FSG do not scale to very large database. gSpan [28] is an algorithm

for extracting frequent subgraphs without candidate generation. It employs the depth-first search

strategy over the graph database. Like AGM, gSpan needs elaborate computations to deal with

structures with non-canonical forms. Asai et al. [2] developed another algorithm, FREQT, to

discover all frequent tree patterns from large semi-structured data. They modeled the semi-

structured data aslabeled ordered treeand discover frequent trees level by level. At each level,

only the rightmost branch is extended to discover frequent trees of the next level. Thus, efficiency

can be achieved without generating duplicate candidate frequent trees.

TreeMinerH and TreeMinerV [30] are two algorithms for mining frequent trees in a forest.

TreeMinerH is an Apriori-like algorithm based on a horizontal database format. In order to

efficiently generate candidate trees and count their frequency, a smartstring encodingis proposed

to represent the trees. In contrast, TreeMinerV uses verticalscope-list to represent a tree.

Frequent trees are searched in depth-first way and the frequency of generated candidate trees

are counted by joiningscope-lists. TreeFinder [23] is an algorithm to find frequent trees that
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areapproximatelyrather thanexactlyembedded in a collection of tree-structured data modeling

XML documents. Each labeled tree is described inrelaxed relational descriptionwhich maintains

ancestor-descendant relationship of nodes. Input trees are clustered if their atoms ofrelaxed

relational descriptionoccur together frequently enough. Then maximal common trees are found

in each cluster by using algorithm ofleast general generalization. Recently, there is another line

of work that employs the pattern-growth strategy to discover frequent subtrees [24], [27].

Classification of XML documents has also been addressed by some recent research works [31].

In [31], Zaki proposed an algorithm to constructstructural rules in order to classify XML

documents. The basic idea is to relate the presence of a particular kind of structural pattern in

an XML document to its likelihood of belonging to a particular class.

The critical difference between our proposed frequently changing structure mining and existing

works on XML data mining is that we address the dynamic nature of XML data. Existing works

on XML data mining extract knowledge from the snapshot version of XML documents, whereas

we extract knowledge from a sequence of historical structural deltas of an XML document.

Furthermore, techniques for frequent substructure mining focus on designing algorithms to extract

structures thatoccur frequentlyin the snapshot data collections. Whereas the goal of FCS mining

is to extract structures thatchange frequentlyfrom the sequence of historical XML versions.

B. Mining Change Patterns and Trends

There are several techniques proposed recently for maintaining and updating previously discov-

ered knowledge. They focus on two major issues. One is to actualize the knowledge discovered

by detecting changes in the data such as the DEMON framework proposed by Ganti et al

[9]. Another is to detect interesting changes in the KDD mining results such as the FOCUS

framework proposed by Ganti et al [8], PAM proposed by Baron et al [3], and the fundamental

rule change detection tools proposed by Liu et al [20]. Our effort differs from these approaches

in the following ways. First, these techniques are proposed either for updating the mining results

or detecting the changes to the mining results with respect to the changes to the data sources.

Unlike our approach, they do not focus on discovering novel patterns from the evolutionary

features of data.

Emerging pattern [7] was proposed to capture significant changes and differences between

datasets. Basically, emerging patterns are defined as itemsets whose supports increase signif-
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icantly from one dataset to another dataset. Thus, when applied to timestamped databases,

emerging patterns can capture emerging trends in business or demographic data. Our study

is different from emerging pattern in that we consider the changes in a sequence of snapshots of

the data while emerging pattern considers only two snapshots. That is, emerging pattern focuses

on local changes while our work addresses the global changes. Consequently, emerging pattern

only needs to measure the degree of change while our work needs to measure both the degree

of change and the frequency of changes. The knowledge discovered by our work and emerging

patterns is different as well. For example, emerging patterns capture useful contrasts between

two snapshots while frequently changing structures capture the evolutionary characteristics of

tree structured XML data.

Temporal Text Mining (TTM) is also concerned with discovering temporal patterns in text

information collected over time. Recently, a particular TTM task− discovering and summarizing

the evolutionary patterns of themes in a text stream− was proposed by Mei and Zhai [22]. The

evolutionary theme patterns (ETP) discovery problem aims to discover the evolution of themes,

i.e. the happening of the Asian tsunami disaster, the statistics of victims and damage, the aids

from the world and the lessons from the tsunami. ETP refers to patterns of objects (themes)

evolving from one status (subtopic) to another status. In contrast, we focus on structural evolution

of hierarchical structured data.

In our previous works [34], [35], we proposed novel approaches for mining evolution of web

usage data. In [35], we propose the first approach to detect events from the click-through data,

which is the log data of web search engines. In [34], we present an algorithm called WAM-Miner

to discoverWeb Access Motifs(WAMs) from web usage data. WAMs are web access patterns

that never change ordo not change significantlymost of the time (if not always) in terms of

their support values during a specific time period. Compared to this work, in this paper we focus

on discovering XML structures that change frequently in the history.

Our research is also related to works on regularities in time series. These previous works

include partial periodic patterns [10], [11], sequential patterns in single-variable numerical time

series [1], frequent episode [21], and the work [16] which studied the problem of efficiently

mining the phrases whose frequency history curves match a given shape (trend) in time-stamped

text databases. The basic difference between our work and the above works is that most of the

above works consider sets of items or sequences of items while our work focus on more complex
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tree structured sequences.

VIII. C ONCLUSIONS ANDFUTURE WORK

This work is motivated by the fact that existing XML data mining strategies focus on discov-

ering knowledge based on statistical measures obtained from the static characteristics of XML

data. They do not consider the evolutionary features of the historical XML data. In this paper,

we proposed techniques to discover a novel type of frequent pattern named frequently changing

substructures (FCS) by analyzing the structural evolution patterns of historical XML documents.

Frequently changing substructures are substructures in XML documents that evolve frequently

and significantly during a specific time period. We proposed a set of evolution metrics to measure

the evolutionary features of XML structures. Based on these proposed metrics, we presented two

algorithms that extract FCS from the historical collection of XML documents. These FCS can

be used to build interesting FCS monitoring framework in a specific domain. They can also be

used in several other applications such as FCS-based classifier, indexing XML documents, XML

query caching, etc. Experimental results showed that the proposed algorithms are efficient and

scalable. Furthermore, both the algorithms can accurately identify the FCS.

As part of future work, we intend to build some of the other applications of FCS such as

FCS-based classifier and XML query caching. We also wish to explore novel types of useful

patterns that may be discovered by integrating content and structural evolution of historical XML

documents.
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