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Abstract

Recently, there is an increasing research efforts in XML data mining. These efforts largely assumed
that XML documents are static. However, in many real applications, XML data are evolutionary in nature.
In this paper, we focus on mining evolution patterns from historical XML documents. Specifically,
we propose a novel approach to discofieguently changing structure§=CS) from a sequence of
historical versions of unordered XML documents. The objective is to extract substructures that change
frequentlyand significantlyby analyzing structural evolution patterns of XML documents. We propose
two algorithms based on a set@folution metricgo extract FCS from the historical XML data. We also
present a battery of optimization techniques to improve the space efficiency of our algorithms. Note that
such structures cannot be extracted accurately and efficiently by repeatedly applying existing frequent
substructure mining techniques on a sequence of snapshot data. FCS can be useful in several applications
such as monitoringnteresting structuresn a specific domain, FCS-based classifier, indexing XML
documents, and evolution-conscious XML query caching. Extensive experiments with both synthetic and

real data show that the proposed algorithms are efficient and scalable and can discover FCS accurately.

Keywords: XML, evolutionary features, structural delta, evolution metrics, frequently chang-

ing structures, applications, data mining.

. INTRODUCTION

XML has emerged as the leading textual language for representing and exchanging data over
the Web. Due to staggering growth of XML data in different domains, mining XML data has
increasingly become an interesting and important research problem in the data mining community
[2], [13], [15], [28], [23], [26], [30], [17], [31], [19]. Existing works on mining XML data can

Preliminary version of this work was done prior to Kambayashi's sad demise on 6th, Feb, 2004 and was published in [33].
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be broadly classified into three categorieédL association rule minind4], [32], frequent
substructure mining2], [13], [15], [28], [23], [26], [30], andXML classification/clustering9].

Among these, thérequent substructure mining the most well researched topic. The basic idea

is to extract substructures (subtrees or subgraphs), which occur frequently among a set of XML
documents or within an individual XML document. For example, suppose there is a collection
of XML documents that describe information about university professors. Figures 1(a) and (d)
are the tree representations of two XML documents (partial view only). By applying existing
state-of-the-art data mining techniques, frequent substructures among them can be discovered.
For example, by applying the gSpan [28] mining approach, the structures shown in Figures 1(b)
and (c) will be returned as frequent substructure mining results. These frequent substructures
have been found useful in several applications such as efficient querying [29] and classification
of XML documents [31].

A. Motivation

Our initial investigation revealed that majority of the existing approaches of XML mining
focus only on snapshot XML data, while in real life XML data is dynamic in nature. That
is, XML data may evolve at any time in different ways. For example, consider document 2 in
Figure 1(d). Thepublication and activity of a professor may change over time. Figures 1(e),
(M), (g) are the tree representations of three versions of document 2. The black and gray circles
represent the newly inserted nodes (elements/attributes) and deleted nodes, respectively. The bold
circles are nodes whose contents have been updated. It can be observed from the above example
that there are primarily two types of changes to XML data: changésti® conten{leaf nodes)
and changes to th&tructureof XML data (internal nodes). Content changes occur when the data
values of elements (attributes) are modified over time. Whereas structural changes to an XML
document occur due to insertion/deletion of elements (attributteshis paper, we focus on the
structural evolution of XML data onlyNote that there are many applications where structural
representation of data is important, e.g. chemical compounds, biological data, computer network,
and web browsing history [28]. Also, in archive-based applications such as the SIGMOD record
and DBLP XML documents, content changes are rare compared to structural changes.

The evolutionary nature of structure of XML documents leads to two challenging problems in

the context of data mining. The first one is to maintain the previously discovered knowledge. For
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Fig. 1. An Example

instance, in frequent substructure mining, as the data source changes new frequent structures may
emerge and some existing ones may not be frequent anymore. The second one is to discover
novel knowledge by analyzing the evolutionary characteristics of historical XML data. Such
knowledge is difficult or even impossible to discover from snapshot data efficiently due to the
absence of evolution-related information. In this paper, we focus on the second issue. That is,
we present techniques to discover a specific type of novel knowledge by mining the evolutionary
features of XML data
Let us elaborate informally on the types of novel knowledge one may discover by analyzing
evolutionary features of XML data. Consider the different versions of XML documents in
Figure 1. We may discover the following types of novel knowledge by exploiting the evolution-
related information associated with the documents. Note that this list is by no means exhaustive.
« Frequently Changing Structures (FCEvolution of XML documents over time is generally
heterogeneousn nature. That is, different parts of the XML documents may evolve in
different ways over time. Some parts of the XML document may evolve rfrecpiently
than other parts. Some parts may change nsigaificantly in the history compared to
other parts that may only change slightly. We refer to structures that change frequently and

significantly in the history afrequently changing structuresiere,frequentlyrefers to the
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large number of times the corresponding parts changed, wshalaficantly refers to the

large percentage of nodes that have changed in the corresponding subtree. For example, the

structure rooted aKML changed more frequently, while the structure rootediatnever

changed in the history.
« Associative Evolutionary StructureSimilar to the transactional association rule, different

parts of the XML data may be associated in terms of their evolutionary features over time.
For example, assume that whenever the structure rootBdlaication changes frequently
and significantly, structuréictivity also changes frequently and significantly. Then, an

association rulePublication — Activity (we use the root node to represent a changed

subtree) may be extracted with respect to some appropriately specified thresholds. We refer

to such structures agssociative evolutionary structureSuch structures can be useful in
applications such as XML search engine, XML clustering, XML query caching, etc. The

reader may refer to [5], [6] for further details.

Observe that the core foundation of associative evolutionary structures is also the notion of

frequently changing structures. Hence, in this paper, we focus on discovering the frequently

changing structures (FCS) from historical XML documents. As we shall see in Sections V

and VI, FCS can be useful in several applications such as monitortegestingstructures in

a specific domain that are important to the users, FCS-based classifier, XML indexing, and

evolution-conscious XML query caching.

B. Why Existing Techniques Fail to Discover FCS Efficiently and Accurately?

At first glance it may seem that if we apply existing state-of-the-art XML mining techniques

(such as gSpan [28]) repeatedly to a sequence of snapshots of XML data, then it may be possible

to extract the frequently changing structures. However, this is not the case as such knowledge

cannot be discovered accurately and efficiently by tweaking existing techniques on XML data

sequence. Let us elaborate on this by using gSpan [28] algorithm as an example. Suppose there

are n versions of XML documents denoted &5, X, ---, X,,. For each version, gSpan is

applied and the sets of frequent structure mining results are denotéf ,a&ls, ---, M,. By

postprocessing the sequence of mining results, we may find two sets of structures, deroted as

and.J, wherel = M;NM;N---N M, is the set of structures that are frequent over all the time

points from1 to n; J,, = M, — M, (1 < ¢ < p <n) is the set of structure that is frequent at
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time pointp but not frequent at time point where J,, , € J. However, such structures may not
reflect their evolution patterns and frequencies accurately. For example, structéireminhave
changed or may not have changed. Also, it is possible that some of them may have been deleted
from one position/document and inserted into another position/document. Similarly, structures in
J may have changed or may not have changed. It may be the result of other changes that affect
the computation of frequent structure such as such as changes to the total number of transactions,
changes to other parts of the documents, etc. Moreover, such mining and postprocessing efforts
are computationally expensive and as a result it will render FCS mining impractical. Hence,

there is a need to develop novel techniques to discover FCS.

C. Overview of our Approach

Given a sequence of versions of an XML document, the goal of FCS mining is to discover
all the substructures that chan@gequently and significantly in the history. Specifically, the
significanceandfrequencyof frequently changing structures (FCS) are defined and measured by
a set ofevolution metricsThese metrics are used to measure the structural evolutionary features
of the XML documents. Based on such metrics, we propose two algorithms (based on top-
down and bottom-up traversals of an XML tree) to extract the frequently changing structures
by scanning the XML sequence only twice. Our proposed algorithms consist of two major
phases: th&i-DOM constructionphase and theCS extractiorphase. In the first phase, given a
sequence of historical XML documents, tHeDOM (Historical Document Object Model) tree
is constructed to efficiently represent history of changes to XML data. The goal of second phase
is to extract the frequently changing structures by traversing the H-DOM tree in top-down or
bottom-up fashion. We also present a battery of optimization techniques to make the algorithm
more scalable by reducing the size of the H-DOM tree under various conditions.

Our experiment results show that the proposed algorithms can successfully extract all the
frequently changing structures efficiently. Also, the H-DOM tree is very compact, its size is
around 50% of the original size of the XML sequence. Moreover, the proposed space optimization
techniques can make the H-DOM tree more compact by around 30% and consequently make

the algorithms more scalable.

D. Contributions

The major contributions of this paper can be summarized as follows.
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« We introduce an approach that, to the best of our knowledge, is the first one to discover
novel knowledge from the evolution pattern of historical XML documents. Specifically, in
this paper we focus on discovering frequently changing structures (FCS).

« We propose a set of metrics to measure the evolutionary features of historical XML struc-
tures. Based on thevolution metrics we present a set of algorithms and optimization
techniques to discover FCS efficiently.

« We show with illustrative examples that FCS are useful for several real life applications.
Specifically, we elaborate in detail on how FCS can be used as the framework for discovering
evolutionary characteristics ariteresting FCShat are of interest to a particular user group
in a specific domain.

e We present the results of extensive experiments with both synthetic and real datasets that
we have conducted to demonstrate the efficiency and scalability of the proposed algorithms

and novelty of the mining results.

E. Paper Organization

The rest of this paper is organized as follows. In Section II, we introduce a model to represent
the changes to historical XML documents and metrics used to detect FCS. In Section lll, we
present our proposed techniques of minfreguently changing substructuteBerformances of
the FCS mining algorithms are evaluated using synthetic and real datasets in Section IV. In
Section V, we present some representative applications of FCS. In Section VI, we elaborate on
a specific application of FCS. Section VII reviews the related works. Finally, the last section

concludes this paper. A shorter version of this paper appeared in [33].

II. REPRESENTINGCHANGES TOHISTORICAL XML D OCUMENTS

In this section, the problem of how to model the historical XML documents and measure
their evolutionary features is discussed. We begin by discussing how an XML document is
represented in our approach. Next, we present different types of structural changes that may
occur in XML documents and how they are represented. Then, a satoddition metricsare
proposed to measure the structural evolutionary nature of the XML documents. Finally, our
representation technique to concisely record the information related to the evolution history of

XML documents is discussed.
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A. Representation of an XML Document

The structure of an XML document can be modeled as a tree according to the Document
Object Model (DOM) specification (hereafter calléd/L tree9. XML trees can be classified
into orderedtrees, in which both the parent-child relationship and the left-to-right order among
siblings are important, andnorderedtrees, in which the parent-child relationship is significant,
while the left-to-right order among siblings is not important. In this paper, we focus on the
unordered XML documents. An unordered model is more suitable for most database applica-
tions [25]. However, our technique can easily be extended to ordered XML as well.

An XML document is denoted a& = (N, E,r), where N is the set of labeled nodeg;
is the set of edges; € N is the root. Note that we do not distinguish between elements and
attributes, both of them are mapped to the set of labeled nodes. Eacheedgéy, y) is an
ordered pair of nodes, whereis the parent ofy in the XML tree. Thesizeof the structurerl’,
denoted by|T'|, is the number of nodes iV.

Next, we introduce the notion ahduced subtreef an unordered XML document. Given
two rooted tree representations for two unordered XML documé€rasd7”, 17" is theinduced
subtreeof T', denoted ag” < T, if and only if: (1) V' C V and £’ C F; (2) the labeling of
V" and E’ is preserved irf”. In the rest of the paper, unless otherwise specified, whenever we

refer to a subtree we refer to induced subtree.

B. Types of Structural Changes

Changes to an unordered XML document can be represented as five types of edit operations
as follows [25]. The first three are basic operations and the last two are composite operations
that can be represented as a list of basic operations.

« Inserix(name value), y): insert a noder, with node namewame and node valuealue, as

a leaf child node of nodg.

« Deletdx): delete a leaf node.

. Updatdx, newvalue: change the value of a leaf nodeto newvalue Note that only the

value can be updated, but not its name.

« Inser(7,,y): insert a subtred’,, which is rooted at:, to nodey.

. DeletdT),): delete a subtre&,, which is rooted at node.
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Based on the above edit operations,eaalit scriptis defined as a sequence of edit operations
that transform an XML document from one version to another [25]. However, not all the edit
operations can change the structure of the XML documents. For exampldpttate operation
will not change the structure of a document. Hence, corresponding to the structural changes, we
define thestructural edit scriptas a sequence dfasicedit operations that converts the structure
of one version to the structure of another version. Note that it differs from the definition of edit
script in two ways. First, a structural edit script does not include any update operation. Second,
unlike edit script, it is composed djasic edit operations (insertion and deletion of a node).
Note that an edit script may contain composite edit operations. To make it easier to locate the
edit operation in the tree, aadfiliated nodeis defined for each edit operation. For the insertion
operation [nsert(x(name value, y)), the affiliated nodeis y; for the deletion Deletgx)) and
update operationdJpdatgx, newvalug) the affiliated nodeis .

Given two versions of an XML document, formally, tistructural deltabetween them is
defined as follows.

DEFINITION 2.1 (Structural Deltg): Let 7; and 7;,; be the tree representations of two ver-
sions of an XML document, denoted Esand X;,,. Lett; < T;. The corresponding structure
of t; in T, is t;1, denoted ag;,; =< T;,;. Thestructural deltafor the subtreet; from 7T; to
T;+1, denoted as\;(t), is defined as a structural edit scripb,, oo, - - - , 0,,) that transform the
structure oft¢; into ¢;.;. That is, A;(t) = (01,09, ,0,,) Whereo, is a basic edit operation
V 0 < k < m. The size of the structural deltaA\;(¢), denoted as|A;(t)|, is m. That is,
|A;(t)] = m. Furthermore, the structural delta fronX; to X;,, is denoted as\,. O

Consider the previous examples in Figure 1. The structural delta from version 2 to version
3 is Ay=(Delete("), Delete(/;), Insert(Cs(vy), CFP), Insert(/>(ve), CF P)) and the value of
|As| is 4 since there are 4 basic edit operations shown as colored circles in Figure 1 (f). In
the above definition, the XML structural delta is defined for two consecutive versions of an
XML document. To represent the sequence of changes to more than two versions of an XML
document, we define the notion ¥ML structural delta sequence

DEFINITION 2.2 (Structural Delta Sequence Let (T3, T»,---, T,) be the sequence of tree
representations of historical versions of an XML documeft. Lett¢ < 77. Thestructural delta
sequencedor the subtreg from 77 to T, is U, = (Aq(t), Da(t), -+, ANp_1(t)), WhereA;(t) is

the XML structural delta for from ith version to (i+1)th version. Alsol, is contained in¥ y,
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denoted asl; - Uy, whereV y is the structural delta sequence &f and Uy = (A4, Ay, - -+,

Npq). O
Reconsider the examples in Figure 1. For the substructure rooted atatdiy (denoted as

tqet), the corresponding of structural delta(is\(taet), DNo(tact, Ds(taet) ) Where Ay (t,) and

ANs(ta) are empty,Aq () is the same as in the structural delta example.

C. Evolution Metrics

From the example in Figure 1, we observed that different substructures of the XML document
might change in different ways at different frequencies. Hence, in order to extract frequently
changing structures, it is important to define metric(s) that can quantify the evolutionary char-
acteristics of a specific XML document in history. Intuitively, the lower the degree of evolution
of a subtree in XML document, the less frequently and significantly the subtree changes in the
history. In this section, we introduce a set @folution metricsto measure this. Specifically,
three evolution metrics, namelstructure dynamicversion dynamicand degree of dynamijc
will be discussed. We begin by defining the notioncohsolidate structurevhich shall be used
subsequently.

DEFINITION 2.3: Consolidate Structure: Given two structures; = (N, Ey,,ry,) andt; =
(Ny,, By, 1i;) Wherer;, = r,;, the consolidate structureof ¢; andt;, denoted ag; ¥ t¢;, where
ti Wty = (Nywt,, Bty 1)y Negwy = Ny, UN,, ande = (z,y) € Eyuw,, if and only ifz is the
parent ofy in E;, or E;,. O

Consider the structures in Figure 1. For the substructures rooted atBiode Figure 1(a)
and (d), the consolidate structure is the structure rooted at Bawlen Figure 1(d). Next, we
define thestructure dynamignetric.

DEFINITION 2.4 (Structure Dynami@: Let 7; and T;,, be the tree representations of two
versions of XML documents. Suppdse T;. The structure dynamicof ¢ from 7; to T},

denoted asV;(t), is defined as:
|Aq()]

N;(t) Tt
0

Here N;(t) is the structural dynamic of from version: to ¢ + 1. By using the consolidate
structure, the total number of unique nodes in the two versions can be obtaiftied a3,|. It

includes not only nodes that are in version 1 but also nodes that have been deleted in version
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i. N;(t) is the percentage of nodes that have changed fignto X;,; in ¢ against the total
number of nodes in its consolidate structure. For example, consider the two structures shown in
Figures 1(d) and 1(e). We calculate the structure dynamic value for the substructure rooted at
nodeDM from versionl to version2. Based on the definitionApyy, | = 2, | DM, W DM,| = 6.
ConsequentlyN; (DM) = 0.33 (2/6). It also can be observed that(t) € [0, 1]. If ¢ is inserted
or deleted, then the corresponding value of structure dynamicsiace;, =t Wi, =t. If
t did not change from versiointo version: + 1, then the value of structure dynamic(ssince
|A¢,| is 0. Note that larger the value of structure dynamic of a substructure, more significantly
it changed. Next, we introduce the notion\adrsion dynamic

DEFINITION 2.5 (Version Dynamig: Let( T3, Ts, ---, T,, ) be the sequence afversions of
an XML document. Suppoge< T; (1 < j < n). Theversion dynamicof ¢, denoted ad/(¢),

is defined as:

KRR L, if |A(t)] #£0;
e where v; = 0. it |0 = 0
O

Consider the 4 different versions of the XML document in Figure 1. We calculate the version
dynamic value for the substructure rooted at naddL. The n value here ist. For the first
delta,|Axar, | is not0, sov; = 1. Similarly, vy = 0, v3 = 1. Then,Zf’:1 v; = 2. Consequently,
the version dynamic of this substructurefi§7 (2/3). It can be observed that(t) € [0, 1]. If ¢
changed in every version in the history, then the corresponding valje'of v; is n — 1, so the
version dynamic value i$. If ¢ did not change in the history at all, then the valueddf_, v; is
0 and version dynamic value & Also, it implies that larger the value of version dynamic is,
more frequently the substructure changed in the history.

Note that a substructure has one value for version dynamic and a sequence of values for
structure dynamic. Hence, we proposed another evolution metric cdégeee of dynamic
denoted asDoD, to represent the overall significance of the structural changes in the history.
DoD is an extension of structure dynamic by incorporating the version dynamic metric.

DEFINITION 2.6 Degree of Dynamiy: Let (73,7»,---, T,, ) be the sequence of tree rep-
resentations of n historical versions of an XML document. Suppoesel; (1 < j < n). The

degree of dynamicDoD, for t is defined as:
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Doblt o) = 2 v 0.if Ni(D) < o
where« is the user-defined threshold for structure dynamic. O

The metric DoD is defined based on the threshold of structure dynamic. It represents the
fraction of versions, where the structure dynamic values for the substructure are no less than the
predefined threshold, against the total number of versions in history where the substructure
has changed. Consider the examples shown in Figure 1. We can calculai® thealue for
the substructure rooted at nod®IL. From the previous examples, we know that the structure
dynamic values of this substructure d@é&5,0, and 0.33. The version dynamic value i8.67.
Suppose the threshold for structure dynamic is set.20, then the value ofDoD is 1 (2/2).
If the threshold for structure dynamic is set@5, then the correspondinfoD value will be
0.5 (1/2). It is obvious thaty «, DoD(t,«) € [0, 1]. Similar to the structure dynamic, the value
of DoD also implies the overall significance of the evolution of the substructure. The larger the

value is, more significant are the changes.

D. Representation of XML Document History

As our goal is to discover FCS from a sequence of versions of historical XML documents
during a specific time period, it is important to capture the historical information of structural
evolution of XML documents concisely to facilitate efficient computation of evolution metrics.
As we shall see in the next section, the values of the evolution metrics are used as the foundation
for detecting FCS.

Since, the structure of an XML document can be represented as a tree, naively, we can represent
the history of XML documents as a sequence of trees. However, this approach is not efficient
as there are often substantial overlaps among the different versions of XML trees. Furthermore,
in order to compute the evolution metrics we will need to navigate the sequence of trees which
is computationally expensive. Hence, we present a concise structure EaEIM treg to
represent the history of evolution of XML data. Intuitively, the H-DOM tree is an extension of
the DOM tree with some historical properties so that it can compress the history of changes to

XML documents into a single tree. Formally, we define#DOM tree as follows. .
DEFINITION 2.7: H-DOM: An H-DOM tree is a 4-tupled = (N, A, v, r), whereN is a

set of object identifiersA is a set of labeled, directed ard®, [, c) wherep,c € N and!l is a
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Fig. 2. Partial view of the H-DOM Tree.

string; v is a function that maps each nodec N to a set of value$C,, C,), C,, is an integer

and C, is a binary string;r is a distinguished node iV called the root. O
We now elaborate on the parametéisandC,. The two parameters are introduced to record

the evolutionary features of each substructuig. is an integer that records the number of
versions that a substructure has changed significantly enough (the structure dynamic value is
no less than the corresponding threshold).is a binary string that represents the historical
changes of a substructure. The length of the string is equal to the number of deltas in the XML
sequence. Théh digit of the string denotes the change status of the structure ¥pto X;, 4,

where the value ot means that the particular structure has changed and the vallmaitates
otherwise. In the H-DOM tree, th€', value for each structure is lastly updated by using the

formula: C,(t) = C,(t1) V Cy(t2) V - - V Cy(t;), Wherety, o, - - - | t; are the substructures of
For example, Figure 2(a) is part of the H-DOM for the structure sequence in Figure 1. Suppose

the threshold for structure dynamic (s30, the C,, value of nodeXML is 2, which means that
this structure has changed twice in the history with a structure dynamic value no less3han
The C, value 100 of nodep; means that this node has changed frdmto X,. The C, value

of the internal nodes and root node are calculated according to the above formula. Using the

and C,, values, the set of evolution metrics can be calculated as follows.
e Ni(t) = W whered; is the list of descendant nodes ©fC,(d;)[:] is theth digit
of Cy(d;).
« V(t) = % where C,[i] is the ith digit of C,(t); n is the total number of XML

documents.
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e DoD(t) = m whereC,[i] is theith digit of C,(¢); n is the total number of XML
documents.

It is worth mentioning that the H-DOM tree structure is inspired by the FP-Tree data structure
used in association rule mining [12]. It is designed to preserve and compress the historical
structural information of XML versions. The H-DOM tree compresses historical structural data
by representing identical nodes only once in the H-DOM tree, while the relevant historical
information is preserved using a binary string and an integer. Compared to the FP-Tree, the
compactness of H-DOM should be higher since the same nodes may appear more than once
with h-linksin the FP-tree. Moreover, the FCS can be extracted without any candidate generation
process by traversing the H-DOM exactly once, while in FP-Tree there is a conditional FP-Tree
generation process. Additionally, the H-DOM tree stores the temporal features of the XML

structures.

[1l. FCS MINING

In this section, we present the algorithm for discovering frequently changing structures (FCS).

We begin by formally defining FCS.

A. Frequently Changing Structures

The problem of frequently changing structure mining is to discover those structures that
changed significantly and frequently in the history. Based on the set of evolution metrics discussed
in the preceding section, the frequently changing structure is defined as follows.

DEeFINITION 3.1 (Frequently Changing Structure (FCS) Let (T3,T5,--- ,T,) be the tree
representations for versions of an XML documeéntLet the thresholds of structure dynamic,
version dynamic, and degree of dynamicdes, v respectively. A structure < 7} (1 < j < n)
is afrequently changing structuren this sequence iff, - Uy, V(t) > 3, and DoD(t, ) > 7.

0

The FCS is defined based on the predefined thresholds of the evolution metrics. The signifi-
cance of changes is defined by the structure dynamic and degree of dynamic thresholds, while
the frequency of changes is defined by version dynamic threshold. For example, an example of
the frequently changing structure in Figure 1 will be the structure rooted at Xilileas shown
in Figure 1(d). This structure may indicate that the corresponding professor is very active in the

research area of ML.
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Input:
H-DOM tree: H
Structural delta: Delta
Threshold of structure dynamic: (¥

Output:

Input: Updated H-DOM tree: H
A sequence of XML versions <X;,Xs,...X,>
Threshold of structure dynamic: (¥ Description:
1: for all n; € Delta do
Output: 2: if n; # 9 then
H-DOM tree: H 3: for all n; € H do
4: update Cp(n;)
Description: 5: if N;(n;) 2 (X then
1: H is initialized as (Ti) 6: update C.(n;)
2: for all k = 2, k<n do 7: n; = N;.parent (H)
3 Delta = SX-Diff (Xx, Xx-1)) 8: end if
4: H = Mapping (H, Delta) //Algorithm 2 9: end for
5 k++ 10: end if
6: end for 11: end for
7: Return (H) 12: Return (H)
(a) Algorithm 1: H-DOM Construction (b) Algorithm 2: Mapping

Fig. 3. FCS Mining algorithms.

B. FCS Mining Algorithms

We now present the algorithms for discovering FCS. Given a sequence of XML document
versions, the FCS mining algorithm consists of two main phaseg4tB©M tree construction

phase and th€CS extractionphase.

The H-DOM Tree Construction Phase: Figure 3(a) describes the process of H-DOM tree
construction. Given a sequence of historical XML documents, the H-DOM tree is initialized as
the structure of the first version. After that, the algorithm iterates over all the other versions
by extracting the structural deltas and mapping them into the H-DOM tree. Given two versions
of an XML document, the SX-Diff function is a modification of the X-Diff [25] algorithm
that generates only the structural changes. The structural delta is mapped into the H-DOM tree
according to mapping rules as described in Figure 3(b). This process iterates until no more XML
document is left in the sequence. Finally, the H-DOM tree is returned as the output of this phase.
Figure 3(b) describes the mapping function. Given the H-DOM tree and the structural changes,
the objective of this function is to map the deltas into the H-DOM tree and return the updated
H-DOM tree. The idea is to update the corresponding values of the nodes in the H-DOM tree for
all the nodes in the structural delta. The values of the nodes are updated according to following

rules:

1) If the node does not exist in the H-DOM tree, then the node is inserted. The value of

is set to000 - - - 1 where theith digit of the string is set td and: is the version number
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of the structural delta. In addition, the value &f is calculated. IfN; > «, thenC,, is set
to 1 and theC,, values of its parent nodes are incremented by ;ifis no less than.
Otherwise,C,, is set to0 and the process terminates.

2) For nodes that exist in the H-DOM, the value @f is updated by inserting & at theith
digit of C, where: is the version number of the structural delta. The valu€'pfis also
updated based ofv; and «. Similarly, If N; > «, thenC,, is incremented byl and the
C,, values of its parent nodes are updated based on the same ruléVuigtiless than.

Otherwise,C,, does not change and the process terminates.

The FCS Extraction Phase: The objective of this phase is to extract FCS from the H-
DOM tree representation. Specifically, given the H-DOM tree, the values of structure dynamic,
version dynamic, and degree of dynamic for each node are calculated and compared against the
predefined thresholds. Since for a FCS, both its version dynamic and degree of dynamic should be
no less than the thresholds, we first calculate only one of the parameters and determine whether
it is necessary to calculate the other parameter. This is because if any of the two parameters
does not satisfy the definition, then the substructure is not a FCS. In our algorithm, the version
dynamic for a node is checked against the corresponding threshold first. If it is no less than the
threshold, then we check its degree of dynamic. Based on the traversal strategy of the H-DOM
tree, two variants of the algorithm can be designed for FCS extractiorbattem-up(level by

level) approach and thiep-down(breath first) approach. Before we discuss these two strategies

in detail, we present two lemmas that will be used to make the extraction phase more efficient.

LEMMA 3.1: Letn;,n; € N be any two nodes. The substructures rootech,atnd n; are
denoted ag,,, andt,, respectively. Ifn; is the ancestor ofi;, thenV(t,,) > V (t,,).

PROOF 3.1: The proof is intuitive. Based on the previous definition, once a node changes,
superstructures that include this node are considered as changed. It indicates that the number of
versions a superstructure has changed should be no less than its substructures. Consequently, it
can be concluded that the version dynamic of a superstructure should be no less than the version
dynamic of its substructures, while the total number of versions is the same. [ |

LEMMA 3.2: Lett; andt, be any two structures ang < t¢;. Given the threshold foPoD
as -, the necessary condition for structureto be a FCS is thatC,(t1) > v x V(t2) X (n —1).

PrROOF 3.2: From Lemma 3.1, we can infer th&t(¢;) > V(¢2). The necessary condition for
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Input:
H-DOM tree: H

Input: Threshold of version dynamic: (3
H-DOM tree: H Threshold of degree of dynamic:?
Threshold of version dynamic: (3
Threshold of degree of dynamic:?Y Output :

A set of FCS rooted nodes: F

Output:
A set of FCS rooted nodes: F Description:
1: for all n; # @do //bottom-up BFS

Description: 2: if C, <7 X V(tn;) then
1: for all n; # 9 do //Top-down BFS 3: n; = n;.next
2 if V(n;) > 3 then 4:  else
3 if DoD(n;) > 7 then 5: if V(n;) > O then
4 F is updated by incorporating n; 6: if DoD(n;) > 7Y then
5 end if 7: F is updated by incorporating n;
6: else 8: end if
7 prune all descendants of n; 9: end if
8 end if 10: end if
9: end for 11: end for
10: Return(F) 12: Return(F)
(a) Algorithm 3: FCS Mining (top-down) (b) Algorithm 4: FCS Mining (bottom-up)

Fig. 4. FCS Mining algorithms (FCS extraction phase).

structuret, to be a FCS is that its degree of dynamic is no less than the threshaltich is
v < % Then,C,(t1) > v x V(t1) x (n — 1), while V(t;) > V(¢5), it can be inferred
that C,, (1) > v x V(ta) x (n —1). |

Based on the above lemmas, we observed that it is not necessary to traverse the entire H-DOM
tree. We can skip checking some structures that cannot be FCS. Lemma 3.1 can be used in the
top-down traversal strategy. When we reach a node where its version dynamic is less than the
threshold, it is not necessary to further traverse down this substructure since the version dynamic
of its substructures will definitely be less than the threshold and hence these substructure cannot
be FCS. Lemma 3.2 can be used in the bottom-up traversal strategy. In this case, for any node,
rather than calculate its version dynamic value, ¢thevalue of the node is checked against the
value ofy x V' (t;), wheret; is any of its substructures. {f,, < vx V' (¢;), then it is not necessary
to calculate the version dynamic and degree of dynamic for this structure since it cannot be a
FCS. Based on the above lemmas, the top-down and the bottom-up FCS mining algorithms are

presented in Figures 4(a) and 4(b).

Algorithm Analysis: We now analyze the time and space complexities of the FCS mining
algorithms. In Phase 1, the H-DOM tree is constructed based on the sequence of historical
XML documents. In this phase, each XML document is parsed once and only consecutive
versions are compared. LétTy, Ty, ---, T, ) denote the sequence of XML documents and

|T;| denotes the number of nodes in tile document. The complexity of SX-Diff i©(|T;| x
|Tiv1]) x max{deg(l;), deg(;i1)} x log,(max{deg(;), deg(;.1)})) [25]. The complexity of
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the mapping process @(|¢;|). The SX-Diff and mapping process iterdte 2 times in this phase,

while the cost of the initialization i€£)(|71]). Since|t;| < |7;|, the dominant of this iteration

is the SX-Diff. Hence, the overall complexity of Phase 10§k — 2)x max{ |7T;| x |T;+1]|) x
max{deg(l;), deg(;.1)} X log,(max{deg(l;), deg(;.1)})}), wherei € [2,k — 1]. In Phase 2,

the H-DOM tree is traversed and the parameters for all the potential FCS are calculated and
compared against the predefined thresholds. No matter which traversal strategy we choose, the
upper bound of this phase (|7'|), which is the cost of traversing the H-DOM tree, whérg

is the total number of nodes in the H-DOM tree. In practice, the actual cost of this phase is
lesser than this as we use Lemmas 3.1 and 3.2 to reduce the traversal space.

In the FCS mining algorithms, the H-DOM tree is processed in memory. The space cost of
this algorithm is the size of the H-DOM tree. Based on the algorithm, we observed that the
size of the H-DOM tree depends on the amount of overlaps between the consecutive versions.
For the same number of XML documents with the same average number of nodes, the more
significantly they change, larger is the size of the H-DOM tree. Since only the structural data
are stored and each unique node is stored only once, the size of the H-DOM should be no
larger than the total size of the sequence of XML documents. However, as the sizes of the XML
documents increase or the changes become more significant, or the number of XML documents
increases, the size of H-DOM tree will increase accordingly. However, the upper bound of the

space requirement ©(|7, W To W --- W T,,|).

C. Optimization Techniques

We now propose three optimization techniques, ¢tbenpression techniqueghe build and
merge strategyand theDTD-based pruning techniquéo make the proposed algorithm more

scalable by reducing the size of the H-DOM tree.

Compression Technique:Suppose there areversions of XML in the sequence. Then, for each
node a lengtm binary string is used to represent the history of changes in the H-DOM tree.
Observe that the size of the string can be very large. However,2alyt of n digits are useful

since each node itself in the H-DOM tree could change at most tunserfion and deletior).
Consequently, rather than using the binary string, we use two integers to represent the changes.
Consider the H-DOM tree in Figure 2 as an example. Suppose theppaslieleleted in thé+1th

version. Then the”, value of this node will bel000---01. Now suppose we only store two
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Input: Input:

H-DOM tree: H H-DOM tree: H

Structural delta: Delta Threshold of version dynamic: f3

Threshold of structure dynamic: (¥ Threshold of degree of dynamic:?

User specified concept hierarchy: T

Output:

Updated H-DOM tree: H Output:

A set of nodes where i-FCS rooted : F
Description:
1: for all n; € Delta do Description:
2: if n; is deleted according to the DTD and 1: for all nJ=BottomfupTrav(H)9ﬁnull do
V(n;) < (¥ then 2 while T;=Bottom-upTrav (T) #null
3 update (n;, H) 3 if S(n;) ™~ S; then
4 prune all descendants of n; 4 for all s =S(n;) do
5 else 5 if C, <y XxXV(t), {n; = nj.next, break}
6: update (n;, H) 6: if V(n;) > & DoD(nj)>7, {F = Funj})
7 end if 7 end for
8: end for 8 break; end if
9: Return (H) 9: end for
10: Return (F)

(a) Algorithm 5: Building and Merging (b) Algorithm 6: i-FCS extraction

Fig. 5. Optimization techniqgue andFCS extraction algorithm.

integersl andi to represent the changes. Using the proposed algorithm the space requirement
is 7 bits, but using this strategy it only requires 16 bits (for two integers). It is obvious that
when: > 16, the later strategy is more space efficient. Usually, to get useful knowledge from

the changes, the number of versions is greater than eight.

Building and Merging Strategy: We observed that for any structure that has been deleted their
C, andC, values would not change since no change could happen to them again. Thus, whether
this deleted structure is a FCS or not can be determined by then. Hence, in this strategy we
propose not to keep all substructures in the H-DOM tree. If the structures are not a FCS when
they are deleted, only the root nodes are stored in the H-DOM, with the summarized historical
information. By using this strategy, the size of the H-DOM tree can be reduced. For example,
consider the H-DOM tree in Figure 2. Suppose in the next version the substructures rooted at
DM andDB are deleted. Assume that the substruciik is a FCS while the substructu2B

is not. Then, rather than storing the entire substructurBMfand DB, only the root node of

DM is stored along with summarized historical information. Similarly, the substru@&rés
merged into its parent node as shown in Figure 2(b). The algorithm based on this strategy is

shown in Figure 5(a).

DTD-based Pruning Technique:Our investigation of the history of structural changes to real
life XML documents revealed that often some of the nodes in the XML tree never change in
the history. Thus, it is not necessary to store such information since it does not play significant

role in FCS mining. If we can prune such nodes during the H-DOM construction phase, then
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the H-DOM tree will be more compact and the efforts of checking such nodes can be avoided.
However, the challenge is to identify such nodes efficiently. If the XML documents do not have

a DTD or XML schema then this is an expensive process as we have to analyze the documents
in the history to identify such nodes. On the other hand, if the XML documents are valid, then
we can extract information related to nodes that never change by analyzing the corresponding
DTD or XML schema. Specifically, we can categorize the elements and attributes in the XML
documents into two classes based on the DTD. Elements and attributes that can be inserted or
deleted belong to class 1, while elements and attributes that cannot be inserted or deleted are in
class 2. Using the DTD or XML schema, we can identify elements that can occur more than
once or are optional. The nodes representing these elements in the XML documents can be
inserted or deleted in the history. Similarly, instances of elements that are defined as “default”
and “required” and can occur exactly once cannot be deleted or inserted. Note that this approach
does not guarantee identification @dmpleteset of nodes that do not change. This is because,
although some of the nodes may not evolve in history, they can only be identified by analyzing
the actual documents rather than the DTD.

Our DTD-based pruning strategy maps only nodes that belong to class 1, while nodes in
class 2 are merged with their parent nodes to save space. For example, suppose &&mnents
MS and PhD are defined as required subelements with exactly one occurrence for elechent
in Figure 1(d). Then, rather than store the entire substructure rooted atBthglet can be

represented as a single nolHdu in the H-DOM tree.

IV. PERFORMANCEEVALUATION OF FCS MINING

In this section, we evaluate the FCS mining algorithms with extensive experiments.

A. Experimental Setup and Dataset

We have implemented FCS mining algorithms entirely in Java. We ran experiments on a PC
with Intel Pentium 4, 1.7GHz CPU, 256 RAM, 40G hard disk, and Microsoft Windows 2000.
For the FCS algorithm, we have implemented two “optimization-unconscious” algorithms, the
bottom-up based algorithm (FCS-BASIC-B) and the top-down based algorithm (FCS-BASIC-
T). We also create variants of these algorithms by incorporating the proposed optimization

techniques. Specifically, FCS-A denotes the algorithm that integrates all the three optimization
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Source Data| NoN | NoV | PoC | v Ei Y
SIGMOD1 1124 20 10% - 02 | 04
DBLP1 1143| 20 10% | 0.2 - 0.4
Syntheticl 1264 20 10% | 0.2 | 0.2

Symbol Description
NoN Numbers of nodes
NoV Numbers of versions

PoC % of changes

(c) Description of Datasets

() Statistic of Datasets Dataset | NoN [ Nov [Poc [ a [ 5 [
Symbol Description Source Data| NoN | NoV | PoC | «x i Y 1 10644 20 10% | 0.2 | 0.2 | 04
a Threshold of Ni(t) SIGMOD2 -| 30 | 10% |02 | 02|04 2 21464| 20 | 10% | 0.2 | 0.2 | 0.4
I} Threshold of V(t) DBLP2 5743 - 10% | 0.2 | 0.2 | 0.4 3 43196 20 10% | 02 | 0.2 | 0.4
v Threshold of DoD(t, () Synthetic2 | 1264| 20 - 02| 02|04 4 87642| 20 | 10% | 0.2 | 0.2 | 0.4
(b) Parameters (d) Description of Datasets (e) Description of Datasets

Fig. 6. Symbols, Descriptions, and Datasets.

techniques; FCS-C refers to FCS mining algorithm that incorporates the compression and the
building and merging techniques. Note that the optimization-based algorithms are implemented
using the bottom-up traversal strategy since the metrics can be calculated more efficiently in this
way.

We use synthetic XML delta sequences generated from three real and synthetic XML docu-
ments. The two real XML documents we use are DBLP and SIGMOD XML downloaded from
UW XML repository (http://www.cs.washington.edu/research/xmldatasets), while the synthetic
XML is generated using IBM XML Generator (http://www.alphaworks.ibm.com/tech/xmlgenerator).
From such XML documents, sequences of XML versions are generated by using our synthetic
XML delta generator. We do experiments by using datasets of different characteristics and varying
the parameters of each algorithm. For each algorithm, different XML datasets are used to show
how the datasets affect the performance. Experiments with the same dataset and all possible
variations of the parameters have also been done to show how the parameters can affect the
performance. The symbols for characteristics of the datasets and parameters of the algorithms

are shown in Tables 6(a) and 6(b) along with their descriptions.

B. Variation of Algorithm Parameters

We evaluate the performance of the four algorithms, FCS-BASIC-T, FCS-BASIC-B, FCS-A,
and FCS-C, by varying the thresholds of the three major parameters, and~. Table 6(c)
shows the characteristics of the datasets and the values of the parameters used in our experiments.
Hereafter, we use the symbol “-” to denote the parameters or characteristics of the dataset that
will be varied in the experiments. Figure 7(a) shows the performance of the algorithmsawhen

is varied onSIGMOD1 XML dataset. Figure 7(b) shows how the algorithms perform when the
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thresholdg changes. We use the BL P1 XML dataset. Figure 7(c) illustrates how the changes

to v may affect the performance of the algorithms. In this case, we us&ghéheticl XML

dataset. From the above figures, following observations can be made.
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Fig. 7. FCS Experiment Results

The overall observation is that as any of the thresholds increases, the execution time decreases.
This is due to the fact that when the threshold increases, the pruning techniques are more efficient

and the search space of FCS is reduced. The execution time does not change significantly with

the variation of thresholds because the major cost of the algorithms is the cost of SX-Diff, which

is independent of the thresholds. As shown in Figure 7(d), the SX-Diff cost is more than 50%

of the total cost. From Figure 7(d), we also observed that as the total number of nodes increases
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the percentage of SX-Diff cost also increases.

The FCS-BASIC-T algorithm is more stable than othersrahanges, but it is more sensitive
to the variation of5. This is due to the fact that FCS-BASIC-T uses the heuristic in Lemma 3.1
to prune the H-DOM tree, and other algorithms use the heuristic in Lemma 3.2. Note that
Lemma 3.1 is solely based ghand Lemma 3.2 is based eon

For the same dataset, with the same parameters, we observed that the differences of execution
time for the four algorithms are in constant order. It means that although different traversal

strategies and optimization techniques are used, the time cost does not change significantly.

C. Characteristics of Datasets

We evaluate the performance of the four algorithms by varying the characteristics of the
datasets. Table 6(d) shows the values of the parameters and some of the characteristics of the
datasets used in our experiments. Figure 7(e) shows the performance of the algorithms using
SIGMOD? by varying the average number of nodes in each XML document from 8,000 to
40,000 (the corresponding size of each XML document is from 3M to 15M). We fix the number
of versions to be 30 in the sequence. Figure 7(f) presents the performance of the algorithms
using D BL P2 by varying the number of versions in the sequence from 30 to 150. The average
size of each XML document is 2.3M (5743 nodes) for this experiment. Figure 7(g) evaluates
the performance of the algorithms by varyidpC'. The Synthetic2 dataset is used. From the
above figures, several observations can be made.

As the average number of nodes in the XML document increases, the time cost increases.
Changes are more significant compared to the changes in Figures 7(f) and 7(g). It is because
when the average number of nodes increases, the SX-Diff cost increases as well as the pruning
and extraction cost.

As the total number of versions in the XML sequence increases, the execution times of the
algorithms increase too. It is obvious that when the total number of versions increases, the
number of comparison increases accordingly. Consequently, the cost for detecting the structural
changes increases. Compared to the variatioVeiN, the variation of NoV do not affect the
performance significantly.

As the percentage of changeBd() in the XML sequence increases, the execution time

also increases. Since our FCS mining is actually dealing with the deltas rather than the original
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sequence, as thieoC' increases, the size of the delta increases. Consequently, the cost of SX-Diff,

the pruning and extraction increases.

D. Compression Efficiency

We evaluate the space efficiency of the algorithms by comparing the compactness of the
H-DOM tree. Table 6(e) shows the characteristics of the datasets and parameters used in the
experiments. Figure 7(h) shows the size of the H-DOM trees for different datasets and different
algorithms. We can observe that compared to the original dataset, the H-DOM trees are very
compact. The compression rate of the H-DOM tree is almost 50% in the absence of any
optimization techniques. When the optimization techniques are incorporated, the FCS-C, and
FCS-A are more compact than the FCS-BASIC. Especially, the H-DOM tree that integrates
FCS-A is the most compact of all. The compression rate of FCS-A-based H-DOM tree is around
30% for the benchmark datasets. This fact also explains why the time cost of the FCS-C and
FCS-A are relatively more expensive as the saving of space incurs extract cost on calculating

the dynamic metrics shown in the results shown in Figures 7(a) to 7(Q).

E. Summary

From the above experimental results, we can conclude that our proposed algorithms FCS-
BASIC-T and FCS-BASIC-B are efficient and scalable while the three optimization techniques
improved the space efficiency substantially. Based on the experimental results, if users want to
find out FCS with higher version dynamic, the FCS-BASIC-T is recommended. Otherwise, the
FCS-BASIC-B is the best choice, since the three optimization techniques work in a bottom-up
manner. The FCS-C algorithm can be applied to any XML documents history, while the FCS-A

can only be used for valid XML documents.

V. APPLICATIONS OFFCS

Knowledge of FCS can be useful in several applications, such as monitoring interesting
structures in a specific domain, FCS-based classifier, evolution-conscious XML query caching,
and XML indexing. We briefly discuss below these representative applications. In the next

section, we shall elaborate in detail one of these applications.

Discovering interesting FCS:The FCS mining algorithms, introduced in the preceding section,

extractscompletecollection of FCS in the dataset. However, often users may not be interested
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in the complete collection especially when the number of frequently changing structures can be
very large. Typically, users in a particular domain may be interested in evolution characteristics
of structures that contain specific types of information. For instance, in the e-commerce domain,
the material control people may be more interested in the evolution pattern of substructures that
containproductsinformation; while the marketing people may be more interested in parts of the
document that contaidlientsinformation. We call such structures imeresting FCSi-FCS). In

the next section, we shall elaborate on how such structures can be discovered by incorporating

user-specifiecdoncept hierarchyn the FCS mining framework.

FCS-based classifier:Classifying XML documents based on the structures embedded in doc-
uments is proposed in [31]. This approach focus on classifying structures based on snapshot
data only. Using a FCS-based classifier, we can classify subtrees in XML documents based on
their evolution patterns. For example, consider the evolution features of a set of structures in
Figure 11. It is possible to detect certain trend-based patterns from the evolution history of these
structures. For instance, one can observe that the structural dynamic valsesngfand TV
serieshave an increasing and decreasing trend, respectively. Alsdyaiblesubstructure shows

a periodic change pattern. Hence, we can build a classifier that can classify the collection of

FCS based on the nature of their evolution pattern.

FCS-based evolution-conscious XML query cachingCaching XML queries has been recog-
nized as an orthogonal approach to improve the performance of XML query engines [29]. One
of the efforts in this direction is to discover tfiequent query patternsom the historical query
log and cache the corresponding query results to reduce the response time for future queries
that are the same or similar [29]. The intuition behind this approach is that some query patterns
are more popular or important than others and they are expected to be issued more often in the
future with higher probabilities compared to others.

Our initial investigation revealed that existing XML caching strategies are solely based on
statistics obtained by treating historical XML queries as snapshot data. That is, the frequent
XML query patterns are based on only the number of occurrences of the query subtrees in the
history. The evolutionary nature of XML queries as well as the underlying XML documents are
not taken into consideration.

We believe that the results of FCS mining can be used for developing more effective caching
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strategy that takes into account the evolutionary properties of XML structures. Intuitively, our
strategy is based on the following principle. If the results of frequent query patterns contain FCS
then it should have lower caching priority compared to query patterns that return “FCS-free”
results. This is because, although the query patterns are frequent, the query results are expected
to change frequently and significantly in the future and hence these patterns should not have
higher caching priority. To differentiate the priorities among these two categories of frequent
guery patterns, we rank the query patterns not only based on the number of occurrences but also

based on the evolution patterns of underlying documents.

XML indexing: One of the key issue of XML indexing is to identify the ancestor and descendant
relationship quickly. To this end, different numbering schemes have been proposed [18], [14].
Li and Moon proposed a numbering scheme in XISS (XML Indexing and Storage System)
[18] that uses amxtended preordeand asize The extended preordeallows additional nodes

to be inserted without reordering and thige determines the possible number of descendants.
More recently, XR-Tree [14] was proposed to index XML data for efficient structural joins.
Compared with the XR-tree [14], XISS numbering scheme is more flexible and can deal with
dynamic updates of XML data more efficiently. However, Li and Moon did not highlight on
how much extra space should be allocated. Allocating too small reserved space will lead to the
ineffectiveness in maintaining the numbering scheme, whereas allocating too much extra space
will lead to too large numbers being assigned to nodes in a large XML document. Moreover, in the
XISS approach, the gaps are equally allocated, while in practice different parts of the document
change with different significance. Based on FCS mining results, the numbering scheme can
be improved by allocating the gaps in a more intelligent manner. For example, for the parts of
structure that change frequently and significantly, larger gaps are allocated while for structures
that do not evolve frequently, smaller gaps can be reserved. By using this strategy, the numbering

scheme should be more efficient in terms of both index maintenance and space allocation.

VI. EXTRACTION OF INTERESTINGFCS

In this section, we elaborate on how FCS mining framework can be used to anteaesting
FCS (denoted ag-FCS). A set of user-specifiecbnceptss used to guide the interesting FCS
mining process. These concepts represent the semantic objects in the XML documents. There are

two approaches to obtain such concepts. The first approach is to extract interesting concepts from
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Fig. 8. An Example of Concept Hierarchy

domain-specific ontology. The second approach is to build the concepts based on DTDs/XML
Schemas used in this domain to represent the collection of XML documents. We represent
interesting concepts in form of@ncept hierarchyhat specifies the relation among them. Nodes
in the concept hierarchy can be classifiedpasnitive or nonprimitive The primitive concepts,
which represent the basic elements in a domain, reside in the lowest level in the hierarchy; all
nonprimitive concepts, which consist of a conglomeration of the primitive concepts, reside in
the higher level of the hierarchy. The higher the node’s level, the more complex is the concepts
it represents. Figure 8 shows an example of concept hierarchy. The leaf nodes $db,as
and P-NAME are primitive concepts; while internal nodes and root node sudDLAENT and
COMPANYare nonprimitive concepts. In ottFCS mining, we assume that the specified concept
hierarchy is provided by users.

Given the user-specified concept hierarchy, thresholds for evolution metrics, and a sequence
of versions of XML documents, the goal ofFCS mining is to discoveinteresting FCSrom
the document collection. Given a concegptin a specific domain, a structurein an XML
document is annterestingstructure with respect to conceft denoted as ~ C, if ¢ provides
the required information of the concefpt Furthermore, ift is a frequently changing structure

then it is calledinteresting FCSWe now elaborate on the algorithm for discoverinrgCS.

A. i-FCS Mining Algorithm

Thei-FCS mining algorithm is similar to the FCS mining algorithm and consists of two main
phases: theH-DOM tree constructiorphase and theé-FCS extractionphase. As the H-DOM
tree construction phase is similar to the one discussed earlier, we focus R @ extraction
algorithm. The formal algorithm is shown in Figure 5(b).

Given the H-DOM tree, thé-FCS extraction algorithm is to extract alFCS based on the
user-defined concept hierarchy and evolution constraints. First the substructures are compared
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<!ELEMENT root (category*)> <!ELEMENT num_items (#PCDATA)>

<!ELEMENT category (topic*)> <!ELEMENT num_bids (#PCDATA)>

<!ELEMENT topic (item*)> <!ELEMENT started_at (#PCDATA)>

<!ELEMENT item(listing*)> <!ELEMENT bid_increment (#PCDATA)>

<!ELEMENT listing (seller_info,payment_types,shipping info, <!ELEMENT location (#PCDATA)>
buyer protection_info,auction_info,bid history,item info)> <!ELEMENT opened (#PCDATA)>

<!ELEMENT seller_info (seller_name,seller_rating)> <!ELEMENT closed (#PCDATA) >

<!ELEMENT seller name (#PCDATA)> <!ELEMENT id num (#PCDATA)>

<!ELEMENT seller rating (#PCDATA)> <!ELEMENT notes (#PCDATA)>

<!ELEMENT payment_ types (#PCDATA)> <!ELEMENT bid_history (highest bid amount,quantity)>

<!ELEMENT shipping info (#PCDATA)> <!ELEMENT highest bid amount (#PCDATA)>

<!ELEMENT buyer_ protection_info (#PCDATA)> <!ELEMENT quantity (#PCDATA)>

<!ELEMENT auction_info(current_bid,time left,high bidder,num items, <!ELEMENT item info (color, weight, years,
num_bids,started_at,bid increment,opened,closed,id num,notes)> brand, description)>

<!ELEMENT current_bid (#PCDATA)> <!ELEMENT color (#PCDATA)>

<!ELEMENT time_ left (#PCDATA)> <!ELEMENT weight (#PCDATA)>

<!ELEMENT high bidder (bidder name,bidder_rating)> <!ELEMENT years (#PCDATA)>

<!ELEMENT bidder name (#PCDATA)> <!ELEMENT brand (#PCDATA)>

<!ELEMENT bidder rating (#PCDATA)> <!ELEMENT description (#PCDATA)>

Fig. 9. DTD of the real Yahoo auction data.

with the user-specified concept hierarchy as shown indine Figure 5(b). If the structures are
instances of the concepts in the hierarchy, then the values of the required parameters (version
dynamic, and DoD) for each node are calculated and compared against the predefined thresholds
as shown in line$ and6. Note that the comparison strategy of the evolution metrics is same as
that discussed in FCS mining. Also, we use the bottom-up traversal approach for traversing the
H-DOM tree since the set of interesting concepts is represented in a hierarchical manner with

primitive concepts in the lower level.

B. Performance Evaluation

In this section, we evaluate the performance-6iICS mining algorithm for extracting inter-
esting FCS. We use real datasets extracted from Yahoo! auction site (http://auctions.yahoo.com/)
for our performance study. A portion of the DTD of the XML view of the data is shown in
Figure 9. The maximum depth of the XML document7isand the average depth %37 To
obtain different versions of the auction data, we issue queries related to all the five categories
(music, tv, movies, books, and collectibles) of products periodically and each result set is then
transformed into an XML document. For instance, we issue the five queries every hour and
convert the results into an XML document. In the following experiments, we assume that users
are interested in the following two conceppsoduct categoryand product The dataset consists

of 120 versions of auction XML data and is shown in Figure 10 (a).

Efficiency and Scalability: First, we evaluate the efficiency and scalability of tRECS algo-
rithm and compare it with the FCS algorithm (FCS-BASIC-T).
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Figure 10(b) shows how the running time changes by varying the total number of nodes in
the XML documents. There are two ways of increasing the total number of nodes. One way
is to increase the number of versions (NoV) in the XML sequence, another way is to increase
the average number of nodes (NoN) in each version. To increase the number of versions, we
need to crawl the data more frequently, while to increase the size of each version, we need to
crawl the data less frequently. Dataséls and D; are used in this set of experiments. We set
a = [ =~ = 0.2. Both results show good scalability with the total number of nodes, while
the running time is more sensitive to the number of versions in the XML sequence than the
average number of nodes in each version. The reason is that the change detection process is the
most expensive phase of the algorithm as shown in Figure 10(c). MoreoverFB8& mining
algorithm is arouna times faster than the FCS algorithm for the benchmark dataset as only a
portion of the H-DOM tree is processed.

Figure 10(c) shows the cost of each phase in#CS mining algorithm. The datasél,
is used andx = = v = 0.2. Similar to the FCS mining results, it can be observed that the
change detection phase takes a share of up to 40% of the cost. Compared to the cost of SX-Diff
in FCS algorithm in Figure 7(d), the percentage of cost for detecting changes decreases in the
1-FCS algorithm. This is because only changes to the user-specified interesting structures are

detected.

Effects of Parameters: Figure 10(d) shows how the running time changes by varying the
thresholds of evolution metrics. We use the dataset. In the three experiments, we vary one
of the thresholds and fixed the thresholds for the other two to 0.2. It can be observed that the
running time does not change significantly when the thresholds of evolution metrics are varied.
This is due to the fact that the most expensive process, SX-Diff, is independent of the thresholds.
Figure 10(e) shows how the depth of the concept structure that users are interested in affect
the performance of theFCS algorithm. In this set of experiments, dataBeis used. Fixing the
thresholds of the evolution metrics to 0.2, the targeted concepts are varied from level 2 (denoted
as case 1), level 3 (denoted as case 2), level 2 and 3 (denoted as case 3), level 4 (denoted as
case 4), to level 3 and level 4 (denoted as case 5). It can be observed that the maximum level of
the concepts directly affects the performance of €S algorithm. The smaller the minimum

level, the more efficient is the-FCS algorithm. For concepts that have the same maximum
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Fig. 10. Evaluation of-FCS.

level, the performance is quite similar as shown in this figure. This is because the maximum
level of the targeted concepts determines the maximum level-B@S algorithm explores for
both change detection and computation of values of evolution metrics.

Figure 10(f) shows the number of structures in the mining results using the above thresholds
for the evolution metrics. It shows that the number of structurésH@S mining result is reduced
by almost 40% compared to that of FCS mining result. This is because the search space for
discovering FCS is reduced considerablyiasCS only process substructures that users are

interested in.
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Fig. 11. Evolutionary features of various categories.

Analysis of Mining Results: In the above experiments, we have successfully extracted interesting
concepts such asequently changing producisnd frequently changing product categoried/e
now show that these concepts are indeed FCS by analyzing some of the representative interesting
FCS in the actual data. Along with this, we also show the evolution patterns of some other
concepts that occurred in the auction datasets. These structures were not considered as FCS as
they did not satisfy the evolution metrics.

In Figures 11(a) and (b), we present tteucture dynamiwalues of three product categories
and three specific topics under these categories. Note that the datasets used in Figures 11(a) and
(b) are crawled ever$ hours and every hours, respectively. Suppose that= 5 = v = 0.2.
Then, booksand comicsare two interesting FCS. Note that the dotted lines in Figures 11(a)
and (b) are the thresholds for structure dynamic. A larger structure dynamic value indicates that
more elements are inserted and deleted under the corresponding subtree. For instance, the results
in Figure 11(a) indicate that theooksis one of the very popular categories where people keep
bidding frequently and new products are inserted constantly. Figure 11(b) shows the historical
structure dynamic values for a set of products. It can be observed that some products became less
popular with time (such a3V serie$, some products became more popular (suclstasps,
and other products changed in various ways (sucimasey. Observed thastampsis a FCS

when the threshold values are sett@
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VIl. RELATED WORK
A. XML Data Mining

As XML has emerged as the leading textual language for representing and exchanging data
over the Web, the data mining community has been motivated to discover knowledge from
collections of XML documents. For example, there have been increasing research efforts in
mining frequent patterns [2], [13], [15], [28], [23], [26], [30] or sequential patterns [17] from
XML repositories, classifying [31] and clustering [19] XML documents. We review some of
these works here.

Most existing work focus on discovering the frequent substructures from a collection of
semi-structured data such as XML documents. Wang and Liu [26] developed an Apriori-like
algorithm to mine frequent substructures based on the “downward closure” property. They
first found the frequeni-tree-expressionthat are frequent individudhbel patts. Discovered
frequent1-tree-expressia are joined to generate candid&dree-expressia® The process is
executed iteratively till no candidatetree-expressiamis generated. AGM [13] is an Apriori-
based algorithm for mining frequent substructures. But the results of AGM is restricted to only
the inducedsubstructures. FSG [15] is also an Apriori-based algorithm for miningadhected
frequent subgraphs. Experiments results in [15] show that FSG is considerably faster than AGM.
However, both AGM and FSG do not scale to very large database. gSpan [28] is an algorithm
for extracting frequent subgraphs without candidate generation. It employs the depth-first search
strategy over the graph database. Like AGM, gSpan needs elaborate computations to deal with
structures with non-canonical forms. Asai et al. [2] developed another algorithm, FREQT, to
discover all frequent tree patterns from large semi-structured data. They modeled the semi-
structured data asibeled ordered tre@nd discover frequent trees level by level. At each level,
only the rightmost branch is extended to discover frequent trees of the next level. Thus, efficiency
can be achieved without generating duplicate candidate frequent trees.

TreeMinerH and TreeMinerV [30] are two algorithms for mining frequent trees in a forest.
TreeMinerH is an Apriori-like algorithm based on a horizontal database format. In order to
efficiently generate candidate trees and count their frequency, a stmiagtencodings proposed
to represent the trees. In contrast, TreeMinerV uses verticape-listto represent a tree.
Frequent trees are searched in depth-first way and the frequency of generated candidate trees

are counted by joiningcope-lists TreeFinder [23] is an algorithm to find frequent trees that
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are approximatelyrather thanexactlyembedded in a collection of tree-structured data modeling
XML documents. Each labeled tree is describetktlaxed relational descriptiowhich maintains
ancestor-descendant relationship of nodes. Input trees are clustered if their atoatesxed
relational descriptionoccur together frequently enough. Then maximal common trees are found
in each cluster by using algorithm tH#ast general generalizatiorRecently, there is another line

of work that employs the pattern-growth strategy to discover frequent subtrees [24], [27].

Classification of XML documents has also been addressed by some recent research works [31].
In [31], Zaki proposed an algorithm to construstructural rulesin order to classify XML
documents. The basic idea is to relate the presence of a particular kind of structural pattern in
an XML document to its likelihood of belonging to a particular class.

The critical difference between our proposed frequently changing structure mining and existing
works on XML data mining is that we address the dynamic nature of XML data. Existing works
on XML data mining extract knowledge from the snapshot version of XML documents, whereas
we extract knowledge from a sequence of historical structural deltas of an XML document.
Furthermore, techniques for frequent substructure mining focus on designing algorithms to extract
structures thadccur frequentlyin the snapshot data collections. Whereas the goal of FCS mining

is to extract structures thahange frequentljrom the sequence of historical XML versions.

B. Mining Change Patterns and Trends

There are several techniques proposed recently for maintaining and updating previously discov-
ered knowledge. They focus on two major issues. One is to actualize the knowledge discovered
by detecting changes in the data such as the DEMON framework proposed by Ganti et al
[9]. Another is to detect interesting changes in the KDD mining results such as the FOCUS
framework proposed by Ganti et al [8], PAM proposed by Baron et al [3], and the fundamental
rule change detection tools proposed by Liu et al [20]. Our effort differs from these approaches
in the following ways. First, these techniques are proposed either for updating the mining results
or detecting the changes to the mining results with respect to the changes to the data sources.
Unlike our approach, they do not focus on discovering novel patterns from the evolutionary
features of data.

Emerging pattern [7] was proposed to capture significant changes and differences between

datasets. Basically, emerging patterns are defined as itemsets whose supports increase signif-
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icantly from one dataset to another dataset. Thus, when applied to timestamped databases,
emerging patterns can capture emerging trends in business or demographic data. Our study
is different from emerging pattern in that we consider the changes in a sequence of snapshots of
the data while emerging pattern considers only two snapshots. That is, emerging pattern focuses
on local changes while our work addresses the global changes. Consequently, emerging pattern
only needs to measure the degree of change while our work needs to measure both the degree
of change and the frequency of changes. The knowledge discovered by our work and emerging
patterns is different as well. For example, emerging patterns capture useful contrasts between
two snapshots while frequently changing structures capture the evolutionary characteristics of
tree structured XML data.

Temporal Text Mining (TTM) is also concerned with discovering temporal patterns in text
information collected over time. Recently, a particular TTM tasHiscovering and summarizing
the evolutionary patterns of themes in a text streaiwas proposed by Mei and Zhai [22]. The
evolutionary theme patterns (ETP) discovery problem aims to discover the evolution of themes,
i.e. the happening of the Asian tsunami disaster, the statistics of victims and damage, the aids
from the world and the lessons from the tsunami. ETP refers to patterns of objects (themes)
evolving from one status (subtopic) to another status. In contrast, we focus on structural evolution
of hierarchical structured data.

In our previous works [34], [35], we proposed novel approaches for mining evolution of web
usage data. In [35], we propose the first approach to detect events from the click-through data,
which is the log data of web search engines. In [34], we present an algorithm called WAM-Miner
to discoverWeb Access MotifeVAMs) from web usage data. WAMs are web access patterns
that never change ato not change significantlynost of the time (if not always) in terms of
their support values during a specific time period. Compared to this work, in this paper we focus
on discovering XML structures that change frequently in the history.

Our research is also related to works on regularities in time series. These previous works
include partial periodic patterns [10], [11], sequential patterns in single-variable numerical time
series [1], frequent episode [21], and the work [16] which studied the problem of efficiently
mining the phrases whose frequency history curves match a given shape (trend) in time-stamped
text databases. The basic difference between our work and the above works is that most of the

above works consider sets of items or sequences of items while our work focus on more complex
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tree structured sequences.

VIII. CONCLUSIONS ANDFUTURE WORK

This work is motivated by the fact that existing XML data mining strategies focus on discov-
ering knowledge based on statistical measures obtained from the static characteristics of XML
data. They do not consider the evolutionary features of the historical XML data. In this paper,
we proposed techniques to discover a novel type of frequent pattern named frequently changing
substructures (FCS) by analyzing the structural evolution patterns of historical XML documents.
Frequently changing substructures are substructures in XML documents that evolve frequently
and significantly during a specific time period. We proposed a set of evolution metrics to measure
the evolutionary features of XML structures. Based on these proposed metrics, we presented two
algorithms that extract FCS from the historical collection of XML documents. These FCS can
be used to build interesting FCS monitoring framework in a specific domain. They can also be
used in several other applications such as FCS-based classifier, indexing XML documents, XML
query caching, etc. Experimental results showed that the proposed algorithms are efficient and
scalable. Furthermore, both the algorithms can accurately identify the FCS.

As part of future work, we intend to build some of the other applications of FCS such as
FCS-based classifier and XML query caching. We also wish to explore novel types of useful
patterns that may be discovered by integrating content and structural evolution of historical XML

documents.
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