
WAM-Miner: In the Search of Web Access

Motifs from Historical Web Log Data

Qiankun Zhao a, Sourav S Bhowmick a and Le Gruenwald b

aSchool of Computer Engineering, Division of Information Systems, Nanyang
Technological University, Singapore 639798

bDepartment of Computer Science, University of Oklahoma, Norman, USA

Abstract

Existing web usage mining techniques focus only on discovering knowledge based
on the statistical measures obtained from the static characteristics of web usage
data. They do not consider the dynamic nature of web usage data. In this paper, we
focus on discovering novel knowledge by analyzing the change patterns of historical
web access sequence data. We present an algorithm called Wam-Miner to discover
Web Access Motifs (wams). wams are web access patterns that never change or do
not change significantly most of the time (if not always) in terms of their support
values during a specific time period. wams are useful for many applications, such
as intelligent web advertisement, web site restructuring, business intelligence, and
intelligent web caching.

Key words: Web Access Motif, Dynamic Pattern, Web Usage Mining.

1 Introduction

Web Usage Mining (WUM) – the application of data mining techniques to
discover usage patterns from web data – has been an active area of research
and commercialization [24]. Existing web usage data mining techniques in-
clude statistical analysis [24], association rules [16], clustering [22,17], classi-
fication [18], sequential patterns [23], and dependency modeling [13]. Often,
such mining provides insight that helps optimizing the website for increased
customer loyalty and e-business effectiveness. Applications of web usage min-
ing are widespread, ranging from usage characterization, web site performance

Email addresses: assourav@ntu.edu.sg, ggruenwald@ou.edu (Le Gruenwald).

Preprint submitted to Elsevier Science 15 August 2007

(a) The first month

S IDWASs

1 〈a,b,d,c,a,f,g〉
2 〈a,b,e,h,a,f,g〉
3 〈e,f,g,i,n〉
4 〈b,d,c,a,e〉

(b) The second month

S ID WASs

1 〈a,b,d,c,a,f,g〉
2 〈b,d,c,x〉
3 〈e,f,g,i,n〉
4 〈b,e,h,b,d,c,n,f,g〉

(c) The third month

S ID WASs

1 〈b,d,e,a,f,g〉
2 〈b,e,h,b,d,c〉
3 〈e,f,g,i,n〉
4 〈e,f,g,i,n〉

(d) The fourth month

S ID WASs

1 〈b,d,e,a,f,g〉
2 〈e,f,g,i,n〉
3 〈a,b,e,c,f,g〉
4 〈e,f,g,i,n〉

Table 1
Example of WASs

improvement, personalization, adaptive site modification, to market intelli-
gence.

Generally, the web usage mining process can be considered as a three-phase
process, which consists of data preparation, pattern discovery, and pattern anal-
ysis [24]. Since the last phase is application-dependent, let us briefly describe
the first two phases. In the first phase, the web log data are transformed
into sequences of events (called Web Access Sequences (WASs)) based on
the identification of users and the corresponding timestamps. For example,
given a web log archive that records the navigation history of a web site, by
using some existing preprocessing techniques [6,26], the raw log data can be
transformed into a set of WASs. Table 1 shows an example of such WASs.
Here S ID represents a sequence id and a WAS such as 〈a, b, d, c, a, f, g〉 de-
notes a visiting sequence from web page a to pages b, d, c, a, f and finally
to page g. Each sub-table in Table 1 records the collection of WASs for a
particular month. In the second phase, statistical methods and/or data min-
ing techniques are applied to extract interesting patterns such as Web Access
Patterns (waps)[23]. A wap is a sequential pattern in a large set of WASs,
which is visited frequently by users [23]. That is, given a support threshold ξ
and a set of WASs (denoted as A), a sequence W is a wap if W appears as
a subsequence 1 in at least ξ × |A| web access sequences of A. For clarity, in
this paper we call such a wap a frequent wap. Consequently, a sequence that
appears in fewer than ξ×|A| web access sequences of A is called an infrequent
wap. These patterns are stored for further analysis in the third phase.

1 If there are two WASs A1 = 〈B, E, A〉 and A2 = 〈A, B, C, E, A〉, then A1 is a subsequence of A2.

2

1.1 Motivation

From Table 1, it is evident that web usage data is dynamic in nature. For
instance, the WAS 〈 b, d, e, a, f, g 〉 did not exist in the first and second
months but appeared in the third and fourth months. Similarly, the WAS 〈 a,
b, d, c, a, f, g 〉 occurred in the first and the second months but disappeared
after that. The WAS 〈 e, f, g, i, n 〉 became increasingly popular as it occurs
only once in the first three months, but in the fourth month, it occurs twice.
Note that the above dynamic behaviors of WASs can be attributed to vari-
ous factors, such as changes to the content of the web site, users’ familiarity
to the web site structure, arrival of new web visitors, and effects of sudden
occurrences of important real life events.

Such dynamic nature of web usage data poses both challenges and opportuni-
ties to the web usage mining community. Existing web usage mining techniques
focus only on discovering knowledge based on the statistical measures obtained
from the static characteristics of web usage data. They do not consider the
dynamic nature of web usage data. In particular, the dynamic nature of WAS
data leads to the following two challenging problems.

(1) Maintenance of WUM results: Take the WASs in Table 1 as an ex-
ample. The knowledge discovered (e.g., frequent waps) in the first month
using existing techniques will not include the WASs, the timestamps of
which are in the second month and beyond. Hence, the mining results of
existing techniques have to be updated constantly as WAS data changes.
This requires development of efficient incremental web usage mining tech-
niques.

(2) Discovering novel knowledge: Historical collection of WAS data con-
tains rich temporal information. While knowledge extracted from snap-
shot WAS data is important and useful, interesting and novel knowledge
describing temporal behaviors of WASs can be discovered based on their
historical change patterns. Note that in this paper, the term change pat-
terns of a WAS (or wap) indicates the change to the popularity of the
WAS (or wap) in the historical WAS database. The popularity is mea-
sured by support. Traditionally, support has been defined as the percent-
age of times a sequence occurred in a data collection [2]. In our context,
support represents the percentage of times a WAS (or wap) occurred in
a given collection of WASs (called a WAS group). Hereafter, changes to
the WASs (or waps) refer to the changes to the support of the WASs
(or waps).

In this paper, we focus on discovering novel knowledge by analyzing the change
patterns of historical WAS data. Different types of novel knowledge can be
discovered by mining the history of changes to WASs. Particularly, in this

3

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

t1 t2 t3 t4 t5

Time

S
u

p
p

o
rt

W1 W2 W3 W4

popularity
threshold

unpopularity
threshold

Fig. 1. Support of waps over a time period

paper we focus on discovering Web Access Motifs 2 (wams). wams are waps
that never change or do not change significantly most of the time (if not
always) in terms of their support values during a specific time period. For
example, consider Figure 1, which depicts the support values (y-axis) of four
waps (denoted as W1, W2, W3, and W4) from time period t1 to t5 (x-axis).
Note that ti in the x-axis represents a time period (e.g., day, week, month
etc.) and not a particular time point. The support values of W1 do not change
significantly (varying between 0.7 and 0.8), hence, W1 can be considered as a
wam. Similarly, most of the support values of W2 hover around 0.1 (except for
that at t4), therefore, it can be considered as a wam. However, the supports of
W3 and W4 change significantly (e.g., support of W3 changed from 0.8 to 0.4
during the transition from t1 to t2) and, thus, these two waps are not wams.
As we shall see later, the degree of changes is measured using a metric called
conservation rate. wams are useful for many applications such as intelligent
web advertisement, web site restructuring, business intelligence, and intelligent
web caching (discussed in Section 2).

We present techniques to discover two types of web access motifs: popular and
unpopular wams. Given a popular support threshold α, a wam is considered
popular if most of the time its support is greater than α during a specific time
period. For example, reconsider Figure 1. Let α = 0.7. Then, W1 is a popular
wam as its support value is always greater than or equal to 0.7 during the
time period of t1 to t5. A popular wam represents a sequence of pages that are
consistently popular to the website’s visitors over a duration of time. Similarly,
given an unpopular support threshold β, a wam is considered unpopular if most
of the time it has low support (i.e., its support values are less than β) during
a specific time period. An unpopular wam thus represents a sequence of web
pages that are rarely accessed by web users over a time period. For example,
consider W2 in Figure 1. Let β = 0.2, then most of the support values of W2

2 The term “motif” is inspired by the notion of motifs in biology. Motifs in biology are certain patterns
in DNA or protein sequences that are strongly conserved by evolution. Note that strongly conserved does
not mean completely conserved.

4

are less than 0.2 during the period of t1 to t5 (except at t4); hence, W2 is an
unpopular wam. As discussed in Section 2, both popular and unpopular wams
can be beneficial to many applications.

At the first glance, it may seem that the above types of wams can be discov-
ered by postprocessing the results of existing frequent wap mining techniques
[23,26]. However, to the best of our knowledge, the complete set of wams
cannot be efficiently discovered by those existing techniques for the following
reasons (even if we apply them repeatedly to a sequence of snapshot data):

• First, existing techniques focus either on snapshot data [6,23,26] or on de-
tecting the changes to the mining results [4,10,11]. None of these techniques
considers the issue of directly mining the change patterns of waps from the
original data set to discover novel knowledge (e.g., popular and unpopular
wams).

• Second, as we shall see in Section 6, the process of repeatedly mining fre-
quent waps at different time points and post-processing the mining results
to discover wams is expensive and may not discover the complete set of pop-
ular wams. To extract popular wams, it is not necessary to mine frequent
waps since wams are different from frequent waps. wams are based on the
changes to the support counts of the access patterns over a specific time
period. waps, on the other hand, is based on the overall support counts of
the access patterns at a particular timepoint.

• Third, the frequent wap mining process only discovers frequent waps [23] or
maximal contiguous sequences (MCS) [26]. However, a wam can be either a
frequent (popular) or infrequent (unpopular) wap. Consequently, unpopular
wams cannot be discovered using these techniques.

1.2 Contributions

In summary, the major contributions of this paper are as follows.

• We introduce an approach that, to the best of our knowledge, is the first
one to discover popular and unpopular Web Access Motifs (wams) from
the sequence of historical changes to web access patterns. We show with
illustrative examples that wams are useful for many real life applications.

• We present a technique to represent changes to Web Access Patterns (waps)
in term of their support counts. We also propose two metrics called conser-
vation rate and support range to quantitatively measure the significance of
changes to support counts of waps.

• We propose an efficient algorithm called Wam-Miner for discovering pop-
ular and unpopular wams based on the above metrics.

• We present the results of extensive experiments with both synthetic and

5

ID WAMs

W1 < a, b, d, a, f >

W2 < g, m, f, k >

W3 < g, m, c, e, a>

ID WAMs

W4 < g, m, t, u, x >

W5 < t, u, b, d, u >

(i) Popular WAMs

(ii) Unpopular WAMs

ID WAMs

W1 < a, b, d, a, f >

W2 < g, m, f, k >

W6 < a, b, e, h, f >

ID WAMs

W4 < g, m, t, u, x >

W5 < t, u, b, d, u >

(i) Popular WAMs

(ii) Unpopular WAMs

W3 < g, m, c, e, a >

(a) Time t1 (b) Time t2
Fig. 2. wam examples

real datasets that we have conducted to demonstrate the efficiency and
scalability of our algorithm. We also conduct experiments to determine the
quality of our results.

The rest of this paper is organized as follows. In Section 2, we present some
representative applications of wams. In Section 3, we describe the problem
formally and illustrate it using an example. Section 4 introduces a model to
represent the changes to waps and metrics used to detect wams. In Section 5,
the wam mining algorithm is described. Section 6 presents the experimental
results. Section 7 reviews the related works. Finally, the last section concludes
this paper. A shorter version of this paper appeared in [30].

2 Applications of WAMs

Knowledge of wams can be useful in many applications, such as web adver-
tisement, web site restructuring, business intelligence, and web caching. We
now elaborate on some of these applications.

Intelligent web advertisement: It has been claimed that 99% of all web
sites offer standard banner advertisements [5], underlying the importance of
this form of on-line advertising. For many web-based organizations, revenue
from advertisements is often the only or the major source of income (e.g.,
Yahoo.com, Google.com) [3]. The most commonly used pricing schemes em-
ployed in banner advertisements is the cost-per-thousand impressions (CPM)
model where the cost is associated with the amount of exposure of the ad-
vertisement. Several sites also use the cost-per-click (CPC) model, where the
advertiser pays the publisher each time the advertisement banner is clicked
on. These two models indicate that one of the ways to maximize revenues for
the party who owns the advertising space is to design intelligent techniques for
the selection of an appropriate set of advertisements to display in appropriate
web pages.

6

Consequently, there have been several recent research efforts on scheduling
banner advertisements on the web [3]. Selection of banner advertisements is
currently driven by the nature of the banner advertisement, Internet knowl-
edge of the target market, relevance of the web page contents, and popular-
ity of the web pages [3,12]. However, none of these techniques consider the
evolution of web access patterns for the advertisement selection problem. In
particular, wams can be useful for designing more intelligent advertisement
placement strategies. Let us illustrate this with a simple example. Consider
the popular wams in Figure 2 as extracted by our Wam-miner algorithm at
times t1 and t2 where t2 > t1. Observe that W1 and W2 remained as popular
wams at t1 and t2. This indicates that the sequences of web pages in W1 and
W2 consistently received a large number of visitors during the specified time
period from t1 to t2 and are expected to continue this trend in the near future.
Hence, it makes sense to put relevant banner advertisements on these pages in
order to maximize revenues. Note that our approach can easily be integrated
with any existing advertisement selection techniques and does not call for any
drastic change to the existing frameworks.

Web site restructuring: It is well known that ill-structured design of web
sites prevents the users from rapidly accessing the target pages. Recently web
usage mining techniques have been successfully used as a key solution to this
issue [22]. However, none of these techniques exploits the evolving nature of
waps to restructure web sites. Results of wam mining can be used by web site
administrators to restructure their web sites according to the historical access
characteristics of web site visitors. Let us illustrate the usefulness of wams in
this context with an example. Reconsider the wams in Figure 2. The following
information can be gleaned which can be used to restructure web sites.

• Consider the wams, W2 and W4. Both of these wams share the same prefix
(pages g and m). However, W2 is a popular wam whereas W4 is an un-
popular wam during the specified time period from t1 to t2. Hence, web
site administrators may reorganize the pages in W4 in order to improve the
number of visitors to these pages.

• The wam W3 was discovered as a popular wam at time t1 but became
unpopular to web visitors after t1. This may be due to various reasons such
as changes to the web content, currency of the information in the web pages,
poorly structured information, and presence of banner(s) that the consumers
perceive to be out of place with the web pages. Web site administrators can
further investigate the reasons behind this phenomenon and restructure the
site if necessary.

• Observe that W5 consistently remained unpopular to web visitors. This
may be due to various reasons. One of them is that web pages are not easily
reachable from pages in popular wams. Hence, web site administrators may
restructure the web site in a way so that pages in W5 are in close vicinity
of pages in popular wams.

7

Intelligent web caching: Web caching has been used by many business
organizations to reduce the time that their customers must wait for their web
search results. One of the most difficult issues in web caching is to identify
which web pages to cache. The discovery of wams provides a solution to this
problem. For example, pages in the popular wams W1, W2, W3, and W6 in
Figure 2 can be cached for future access because their support counts are large
and are not expected to change.

3 Problem Statement

In general, web log data can be considered as sequences of web pages with
session identifiers [26]. Formally, let P = {p1, p2, . . ., pm} be a set of web
pages. A session S is an ordered list of pages accessed by a user, i.e., S =
〈(p1, t1), (p2, t2), . . . , (pn, tn)〉, where pi ∈ P , ti is the time when the page pi

is accessed and ti ≤ ti+1 ∀ i = 1, 2, 3, . . . , n − 1. Each session is associated
with a unique identifier, called session ID. A web access sequence (WAS),
denoted as A, is a sequence of consecutive pages in a session. That is, A =
〈p1, p2, p3, . . . , pn〉 where n is called the length of the WAS. Note that it is not
necessary that pi 6= pj for i 6= j in a WAS. This is because a web page may
occur more than once in a session due to backward traversals or reloads [26].

The access sequence W = 〈p′1, p′2, p′3, . . . , p′m〉 is called a web access pattern
(wap) of a WAS A = 〈p1, p2, p3, . . . , pn〉, denoted as W ⊆ A, if and only if
there exist 1 ≤ i1 ≤ i2 ≤ . . . ≤ im ≤ n such that p′j = pij for 1 ≤ j ≤ m.

A WAS group (denoted as G) is a bag of WASs that occurred during a
specific time period. Let ts and te be the start and end times of a period.
Then, G = [A1, A2, . . ., Ak] where pi is included in WAS Aj for 1 < j ≤ k
and pi was visited between te and ts. The size of G, denoted as |G|, reflects
the number of WASs in G. Note that, it is possible Ai = Aj for i 6= j in a bag
of WASs. For instance, we can partition the set of WASs on a daily, weekly
or monthly basis, where the timestamps for all the WASs in a specific WAS
group are within a day, a week, or a month. Consider the WASs in Table 1
as an example. They can be partitioned into four WAS groups on a monthly
basis, where WASs whose timestamps are in the same month are partitioned
into the same WAS group.

Given a WAS group G, the support of a WAS A in G is ΦG(A) = |{Ai|A⊆Ai}|
|G| .

When the WAS group is obvious from the context, the support is denoted as
Φ(A). Similarly, when the WAS is obvious from the context, the support is
denoted as Φ.

In our investigation, the historical web log data is divided into a sequence of

8

WAS groups. Let HG = 〈 G1, G2, G3, . . ., Gk 〉 be a sequence of k WAS
groups generated from the historical web log data. Given a wap W , let HW =
〈 Φ1(W), Φ2(W), Φ3(W), . . ., Φk(W) 〉 be the sequence of support values of W
in HG. Then, maximum popularity support of W (denoted as MW) is defined
as MW = Φi where Φi ≥ Φj ∀ 0 ≤ j ≤ k and i 6= j. Similarly, minimum
unpopularity support of W (denoted as UW) is Φr where Φr ≤ Φj ∀ 0 ≤ j ≤ k
and r 6= j. The pair (MW , UW) is called the support range of W (denoted
as R = (MW , UW)). Furthermore, the conservation rate of W is denoted as
CW = F (HW) where F is a function (defined later in Section 4) that returns
the rate of change of support values of W in HW and 0 ≤ CW < 1.

Given the popularity threshold α and a conservation threshold µ, a wap W is
a popular wam if and only if ∀ W ′ ⊆ W , CW ′ ≥ µ and MW ′ ≥ α. Similarly,
given the unpopularity threshold β, a wap W is a unpopular wam if and only
if ∀ W ′ ⊆ W , CW ′ ≥ µ and UW ′ ≤ β. Our objective of wam mining is to find
all popular and unpopular wams in the historical web log data given some
popularity and unpopularity thresholds, and conservation threshold.

4 Modeling Historical WAS

In this section, the problem of how to model the historicalWASs and measure
their change patterns is discussed. We begin by discussing how a WAS Group
is represented followed by the representation of WAS group history. Finally,
we discuss the statistical summarization technique for theWAS group history.

4.1 Representation of WAS Group

Given a WAS denoted as A = 〈p1, p2, p3, . . . , pn〉, in the literature, there are
various ways to represent the relationship among web pages in the sequence
[23,27]. In [23], a WAS is represented as a flat sequence, while in [27] a
WAS is represented as an unordered tree, which was claimed more informative
with the hierarchical structure. In this paper, we adopt the unordered tree
representation of WAS. A WAS tree is defined as TA = (r, N, E), where
r is the root of the tree that represents web page p1; N is the set of nodes
where V = {p1, p2, · · · , pn}; and E is the set of edges in the maximal forward
sequences of A. An example of WAS tree is shown in Figure 3 (a), which
corresponds to the first WAS shown in Table 1 (a).

As a result, a WAS group consists of a bag of WAS trees. Here, all occur-
rences of the same WAS within a WAS group are considered identical. Then
the WAS group can also be represented as an unordered tree by merging the

9

a

g

f

c

d

b

a

g

f

c

d

b

h

e

e

e

f

g

i

n

a

c

d

b

r

(a): WAS tree (b): Extended WAS tree

0.5

0.5

0.5

0.5

0.25

0.250.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

a

g

f

c

d

b

h

e

r

{0.8, (0.6, 0.5)}

{0.9, (0.55, 0.5)}

{0.7, (0.4, 0.2)} {0.6, (0.4, 0.3)}

{0.7, (0.5, 0.4)}

{0.8, (0.5, 0.4)}

{0.8, (0.2, 0.1)} {0.8, (0.35, 0.3)}

(c): H-WAS tree

Fig. 3. Examples

WAS trees. We propose an extended WAS tree to record the aggregated sup-
port information about the bag of WASs within a WAS group. The extended
WAS tree is defined as follows.

Definition 1 [Extended WAS Tree] Let G = [A1, A2, . . ., Ak] be a bag of
WASs, where each WAS Ai, 1 ≤ i ≤ k, is represented as a tree TAi

= (ri, Ni,
Ei). Then, the extended WAS is defined as TG = (r, N, E, Θ), where N =
N1 ∪Nj · · · ∪Nk; E = E1 ∪Ej · · · ∪Ek; r is a virtual root; and Θ is a function
that maps each node in N to the support of the corresponding WAS. 2

Consider the first WAS group in Table 1. The corresponding extended WAS
tree is shown Figure 3 (b), where the value associated with each node is the
Θ value. It can be observed that the common prefix for different WAS trees
is presented only once in the extended WAS tree. For example, the common
prefix of 〈 a, b, d, c, a, f, g 〉 and 〈 a, b, e, h, a, f, g 〉 is 〈 a, b, a, f, g 〉, which
is presented once in the extended WAS tree. Details of how to construct the
extended WAS tree will be discussed in Section 5.

4.2 Representation of WAS Group History

The simplistic method of representing the historical WAS groups is to merge
the sequence of extended WAS trees together to form an historical WAS tree
(called H-WAS tree) in a similar way as we have merged the WAS trees to
form the extended WAS tree. However, the H-WAS tree and extended WAS
tree are different in several aspects. Firstly, all occurrences of the same WAS
tree in one WAS group are considered to be equal, while occurrences of the
same extended WAS tree in a sequence of WAS groups may have different
support values. Secondly, the order of extended WAS trees is important in
the construction of the H-WAS tree, while the order of WAS trees is not
important in the construction of the extended WAS tree. Moreover, the pur-
pose of the extended WAS tree is to record the support values in a specific

10

WAS group, while the purpose of the H-WAS tree is to record the history
of support values of the WASs. Intuitively, the historical support values in
the H-WAS tree may be represented as a time series, where the i th element
represents the support values of the WAS in the i th WAS group.

Definition 2 H-WAS Tree: Let HG = 〈 G1, G2, G3, . . ., Gk 〉 be a sequence
of k WAS groups, where each WAS group Gi, 1 ≤ i ≤ k, is represented as an
extended WAS tree, TGi

= (ri, Ni, Ei, Θ). Then, the H-WAS tree is defined
as HG = (r, N, E, Λ), where r is a virtual root; N = N1 ∪Nj · · · ∪Nk; E =
E1∪Ej · · ·∪Ek; and Λ is a function that maps each node in N to the sequence
of historical support values of the corresponding WAS. 2

Note that, in the H-WAS tree, there is a sequence of support values for each
node; while there is only one support value for each node in the extended
WAS. Rather than using the entire sequence of support values, we propose
different dynamic metrics to summarize the history of support values and
make the H-WAS tree more compact.

4.3 Summarization of Support History

Given a WAS A and sequence of support values HA =
〈 Φ1(A), Φ2(A), Φ3(A), . . ., Φk(A) 〉, the sequence of support values can be
considered as a time series because the support values of a WAS may change
over time in real life. Then, we propose to model the sequence of support
values using the following linear regression model.

Φt(A) = Φ0(A) + λt, where 1 ≤ t ≤ k

Here the idea is to find a “best-fit” straight line through the data points
{(Φ1(A), 1), (Φ2(A), 2), . . ., (Φk(A), k)}, where Φ0(A) and λ are constants
called support intercept and support slope respectively. The most common
method for fitting a regression line is the method of least-squares [25]. By ap-
plying the statistical treatment known as linear regression to the data points,
the two constants can be determined using the following formula [25].

Φ0(A) =
k

∑k
i=1 (i ∗ Φi(A))− (

∑k
i=1 Φi(A))(

∑k
i=1 i)

k
∑k

i=1 (Φi(A))2 − (
∑k

i=1 Φi(A))2

λ =

∑k
i=1 i− (Φ0(A) ∗∑k

i=1 Φi(A))

k

Besides the two constants, there is another measure to evaluate how the re-

11

gression fits the data points actually. It is the correlation coefficient, denoted
as r.

r =
k

∑k
i=1 (Φi(A) ∗ i)− (

∑k
i=1 Φi(A))(

∑k
i=1 i)√

[k
∑k

i=1 (Φi(A))2 − (
∑k

i=1 Φi(A))2][k
∑k

i=1 i2 − (
∑k

i=1 i)2]

The correlation coefficient, r, always takes a value between -1 and 1, with 1
or -1 indicating perfect correlation. The square of the correlation coefficient,
r2, represents the fraction of the variation in Φt(A) that may be explained by
t. Thus, if a correlation of, say 0.8, is observed between them, then a linear
regression model attempting to explain the changes to Φt(A) in terms of t will
account for 64% of the variability in the data [25].

Based on the linear regression-based model for the Web usage data and the
corresponding correlation coefficient, r, we now propose the metric motif con-
servation rate.

Definition 3 Motif Conservation Rate: Let 〈 Φ1(A), Φ2(A), . . ., Φk(A)
〉 be the sequence of historical support values of a WAS A, where Φi(A)
represents the ith support value for A and 1 ≤ i ≤ k. The motif conservation
rate of WAS A is defined as CA = r2 − |λ|. 2

Note that the larger the absolute value of the slope, the more significantly the
support changes over time. At the same time, the larger the value of r2, the
more accurate is the regression model. Hence, the larger the motif conservation
rate CA, the support values of the WAS change less significantly. In other
words, the support values of a WAS are more conserved with the increase in
the motif conservation rate. Also from the regression model, it can be inferred
that |λ| < 1

k
as 0 ≤ Φt(A) ≤ 1. In real life the value of k can be huge, thus |λ|

¿ r ≤ 1. Consequently, we can guarantee that 0 ≤ CA ≤ 1. When CA = 1, the
support of WAS A is a constant where r2 = 1 and λ = 0. Then, we formally
define the popular wam and unpopular wam as follows.

Definition 4 Popular/Unpopular wam: Given the popularity threshold
α and a conservation threshold µ, a wap W is a popular wam if and only if ∀
W ′ ⊆ W , CW ′ ≥ µ and MW ′ ≥ α. Similarly, given the unpopularity threshold
β, a wap W is a unpopular wam if and only if ∀ W ′ ⊆ W , CW ′ ≥ µ and
UW ′ ≤ β. 2

Example 1 Figure 3 (c) shows a part of an H-WAS tree, where the associ-
ated values are the corresponding conservation rate, unpopular support value,
and popular support value in turn. In this example, the waps 〈 a, b, e, h 〉
and 〈 a, f, g 〉 are popular wams, given the thresholds for conservation rate,
popular support threshold, and unpopular support threshold are 0.6, 0.3, and

12

Algorithm 1 Extended WAS tree Construction.
Input: A WAS Group: G = [TA1 , TA2 , . . ., TAn]

Output: TG: the extended WAS tree

1: Create a virtual root node for TG

2: Initialize TG as the first WAS tree
3: for all i = 2 to n do
4: if the root of TAi

does not exist in TG then

5: attach TAi
as a subtree of TG and update Φi((Nj)

6: else
7: for all nodes Nj in WAS tree TAi

do

8: if Nj exists in the current subtree of TG then
9: Update Φi((Nj)

10: else
11: create a new child node Nj under the current node
12: end if
13: end for
14: end if
15: end for

16: Return(TG)

0.05 respectively.

5 Algorithms for WAM Mining

In this section, we proposed an algorithm called Wam-Miner to discover the
two types of wams from the historical web usage data. The mining process
consists of two phases: the H-WAS tree construction phase and the wam
extraction phase. We discuss these phases in turn.

5.1 Phase 1: H-WAS Tree Construction

Given a collection of web log data, we assume that it is represented as a set of
WASs with corresponding timestamps. This phase consists of two steps. First,
the sequence of extended WAS tree is constructed. Then, the H-WAS tree
is built. Both algorithms for extended WAS tree construction and H-WAS
tree construction are similar. The basic idea is to match the trees and merge
the common prefix to make the representation compact. As the only difference
between the extended WAS tree construction and H-WAS tree construction
is the attributes associated with the nodes, in this section, only details of the
extended WAS tree construction are presented.

The extended WAS tree construction algorithm is shown in Algorithm 1.
Given a WAS group, firstly, the extended WAS tree is initialized as the
first WAS tree in the group with a virtual root node. Then, the next tree
is compared with the existing extended WAS tree to merge them together.
That is, if a WAS tree or part of a WAS tree does not exist in the extended

13

Algorithm 2 Agg-wam-Ext
Input: The H-WAS tree with values for the dynamic metrics: HG

Thresholds: µ, α, and β

Output: The popular and unpopular wams: WP and WU

1: for all node ni ∈ HG do
2: if Mni ≥ α then
3: if Cni ≥ µ then
4: WP = ni

⋃
WP

5: end if
6: else
7: if Uni ≤ β then
8: if Cni ≥ µ then
9: WU = ni

⋃
WU

10: end if
11: end if
12: else
13: prune ni

14: end if
15: end for

16: Return(WP , WU)

WAS tree, they will be inserted into the extended WAS tree. Otherwise, the
WAS trees are merged into the subtrees that rooted at the node identical to
the root of the WAS trees. For both the extending and merging process, their
support values are updated accordingly. This process iterates for all the WAS
trees in the WAS group.

Similarly, given a sequence of extended WAS trees, the H-WAS tree is con-
structed. Note that, the extending and merging process follows the same rules
as the above rules for constructing the extended WAS tree. However, the at-
tributes in the H-WAS tree are different from the attributes in the extended
WAS tree. For example, in the extended WAS tree, there are only one sup-
port values associated with each node as shown in Figure 3. In the H-WAS
tree, initially there will be a sequence of support values for a WAS, which is
associated with the last node. In the H-WAS tree construction process, for
each WAS, the sequence of support values are transformed into the conser-
vation rate and support range using the linear regression model we discussed
before.

5.2 Phase 2: WAM Extraction

Given the H-WAS tree, with the user-defined threshold for conservation rate
(µ), popularity threshold (α), and unpopularity threshold (β), the wam ex-
traction phase is actually a traversal over the H-WAS tree. The wam extrac-
tion is to enumerate all possible WASs and check the metric values against
the corresponding user-defined thresholds. As the number of WAS groups
can be huge, the size of the H-WAS tree can be huge if we store all the sup-
port value sequences. As a result, we present two algorithms. One is called
aggregated wam-Extraction (Agg-wam-Ext), which summarize sequences of

14

Algorithm 3 Inc-wam-Ext
Input: The H-WAS tree with sequences of support values: HG

Thresholds: µ, α, and β

Output: The popular and unpopular wams: WP and WU

1: for all node ni ∈ HG do
2: Calculate the support range
3: if Mni ≥ α then
4: Calculate the motif conservation rate
5: if Cni ≥ µ then
6: WP = ni

⋃
WP

7: end if
8: else
9: if Uni ≤ β then

10: Calculate the motif conservation rate
11: if Cni ≥ µ then
12: WU = ni

⋃
WU

13: end if
14: end if
15: else
16: prune ni

17: end if
18: end for

19: Return(WP , WU)

support values using the dynamic metric values, the other is called incremen-
tal wam-Extraction (Inc-wam-Ext), which supports incremental mining by
storing sequences of support values.

The Agg-wam-Ext algorithm is shown in Algorithm 2. Here, the support
range is first compared with α and β to determine the potential groups of
popular wams and unpopular wams to which the corresponding wap belongs
to. If MA ≥ α and UA ≤ β then, the motif conservation rate is further compared
with the threshold µ. These waps whose motif conservation rate is no greater
than µ are assigned to the popular wams and unpopular wams accordingly.
Lastly, the sets of popular and unpopular wams are returned.

Example Let us take the H-WAS tree in Figure 3(c) as an example. Let
α = 0.3, β = 0.05, and µ = 0.7. First, we check the root of the H-WAS tree,
its Mr > 0.3 and Cr > 0.7, then node a is included in the popular wams.
Then, nodes b, d, c are checked in a similar way. In this example, node e is
pruned out but its child node h is included, then node e is directly linked to
node b in the final result. 2

The Inc-wam-Ext algorithm is shown in Algorithm 3. Here, firstly, the sup-
port range is calculated on the fly and compared with the α and β value. Then,
if the support range is out of the range for popular and unpopular wams, we
do not need to calculate the motif conservation rate values at all. Otherwise,
we calculate the motif conservation rate on the fly and compare the value
with µ. These waps whose motif conservation rate is no greater than µ are
assigned to the popular wams and unpopular wams accordingly. Lastly, the
sets of popular and unpopular wams are returned.

15

The difference between this two wam extraction algorithms is that Agg-
wam-Ext is space efficient but it does not support incremental mining and
changes of parameter values. That is, when new access sequences are inserted,
the whole H-WAS-tree has to be re-constructed again. Whereas, the Inc-
wam-Ext requires more space but is more flexible as it supports incremental
mining. That is, rather than re-construct the whole H-WAS-tree, only the
new data are incorporated. In summary, the Inc-wam-Ext is designed for
very dynamic datasets, while Agg-wam-Ext is designed for very large but
relatively static datasets. Performance of the two algorithms shall be compared
in the next section.

6 Performance Evaluation

In this section, we present experimental results to evaluate the performance
of our proposed Wam-Miner algorithm. As there are two strategies for wam
extraction, namely aggregated and incremental, we refer to the two variants
of wam-Miner algorithms as Agg-W-M and Inc-W-M, respectively. All ex-
periments were conducted on a P4 1.80 GHz PC with 512Mb main memory
running Windows 2000 professional. The algorithm is implemented in Java.

Both real and synthetic web log datasets are used in the experiments. The
real data is the web log UoS obtained from the Internet Traffic Archive [1].
It records the historical visiting patterns for University of Saskatchewan from
June 1, 1995 to December 31, 1995. There were 2,408,625 requests with 1
second resolution and 2,981 unique URLs. The synthetic data set is generated
using the synthetic tree generation program used in [28]. The characteristics of
the synthetic data we used are shown in Table 2. The program first constructs
a tree representation of the web site structure based on two parameters, the
maximum fan out of a node (denoted as F) and the maximum depth of the tree
(denoted as D). Based on the web site structure, a collection of WASs with
the corresponding timestamps are generated by mimicking the user behaviors.
In Table 2, S is the average size of the WASs and N is the number of WASs
in the corresponding datasets.

6.1 Scalability and Efficiency

As the size of the Web usage data collection can be affected by two factors: the
number of WASs (indicates the size of the time window for a given dataset)
and the average size of each WAS, two sets of experiments have been con-
ducted to evaluate the scalability of our proposed algorithm. In the first set
of experiments, denoted as E1 in Figure 4(a), synthetic datasets D1, D2, D3,

16

Dataset N S F D

D1 10000 15 15 30

D2 20000 15 15 30

D3 30000 15 15 30

D4 40000 15 15 30

D5 50000 15 15 30

D6 20000 10 10 25

D7 20000 20 10 30

D8 20000 25 15 35

D9 20000 30 20 35

Table 2
Synthetic datasets

D4, and D5 are used, where the average size of each WAS is fixed while the
number of WASs is varied. In the second set of experiments, denoted as E2

in Figure 4(a), synthetic datasets D2, D6, D7, D8, and D9 are used, where the
number of WASs is fixed while the average size of each WAS varies.

Figure 4(a) shows the running time of the algorithm as the total number of
nodes in the dataset increases. The user defined time interval, α, β, µ are set
to 12 hours, 0.01, 0.025, and 0.8 accordingly. The running time increases as
the total number of nodes increases from 100k to 600k. The reason is that with
more nodes, both the cost of constructing the trees and the traversal over the
H-WAS tree becomes more expensive. However, we observed that even for
the same total number of nodes, the running time is much expensive when the
number of WASs is large and the average size of each WAS is small. This is
because the cost of calculation of Φ0 and the motif conservation rate is quite
expensive when the number of extended WAS trees is large. Note that for
the same user-defined time interval, a larger number of WASs indicates that
there are more extended WAS trees. It can be observed that the Inc-W-M
outperformed the Agg-W-M in terms of running time as we explained in the
algorithm section. It can be observed that the cost of calculating the motif
conservation rate values is very expensive, which is the gap between the two
algorithms shown in Figure 4(a). As a result, the cost of calculating the motif
conservation rate for WASs other than the candidates makes the running
time of Agg-W-M almost doubles the running time of Inc-W-M.

Besides the size of the datasets, experiments are also conducted to show how
various parameters such as user-defined time intervals, motif conservation rate,
popularity threshold, and unpopularity threshold, affect the efficiency of the
mining algorithm. Figure 4(b) shows how the user-defined time interval affects
the running time using D1, D4 and D9. We set α = 0.1, β = 0.005, and µ = 0.8.
Here, we use the average number of WASs in the WAS groups to represent
the size of the time interval. It can be observed that the running time decreases
as the size of the user-defined time interval increases. The reason is that the
number of extended WAS trees is small as the average size of the WAS group

17

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 3 4 5k

R
un

ni
ng

 T
im

e
(s

)

a=0.05*k, ß=0.005, µ=0.8

a=0.1, ß=0.001*k, µ=0.8

a=0.1, ß=0.005, µ=0.5+0.1*k

0

100

200

300

400

500

600

700

800

1 2 3 4 5k

N
um

be
r

of
 W

A
M

s

a=0.05*k, ß=0.005, µ=0.8

a=0.1, ß=0.001*k, µ=0.8

a=0.1, ß=0.005, µ=0.5+0.1*k

(a) (b)

(c) (d)

0

5000

10000

15000

20000

25000

100 300 500 700
Total number of nodes (K)

Agg-W-M-E1 Inc-W-M-E1

Agg-W-M-E2 Inc-W-M-E2

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

20 70 120 170 220
Average size of WAS

Agg-W-M D9
Inc-W-M D9
Agg-W-M D4
Inc-W-M D4
Agg-W-M D1
Inc-W-M D1

R
un

ni
ng

 ti
m

e
(s

)

R
un

ni
ng

 ti
m

e
(s

)

Fig. 4. wam experiment results.

increases. As a result, the computation cost of calculating the support range
and motif conservation rate decreases. Similarity, the experiments verified that
the Inc-W-M outperformed the Agg-W-M in terms of running time.

Figure 4(c) shows the relationship between the running time and the thresh-
olds for Inc-W-M algorithm using D9. There are three variables in this figure,
the x-axis k changed from 1 to 5, and the values of α, β, and µ are dependent
on k. For example, in the first set of experiment, β = 0.005 and µ = 0.8;
while α= 0.05 × k. Similarly, the values of β and µ are changed in a similar
way in the remaining two experiments. It can observed that when α increases,
the running time decreases because the number of popular wams decreases
accordingly. When β increases, the running time increases because there are
more unpopular wams. When µ increases, the running time is almost stable,
which is because of the computation cost is independent of the threshold of
motif conservation rate. Note that the running time of Agg-W-M algorithm
does not change when the thresholds changed because the cost of calculating
values of the dynamic metrics are always required to summarize the sequences
of support values.

18

0

10000
20000

30000
40000
50000

60000

70000
80000
90000

D1 D2 D3 D4 D5
Dataset

S
iz

e
of

 H
-W

A
S

 tr
ee

 (K
B

)

WAM-Miner WAM-IncrementalAgg-W-M Inc-W-M

Fig. 5. Size of the H -WAS tree.

Figure 5 shows the size of the two H -WAS tree in the Agg-W-M and Inc-
W-M algorithms. The first 5 datasets in Table 2 were used. From the results,
it is obvious that the Inc-W-M outperformed the Agg-W-M algorithm in
terms of memory space requirement. As we mentioned, the reason is that in
the Inc-W-M approach the entire support sequences are stored while in the
Agg-W-M approach only the values for the dynamic metrics were stored.

6.2 Quality of Popular and Unpopular WAMs

As there are four parameters, the user-defined time interval, α, β, and µ, in
our algorithm, in this section, we investigate how the four parameters affect
the quality of the mining results. By varying one parameter and fixing the val-
ues for the other three parameters, the effects of each parameter are evaluated
in the following experiments. Note that the size of the time interval is mea-
sured by the average number of WAS in each WAS group. In the following
experiments, the UoS real dataset is used.

In the first set of experiments, α, β and µ are fixed to 0.1, 0.005, and 0.8 respec-
tively, the user-defined time interval varies from 40 to 200. Table 3(a) shows
the number of popular wams and unpopular wams with different user-defined
time interval. We observed that as the time interval increases, the number
of popular and unpopular wams increases. By looking into the results, we
observed that popular and unpopular wams with smaller user-defined time
intervals are also popular and unpopular wams with larger user-defined time
intervals. We also compare the number of popular wams extracted by our
Agg-W-M with the number of popular wams extracted by repeatedly using
wap-Mine 3 [23]. We observed that the wap-Mine based approach cannot ex-
tract all the popular wams. Note that, in the wap-Mine-based popular wam
extraction approach, the motif conservation rate is calculated using the num-

3 Downloaded from http://www.cs.ualberta.ca/∼tszhu

19

(a) Number of wams

Size of G 40 80 120 160 200

Popular wams 67 138 253 306 327

Unpopular wams 106 219 237 342 395

wap-Mine 21 26 32 36 48

(b) Prediction Accuracy

|P1| |P2| Accuracy α β µ

10 20 0.94 0.4 0.05 0.8

10 20 0.93 0.3 0.05 0.8

10 20 0.95 0.4 0.01 0.7

15 15 0.93 0.4 0.05 0.8

15 15 0.94 0.4 0.05 0.6

15 15 0.93 0.4 0.01 0.6

20 10 0.93 0.4 0.05 0.8

20 10 0.94 0.3 0.05 0.8

20 10 0.93 0.3 0.05 0.9

Table 3
wam experimental results.

ber of times a wap is frequent in the sequence of WAS groups divided by the
total number of WAS groups.

By fixing the user-defined time interval to 40, the effects of the other three
parameters are evaluated in similar ways. Figure 4(d) shows how the total
number of popular and unpopular wams changes with different α, β, and µ.
Here, we introduce a variable, k, as the x-axis. Then, the values of α, β, and µ
are represented using k. For example, in the first set of experiments, β = 0.005
and µ = 0.8; while α= 0.05 ∗ k. It can be observed that the total number of
wams increases as β increases, α decreases, or µ decreases.

Table 3(b) shows the quality of the regression-based model for extracting
wams. In this experiment, the UoS dataset is partitioned into 30 WAS groups
and is divided into two parts, denoted as P1 and P2. P1 is used to construct the
regression model and P2 is used to evaluate the accuracy of the model. That
is, we extract the popular and unpopular wams in P1 using the regression
model and check whether these are still popular/unpopular wams in P2. The
accuracy is defined as the percentage of popular/unpopular wams obtained
from P1 that are still popular/unpopular wams in P2. Formally, let R1 and
R2 be the sets of popular and unpopular wams returned by the Agg-W-M

20

using P1. Let Z1 and Z2 be the sets of popular and unpopular wams based
on the entire dataset. Then accuracy is denoted as 1

2
(|R1∩Z1|

|Z1| + |R2∩Z2|
|Z2|). The

results show that the accuracy of our model is quite high for different size of
P1. Furthermore, the quality of the model is not affected by the user-defined
thresholds as here we only identify whether a wam is still popular/unpopular
in P2. The reason is that the more training data is used, the more accurate
the results are.

7 Related Work

7.1 Existing Web Usage Mining Approaches

Existing Web usage data mining techniques include statistical analysis [24],
association rules [16], sequential patterns [23], and dependency modeling [13].
Among them, the issue of Web access pattern mining is the foundation of Web
usage mining. In this section, we review the state-of-the-art Web access pattern
mining techniques and their extensions considering the dynamic nature of Web
usage data.

Web access pattern mining is defined to extract hidden patterns from the
navigation behavior of Web users [6]. Different algorithms have been proposed
to mine different types of access patterns from the Web logs such as the
maximal frequent forward sequence mining [6], the maximal frequent sequence
mining with backward traversal [26]. There are also algorithms for general Web
access pattern mining such as the wap-Mine [23], the maximal and closed
access pattern mining [8,27], etc.

The maximal frequent forward sequence mining approach in [6] transforms the
browsing patterns of users to maximal forward sequences. This work is based
on statistically dominant paths. A maximal forward reference is defined as the
sequence of pages requested by a user up to the last page before backtracking.
Suppose the traversal log contains the following traversal path for a user: 〈
A, B, C, B, D 〉, after the transformation, the maximal forward sequences
are 〈 A, B, C 〉 and 〈 A, B, D 〉. However, this approach may lose some
useful information about the structure [26]. Considering the above example,
the structural information about the need to have a direct link from page C
to page D is lost.

The maximal frequent sequence proposed in [26] keeps backward traversals
in the original sequences and thus preserve some structural information, i.e.,
the sibling relation within a tree structure. However, the maximal frequent
sequence approach requires contiguous page access in the pattern, which limits

21

the patterns to be found. Suppose there are two sessions 〈 A, B, C, A, E, A,
D 〉 and 〈 A, B, C, A, D 〉. The access pattern of 〈 A, B, C, A, D 〉 may be
missed since the access patterns 〈 A, B, C 〉 and 〈 A, D 〉 are not contiguous
in the first session.

Two other approaches have been proposed in [8,27] to overcome this limitation
by considering the sessions as unordered trees. In [27], the authors proposed
a compact data structure, FST-Forest to compress the trees and still keeps
the original structure. A PathJoin algorithm was proposed to generate all
maximal frequent subtrees from the forest. However, this approach is neither
scalable nor efficient. In [8], Chi et al. use the canonical form to represent the
unordered trees. The authors proposed the CMTreeMiner algorithm to mine
the maximal and closed frequent subtrees. It is claimed to be much faster than
the PathJoin algorithm.

Another general algorithm is the wap-Mine approach proposed in [23]. The
authors proposed a compressed data structure, wap-tree, to store data from
the Web logs. The wap-tree structure facilitates the mining of frequent Web
access patterns. Different from the Apriori-based algorithms, the wap-Mine
algorithm avoids the problem of generating explosive numbers of candidates.
Experimental results show that the wap-Mine is much faster than the tradi-
tional sequential pattern mining techniques. Although the wap-tree technique
improved the mining efficiency, it recursively reconstructs large numbers of in-
termediate wap-trees that require expensive operations of storing intermediate
patterns.

7.2 Mining Change Patterns and Trends

There are several techniques proposed recently for maintaining and updating
previously discovered knowledge. They focus on two major issues. One is to
actualize the knowledge discovered by detecting changes in the data such as
the DEMON framework proposed by Ganti et al [11]. Another is to detect
interesting changes in the KDD mining results such as the FOCUS framework
proposed by Ganti et al [10], PAM proposed by Baron et al [4], and the fun-
damental rule change detection tools proposed by Liu et al [19]. Our effort
differs from these approaches in the following ways. First, these techniques
are proposed either for updating the mining results or detecting the changes
to the mining results with respect to the changes to the data sources. Un-
like our approach, they do not focus on discovering novel patterns from the
evolutionary features of data.

Emerging pattern [9] was proposed to capture significant changes and differ-
ences between datasets. Basically, emerging patterns are defined as itemsets

22

whose supports increase significantly from one dataset to another dataset.
Thus, when applied to timestamped databases, emerging patterns can cap-
ture emerging trends in business or demographic data. Our study is different
from emerging pattern in that we consider the changes in a sequence of snap-
shots of the data while emerging pattern considers only two snapshots. That is,
emerging pattern focuses on local changes while our work addresses the global
changes. Consequently, emerging pattern only needs to measure the degree of
change while our work needs to measure both the degree of change and the
frequency of changes. The knowledge discovered by our work and emerging
patterns is different as well. For example, emerging patterns capture useful
contrasts between two snapshots while frequently changing structures capture
the evolutionary characteristics of tree structured xml data.

Temporal Text Mining (TTM) is also concerned with discovering temporal
patterns in text information collected over time. Recently, a particular TTM
task − discovering and summarizing the evolutionary patterns of themes in
a text stream − was proposed by Mei and Zhai [21]. The evolutionary theme
patterns (ETP) discovery problem aims to discover the evolution of themes,
i.e. the happening of the Asian tsunami disaster, the statistics of victims and
damage, the aids from the world and the lessons from the tsunami. ETP refers
to patterns of objects (themes) evolving from one status (subtopic) to another
status. In contrast, we focus on structural evolution of hierarchical structured
data.

In our previous work [29], we proposed a novel approach to discover the fre-
quently changing structures from the sequence of historical structural changes
to unordered xml. The frequently changing structures are defined as sub-
structures that changed frequently and significantly in the history based on
the three dynamic metrics: structure dynamic, version dynamic and degree
of dynamic. Two algorithms are proposed to discover all substructures that
change frequently in the history. Compared to this work, in this paper we
focus on discovering web usage patterns that do not change frequently in the
history.

Our research is also related to works on regularities in time series. These
previous works include partial periodic patterns [14,15], sequential patterns in
single-variable numerical time series [2] and frequent episode [20]. The basic
difference between our work and the above works is that most of the above
works consider sets of items or sequences of items while our work focus on
more complex tree structured sequences.

23

8 Conclusions

This work is motivated by the fact that existing web usage mining techniques
focus only on discovering knowledge based on the statistical measures ob-
tained from the static characteristics of web usage data. They do not consider
the dynamic nature of web usage data. We focus on discovering novel knowl-
edge by analyzing the change patterns of historical web access sequence data.
Specifically, we propose an algorithm called Wam-Miner that extracts popu-
lar and unpopular Web Access Motifs (wams) from historical web usage data.
wams are waps that never change or do not change significantly most of the
time (if not always) in terms of their support values during a specific time
period. wams are useful for many applications, such as intelligent web ad-
vertisement, web site restructuring, business intelligence, and intelligent web
caching. Experimental results on both synthetic data and real datasets show
that Wam-Miner is efficient and scalable. More importantly, it can extract
novel knowledge that cannot be discovered by existing web usage mining ap-
proaches.

References

[1] http://ita.ee.lbl.gov/. Internet Traffic Archive.

[2] R. Agrawal and R. Srikant. Mining Sequential Patterns. ICDE, 3–14, 1995.

[3] A. Amiri and S. Menon. Efficient Scheduling of Internet Banner Advertisements.
ACM TOIT, 3(4):334–346, 2003.

[4] S. Baron, M. Spiliopoulou, and O. Gunther. Efficient Monitoring Patterns in
Data Mining Environments. ADBIS, 253–265, 2003.

[5] C. Buchwalter, M. Ryan, and D. Martin. The State of Online Advertising: Data
Covering 4thQ 2000. TR AdRelevance, 2001.

[6] M.-S. Chen, J. S. Park, and P. S. Yu. Efficient Data Mining for Path Traversal
Patterns. TKDE, 10(2):209–221, 1998.

[7] L. Chen, S. S. Bhowmick, and L. T. Chia. fracture Mining: Mining Frequently
and Concurrently Mutating Structures from Historical xml Documents. In Data
and Knowl. Eng., volume 59, pages 320–347, 2006.

[8] Y. Chi, Y. Yang, Y. Xia, and R. R. Muntz. CMTree-Miner: Mining both Closed
and Maximal Frequent Subtrees. In Proc. of PAKDD , 2004.

[9] G. Dong and J. Li. Efficient Mining of Emerging Patterns: Discovering Trends
and Differences. KDD, 43–52, 1999.

24

[10] V. Ganti, J. Gehrke, and R. Ramakrishnan. A Framework for Measuring
Changes in Data Characteristics. PODS, 1999.

[11] V. Ganti and R. Ramakrishnan. Mining and Monitoring Evolving Data.
Handbook of massive data sets, 593–642, 2002.

[12] J. Garofalakis, P. Kappos, and D. Mourloukos. Web Site Optimization using
Page Popularity. IEEE Internet Computing, 3(4):22–29, 1999.

[13] S. Gunduz and M. T. Ozsu. A Web Page Prediction Model based on Click-
Stream Tree Representation of User Behavior. SIGKDD, 535–540, 2003.

[14] J. Han, G. Dong, and Y. Yin. Mining Segment-wise Periodic Patterns in Time-
Related Databases. KDD , 1998.

[15] J. Han, G. Dong, and Y. Yin. Efficient Mining of Partial Periodic Patterns in
Time Series Database. ICDE., pp. 106–115, 1999.

[16] X. Huang, A. An, N. Cercone, and G. Promhouse. Discovery of Interesting
Association Rules from Livelink Web Log Data. ICDM, 763–766, 2002.

[17] N. Labroche, N. Monmarche, and G. Venturini. Web Sessions Clustering with
Artificial Ants Colonies. WWW, 2003.

[18] T. Li, Q. Yang, and K. Wang:. Classification pruning for Web-Request
Prediction. WWW, 2001.

[19] B. Liu, W. Hsu, and Y. Ma. Discovering the Set of Fundamental Rule Changes.
In Proc. of SIGKDD, 335–340, 2001.

[20] H. Mannila, H. Toivonen, and A.I. Verkamo. Discovering Frequent Episodes in
Sequences. KDD , pp. 210–215, 1995.

[21] Q. Mei and C. Zhai. Discovering Evolutionary Theme Patterns from Text: An
Exploration of Temporal Text Mining. In Proc. of KDD , pp. 98–207, 2005.

[22] B. Mobasher, R. Cooley, and J. Srivastava. Creating Adaptive Web Sites
Through Usage-based Clustering of URLs. IEEE KDEX Workshop, 1999.

[23] J. Pei, J. Han, B. Mortazavi-asl, and H. Zhu. Mining Access Patterns Efficiently
from Web Logs. PAKDD, 396–407, 2000.

[24] J. Srivastava, R. Cooley, M. Deshpande, and P.-N. Tan. Web Usage Mining:
Discovery and Applications of Usage Patterns from Web Data. SIGKDD
Explorations, 1(2):12–23, 2000.

[25] S. Weisberg. Applied Linear Regression. Wiley; 2 edition, July, 1985.

[26] Y. Xiao and M. H. Dunham. Efficient Mining of Traversal Patterns. DKE,
39(2):191–214, 2001.

[27] Y. Xiao, J.-F. Yao, Z. Li, and M. H. Dunham. Efficient Data Mining for Maximal
Frequent Subtrees. ICDM, 379–386, 2003.

[28] M. J. Zaki. Efficiently Mining Frequent Trees in a Forest. SIGKDD, 2002.

25

[29] Q. Zhao, S. S. Bhowmick, M. Mohania, and Y. Kambayashi. Discovering
Frequently Changing Structures from Historical Structural Deltas of Unordered
XML. In Proc. of ACM CIKM, 2004.

[30] Q. Zhao, S. S. Bhowmick, and L. Gruenwald. WAM-Miner: In the Search of
Web Access Motifs from Historical Web Log Data. In Proc. of ACM CIKM ,
2005.

26

