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ABSTRACT
Apoptosis of a healthy cell is a process of programmed cell
death regulated via well-established signaling pathways. How-
ever, in cancer cells apoptotic pathways are in atypical forms
that lead to continuous survival, growth and proliferation
of tumor cells. A major objective in cancer research is to
investigate the dynamics of signaling pathways that influ-
ence the apoptosis of tumor cells. Inspired by the success
of dynamical modeling and data analysis in cancer biology,
in this study we propose a hybrid modeling approach com-
bining computational models with experimental phospho-
proteomics data. We construct a knowledge-based model
of ordinary differential equations (ODEs) for the apoptotic
signaling network and subsequently infer model parameters
(e.g. reaction rates) from real phosphoproteomics data for
three breast tumor cell lines, i.e., BT-20, MCF7 and MDA-
MB-453 using a Bayesian framework of inference. The model
is used to predict apoptosis in response to various perturba-
tions such as caspase knockdown for each of the three cell
lines which can be validated using the experimental litera-
ture. The inferred changes of the parameters reveal drug
effects on diverse cell lines under the treatment with the
drug of Erlotinib. Therefore, our hybrid modeling approach
represents a novel method for understanding and predicting
the impact of anti-cancer therapies on cancer cells at the
systems level.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Time series analysis;
G.2.2 [Graph Theory]: Network problems; I.2.6 [Learning]:
Parameter learning; J.3 [Life and Medical Sciences]: Bi-
ology and genetics.

General Terms
Theory.
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1. INTRODUCTION
Programmed cell death, also known as apoptosis, is a well-

coordinated cellular process that is essential for the home-
ostatic growth and functioning of a multicellular organism
as it removes damaged cells to avoid harmful effects such as
toxicity [1]. Apoptosis is regulated by several signaling path-
ways and crosstalks among the pathways which are highly
complex. In malignant cells these signaling pathways are
dysregulated which allows the abnormal cells to grow and
proliferate beyond their expected lifetime leading to diseases
such as cancer [2, 3]. Therefore, in-depth understanding
of the apoptotic signaling pathways is very important for
finding effective treatments to selectively kill tumor cells.
However, the complexity of the regulatory mechanisms of
apoptosis (especially of cancer cells) remain elusive [1]. It is
still difficult to model and simulate the dynamics of cellular
signaling pathways partly due to insufficient understanding
of the biochemical kinetics at the systems level. To address
these challenges, researchers in computational systems biol-
ogy have developed in silico systems modeling approaches to
gain deeper insights into these pathways. These modeling
approaches can be broadly classified into two basic types,
i.e. knowledge-driven and data-driven modeling.

Numerous knowledge-driven dynamical models have been
proposed to study apoptosis. For example, authors of [4]
proposed a computational model consisting of 52 ordinary
differential equations (ODEs), for estimating apoptosis based
on activation of the mitochondrial signaling network. In [5],
another model of apoptosis was proposed to analyze the ef-
fects of fast degradation of CASP8 and CASP3 proteins on
apoptosis. The study suggests that a rapid increase in the
activity level of CASP3 can be sufficient for initiating apop-
tosis. The authors of [6] proposed a computational model
combining the strengths of ODEs and Boolean models for
analyzing the behaviors of the NF-kB pathways. The study
in [7] used boolean model to analyse Mitogen-Activated Pro-
tein Kinase (MAPK) pathways. The authors of [8] modeled
signaling pathways of TNF and EGFR proteins, which were
connected to the Gene Regulatory Network (GRN) inside
nucleus and the computational model was encoded using
ODEs.

On the other hand, data-driven statistical modeling ap-



proaches focus on the inference of model structures or pa-
rameters directly from experimental data. For example, the
study in [2] used partial least squares regression (PLSR) to
reveal anti-cancer drug effects on three breast cancer cell
lines, i.e., BT-20, MCF7 and MDA-MB-453. In [9], a basal
and signaling profiles for different treatments in the panel of
“NCI-ICBP-43” cell lines were generated. The study iden-
tified several proteins that can be potential biomarkers for
enhanced drug effect on tumor cells. The authors also used
the PLSR method to predict the sensitivities of cancer cells
to 23 targeted therapeutics. The significance of prediction
was assessed using correlation between predicted and mea-
sured GI50 values. In [10], a comprehensive growth factor
response dataset was analyzed to understand the roles of
AKT and ERK proteins in the growth of breast tumor. The
authors used unsupervised k-means clustering (where k =
4) to identify characteristics of signaling that varied across
the dataset with respect to cell lines, ligands and recep-
tors. The study in [11] provided a Bayesian approach to
combining gene expression data with phosphorylation data,
in response to 26 stimuli, to identify network components
transmitting signals for a diverse set of stimuli in rat and
human cells.

Although both the knowledge-driven and data-driven mod-
eling approaches are promising to yield insights into cancer
cellular signaling, it is desirable to combine the strengths
of the two types of modeling approaches. In our previous
study [12], we proposed a hybrid model that used ODE-
based simulations and Genetic Algorithm for model selec-
tion to predict the drug-induced rewiring in the apoptotic
signaling network in cancer cells. We changed the network
topology while fixing the model parameters to find rewiring
in response to drug-induced perturbations. Since the signal-
ing networks inside the cells are complex, containing several
interconnected pathways, there could be multiple causal ef-
fects responsible for drug sensitivity. For instance, changes
in the kinetic rates may affect the drug sensitivity of tumor
cells [13]. Thus, deriving model parameters from experimen-
tally measured phosphorylation levels of signaling proteins
can help in understanding the network dynamics and drug
effects.

In this paper, we propose a new hybrid model of cancer
signaling network, which is used to conduct new prediction
and analysis of anticancer drug effects. Compared with [12],
this paper presents significant extensions in the following as-
pects. First, the signaling network in [12] has been expanded
to a larger and more comprehensive network that contains
more proteins including kinases and phosphatase for phos-
phorylation and dephosphorylation of signaling proteins, re-
spectively. Secondly, instead of using a genetic algorithm
for heuristic optimization in model selection, here we use a
well-studied software tool named ABC-SysBio [14]. ABC-
SysBio is based on a framework of Bayesian learning that
can infer the model parameters from real data. Thirdly, by
integrative and comparative analysis of data from multiple
cancer cell lines, we use our model to predict context-specific
apoptosis. Moreover, we perform in silico caspase knock-
down experiments for each of the aforementioned three cell
lines and assess the regulatory impact of caspases on apopto-
sis. A major difference between this paper and [12] is that,
while we focused on the inference of network rewiring in
[12], here we infer parameters (i.e. reaction rate constants)
for a fixed network topology. The rationale is that most

events of network rewiring induced by drug treatment are
edge deletions, which can be represented by the change of
rate constants associated with network edges. In a sense,
such network rewiring events can be considered as a special
type of changes of parameters. However, we are aware that
not all network rewiring can be represented by a change of
parameter, such as adding a new edge. This issue will be
discussed at the end of this paper. Our pipeline of studies
is illustrated with the flowchart in Figure 1.

Given a knowledge-based ODE model derived from the
literature, our method can infer parameters from experi-
mental data by iterative optimization and also predict cell
line specific changes of apoptosis in response to drug effects.
Our results demonstrate that the hybrid modeling approach,
which combines the knowledge-driven dynamical modeling
and data-driven statistical modeling, can predict signaling
activities and cell fates (apoptosis in this paper), more ac-
curately than models without calibration to real data. The
study, therefore, demonstrates the scalability of the pro-
posed computational model to diverse cancer cell lines. In
several studies, such as in [9], where experimental cell sig-
naling data are available, but experimental apoptosis data
are missing, our model can be used to predict the apoptosis
and the drug effects. Considering the inherent complexity
of cancer and the emergence of large amount of new “omics”
data from cancer research, such a hybrid modeling strategy
would be useful for understanding cancer and discovery of
novel anti-cancer therapeutics. Our model which has been
tested on the three different breast cancer cell lines can fa-
cilitate the development of “precision medicine” [15].
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Figure 1: Flow diagram depicting the steps in our
method. We derive the signaling network manually us-
ing GeneGO MetaCore database and encode the ODEs
for the network using Michaelis-Menten kinetics. The
ODE-based computational model is calibrated using cell
line specific data. Subsequently, for each cell line, we
predict the apoptosis and assess the impact of caspases
on apoptosis using in silico knockdown experiments.

2. METHODS

2.1 Single-Cell Data
For our study, we used an experimental single-cell dataset,

published by the group of Michael B. Yaffe [2], to calibrate
and test our computational model of signaling network (Fig-
ure 1). This dataset contains time-course data for both
cell signaling activities (measured by phosphorylation lev-



els) and its corresponding cell fates measured with flow cy-
tometry. These data are available for three breast cancer
cell lines, i.e., BT-20, MCF7 and MDA-MB-453. Phospho-
rylation levels of 35 proteins were recorded at 8 time points
(numbered as 0, 1, 2,· · ·, 7). The indices from 0 to 10
correspond to the time points of 0, 0.1, 0.25, 0.5, 1, 2, 4,
6, 8, 12 and 24 hours, respectively, after the induction of
the drug to the cancer cells. Out of the 35 proteins, how-
ever, data of only 32 proteins are available in the published
dataset. The cell fate data were measured for 6 cellular
phenotypes (i.e., Apoptosis, Proliferation, G1, S, G2 and
M) in the three breast cancer cell lines over 24 hours at
five time points corresponding to a subset of the aforemen-
tioned experimental time points (i.e. 0, 6, 7, 8 and 9). The
measured signaling and cell fate data are synchronized with
respect to the time points, e.g., the aforementioned time
point 6 refers to the physical time of 4 hours after the drug
induction for both signaling and cell fate measurements. Six
types of drug treatments were applied to the cancer cells, i.e.
Dimethyl sulfoxide (DMSO), Erlotinib (TAR), Doxorubicin
(DOX), Doxorubicin and Erlotinib together (DT), Doxoru-
bicin followed by Erlotinib (D-T), and Erlotinib followed by
Doxorubicin (T-D). Then the phosphorylation levels of sig-
naling proteins and cell phenotypes in response to the treat-
ments were measured. The study in [2] reported that the
level of apoptosis could be increased by as much as 500%
in response to the T-D treatment compared with the other
treatments. Henceforth, this dataset is referred to as the
“Yaffe’s dataset”.

2.2 Derivation of Signaling Network Structure
Model construction of signaling network is a crucial step

for subsequent simulation, prediction and data analysis. Our
signaling network was derived using the GeneGO MetaCore
database [16]. The diagram of the constructed network is
shown in Figure 2. The network comprises a total of 71
nodes and 131 edges, in which there are 19 proteins with
phosphorylation data available in the Yaffe’s dataset [2].
The network includes kinases and phosphatases that cat-
alyze the phosphorylation and dephosphorylation reactions,
respectively. The types of reactions included in the net-
work are phosphorylation, dephosphorylation and cleavage.
Since our goal is to study the dynamics of phosphorylation
of proteins in a signaling network, we did not represent pro-
tein complexes or regulation of gene expression (e.g. tran-
scription and translation) explicitly. Our network includes
several important proteins from different apoptotic path-
ways, such as BID, p53, CASP9, CASP3, CASP8, CASP6.
Although in this paper we have focused on the study of
responses of breast cancer cells to Erlotinib, this network
model of signaling pathways could be adapted to study other
aspects of apoptosis and the effects of other drugs.

2.3 Kinetic Modeling
For the signaling network manually constructed (Figure

2), we encode the kinetics in ODEs using the CellDesigner
software [17]. The ODEs for biochemical reactions in the
network were formulated based on the Michaelis-Menten ki-
netics [18]. The computational model comprises 71 ODEs
and 163 reaction rate constants. The numerical solution of
the ODEs in the form of time-series data was obtained us-
ing the MATLAB ODE solver. We denote the activity level
of protein X as [X], the rate constant for the ith catalysed

reaction as ki and Michaelis-Menten rate constant by mi.
For example, the ODE for pSTAT3 with respect to time t
is given as:

d

dt
[pSTAT3] = k1 · [STAT3] · [pEGFR]/(m1 + [STAT3])

+ k2 · [STAT3] · [pCHK1]/(m2 + [STAT3])

+ k3 · [STAT3] · [pP38]/(m3 + [STAT3])

− k4 · [pSTAT3] · [pPH10]/(m4 + [pSTAT3]),

where [pSTAT3] and [STAT3] are the concentrations of the
phosphorylated and unphosphorylated forms of the STAT3
protein. Here we assume that the overall concentration of
each protein (i.e. both phosphorylated and unphosphory-
lated) in a cell is stable, so that the phosphorylation levels
(measured as the percentage of copies of each protein in the
phosphorylated form) can represent the cellular state. The
steady state constraint is mathematically encoded as :

d

dt
[pSTAT3] +

d

dt
[STAT3] = 0.

2.4 Context-Specific Modeling
A long-standing challenge for dynamic modeling in sys-

tems biology is parameter estimation, for which various meth-
ods have been proposed [19, 20, 21]. Several software have
been developed based on Bayesian inference for parameter
estimation and model ranking using likelihood function [22].
However, for complex ODE models, deriving the likelihood
function is not always possible. To address this issue, we use
the software suite called ABC-SysBio [14]. A very impor-
tant feature of ABC-SysBio is that it is likelihood-free by
using the framework of Approximate Bayesian computation
(ABC). Moreover, ABC-SysBio is able to handle missing
data. A critical issue for parameter inference is overfitting
of model with the experimental data. However, parameter
estimation methods based on Bayesian inferential techniques
are promising to address the issue of overfitting [14].

Using the Bayesian inference based parameter estimation,
we are able to calibrate the knowledge-derived network model
to real data, and thereby make the model context-specific.
To this end, we incorporate cell line specific data for our
model calibration. A breast cancer subtype can be caused
by mutations in thousands of genes [23]. To understand
context-specific drug sensitivity of breast cancer, data from
diverse breast cancer cell lines can be analysed together [24].
In this study we use a generic network topology in Figure 2
to predict drug effects in the three breast cancer cell lines,
i.e., BT-20, MCF7 and MDA-MB-453. The model is cali-
brated with signaling data (i.e., independent variables) from
each of the three cell lines. Then we predict the cell line spe-
cific apoptotic response (i.e., dependent variable) and assess
the correlation between in silico and experimental apoptosis
data. To study the impact of caspases on apoptosis, we per-
form in silico caspase knockdowns experiment on each of the
three cell lines. The knockdown simulations show that dif-
ferent cell lines have different signaling dynamics which can
be caused by a combination of overactivation and suppres-
sion of the network edges in the cancer signaling pathways.



Figure 2: Apoptosis signaling network. The network kinetic parameters were inferred from the phosphoproteomics
data from [2]. Nodes in cyan color (total 19) represent proteins with phosphoproteomics data available in Yaffe’s
dataset. The black and red colored edges represent the activation and inhibition of the signals, respectively. The
blue edges indicate the inhibitory drug effect induced by Erlotinib on EGFR signaling pathway, i.e., blockage of signal
transduction in BT-20 cells as inferred from the drug-sensitive phosphorylation dataset in [2]. The same model, after
calibration with cell line specific drug sensitive data from [2], was used to analyse drug effects on three breast cancer
cell lines, i.e., BT-20, MCF7 and MDA-MB-453.



3. RESULTS

3.1 Simulations with Random and Inferred Pa-
rameters

To demonstrate the importance of parameter inference
from real data, we first simulated signaling and phenotypic
responses using the network model with 1000 sets of ran-
domly generated parameters, and compared the predictions
with the experimental data in [2] for the BT-20 cell line.
The initial phosphorylation level for each protein was fixed
to one while the rate constants were varied with uniformly
generated random numbers. We computed the sum of Eu-
clidean distances between the simulated and experimental
data for each of the 19 proteins. Euclidian distances for
signaling proteins were calculated by comparing signaling
levels of the 19 proteins in Yaffe’s dataset with simulated
signaling data at 8 time points (numbered as 0, 1, 2,· · ·,
7). Since the experimental data were missing for quite a
few time points (i.e. 1, 2, 3, 4, 5), we compared the sim-
ulated and real time-series datasets only on the available
time points. For apoptosis, the Euclidean distance was cal-
culated by comparing the experimental apoptosis data with
simulated apoptosis data at 5 time points (i.e. 0, 6, 7, 8
and 9). The distribution of the Euclidean distances for the
signaling data of the 19 proteins and apoptosis, based on
the 1000 sets of random parameters, are shown in Figure 3.
Next, we will calibrate the model using the Yaffe’s phospho-
rylation dataset and show that, after model calibration, the
goodness of fit between predicted and real apoptosis data
can be improved.

To infer parameters from the real data, the input for the
ABC-SysBio software was a vector containing phosphory-
lation levels of 19 proteins from the Yaffe’s dataset which
was iteratively compared with a vector of simulated signal-
ing data. The output of ABC-SysBio was a vector of esti-
mated model parameters that optimized the goodness of fit
between the simulated time-series data with the real data.
The initial phosphorylation levels for the 19 proteins in the
model were set to the initial levels in the Yaffe’s data at
time point 0. For other proteins in the network, of which
the initial phosphorylation levels were unknown, the initial
phosphorylation level was set to the dimensionless numeri-
cal value of one [25]. Apoptosis data in [2] was not used for
the parameter inference. There are totally 163 parameters
in the network model, and all of them were inferred. The
nabla symbols (in red) in Figure 3 represent the Euclidean
distance between the simulated and experimental data after
model calibration, which shows the improvement in good-
ness of fit for signaling and apoptosis data after model cali-
bration. The plots of the predicted time-course phosphory-
lation data and apoptosis data (after parameter inference)
along with corresponding real data are shown in Figure 4,
and 5(a), respectively.

3.2 Prediction of Apoptosis
Apoptosis in a cell depends on various molecular processes

including signal transduction, gene regulation and metabolic
activities. We aim to test if our model, after being trained
with only a limited amount of signaling data from [2], would
be able to predict changes in apoptosis accurately when com-

pared with observed in vitro measurements in drug sensitive
cells. The experimental dataset in [2] contains both signal-
ing and cell fate data. We have used only the signaling data
(excluding the cell fate data) to train our model. Initially
we predicted apoptosis using the model in Figure 2 with
random parameters for 1000 times. The distribution of the
Euclidean distances between the simulated data (using ran-
dom parameters) and real data of apoptosis is shown in the
bottom-right panel of Figure 3. We also predicted apop-
tosis using the calibrated model with parameters inferred
from real signaling data (but not apoptosis data), and com-
pared the predicted time-series data with the real data of
apoptosis. The comparison result for the BT-20 cell line
is shown in Figure 5(a). The Euclidean distance between
Yaffe’s real data of apoptosis and the data predicted by the
trained model was 18.8985. Both the simulated and exper-
imental apoptosis levels were found to be increasing with
time. There is a strong correlation between two time series,
with Pearson correlation coefficient 0.994. These observa-
tions indicate a close association between in vitro and in
silico phenotypic observations of programmed cell death.

We used a similar training procedure to calibrate the com-
putational model in Figure 2 with the time-course drug
sensitive data for the hormone-sensitive Michigan Cancer
Foundation-7 (MCF7) cell line from [2]. The MCF7 cancer
cell line is insensitive to the ERL/DOX combination of drug
treatment, which otherwise, caused high apoptosis level in
BT-20 cells. Our calibrated model was able to predict the
apoptosis with the Pearson correlation coefficient of 0.9569.
The predicted apoptosis is shown in Figure 5(b). We further
trained the network model in Figure 2 with drug sensitive
data for the MDA-MB-453 cell line. The predicted apopto-
sis for the MDA-MB-453 cell line is shown in Figure 5(c).
The Pearson correlation coefficient is 0.90, indicating a very
strong linear correlation between the in silico and experi-
mental apoptosis data.

3.3 Virtual Knockdown of Caspases
The caspase proteins are key players in regulating apopto-

sis. Caspases can be categorized into Initiator (e.g. CASP8,
CASP9) and Executioner caspases (e.g. CASP3, CASP6).
Initiator caspases are responsible for activating executioner
caspases via chain reactions. Once activated, Executioner
caspases degrade several cellular components in order to
induce the morphological changes for apoptosis [26]. En-
hanced cell death in cancer cells is often driven by caspases
after EGFR inhibition by anti-cancer drugs like Erlotinib.
Pro-apoptotic molecules, such as CASP8 and CASP6, have
been found to be important variables for regulating apop-
tosis in the BT-20 cell line [2]. To further understand the
roles of caspases in the regulation of apoptosis, we performed
in silico knockdown of CASP8 and CASP6. The predicted
effects of knockdown in the BT-20 cell line are shown in
Figure 6(a). We did three knockdown experiments, namely,
CASP8 knockdown, CASP6 knockdown and the simultane-
ous knockdown of both CASP8 and CASP6. We set the ac-
tivity level of CASP8 or CASP6 to zero, initially one by one,
and then simultaneously both. All other model parameters
were kept unchanged during the knockdown experiments.
A decrease in apoptosis level was observed for each of the
knockdown experiments. The decrease in the apoptosis level
was higher for CASP8 knockdown than for CASP6 knock-
down for the BT-20 cell line. The effect of combined CASP8



Figure 3: Distributions of Euclidean distances (in blue) between the simulated and the Yaffe’s data for each of the 19
signaling proteins and apoptosis (bottom-right panel) for 1000 sets of random parameters for the BT-20 cell line. The
nabla symbol (in red) represents the Euclidean distance between the simulated and experimental data after model
calibration.

Figure 4: Fitting of simulation data to experimental data for the 19 proteins for the BT-20 cell line from [2] based on
inferred parameters for the signaling network.

and CASP6 knockdown was higher than individual CASP8
or CASP6 knockdown. The simulation result suggests that
the caspases were important molecules for regulating apop-
tosis. There is evidence of CASP8 contributing to enhanced
cell death when EGFR is suppressed [27, 28].

We also simulated CASP8 and CASP6 knockdown in the
MCF7 cells. We found that the CASP8 and CASP6 knock-
down did not affect the apoptosis in the MCF7 drug sensitive
cells. The apoptotic responses, before and after knockdowns,

were similar at different time points indicating that these
two knockdowns had almost no impact on the enhanced drug
sensitivity. The effects of CASP8 and CASP6 knockdown on
apoptosis in trained model for the MCF7 cell line are shown
in Figure 6(b). Despite caspases knockdown, the apoptosis
remained similar to the apoptosis before caspases knock-
downas. The different rate constants for edges downstream
of EGFR are shown in Table 1. The rate constants in the
trained model for the edges CASP6-CASP8, CASP8-CASP9
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Figure 5: Prediction of apoptosis and comparison of cell line specific computational apoptosis data with experimental
apoptosis data from [2] for three cell lines, i.e., BT-20, MCF7 and MDA-MB-453. The calibrated computational model
in Figure 2 was able to predict the cell line specific apoptosis with high Pearson correlation coefficients, such as 0.994
in BT-20, 0.0.9569 in MCF7 and 0.904 in MDA-MB-453 cell lines.

Table 1: Activation rate constants downstream of EGFR among different breast cancer cell lines

Network edge BT-20 (DMSO) BT-20 (Drug) MCF7 (DMSO) MCF7(Drug)
MDA-MB-453
(DMSO)

MDA-MB-453
(Drug)

EGFR-RAS 0.99994 6.53E-06 0.59745 6.63E-06 0.39985 9.64E-06

RAS-bRaf 0.79519 7.12E-06 0.39931 6.55E-06 0.54668 9.51E-06

EGFR-Stat3 1.1956 0.00089811 0.49992 0.19786 0.69579 9.99E-06

Stat3-PI3K 0.14384 7.73E-06 0.29652 9.37E-06 0.29368 9.96E-06

CASP6-CASP8 0.094878 0.20336 3.31E-06 6.89E-06 0.049838 0.09958

CASP8-CASP3 0.096599 0.50483 0.00097789 0.0072124 0.00073772 0.0099999

CASP8-CASP9 0.0090839 0.60083 3.91E-06 7.88E-06 0.00090093 9.85E-06

CASP9-CASP3 0.89505 1.5073 0.29154 0.69989 0.24888 0.49941
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Figure 6: Effects of CASP8 and CASP6 knockdown on apoptosis in trained models for the BT-20, MCF7, and MDA-
MB-453 cell lines. The increase of apoptosis is weakened in response to the knockdown in BT-20 and MDA-MB-453
cells. Moreover, the combined effect of knockdown of CASP6 and CASP8 was higher than the individual knockdown.
However, the caspase knockdown has little impact on apoptosis of MCF7 cell line as the apoptotic curves for CASP6
and CASP8 knockdown remained similar to the apoptosis before the knockdown.



and CASP8-CASP3 were 6.889e-06, 7.8777e-06 and 7.2124e-
03, respectively. This indicates that, due to the blockage of
signals, the CASP6 and CASP8 were not able to send pro-
apoptotic signal to induce cell death, and therefore CASP6
and CASP8 were not significant drivers of apoptosis in the
drug sensitive MCF7 cells. However, for CASP9-CASP3 the
rate constant was 0.69989, indicating that CASP9 may play
an active role in stimulating apoptosis in the MCF7 cells.
There are several pieces of experimental evidence indicat-
ing the down regulation of CASP8 in different breast cancer
cells including MCF7, MB231, SKBR3 and HCC1937 [2, 29].
Promoter methylation has been reported to be one impor-
tant reason for reduced CASP8 signaling profile in MCF7
cell line [29]. The study in [2] found that CASP6 was not a
strong driver of apoptosis in MCF7 cell line. The activation
of the CASP9 in MCF7 cells following treatment with DNA
damaging agents has been reported in [30].

Subsequently, we performed similar virtual knockdown of
CASP6 and CASP8 for the MDA-MB-453 cell with results,
shown in Figure 6(c). We found that CASP6 knockdown has
slightly more impact on apoptosis than CASP8. The rate
constants for the caspase edges (Table 1) CASP6-CASP8,
CASP8-CASP9 and CASP8-CASP3 were 0.09958, 9.9999e-
03 and 9.8506e-06, respectively. Since the rate for CASP6-
CASP8 was higher than CASP8-CASP3 and CASP8-CASP9,
CASP6 seems able to stimulate apoptosis more strongly
than CASP8. The edge CASP9-CASP3 with rate constant
of 0.49941 may also contribute to the apoptosis. In sum-
mary, our virtual knockdown experiments suggest that CASP6
appeared to be more effective in inducing apoptosis for the
BT-20 and MDA-MB-453 cell lines, but not for the MCF7
cell line. By contrast, CASP8 seems not important for
regulating apoptosis of the MCF7 and MDA-MB-453 cells.
CASP9 is predicted to play an important role in stimulating
apoptosis for all the three cell lines.

3.4 Predicting Drug-Induced Pathway Alter-
ations

Although in this paper we have focused on the parame-
ter estimation on a network of fixed topology, the predicted
changes of parameters (in Table 1) can be used further to
predict network rewiring events. For example, if a rate con-
stant in Table 1 is lower than a threshold of say 0.001, then
we consider the corresponding edge deleted from the net-
work. In Figure 2, we plotted several blue arrows to rep-
resent such edge deletion events, which represent predicted
drug effects where signal transductions were inhibited in the
downstream of EGFR, according to the predicted values of
rate constants in Table 1. The activation rate constants in
the blue edges were significantly low. For example, in BT-
20 cells following the drug treatment, the rate constants for
the edges EGFR-RAS, RAS-bRAF, EGFR-STAT3, STAT3-
PI3K, CASP8-CASP9, and CASP9-CASP3 were 6.5294e-06,
7.1158e-06, 8.9811e-04, 7.7281e-06, 0.60083, and 1.5073, re-
spectively (Table 1).

The inferred parameters show that in the DMSO traet-
ment data (that basically represented cancer cells), several
edges (e.g. EGFR-RAS) that are known to be causal for
breast cancer, were transmitting signals at a higher rate,
whereas the signaling from CASP6 and CASP8 were inhib-
ited. By contrast, the signaling from CASP9 remained effec-
tive for different treatment. The model calibration predicted
higher rate constants for several edges which could be acti-

vated by the inhibition of EGFR. Moreover, the inferred rate
constants suggest that the signaling from the Initiator (e.g.
CASP8) to the Executioner Caspase (e.g. CASP3) could be
blocked in the cancer cells. However, in the drug sensitive
cells, the signaling between the Initiator and Executioner
caspases can be activated. Our simulation-based findings
about the blockage and activation of signaling pathways as
drug effects may be used to explain some experimental ob-
servations reported in the literature [31, 32, 33].

4. CONCLUSION AND DISCUSSION
In this paper, we proposed a hybrid modeling approach

which integrates dynamical ODE modeling with data-driven
statistical learning to uncover the mechanism of anti-cancer
drug effects on cancer cells. The ODE based computational
model of signaling pathways was calibrated for three breast
cancer cell lines, i.e., BT-20, MCF7 and MDA-MB-453, by
iteratively fitting to the cell-line specific phosphoproteomics
data. The calibrated model was then used to simulate the
cellular responses (e.g. cell death) to different drug-induced
perturbations. We also identified the blockage in the path-
ways downstream of EGFR leading to enhanced drug sen-
sitivity in the BT-20 cells. Our results of comparing model
prediction with real data suggested that model calibration
by Bayesian inference of parameters from real data can im-
prove the accuracy in predicting time-course signaling and
apoptosis data. Our virtual experiments of caspase knock-
down have also yielded some insights into the mechanisms
of apoptotic regulation. The changes in activation rates
inferred from the real data can be used to map network
rewiring events induced by the anticancer drug of Erlotinib.
In conclusion, our hybrid modeling method can take into
account both prior knowledge and real data, to capture the
context-specific dynamics of cancer cell fate. The models
constructed and calibrated as such can be used to do sim-
ulation, prediction, and data analysis. Therefore, they will
be instrumental for the precision medicine, as more biomedi-
cal knowledge is accumulated and more patient-specific data
become available.

Despite the promising performance and prospect of the
hybrid modeling in cancer systems biology, a few challenges
remain open. Without attempting to be complete, we list
some of the challenges here, as a discussion about future
work. First, to calibrate a dynamic model against time-
series real data, it is crucial to align time points between
simulated and real time-course data. This is challenging for
multiple reasons, such as, there may be missing time points
in the real data; cellular processes tend to be multiscale
by nature (e.g. changes in signal transduction occur much
faster than gene expression or apoptosis). Secondly, the ac-
curate inference of network models from limited amounts of
data could be hindered by issues like overfitting, lack of iden-
tifiability, etc. Different models might fit the same dataset
equally well, if the information from the real data is insuffi-
cient to distinguish the models. Hybrid modeling that takes
into account of prior knowledge may help address this is-
sue, but the prior knowledge itself might be incomplete or
biased. Thirdly, the relation between network structures
and parameters has long been a fundamental question in
systems biology. In this paper, we assumed that a fixed net-
work structure with parameters being estimated from real
data could capture the context-specific alterations in cancer



cells. Moreover, we have attempted to reconcile the param-
eter changes with network rewiring by predicting edge dele-
tions from the activation rate constants that were inferred to
be low. However, this may not be sufficient to fully address
the issue, as some network rewiring events like the addition
of a new edge cannot be represented by the change of pa-
rameters of the existing edges. Fourthly, different proteins
in a network could have very different ranges of signaling
activities, thus an appropriate normalization method would
be needed to avoid potential bias in the optimization process
of parameter inference from real data. This is more crucial
when there is noise in the measurement, especially for the
single-cell data such as the Yaffe’s dataset used in this paper.
Another long-standing challenge is how to validate computa-
tional predictions. In this paper, we have mainly used qual-
itative comparisons of real and predicted time-course data
and cited evidence from the literature. Such types of valida-
tion are indirect and may not be conclusive in some cases.
Last but not the least, for the context-specific modeling of
cancer cell fate and drug effects, we need to integrate diverse
types of data. Here we have mainly used the phosphopro-
teomics data. Other types of data, such as somatic mu-
tations, copy number variations, epigenetic modifications,
gene expression, etc., should also be taken into account. In-
deed, the fusion of dynamic network models with genomic
information would be particularly important for the appli-
cations of computational techniques in precision medicine.
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