
ArcheGEO: Towards Improving Relevance of Gene Expression
Omnibus Search Results

Huey-Eng Chua

Nanyang Technological University

Singapore

hechua@ntu.edu.sg

Lisa Tucker-Kellogg

Duke-NUS Medical School

Singapore

lisa.tucker-kellogg@duke-nus.edu.sg

Sourav S Bhowmick

Nanyang Technological University

Singapore

assourav@ntu.edu.sg

ABSTRACT
Transciptomic data stored in the Gene Expression Omnibus (GEO)
serves thousands of queries per day, but a lack of standardized

machine-readable metadata causes many searches to return irrele-

vant hits, which impede convenient access to useful data in the GEO
repository. Here, we describe ArcheGEO, a novel end-to-end frame-

work that improves results from the GEO Browser by automatically
determining the relevance of these results. Unlike existing tools,

ArcheGEO reports on the irrelevant results and provides reasoning

for their exclusion. Such reasoning can be leveraged to improve

annotations of metadata.
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1 INTRODUCTION
The transcriptome is the set of RNA transcripts present in a cell

or set of cells. Measuring RNA abundance in different tissue-types,

timepoints, or contexts is a popular method to pursue biological

questions [31] and is sometimes used for medical questions in hu-

man samples [72]. Multiple public repositories of transcriptomic

data have been established: ArrayExpress (AE) [1], the Genomic Ex-
pression Archive (GEA) [5], and Gene Expression Omnibus (GEO) [4].
In particular, GEO is growing rapidly. The growth of GEO since its

2020 size [15] has been 64%, with 159481 transcriptome series entry

records. Hence, we interpret GEO to be the dominant repository.

GEO serves diverse needs throughout the biomedical sciences,

and its usage is 15,000 accessions per day by 1000 unique users.

Purposes of GEO use have been recorded by NCBI (https://www.

ncbi.nlm.nih.gov/geo/info/citations.html) with the following most

common: (1) discovering function of uncharacterized genes and ge-

netic networks by analyzing of spatial and temporal transcriptomic

patterns [34], (2) validating interesting gene expression trends by

cross-comparison [33, 66], (3) substantiating experimental discus-

sion and findings [16, 55] and (4) providing insights to related fields

(e.g., gene set analysis, cell-type composition analysis) through

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

BCB ’22, August 7–10, 2022, Northbrook, IL, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9386-7/22/08. . . $15.00

https://doi.org/10.1145/3535508.3545531

re-analysis and re-interpretation of GEO data [41, 63]. GEO cur-

rently provides two interfaces for data retrieval, namely, the GEO
Browser (https://www.ncbi.nlm.nih.gov/geo/browse/) and a suite of

programmatic access utilities (https://www.ncbi.nlm.nih.gov/geo/

info/geo_paccess.html).

Retrieval ofGEO entries typically relies on keyword-based search

on GEO metadata since researchers may not know the exact identi-

fiers of the entries of interest. The lack of standardized machine-

readable metadata (e.g., usage of ontologies or thesaurus to describe
biological entities) hinders the reuse of GEO entries [19, 68, 69]

as they can affect the relevance of the search results. For exam-

ple, searching “human breast cancer” in the GEO DataSets (https:
//www.ncbi.nlm.nih.gov/gds) yields 172 results of which 17 are

non-human, 20 are non-breast, 18 are non-malignant (Figure 1, last

accessed: June 26, 2022). When using GEO records for a biologically-

defined purpose, users must open each record and inspect the head-

er data (i.e., metadata) to verify compliance with the defined pur-

pose, before proceeding with the use.

Internally, a keyword query on GEO is transformed to a search

query containing a complex set of attribute-value pairs withAND/OR

connectives (e.g., Search details text box in Figure 1). It may seem

that we can address the aforementioned problem by directly speci-

fying relevant attribute-value pairs in the advanced search feature

of GEO. However, this may not necessarily be the case. For example,

searching “(breast cancer[Description]) AND human[Organism]”
still retrieves the result related to prostate cancer (Figure 1). Fur-

thermore, the number of search results now decreases to 147. If

we use (breast cancer[Title]) AND human[Organism] as a query,
the result size further decreases to 113. In addition, it is cognitively

challenging for an end user to find the right set of attribute-value

pairs and their AND/OR connectives to retrieve all relevant results.

Various metadata-focused approaches have sought to improve

GEO data reusability and can be broadly classified as (1) manual

curation-based [32, 69], (2) automated natural language process-

ing (NLP)-based [19, 27], and (3) gene expression data inference-

based [30, 38]. Amongst the three approaches, manual curation

produces the best result quality, but requires expert knowledge and

is extremely labor-intensive. Although leveraging gene expression

data can be used to infer metadata elements such as cell type, or-

ganism and platform [68], the amount of information that can be

inferred is still very limited and may not yield a rich enough meta-

data to annotate the GEO entries. Furthermore, finding relevant

entries by seeking similar expression patterns could lead to confir-

mation bias in the results. That is, if one searches for entries using

gene expression similarity, then they will have improved power to

find hits that resemble previous hits (e.g., similar to pre-existing

knowledge of gene expression levels for that disease), but may not
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Figure 1: Search results on GEO.

have equal improvement at obtaining hits that are dissimilar or dif-

ferent. In comparison, NLP-based approaches can potentially yield

a much richer metadata because they extract structured elements

from free-text description of the entry provided by the submitter.

Several NLP-based approaches provide annotations that are

general descriptions of the entries (e.g., disease and drug anno-

tation [69]). Others provide annotations that facilitate subsequent

tasks. Examples include automatic tagging of samples as perturba-

tion or control for comparison analysis [27] and automatic tagging

of time series to facilitate dynamic analysis [19]. Such NLP-based

approaches complement existing GEO interfaces to improve the

search result quality for specific research goals [73].

These approaches focus on annotating existing GEO records.

Search engines such as GEO Browser leverage these annotations
to generate search results based on user-specified keywords (i.e.,
queries) and typically work on the assumption that the annota-

tions are correct, which may not always be the case. For instance,

GDS6100 which is related to prostate cancer instead of breast can-

cer is erroneously reported as a search result in the GEO Browser
for query keywords “human” and “breast cancer” (Figure 1). This is
because manual curation-based annotation can still be error prone

either due to error during data entry of the annotation or insuffi-

cient domain knowledge of the curators. Similarly, NLP-based and

gene expression data inference-based approaches may yield wrong

annotation due to poor quality of training data or poor design of

inference algorithm. Hence, it is paramount to have a verification
component to check the relevance of search results in order to improve
the search quality. In this paper, we propose a novel end-to-end

framework called ArcheGEO (Automated Relevance CHEcker for
GEO), built on top of GEO, to realize this component.

Given keywords specified by a user, ArcheGEO automatically
identifies a set of irrelevant matches (if any) in the results returned

by the GEO Browser and provides reasons for their irrelevance by

addressing the irrelevant match finding (IMF) problem. For instance,

ArcheGEO will identify the second result in Figure 1 as irrelevant

and provide reasons for it. Under the hood, it first reconstructs the

original query as a set of queries that are disease- and organism-

centric. To this end, it first extracts disease-related or phenotype-

related concepts from user keywords and GEO metadata. Then, it

leverages controlled vocabularies to determine the equivalence of
the concepts. The reconstructed queries are sent to GEO and the

results returned by GEO are subjected to irrelevance checks and
then categorized according to their relevance to the disease-topic of

the user-provided keywords. Users can make use of the categorized

results to extract relevant results for investigation and to redirect

further inspection efforts (if required). The reasons for irrelevance

can also be leveraged to improve annotations of the metadata. Our

experimental study demonstrates the effectiveness and superiority

of ArcheGEO in identifying relevant and irrelevant matches.

The rest of the paper is organized as follows. We elaborate on the

challenges to realize ArcheGEO in Section 2. We formally introduce

the IMF problem in Section 3 and describe relevant and irrelevant
matches in query results in Section 4. The ArcheGEO framework

is detailed in Section 5. In Section 6 we report the performance

of ArcheGEO. We survey related research in Section 7. The last

section concludes the paper.

2 CHALLENGES
Named Entity Recognition. In the GEO Browser, a query is a list

of keywords (e.g., “breast cancer” and “human”) that is provided by
a user to describe their search intent whereas a returned documen-

t/result can consist of several fields (e.g., title, summary, platform,
and organism) in the gene expression dataset (GDS) record metada-

ta. Identification of entities and terms (i.e., named entity recognition

(NER)) is usually performed on the document and query and these

are then evaluated to determine if a document is relevant to the

query. NER for biomedical terms is extremely challenging due to

the technical terminology they contain and the presence of long

and complex noun phrases [35]. For instance, the prostate cancer

cell line MR49F has synonyms ENRZ 49F and 49FENZR which are

lexically dissimilar. In addition, biomedical terms can be abbreviat-

ed, contain common English words (e.g., breast adenocarcinoma in

GDS5026) and may even be context dependent (e.g., Cdc2 refers to
two completely unrelated genes in budding and fission yeast) [35].

Further, some biomedical terms have to be inferred from the meta-

data. For example, in the GDS record GDS3580, we can extract the

disease concept of “Pulmonary sarcoidosis” from the title. However,

there is no explicit mention of lung. Instead, it has to be inferred
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from biomedical ontology. Hence, generic parsers tend to perform

poorly on biomedical-related queries and documents. Commercial

search engines may detect some synonyms but are not sufficiently

documented for reproducible pipelines or systematic reviews.

Although there are recent efforts [22, 39] toward biomedical

NER using deep learning, existing biomedical NER models continue

to suffer from the aforementioned limitations as the biomedical

literature used for training these models contain a lot of redun-

dant information. These redundant information can eclipse impor-

tant information in the training literature yielding poor quality

models [49]. Similarly, models may fail to identify named entities

if the training dataset does not sufficiently cover those entities.

For instance, performing disease NER using ScispaCy tool (https:

//scispacy.apps.allenai.org/) with en_ner_bc5cdr_md NER model is

not able to correctly identify disease terms of the titles of GDS6063
and GDS4067. It is trained on the BC5CDR corpus (biocreative.

bioinformatics.udel.edu/tasks/biocreative-v/track-3-cdr/) and fails

to pick up “Influenza A” in GDS6063. In GDS4067, the tool picks
up only “breast cancer” when in fact, two different subtypes (i.e.,
“estrogen receptor-negative breast cancer” and “estrogen receptor-
positive breast cancer”) of breast cancer are mentioned. As we shall

see later, ArcheGEO addresses this limitation by exploiting multi-

ple NER models to extract different disease-related terminologies.

These terminologies, which provide different facets to the concept

of disease, are then leveraged for verification of the search results.

Semantic SimilarityValidation. Evenwhen biomedical-specific

parsers (e.g., ScispaCy [50]) are used and biomedical entities can

be successfully extracted, it can still be challenging to determine if

a given document (i.e., result) is relevant to a query. This is because
there is unlikely to be an exact match between the parsed biomed-

ical entities, and the imperfect matches increase the difficulty of

performing semantic similarity checks on concepts.

Although the creation of controlled vocabularies (e.g., Cellosaurus [2],
NCIt [8]) has alleviated difficulties of evaluating semantic similarity
of concepts, they are effective only if the vocabularies are sufficient-

ly exhaustive, properly cross-linked internally (resp. externally)

to concepts within itself (resp. contain in other vocabularies) and

its usage is enforced. Many of these assumptions are violated in

typical usage. Some ontologies are also lacking in contents (e.g.,
synonyms and terms) [44]. The Unified Medical Language System
(UMLS) represents the most extensive integration of biomedical

controlled vocabularies and have been used extensively [12]. One

such resource is the UMLS Metathesaurus, a collection of manu-

ally curated biomedical terms which have been (semi-)manually

aligned [67]. Studies [46, 47] have found the manual alignments to

be of high quality but incomplete.

Efforts focusing on ontology alignment research [36, 51, 53, 67]

help to alleviate some of these challenges and improve cross-domain

reuse and re-purposing of data. However, unresolved research chal-

lenges (e.g., propagation of error in ontology models and influence

of unidirectional synonyms on semantic precision and recall) re-

main and continue to affect the quality of ontology alignment [36].

ArcheGEO leverages disease-related concepts that span multiple

ontologies and vocabularies. Multiple ontology alignments are gen-

erated as a result and this reduces the probability of missing equiv-

alent concepts due to misaligned ontologies, thereby improving the

result quality.

3 THE IMF PROBLEM
In this section, we formally describe the irrelevance match finding
(IMF) problem addressed by ArcheGEO. We begin by introducing

relevant concepts to facilitate understanding of this paper.

3.1 Terminology
GEO Data. GEO contains submitter-supplied and curated record-
s [14]. The submitter-supplied record is supplied by a submitter

and usually summarizes an experiment. It consists of three cate-

gories of record, namely, platform, sample and series. A platform
record summarizes the description of the array or sequencer and

is assigned a GEO accession number of the form GPLxxx. A sam-
ple record describes the experimental condition of that particular

sample and abundance measurement of each element in the sample.

Each sample references only one platform record and is assigned a

accession number GSMxxx. A series record has an accession number

GSExxx and is a collection of related samples.

Curated records are curated from the submitter-supplied records

and consist of two categories, namely, dataset (i.e., GDS) and pro-
file records. In GEO, a dataset represents a curated collection of

biologically and statistically comparable GEO samples. Note that
samples within the GDS are categorized into subsets based on the

experimental conditions (e.g., tissue or treatment) to aid compara-

tive analysis. In addition, samples within a GDS refer to the same

platform. Profile consists of the expression measurements of an

individual gene across all samples in the GDS.

ArcheGEO works with the GDS records which comprises meta-

data and raw gene expression data encoded in SOFT format. The

metadata consists of several default fields such as title, summary,
organism, and platform. ArcheGEO exploits title, summary, and
organism fields for GEO result validation. Note that GDS record-

s are associated with experiments on three broad categories of

conditions, namely, physiological disorder (e.g., prostate cancer),
non-disease related physiological condition (e.g., ageing) and en-

vironmental condition (e.g., smoking). In this paper, we focus on

GDS related to physiological disorders (i.e., disease) as it offers the
most direct benefit to medical research. Note that ArcheGEO is

extensible and can be easily configured to work for other types of

records by specifying relevant concepts and features.

Disease Concept. A disease is defined as the sum of the ab-

normal phenomena displayed by a group of living organisms in

association with a specified common characteristic by which they

differ from the norm for their species in such a way as to place them

at a biological disadvantage [18]. Hence, the idea of disease (i.e.,
disease concept) relates to an organism since disease-related RNA
comes from cells and cells belong to (or were shed by) an organism.

A disease is generally characterised by its associated symptoms,

etiology and affected body system or tissue type. For example, 𝛽-

thalassemia (disease concept) in human (organism) may result in

anemia (symptom) and is caused by mutations in the hemoglobin
molecule [52] (etiology). It affects the hematopoietic and lymphatic

system (affected body system). Note that different synonyms can

refer to the same disease concept. In NCI Thesaurus, both “Beta
Thalassemia” and “Thalassemia Major” refer to 𝛽-thalassemia.

Controlled Vocabularies. Controlled vocabularies such as on-

tologies and thesauruses help to facilitate disease concept recogni-

tion. In particular, ArcheGEO exploits the NCI Thesaurus (NCIt) [8],

https://scispacy.apps.allenai.org/
https://scispacy.apps.allenai.org/
biocreative.bioinformatics.udel.edu/tasks/biocreative-v/track-3-cdr/
biocreative.bioinformatics.udel.edu/tasks/biocreative-v/track-3-cdr/
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NCI Metathesaurus (NCIm) [7], UMLS Metathesaurus [11] and Cel-
losaurus [2] to determine equivalence of concepts extracted from

user keywords and GEO dataset metadata.

Semantic Similarity. In general, two concepts are equivalent if
they are semantically similar [45]. That is, the concepts share the
same meaning. There are three broad categories of approaches to

determine semantic similarity, namely, edge-counting-based [70],

information content (IC)-based [56, 60] and features-based [57, 59]

measures.

Edge-counting approaches leverage the topology of an ontology

and consider shortest paths between concept pairs as a measure

of semantic similarity. Although these approaches are computa-

tionally inexpensive, they suffer from several drawbacks such as

the assumption that all links in the ontology represent a uniform

distance, and rely on existence of cross links between ontologies

for concepts found in different ontologies. In contrast, IC-based
approaches determine semantic similarity by complementing on-

tology topology with information distribution of concepts in the

corpus. They rely on proper disambiguation and annotation of con-

cepts in the corpus for accurate computation of concept probability.

It tends to be computationally expensive since re-computation is

required whenever the ontology or corpus changes. Features-based
approaches consider degree of overlapping between concepts as a

function of their features (i.e., properties) and is generally based on

the Tversky’s model of similarity [64] which proposes the principle

that common features increase similarity while non-common ones

decrease it. Due to the consideration of concept features instead

of ontology topology, these approaches are more flexible and are

often used to determine semantic similarity of concepts belonging

to different ontologies, such as in the case of ArcheGEO.

3.2 Problem Statement
We now formally introduce the IMF problem addressed in this paper.

We begin by formally defining the notion of semantically similar.
We then use it to define the notion of irrelevance in the query

results of Geo Browser. In the next section, we shall describe how

to identify them.

Given two concepts 𝐴 and 𝐵 having features 𝐹 (𝐴) and 𝐹 (𝐵),
respectively, the semantic similarity between 𝐴 and 𝐵 is defined

as 𝑠𝑖𝑚(𝐴, 𝐵) = |𝐹 (𝐴)⋂ 𝐹 (𝐵) |
|𝐹 (𝐴)⋃ 𝐹 (𝐵) | . The concept 𝐴 is considered to be

equivalent to 𝐵 if 𝑠𝑖𝑚(𝐴, 𝐵) = 1. Given two concepts𝐴 and 𝐵, and a

similarity threshold 𝑡 ,𝐴 is semantically similar to 𝐵 if 𝑠𝑖𝑚(𝐴, 𝐵) ≥ 𝑡 .
In ArcheGEO, we consider semantic similarity between a surrogate
(e.g.,metadata of returned GDS records) and a query (e.g., list of user
keywords) with respect to a topic (e.g., “human” and “breast can-
cer”). A result of a query is relevant if its surrogate is semantically

similar to the query. Otherwise, it is considered irrelevant.

Definition 3.1. Given a query with concept𝐴, a similarity threshold
𝑡 , and a set of documents ( i.e., results)𝐷 , the irrelevancematchfind-
ing (IMF) problem identifies a set of irrelevant search results and cor-
responding reasons 𝐼 = {(𝐼1, 𝐸1), (𝐼2, 𝐸2), . . . , (𝐼𝑛, 𝐸𝑛)} where 𝐼 ⊆ 𝐷 ,
and every surrogate 𝑆 𝑗 of search result 𝐼 𝑗 ∈ 𝐼 has 𝑠𝑖𝑚(𝐴, 𝑐𝑜𝑛𝑐𝑒𝑝𝑡 (𝑆 𝑗 )) <
𝑡 where 𝑐𝑜𝑛𝑐𝑒𝑝𝑡 (𝑆 𝑗 ) yields the concept related to 𝑆 𝑗 and 𝐸 𝑗 is the
reason for irrelevance of 𝐼 𝑗 .

Observe that by identifying irrelevant results, ArcheGEO aims

to improve the relevance of the search results of the GEO Browser.

4 RELEVANT AND IRRELEVANT MATCH
In this section, we describe how relevance and irrelevance of a query
result is determined in our framework. Recall that the features of

disease concept considered in ArcheGEO consist of the organism of

interest, the disease synonyms (which describes the disease), anato-

my of the affected body system and associated cell line. Concepts

related to the first three features can be found in NCIt, NCIm, and

UMLS [11]. We use NCIt as the base ontology as it is sufficiently

extensive and cross-links with Cellosaurus [2] which captures cell

line concepts. Amongst these features, we consider organism of

interest and disease synonyms to be more important in differentiat-

ing two disease concepts as they form the fundamental definition of

disease [18]. Additional features such as anatomy and cell line pro-

vide details to further disambiguate the disease concept. Although

weighted-feature-based semantic similarity approach seems ideal

to handle situation where features are of different importance, it

requires knowledge of the feature weight which is ambiguous in

this case. Instead, we adopt a rule-based approach. Note that a pair
of concepts that is neither semantically relevant nor irrelevant is

considered as ambiguous.
Since the GDS record metadata provides an organism field by

default, we assume that it is always possible to conclude if the

organism feature between the metadata and user keywords show a

match or a mismatch. A keen reader may observe that since we do

not impose constraints on query keywords, it is possible for a user

to exclude keywords associated to organism of interest in her query.

In this case, the query is assumed to imply no specific requirement

regarding organism feature. That is, the disease feature semantic

check always return an equivalent relationship.

Definition 4.1. Let 𝑂 (𝐷), 𝑆 (𝐷), 𝐴(𝐷) and 𝐶 (𝐷) be the organism,
synonym, anatomy and cell line feature of disease 𝐷 , respectively.
Given two diseases 𝐷1 and 𝐷2, 𝐷1 is semantically relevant to 𝐷2

if any of the following condition is satisfied:
• 𝑂 (𝐷1) ⇔ 𝑂 (𝐷2) and 𝑆 (𝐷1) ⇔ 𝑆 (𝐷2)
• 𝑂 (𝐷1) ⇔ 𝑂 (𝐷2) and 𝑆 (𝐷1) ↭ 𝑆 (𝐷2) and (𝐴(𝐷1) ⇔
𝐴(𝐷2) or 𝐶 (𝐷1) ⇔ 𝐶 (𝐷2))

where 𝑋 ⇔ 𝑌 and 𝑋 ↭ 𝑌 represent equivalence and ambiguous
relationship, respectively, between 𝑋 and 𝑌 .

We consider two features to be equivalent if they are annotated by
the same identifier in a given controlled vocabulary. An ambiguous
relationship can occur if at least one feature (e.g., 𝐶 (𝐷1) in the

feature pair (e.g., 𝐶 (𝐷1) and 𝐶 (𝐷2)) being compared is null (e.g.,
there is no cell line information associated with 𝐷1). Note that it is

possible for a feature 𝑋 to be multi-valued. In this case, feature 𝑋

(e.g., 𝑋 = {𝑏𝑟𝑒𝑎𝑠𝑡 𝑐𝑎𝑛𝑐𝑒𝑟, 𝑑𝑖𝑎𝑏𝑒𝑡𝑒𝑠}) is equivalent to feature 𝑌 (e.g.,
𝑌 = {𝑏𝑟𝑒𝑎𝑠𝑡 𝑐𝑎𝑛𝑐𝑒𝑟, 𝑏𝑟𝑒𝑎𝑠𝑡 𝑐𝑎𝑟𝑐𝑖𝑛𝑜𝑚𝑎}) if 𝑋 and 𝑌 have at least

one common value (e.g., 𝑋
⋂
𝑌 = {𝑏𝑟𝑒𝑎𝑠𝑡 𝑐𝑎𝑛𝑐𝑒𝑟 }).

Definition 4.2. Following from Def. 4.1, 𝐷1 is semantically irrel-
evant to 𝐷2 if any of the following condition is satisfied:
• 𝑂 (𝐷1) ⇎ 𝑂 (𝐷2)
• 𝑆 (𝐷1) ⇎ 𝑆 (𝐷2)
• 𝑆 (𝐷1)↭ 𝑆 (𝐷2) and (𝐴(𝐷1) ⇎ 𝐴(𝐷2) or 𝐶 (𝐷1) ⇎ 𝐶 (𝐷2))

Observe that Definition 4.1 is based on the concept of seman-

tically similar (Section 3.2). In particular, the threshold 𝑡 = 1 in
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Figure 2: Architecture (left) and GUI (right) of ArcheGEO.

Definition 4.1. In addition, it introduces additional conditions (i.e.,
ambiguous relationships) for semantic similarity.

5 THE ARCHEGEO FRAMEWORK
Figure 2 (left) depicts the architecture of ArcheGEO. It consists of
two major components. The offline component handles the prepro-

cessing of controlled vocabularies and GDS metadata, whereas the

online component performs relevance validation. We elaborate on

them in turn. Proofs of all lemmas are given in [23].

ArchGEO is provided as a web service and the code is available
at https://github.com/ArcheGEO/hogwarts-master. An end user

may access it using the GUI in Figure 2 (right). Panel 1 takes in the

user keywords (separated by comma) as input. In the online compo-

nent, the Keyword Feature Extractor extracts disease concept-related
features from the keywords and annotates them using knowledge

stores that are generated by the offline component. The summarized

features are presented in Panel 2. Then, GDS Retrieval leverages the
features to reconstruct a set of appropriate queries that is sent to

GEO. The GDS records returned by GEO are subjected to semantic

similarity checking in the Relevance Checker. These records are

then categorized based on the relevance/irrelevance of the extract-

ed features from the metadata to that of the user keywords. Panel
3 shows a summary of the search results. A browsable list of the

categorized results is presented in Panel 4. Note that both relevant

and irrelevant categories of matches are displayed in Panel 4.
In particular, ArcheGEO provides reasons for the irrelevance

(Def. 3.1) which can be leveraged for correcting misannotations.

For example, Record C in Figure 2 indicates a “disease mismatch”
of GDS3604 for the keyword “ovarian cancer”, highlighting a po-
tential misannotation of GDS3604. A review of the GDS title (i.e.,
“Tamoxifen effect on endometrioid carcinomas”) can be conduct-

ed to extract relevant disease-related terms (e.g., “endometrioid
carcinomas”) to improve the quality of record annotation.

5.1 The Offline Component
ArcheGEO requires specific features (i.e., organism, synonyms, term

identifier, anatomy and cell line) from the controlled vocabularies

and the GDS metadata to perform relevance validation. These fea-

tures can either be extracted from various repositories on demand

(i.e., online) or can be preprocessed (i.e., offline) to reduce wait time.

We choose the latter approach to improve usability of ArcheGEO.
The offline component consists of a Vocabulary Preprocessor and
a Metadata Preprocessor that extracts required features from con-

trolled vocabularies and GDS metadata, respectively. The extracted

features are stored as an internal knowledge base using a Post-

greSQL database for subsequent usage.

Vocabulary Retrieval. We preprocess NCIt and Cellosaurus
and store the extracted features. In particular, features such as

concept identifier and synonyms of anatomy, organism and dis-

ease/abnormality are extracted from the Thesaurus.OWL (https:

//evs.nci.nih.gov/ftp1/NCI_Thesaurus/) by leveraging inherent XM-

L tags (e.g., <P90> and <P331> refer to synonym and NCBI Tax-
on ID, respectively). Similarly, concept identifier, synonyms of

cell line and NCIt identifier of diseases associated with particu-

lar cell line are extracted from Cellosaurus (Cellosaurus.txt, https:
//ftp.expasy.org/databases/cellosaurus) using regular expression

that match tags such as SY which symbolizes synonyms.

Metadata Extraction. Figure 3 depicts the metadata extrac-

tion process realized by the Metadata Preprocessor . We utilize the

organism field to extract the organism feature, and title and

summary fields to extract synonyms, anatomy and cell line features.

We store the title-derived features separately from the summary-

derived features, as they provide different granularity of informa-

tion. The SOFT file FTP links of the GDS records are also extracted

to facilitate download of raw gene expression data.

Named entity recognition (NER) is performed on title and

summary fields using ScispaCy [50], a specialized NLP library for

processing biomedical texts (i.e., bioNLP). Note that the choice

of a suitable bioNLP is orthogonal to the IMF problem addressed

by ArcheGEO. We choose ScispaCy over other bioNLPs such as

MetaMap [13] and MetaMapLite [25] as it is more efficient [50].

ArcheGEO utilizes the BC5CDR (en_ner_bc5cdr_md) and JNLPBA
(en_ner_jnlpba_md) NER models provided by ScispaCy to extrac-

t features of disease synonyms and cell lines, respectively. The

organism feature is extracted from the GDS metadata directly.

Once the features are identified and extracted, they are anno-

tated with NCIt and Cellosaurus identifiers (where appropriate) to
facilitate relevance validation in the online component. For disease

https://github.com/ArcheGEO/hogwarts-master
https://evs.nci.nih.gov/ftp1/NCI_Thesaurus/
https://evs.nci.nih.gov/ftp1/NCI_Thesaurus/
https://ftp.expasy.org/databases/cellosaurus
https://ftp.expasy.org/databases/cellosaurus
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Figure 3: Metadata preprocessor.

synonym feature, ArcheGEO leverages the ScispaCy’s entity linker

to extract associated UMLS identifiers if they are available. There is

linkage between records in NCIt and those in UMLS facilitating an-

notation (with NCIt identifiers) of these features. Organism features

are mapped to NCIt entries by looking for exact matches between

the feature and synonyms of the entries. In the case of cell line

features, mapping between extracted NER and Cellosaurus entry
is less straight forward. The extracted NER tends to contain addi-

tional English words whereas synonyms in Cellosaurus are mostly

scientific names. For example, parsing the title of GDS4121 with

ScispaCy yields “prostate cancer DU145 cell line” for cell line-type
entity whereas known synonyms in Cellosaurus are {DU-145, DU145,
DU 145, DU_145, DU.145, Duke University 15}. A naive string match

algorithm that seeks to find an exact match of “prostate cancer
DU145 cell line” within the synonym list will fail to return a match.

A more effective approach would be to find the existence of syn-

onyms within the extracted entity. Briefly, we tokenize the cell line

feature and performs matching of each token with the synonym.

The cell line feature is mapped to a Cellosaurus entry if at least one

token matches at least one synonym.

Unlike organism, synonyms and cell line features which are

usually explicitly stated in the metadata, the annotation of the

anatomy is usually inferred from annotation of synonyms and cell

line features. It infers anatomy annotation by using ontological

relationships in NCIt (i.e., Disease_Has_Primary_Anato-mic_Site
and Disease_Has_Associated_Anatomic_Site) and Cellosaurus (i.e.,
Derived from metastatic site and Derived from sampling site). It
is possible for a feature that has valid correspondence to NCIt
or Cellosaurus entries to lack appropriate annotation due to the

ambiguous nature of natural text. Since missed annotation impacts

relevance checking, it associates the disease concept with multiple

features and determines relevance based on multiple features.

Lemma 5.1. The worst-case time complexity to process metadata
of GDS (denoted as𝑀𝐺𝐷𝑆 ) is 𝑂 ( |𝑀𝐺𝐷𝑆 | (𝑛2 + 𝑝 × 𝑘)) where 𝑛 is the
maximum number of words in the title and summary fields of GDS
metadata and 𝑘 (resp. 𝑝) is the maximum number of values (resp.
tokens) associated to a feature (resp. the cell line feature).

5.2 The Online Component
The online component consists of three key subcomponents, name-

ly, Keyword Feature Extractor, GDS Retrieval and Relevance Checker.
Feature Extraction from Keywords. The Keyword Feature

Extractor extracts features that are related to the disease concept

from the user input keywords (e.g., “human”, “breast cancer”). A
particular keyword is linked to a specific feature if it is found in

Algorithm 1 GDS Retrieval.

Require: Set of organism keywords 𝐾𝑂 , set of synonym keywords 𝐾𝑆 ;
Ensure: Set of unverified GDS records 𝑅𝐺𝐷𝑆 ;

1: 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 (𝑅𝐺𝐷𝑆 )
2: 𝑄 ← 𝑐𝑟𝑒𝑎𝑡𝑒𝑆𝑄𝐿𝑄𝑢𝑒𝑟𝑖𝑒𝑠 (𝐾𝑂 , 𝐾𝑆 )
3: for each 𝑞 ∈ 𝑄 do
4: 𝐼𝐷𝐺𝐷𝑆 ← 𝑒𝑆𝑒𝑎𝑟𝑐ℎ (𝑞)/∗pipes 𝑞 to 𝑒𝑆𝑒𝑎𝑟𝑐ℎ utility ∗ /
5: for each 𝑖 ∈ 𝐼𝐷𝐺𝐷𝑆 do
6: 𝑅𝐺𝐷𝑆 ← 𝑅𝐺𝐷𝑆

⋃{𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑𝐴𝑛𝑑𝐷𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝐹𝑖𝑙𝑒 (𝑖) }
7: end for
8: end for

the set of synonyms associated to that feature. For example, the

user keyword “human” is associated to the organism feature “homo
sapiens” (NCIt ID = C14225) since “human” is contained in the set

of synonyms {“Homo Sapiens”, “Human”, “Human, General”} that
is associated with the concept C14225 in NCIt. It annotates the
keyword with corresponding NCIt identifiers where appropriate.

GDS Retrieval. ArchGEO does not assume that users would

leverage logical operators such asOR and AND to formulate queries.

Instead, the only requirement on keywords is that they should be

comma-delimited. Algorithm 1 uses the annotated disease-related

keywords to send a batch of queries toGEO. In particular, the disease
synonym keywords (𝐾𝑆 ) and organism keywords (𝐾𝑂 ) are used

to construct all possible disease-organism pair-wise queries (i.e.,
rewritten queries) (Line 2). For example, in Figure 2(b), the rewritten

queries are: (1) “human” AND “prostate cancer” and (2) “human”
AND “ovarian cancer”. Note that by organizing the queries as such,

one can easily obtain the desired result by recombining these results

through ArchGEO. For instance for the above query, one can easily

view results of either “prostate cancer” AND “ovarian cancer” or
“prostate cancer” OR “ovarian cancer” in human by indicating their

preference through the GUI. In ArchGEO GUI, the results of each

rewritten query are presented in a tab in Panel 4 (Figure 2). GDS
Retrieval pipes the rewritten queries to GEO using the eSearch
program of the programmatic access utility (Lines 3-8). Briefly,

eSearch returns a list of unique identifiers (i.e., GDS identifier) that
matches a given text query (Line 4). We refer to these as unverified
GDS records. GDS record files matching these identifiers are then

downloaded and decompressed.

Relevance and Irrelevance Matching. Algorithm 2 outlines

the procedure of the Relevance Checker subcomponent which is

responsible for finding relevant and irrelevant matches in the query

results. For each unverified GDS record, it retrieves disease-related

concept features of its metadata from GDS-Metadata store (Lines 3-

7) and performs semantic relevance check (Lines 8 and 10) against

the features extracted from the user keywords based on Definition-

s 4.1 and 4.2. The importance of a feature can be influenced by its

occurrence in a specific structure (i.e., title, summary or abstract,

main body) of a document [62]. Intuitively, the level of importance

decreases as we move from title to summary to main body since

additional description is added and it not only serves to enrich the

topic of interest, but may also add additional noise [43] which im-

pacts checks on semantic similarity. Hence, we adopt a granulated
validation approach. Semantic similarity of features derived from

the title field (Line 8) is considered to bemore significant than that

of features derived from the summary field (Line 10). In particular,

we first check for relevance (and irrelevance) of GDS records with

respect to the query using features from the title field. When the
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Algorithm 2 Relevance Check.

Require: Set of metadata of unverified GDS records𝑀𝐺𝐷𝑆 , set of organism keywords 𝐾𝑂 and

synonym keywords 𝐾𝑆 ;
Ensure: Relevance of GDS records 𝑅𝐸𝐿𝐺𝐷𝑆 ;

1: 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 (𝑅𝐸𝐿𝐺𝐷𝑆 )
2: for each𝑚 ∈ 𝑀𝐺𝐷𝑆 do
3: 𝑚𝑡 ← 𝑔𝑒𝑡𝑇𝑖𝑡𝑙𝑒𝐹𝑖𝑒𝑙𝑑 (𝑚)
4: 𝑚𝑠 ← 𝑔𝑒𝑡𝑆𝑢𝑚𝑚𝑎𝑟𝑦𝐹𝑖𝑒𝑙𝑑 (𝑚)
5: 𝑂 (𝑚) ← 𝑔𝑒𝑡𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑚𝐹𝑒𝑎𝑡𝑢𝑟𝑒 (𝑚)
6: 𝑆 (𝑚𝑡 ), 𝐴(𝑚𝑡 ),𝐶 (𝑚𝑡 ) ← 𝑔𝑒𝑡𝑂𝑡ℎ𝑒𝑟𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝑚𝑡 )
7: 𝑆 (𝑚𝑠 ), 𝐴(𝑚𝑠 ),𝐶 (𝑚𝑠 ) ← 𝑔𝑒𝑡𝑂𝑡ℎ𝑒𝑟𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝑚𝑠 )
8: 𝑅𝐸𝐿𝑚 ← 𝑐ℎ𝑒𝑐𝑘𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 (𝑂 (𝑚), 𝑆 (𝑚𝑡 ), 𝐴(𝑚𝑡 ),𝐶 (𝑚𝑡 ), 𝐾𝑂 , 𝐾𝑆 )
9: if 𝑖𝑠𝐴𝑚𝑏𝑖𝑔𝑢𝑜𝑢𝑠 (𝑅𝐸𝐿𝑚 ) == 𝑡𝑟𝑢𝑒 then
10: 𝑅𝐸𝐿𝑚 ← 𝑐ℎ𝑒𝑐𝑘𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 (𝑂 (𝑚), 𝑆 (𝑚𝑠 ), 𝐴(𝑚𝑠 ),𝐶 (𝑚𝑠 ), 𝐾𝑂 , 𝐾𝑆 )
11: end if
12: 𝑅𝐸𝐿𝐺𝐷𝑆 ← 𝑅𝐸𝐿𝐺𝐷𝑆

⋃{𝑅𝐸𝐿𝑚 }
13: end for

record is deemed to be ambiguous (Line 9), we proceed to validate

relevance using features from the summary field. As we shall see

in Section 6.2, this granulated validation approach achieves good

precision and recall compared to alternative strategies.

A record is classified as valid or invalid based on the aforemen-

tioned check. Valid records are those that are semantically relevant.

We also consider a record valid if the organism features of the

metadata and user keywords are equivalent but relationships of re-

maining features are ambiguous. However, since the validity of such

a record is less certain, an explanation “Valid Organism, Uncertain
Disease” is attached with it to allow a user to further verify their va-

lidity through other means such as literature review. Invalid records
are those that are found to be semantically irrelevant. The exact

reason (i.e., explanation) for semantic irrelevance is generated as

follows . Given a record 𝐼 𝑗 , if𝑂 (𝐷1) ⇎ 𝑂 (𝐷2) then 𝐸 𝑗 =“Organism
Mismatched” (e.g., Record A in Figure 2); if 𝑆 (𝐷1) ⇎ 𝑆 (𝐷2) or
𝑆 (𝐷1) ↭ 𝑆 (𝐷2) and (𝐴(𝐷1) ⇎ 𝐴(𝐷2) or 𝐶 (𝐷1) ⇎ 𝐶 (𝐷2)) then
𝐸 𝑗 = “Disease Mismatched” (e.g., Record B in Figure 2) where

𝐷1 and 𝐷2 refer to the disease concepts obtained from the GDS

metadata and user keywords, respectively.

Lemma 5.2. The worst-case time and space complexities to perfor-
m relevance checks are 𝑂 (𝑘 |𝑅𝐺𝐷𝑆 |) and 𝑂 (𝑘 |𝑅𝐺𝐷𝑆 |), respectively,
where 𝑘 is the maximum number of distinct values associated to any
feature and 𝑅𝐺𝐷𝑆 is the set of unverified GDS records.

6 PERFORMANCE STUDY
The online component of ArcheGEO is implemented as a web ser-

vice. The front-end and back-end are implemented using Vue and
Spring Boot, respectively. The offline component uses Python 3.8
and the ScispaCy library for NLP processing and feature extrac-

tion. PostgreSQL is used to store the preprocessed vocabularies

in ArcheGEO. In this section, we investigate the performance of

ArcheGEO and report the key findings. A case study is discussed in

[23]. All experiments are performed on a 64-bit Windows desktop

with Intel(R) Core(TM) i7-4790K CPU (4GHz) and 32GB of main

memory.

6.1 Experimental Setup
Two sets of experiments are carried out. The first set (Exp 1 and
2) examines design decisions affecting performance of ArcheGEO
whereas the second set (Exp 3 and 4) examines ArcheGEO’s perfor-
mance against benchmark systems and its usefulness.

Table 1: Test Collection.
TC Query Keywords Total # Of Relevant

Records
TC1 { human, breast cancer } 173 133

TC2 { human, type 2 diabetes mellitus } 15 7

TC3 { human, ovarian carcinoma } 25 18

TC4 { human, prostate carcinoma } 35 22

TC5 { human, endometriosis } 8 7

TC6 { human, parkinson disease } 21 7

TC7 { human, malaria } 11 6

TC8 { human, psoriasis } 25 11

TC9 { mus musculus, parkinson disease } 10 7

TC10 { mus musculus, breast cancer } 42 20

TC11 { mus musculus, ovarian cancer } 9 3

TC12 { mus musculus, type 2 diabetes mellitus } 10 8

TC13 { plasmodium falciparum, malaria } 11 3

TC14 { rattus norvegicus, type 2 diabetes mellitus } 4 3

TC15 { rattus norvegicus, heart disease } 20 17

TC16 { rattus norvegicus, pulmonary disease } 12 12

TC17 { mus musculus, arthritis } 11 8

TC18 { mus musculus, lung cancer } 12 6

TC19 { rattus norvegicus, parkinson disease } 3 3

TC20 { rattus norvegicus, liver disease } 13 8

Benchmarks. We are unaware of any existingGEO record retrieval

systems that specifically identify irrelevant records from the GEO
Browser results. Hence, we are confined to compare ArchGEO with

record retrieval systems (i.e., ScanGEO [37] and DataMed [20])

that can obtain GEO records based on user-specified keywords.

ScanGEO and DataMed can be found at http://scangeo.dartmouth.

edu/ScanGEO/ and https://datamed.org/, respectively.

Test Collections (TC). For our experiments, the test collections are

result sets retrieved from GEO Browser for given sets of keyword-

based queries. Five postgraduate students doing biomedical research

and familiar with the GEO datasets volunteered to perform rele-

vance judgement on the test collections (Table 1). Every GDS record

in each collection is assigned as either being relevant or irrelevant

to the query based on majority voting. The kappa value of record

judgement varies in the range [0.68 - 1], indicating good to excellent

agreement of the judgement [17].

Performance Evaluation. We follow the Cranfield paradigm [65]

for evaluating ArcheGEO. In particular, domain experts provide

judgements regarding relevance of topical similarity on test collec-

tions. All systems are then assessed based on precision and recall

on the test collections. In all experiments, the similarity threshold 𝑡

of ArcheGEO is set to 1.

6.2 Experimental Results
Exp 1: Metadata Structure-based Relevance Validation. We

evaluate the effect of performing relevance validation based on the

location (i.e., title and summary fields) of features in the metadata

using TC1 (Figure 4). We examine 5 strategies for considering fea-

tures in relevance validation, namely, title field alone (𝑇 ), summary
field alone (𝑆), title and summary fields together (𝐴𝑙𝑙 ), title field
then summary field (𝑇𝑆), summary field then title field (𝑆𝑇 ). In 𝑇

and 𝑆 , only features in the specified field are considered. For 𝐴𝑙𝑙 ,

each feature is formed by performing a union of the features extract-

ed from title and summary fields.𝑇𝑆 corresponds to the approach
described in Section 5.2. 𝑆𝑇 refers to the approach when title and
summary fields are swapped in 𝑇𝑆 . We observed that the recall of

both 𝑆 and 𝑆𝑇 are poorer than that of 𝑇 and 𝑇𝑆 (Figure 4, top left).

This agrees with the observation from [43] that summary field is

likely to be noisier than title field, thereby affecting relevance

http://scangeo.dartmouth.edu/ScanGEO/
http://scangeo.dartmouth.edu/ScanGEO/
https://datamed.org/
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Figure 4: Effect of various relevance validation strategies.
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Figure 5: Effect of disease-related features.

validation. Although 𝐴𝑙𝑙 yielded the best F1-score (i.e., 0.92), its
precision is also the poorest (i.e., 0.85). 𝑇𝑆 which has the highest

precision (i.e., 0.93) has comparable recall and F1-score as𝑇 . Hence,

we select 𝑇𝑆 as our relevance validation strategy.

Exp 2: Effect of Disease-related Features. Next, we examine

the effect of the features (i.e., organism (𝑂), synonym (𝑆), anatomy

(𝐴) and cell line (𝐶)) on relevance validation using TC1 (Figure 5).

Variants of ArcheGEO are generated by excluding each feature in

turn from the validation. For clarity, 𝑋 (i.e., variant-𝑋 ) in Figure 5

refers to the variant of ArcheGEO where feature 𝑋 is excluded and

𝐴𝑙𝑙 refers to ArcheGEO. We observed that the exclusion of features

𝑂 (0.84) and 𝑆 (0.85) affected the precision of ArcheGEO (Figure 5,

top right). In particular, when features 𝑂 and 𝑆 are excluded, an

increase in the number of ambiguous records that are classified as

valid is observed. All valid records of variant-𝑂 were categorized as

“OrganismUnverified” andwithin these records, an additional 7were
categorized as “Disease Unverified” as well. In the case of variant-

𝑆 , 30 records were labelled as “Disease Unverified”. This number

reduced to five for variant-𝐴 and variant-𝐶 . This highlights the
importance of features 𝑂 and 𝑆 in comparison to 𝐴 and 𝐶 , justifying
our choice of these features as the dominant discriminating factors
between two diseases (Section 4). Based on Figure 5, the inclusion

of features 𝐴 and 𝐶 may seem redundant. However, these features

are still useful for relevance validation, especially in the case when

feature 𝑆 is absent from the metadata. For instance, in the case of

variant-𝑆 , 103 out of 133 valid records were categorized as “Disease
Valid”. That is, based on features 𝐴 and 𝐶 alone, 77.4% of valid

records are still correctly classified as “Disease Valid”.
Exp 3: Comparison with Benchmark Systems. Next, we exam-

ine the recall, precision, and F1-score of ArcheGEO, ScanGEO and

DataMed on TC1 to TC20. Figure 6 reports representative results.

In particular, DataMed (resp. ScanGEO) did not retrieve any results
for TC2 to TC7, TC16 and TC19 (resp. TC6, TC9, TC16 and TC19).

The recall for ScanGEO,DataMed and ArcheGEO vary in the range

of [0 - 0.91], [0 - 1] and [0.18 - 1], respectively while that of precision

are in the range of [0 - 1], [0 - 1] and [0.5 - 1], respectively. Although

ScanGEO (resp. DataMed) performs better (up to 1.5X) in terms

of precision, its recall is up to 12X (resp. 28.3X) poorer compared

to ArcheGEO for the test collections. In particular, the F1-score of

ArcheGEO is up to 6.9X (resp. 15.7X) better than ScanGEO (resp.

DataMed). Further, the range of recall and precision is tighter for

ArcheGEO compared to both ScanGEO and DataMed, highlighting
more consistent performance.

In addition, we measure the wall-clock time taken for each query.

For clarity, the time duration is from the instance the search is in-

voked (i.e., clicking of “search” button) until the desired result set

is retrieved. ArcheGEO performs moderately in terms of runtime

and is able to complete the relevance validation and categorization

within 10 seconds. DataMed is the slowest. This is likely because

DataMed is an open source discovery index which references mul-

tiple sources (including GEO) and a user has to take an additional

step to configure it to display only GEO-specific results. Hence,
ArcheGEO can effectively and efficiently identify relevant results from
the GEO result set.
Exp 4: Irrelevance Matches. Lastly, we characterize the valid and
invalid results (Section 5.2) obtained from ArcheGEO in terms of

the percentage of records that are relevant (Def. 4.1), irrelevant

(Def. 4.2), and ambiguous (i.e., neither relevant nor irrelevant) in
Figure 7 (top). Note that in ArcheGEO GUI, ambiguous records are

reflected as valid records with “Valid Organism, Uncertain Disease”
tags. All cases report some irrelevant records except TC19. On
average, 44.9% of results are identified as irrelevant, highlighting a
need for validating the search results. The average percentage of

relevant and ambiguous results are 41.5% and 13.7%, respectively.

We also examine the reasons for irrelevance. Figure 7 (bottom)

reports the percentage of records that fall under different categories,

namely, mismatched organism (i.e., “Organism Mismatch, Disease
Valid’’, “Organism Mismatch, Disease Unverified” ), mismatched dis-

ease (i.e., “Organism Valid, Disease Mismatch” ) and mismatched

organism & disease (i.e., “Organism & Disease Mismatch” ). On aver-

age, 25.8%, 49.5% and 19.7% of records reported to be irrelevant are

due to mismatched organism, mismatched disease, and both mis-

match organism & disease, respectively. Interestingly, even though

GDS metadata contain a dedicated organism field, we observe that

45.5% of returned records (i.e., mismatch organism and mismatch

organism & disease) contain a mismatch between its metadata or-

ganism information and the actual organism requested by users.

Enriching the GDS metadata with additional fields such as disease

and exploiting these data can further improve the quality of the

search results.

7 RELATEDWORK
GEO-related Software. Several software tools have been proposed
to support the usage ofGEO. They can be broadly classified into four
categories: (1) data conversion (e.g., GEOquery [24], GEOmetad-
b [73]), (2) data analysis (e.g., shinyGEO [28], ScanGEO [37], D-
GEX [21]), (3) records retrieval (e.g., DataMed [20], ScanGEO [37])

and (4) metadata curation (e.g., GEOMetaCuration [42], crowd-

sourced curation [69]). GEOquery is focussed on converting GEO
data into a format that is compatible with BioConductor whereas
GEOmetadb is a MySQL implementation for storing GEO metadata

for efficient querying and retrieval of GEO metadata. Efforts such

as [42] and [69] aim to increase the ease of annotation and curation

of metadata. D-GEX uses deep learning-based approach to infer the

expression of target genes from the expression of landmark genes.
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Figure 6: Comparison with benchmark systems.
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Figure 7: Characteristics of ArcheGEO results.

shinyGEO and ScanGEO are used for performing differential ex-

pression analysis. In addition, ScanGEO provides a keyword-based

GEO record retrieval browser interface. DataMed in contrast, is

an open source discovery index for finding biomedical datasets

that includes GEO. In contrast, ArcheGEO is designed to work as a

companion of GEO query interface and its goal is to address the IMF

problem (i.e., improve search result quality by locating irrelevant

records). A key difference between ArcheGEO and existing GEO
record retrieval system is its ability to report on irrelevant records

and their reasons of irrelevance.

Relevance Feedback. Relevance feedback is the process of ob-

taining user feedback regarding relevance of documents. Typically,

a search engine will present a set of retrieved documents to the

users for them to indicate whether they are relevant. Based on

the feedback, it modifies the query to retrieve a new set of results.

ArcheGEO differs from such systems (e.g., [29, 58]) as the main goal

is to predict and categorize the relevance of the search results for

presentation to users instead of seeking user’s feedback regarding

search relevance, which is a time-consuming task in GEO.
Search Result Organization. The most common form of organi-

zation is the ranked list (i.e., relevance ranking) where results are
ordered according to their probability of being relevant to the us-

er’s query. Examples include DeepRank [54] and ranking in Yahoo

search [71]. The effectiveness of the ranked list relies on the user

being able to input appropriate query for the desired documents.

The use of less relevant keywords may result in searching through a

long ranked list before finding desired documents [61]. An alterna-

tive approach is document clustering which groups similar results

together. Ranking-based approaches are more suited for regression-

type problems whereas clustering-based approaches (e.g., [40], [61])
are more appropriate for classification-type problems such as that

in ArcheGEO where the goal is to distinguish relevant results from

irrelevant ones. In particular, ArcheGEO categorizes the results into

two broad classes (relevant and irrelevant results). The relevant

results are further organized based on disease-organism categories

whereas irrelevant results are further classified according to their

reasons of irrelevance. Unlike [40], the relevant categories are not

ranked as the disease-organism categories are derived from the

query in which all keywords are assumed to be of equal importance.

In [61], the research goal is focused on how to improve the quality

of cluster labels. This is different from ArcheGEO which aims to

improve result quality through classification of search results into

relevant and irrelevant clusters.

8 CONCLUSIONS
In this paper, we describe an end-to-end framework calledArcheGEO
which is targeted towards users of the GEO repository, and delivers

value by separating relevant and irrelevant matches in query re-

sults, thereby improving access to relevant biomedical information.

Reasons for irrelevance are reported and such details can be used to

correct misannotations or to include missing annotations of GDS

records in GEO repository to improve search results relevance.

Several open challenges still await in this space. First, the frame-

work can be expanded to other data in GEO (e.g., series and profiles)
and to other GDS types (e.g., environmental records). Additional

features can also be included to improve the relevance validation

process. Second, improved NER techniques can improve the overall

quality of the relevance validation. Third, index optimization [26]

is extremely useful for efficient keyword search that can further

reduce the validation time. Lastly, it would be interested to explore

how ArcheGEO could be applied to tools which are processing vast

quantities of sequencing data (e.g., https://rna.recount.bio/).
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