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Abstract
In this paper, we introduce a novel framework called panacea,
designed to profile known cancer target combinations in cancer
type-specific signaling networks. Given a large signaling network
for a cancer type, known targets from approved anticancer drugs,
a set of cancer mutated genes, and a combination size parameter
𝑘 , panacea automatically generates a delta histogram that depicts
the distribution of 𝑘-sized target combinations based on their topo-
logical influence on cancer mutated genes and other nodes. To this
end, we formally define the novel problem of influence-driven target
combination profiling (𝑖-TCP) and propose an algorithm that em-
ploys two innovative personalized PageRank-based measures, PEN
distance and PEN-diff, to quantify this influence and generate the
delta histogram. Our experimental studies on signaling networks re-
lated to four cancer types demonstrate that our proposed measures
outperform several popular network properties in profiling known
target combinations. Notably, we demonstrate that panacea can
significantly reduce the candidate 𝑘-node combination exploration
space, addressing a longstanding challenge for tasks such as in silico
target combination prediction in large signaling networks.
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1 Introduction
Enhancing the quality of target selection is generally regarded as the
most crucial factor for boosting productivity in the pharmaceutical
industry [6]. This has led to a focus on identifying effective target
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combinations for specific diseases (a.k.a multi-target selection [9])
which presents significant challenges [6, 9, 11]. Consequently, there
is growing research on in silico techniques to predict these com-
binations [2, 4, 5, 10, 14, 15, 17]. However, current studies have
two main limitations. First, they neglect the profiles of approved
target combinations for specific diseases to guide discovery. Second,
they are mainly suited for small networks, making it difficult to
comprehensively explore larger candidate combination spaces in
large networks. This paper presents a novel framework designed
to profile known target combinations in cancer signaling networks,
which has the potential to address these limitations.

TheCancer Drugs Database, maintained by theAnticancer Fund [12],
offers a curated list of anticancer drugs approved by one or more
regulatory agencies (such as the FDA or NCI) for various cancer
types, along with their associated target combinations. In this pa-
per, we aim to profile1 these target combinations in the signaling
network of a specific cancer type. These profiles can potentially
serve as a guide for determining which candidate 𝑘-node combi-
nations to further analyze for target combination prediction (i.e., 𝑘
molecules that can be targeted simultaneously). For example, one
might choose to investigate network regions where most or very
few known target combinations are located.

Profiling known target combinations in signaling networks presents
a significant challenge. Since various profiles can be generated, not
all are effective for characterizing these combinations to address
downstream problems such as target combination prediction. For
example, degree or PageRank distributions may fail to capture the
off-target effects of these combinations, which are a primary reason
for drug failures [16]. Therefore, it is crucial to select appropriate
features for profiling that can support the downstream analyses.
Additionally, to manage large and noisy cancer-specific signaling
networks, the chosen features must be purely topological. That is,
they should not rely on complete mathematical models of the un-
derlying cancer network, nor on the pharmacological or chemical
properties of all involved molecules, or the genomic and proteomic
data of patients. Instead, the profiling strategy must adopt a realistic
perspective, acknowledging that such data is often unavailable in
many areas of cancer signaling networks.

In this paper, we introduce a novel influence-driven target combi-
nation profiling (𝑖-TCP) problem to tackle these challenges. Given a
large signaling network𝐺𝐶 for a cancer type𝐶 (e.g., breast, colorec-
tal), known targets tackled by anticancer drugs of𝐶 , a set of cancer
mutated genes (e.g., oncogenes) in𝐺𝐶 , and a combination size pa-
rameter 𝑘 > 1, the goal of 𝑖-TCP is to generate a delta histogram
that depicts the distribution of 𝑘-size known target combinations in

1Data profiling is the set of activities and processes to determine the metadata of a given dataset [1].
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𝐺𝐶 based on their topological influence (i.e., strength of connection)
on cancer mutated genes and rest of the nodes in 𝐺𝐶 .

We present a novel framework called panacea (Personalized
pAgerank-based profiliNg of cAnCEr tArgets) to address the 𝑖-TCP
problem. This framework utilizes a new personalized PageRank-
based (PPR) [20] measure called PEN distance to assess the topo-
logical influence of one node (e.g., a drug target) on another (e.g.,
an oncogene) in a cancer signaling network. Intuitively, a smaller
PEN distance suggests a greater influence due to a higher number
of paths between the node pair. Building on PEN distance, we also
propose a measure called PEN-diff, which captures the difference
in average influence of a 𝑘-node combination on a set of cancer
mutated genes compared to the remaining nodes in the network. A
positive PEN-diff value indicates that the average influence on the
cancer mutated genes is greater than on other nodes, effectively
capturing the off-target effects of a drug from a topological per-
spective (i.e., impact on rest of the nodes in𝐺𝐶 ). Using the PEN-diff
values of 𝑘-node combinations and known target combinations in
𝐶 , we build a delta histogram to depict the distribution of known 𝑘-
target combinations in the PEN-diff space of𝐺𝐶 . We experimentally
demonstrate that panacea outperforms two baseline strategies in
profiling target combinations across four different cancer types.

2 Background
In this section, we provide background information to facilitate
exposition of panacea.

Human Signaling Network. Large signaling networks often
are modeled simply as large graphs. For instance, Cui et al. [8]
modeled the human signaling network as a graph where nodes
represent proteins. Directed links are used to represent activation or
inhibition whereas undirected links represent physical interactions
of proteins that are not characterized as activating or inhibitory.
There are two types of directed links, incoming and outgoing. The
incoming link represents a signaling from another node whereas
an outgoing link represents a signal to another node. These two
types of directed links are collectively referred to as signal links. In
contrast, the physical links are referred to as neutral links. In this
paper, we represent the human signaling network using this model.

In our work, we utilize the signaling network used in the study
reported in [21]. It contains 6, 305 nodes and 62, 937 links. There are
33, 398 activation links (i.e., positive links), 7, 960 inhibitory links
(i.e., negative links), and 21, 579 physical links (neutral links). Since
we focus on signal links, we reduce this network by removing all
neutral links. This resulted in the reduced network with 6, 009 nodes
and 41, 358 edges.

Cancer Mutated Genes.We gather cancer mutated genes from
the COSMIC Cancer Gene Census database [13]. These genes can
be categorized into three types, positive regulators (oncogenes),
negative regulators (tumor suppressors), and fusion genes. Since
majority of the mutated genes in cancer are oncogenes [8], we focus
only on them in this work. In our dataset, there are 318 oncogenes,
252 (79.25%) of which can be located in the reduced network.

Cancer Drug Targets. We obtain data on drug targets from the
Cancer Drugs Databasemaintained by Anticancer Fund [12]. Among
the 1, 025 drug targets, 119 (11.61%) are oncogenes and 725 (70.73%)
are in the human signaling network.

Personalized PageRank (PPR) [20]. Let 𝐺 = (𝑉 , 𝐸) be a di-
rected graph where 𝑉 is the set of nodes (vertices) and 𝐸 is the set
of edges (links). Given a source node 𝑠 ∈ 𝑉 and a jump factor 𝛼 ,
a walker starts from 𝑠 to traverse 𝐺 , and at each step, the walker
either (a) terminates at the current node with a probability 𝛼 , or
(b) jumps to a randomly selected out-neighbor of the current node.
For any node 𝑡 ∈ 𝑉 , the personalized PageRank (PPR) 𝜋 (𝑠, 𝑡) is the
probability that a random walk (RW) from 𝑠 terminates at 𝑡 . Intu-
itively, a large 𝜋 (𝑠, 𝑡) indicates that many paths exist from 𝑠 to 𝑡 .
That is, 𝑠 is well connected to 𝑡 . The 𝛼 value is usually set to 0.15
or 0.2 [20, 22].

3 The 𝑖-TCP Problem
Intuitively, the goal of the influence-driven target combination pro-
filing (𝑖-TCP) problem is to generate a delta histogram that visually
represents the distribution of known 𝑘-target combinations w.r.t.
their topological influence in a cancer signaling network. Given a
large signaling network 𝐺𝐶 = (𝑉𝐶 , 𝐸𝐶 ) for a cancer type 𝐶 (e.g.,
breast, colorectal), known targets 𝑋𝑡 ⊆ 𝑉𝐶 of 𝐶 , a set of cancer
mutated genes 𝑋𝑔 ⊆ 𝑉𝐶 in 𝐺𝐶 , and a 𝑘-combination node set ℎ𝑘
where 𝑘 > 1 and ℎ𝑘 ⊂ 𝑉𝐶 , the topological influence of ℎ𝑘 is defined
by a function 𝑓 (ℎ𝑘 , 𝑋𝑔,𝐺𝐶 ) that quantifies the aggregate influence
of ℎ𝑘 on 𝑋𝑔 and (𝑉𝐶 − 𝑋𝑔).

A delta histogram H𝐶 of 𝐺𝐶 is an equi-width histogram whose
𝑋 -axis represents 𝑁𝑏𝑢𝑐𝑘𝑒𝑡 buckets and the 𝑌 -axis represents the
percentages of known 𝑘-target combinations in 𝐺𝐶 in each bucket.
A 𝑘-node combination ℎ𝑘 is assigned to a bucket 𝑏𝑖 = [𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥 ]
if 𝑟𝑚𝑖𝑛 < 𝑓 (ℎ𝑘 , 𝑋𝑔,𝐺𝐶 ) ≤ 𝑟𝑚𝑎𝑥 . The percentage of known 𝑘-target
combinations in 𝑏𝑖 is the number of known target combinations in
the top-𝑚 percentage of 𝑘-node combinations for𝑚 > 0.

Definition 3.1. Given a signaling network 𝐺𝐶 = (𝑉𝐶 , 𝐸𝐶 ) for a
cancer type 𝐶 , a set of known targets 𝑋𝑡 ⊆ 𝑉𝐶 , a set of cancer-
mutated genes 𝑋𝑔 ⊆ 𝑉𝐶 , a combination size parameter 𝑘 > 1, and
the number of buckets 𝑁𝑏𝑢𝑐𝑘𝑒𝑡 > 1, the goal of influence-driven
target combination profiling problem is to compute the following:

H𝑘,𝑁𝑏𝑢𝑐𝑘𝑒𝑡
= F (G(𝐺𝐶 , 𝑘, 𝑋𝑔), 𝑋𝑡 , 𝑁𝑏𝑢𝑐𝑘𝑒𝑡 ) (1)

where G(𝐺𝐶 , 𝑘, 𝑋𝑔) is a function that computes 𝑓 (ℎ𝑘 , 𝑋𝑔,𝐺𝐶 ) of the
𝑘-combination nodes in 𝐺𝐶 and F (·) is a function that computes an
𝑁𝑏𝑢𝑐𝑘𝑒𝑡 -delta histogram of the known 𝑘-target combinations in 𝑋𝑡 .

In panacea the topological influence function 𝑓 (·) is realized
by a novel PPR-based measure called PEN-Diff that captures the
interplay between the influence of a 𝑘-target combinations on 𝑋𝑔
and rest of the network (i.e., off-target effect).

4 The PANACEA Framework
In this section, we present the panacea framework to address the 𝑖-
TCP problem in cancer signaling networks.We begin by introducing
a PPR-based node distance measure called PEN distance that serves
as the foundation for this task.

4.1 PEN Distance
While several studies in drug and target combination discovery
utilize various distance-based measures [3, 10], it is important to
recognize that the shortest path is not the only way a target can
impact other nodes. Targetsmay connect to other nodes viamultiple
alternative paths. Therefore, assessing topological influence should
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Figure 1: [Best viewed in color] Target-aware cancer-specific
signaling network for breast cancer. The red edges are pos-
itive links and the blue edges are negative links. Nodes in
yellow are drug targets. Nodes in green are cancer genes. Red
nodes are both a cancer gene and a drug target.

leverage network propagation-basedmethods. Cowen et al. [7] have
reviewed several of these methods, which include methods based
on random walk with restart (e.g., PPR). In our work, we focus on
capturing connectivity-based relationships through a PPR-based
distance measure known as PEN distance (Personalized pagErank-
based Node distance).

Intuitively, the PPR value 𝜋 (𝑠, 𝑡) indicates the node 𝑡 ’s impor-
tance to the node 𝑠 . Recall that if 𝜋 (𝑠, 𝑡) is high then 𝑡 can be
reached from 𝑠 via many paths (i.e., 𝑡 is important w.r.t. 𝑠 as it can
be reached by many paths from 𝑠). Our goal is to capture this im-
portance between a pair of nodes (e.g., a drug target FGFR2 and a
tumor suppressor TP53 in Figure 1) in a cancer signaling network
in the form of a “distance” measure. That is, if a node pair (𝑠, 𝑡)
has a high PPR value then the “distance” should be small. Unfor-
tunately, the PPR values of adjacent node pairs in a graph could
vary significantly [22]. Consequently, directly using the PPR values
as a “distance” measure may inject a large variance in their values
between the adjacent nodes (e.g., adjacent drug targets) and other
nodes (e.g., oncogenes). To alleviate this challenge, we propose PEN
distance as follows.

Definition 4.1. [PEN Distance] Given a signaling network 𝐺 =

(𝑉 , 𝐸), the PEN distance between nodes 𝑠 ∈ 𝑉 and 𝑡 ∈ 𝑉 is defined as
follows:

𝑃 [𝑠, 𝑡] =
{0 if 𝑠 = 𝑡 ,

1 − log(𝜋𝑑 (𝑠, 𝑡) + 𝜖) if 𝑠 ≠ 𝑡 .
(2)

where 𝑠 ≠ 𝑡 , 𝜋d (𝑠, 𝑡) = 𝜋 (𝑠, 𝑡) × 𝑑 (𝑠), 𝑑 (𝑠) is the out-degree of node
𝑠 , and 𝜖 = 1𝑒 − 5 where 𝑒 is the Euler constant.

In the above definition, 𝜋𝑑 (𝑠, 𝑡) is the degree-normalized PPR
(DPPR) from 𝑠 to 𝑡 . According to [19], multiplying a node’s PPR
by its out-degree yields a more precise measure of the strength of
connections between nodes. Additionally, employing DPPR helps
mitigate the variability of PPR among neighboring nodes. The 𝜖
parameter is added to avoid undefined 𝑙𝑜𝑔(·) value when 𝜋 (𝑠, 𝑡) = 0.
Intuitively, if 𝜋 (𝑠, 𝑡) is large, then 𝑃 [𝑠, 𝑡] tends to be small, i.e., well-
connected nodes have a closer distance from each other.

4.2 PEN-Diff
Next, we introduce the notion of PEN-diff, which is based on PEN
distance. Let 𝑉𝑔 ⊂ 𝑉𝐶 be a set of nodes in a signaling network 𝐺𝐶 .

Table 1: Target-aware cancer-specific signaling networks.

Type No. of Nodes No. of Edges No. of Known Targets

Prostate Cancer 2,214 27,899 87
Breast Cancer 2,560 29,986 295
Bladder Cancer 2,291 28,602 93

Colorectal Cancer 2,467 29,717 109

Consider a node 𝑠 ∈ 𝑉𝐶 . The average PEN distance from 𝑠 to 𝑉𝑔 ,

denoted as 𝑃 [𝑠,𝑉𝑔], is given as follows: 𝑃 [𝑠,𝑉𝑔] =
∑|𝑉𝑔 |

𝑖=1 𝑃 [𝑠,𝑡𝑖 ]
|𝑉𝑔 | .

Then, the single-source PEN-diff of a node 𝑠 in 𝐺𝐶 = (𝑉𝐶 , 𝐸𝐶 ),
denoted as 𝑃Δ [𝑠,𝑉𝑔], is the difference between the average PEN
distance to the the nodes in 𝑉𝐶 −𝑉𝑔 and the average PEN distance
to the nodes in 𝑉𝑔 . Formally, it is defined as follows: 𝑃Δ [𝑠,𝑉𝑔] =

𝑃 [𝑠,𝑉𝐶 −𝑉𝑔] − 𝑃 [𝑠,𝑉𝑔].
Given two sets of nodes 𝑉𝑠 and 𝑉𝑔 , the PEN-diff of 𝑉𝑠 is the

average single-source PEN-diff values of the nodes in 𝑉𝑠 w.r.t. 𝑉𝑔
and rest of the nodes in the network. Formally,

Definition 4.2. [PEN-diff] Given 𝑉𝑠 ⊂ 𝑉𝐶 and 𝑉𝑔 ⊂ 𝑉𝐶 in a
signaling network 𝐺𝐶 = (𝑉𝐶 , 𝐸𝐶 ), the PEN-diff of 𝑉𝑠 is defined as
follows.

𝑃Δ [𝑉𝑠 ,𝑉𝑔] =
∑ |𝑉𝑠 |
𝑖=1 𝑃Δ [𝑣𝑖 ,𝑉𝑔]

|𝑉𝑠 |
(3)

Remark. Observe that if 𝑃Δ [𝑉𝑠 ,𝑉𝑔] > 0 then the average PEN
distance of nodes in 𝑉𝑠 and (𝑉𝐶 − 𝑉𝑔) is larger than the average
PEN distance with 𝑉𝑔 . That is, the nodes in 𝑉𝑠 are relatively less
connected to the nodes in (𝑉𝐶 −𝑉𝑔) compared to the nodes in𝑉𝑔 . In
the next subsection, we shall represent a set of oncogenes using 𝑉𝑔
and target combinations using𝑉𝑠 . Consequently, a positive PEN-diff
value for a target combination set indicates that these targets exert
relatively less influence on the rest of the network compared to
the oncogenes, which is desirable due to off-target effects. Note
that panacea is flexible to represent other types of nodes (e.g.,
biomarkers, disease-related nodes) as 𝑉𝑔 .

4.3 Profiling Drug Target Combinations
We now present the algorithm to profile the known target combi-
nations in a cancer signaling network by exploiting PEN distance.
The formal description of the algorithm is given in [18].

Phase 1: Target-aware cancer-specific signaling network
construction. Given that cancer is a complex disease involving dif-
ferent genes and proteins for various types (e.g., breast, colorectal)
and that drug targets differ by cancer type, we first extract a subnet-
work from the reduced human signaling network corresponding
to a specific cancer type 𝐶 and the known targets for 𝐶 . Given the
reduced signaling network 𝐺 = (𝑉 , 𝐸), a cancer type 𝐶 , a set of
known targets𝑋𝑡 for𝐶 from theAnticancer Fund database [12], a set
of oncogenes 𝑋𝑔 from COSMIC Cancer Gene Census database [13],
and a configurable path length threshold 𝑑 (𝑑 = 5 by default), the
algorithm searches for paths with length less than 𝑑 between each
pair of a known target 𝑢 ∈ 𝑋𝑡 and an oncogene 𝑣 ∈ 𝑋𝑔 in 𝐺 . The
nodes in each such path 𝑝 (𝑢, 𝑣) and their edges are added to a path
set 𝑃𝐶 and then used to extract the output subnetwork𝐺𝐶 from 𝐺 .
That is, the subnetwork encompasses all nodes associated with the
oncogenes and targets for𝐶 , along with the intermediate nodes that
link them. Figure 1 shows a fragment of the network constructed
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Table 2: Example of PEN distance matrix of selected nodes in Figure 1.

target node
source node TP53 PIK3CA S100A9 TP53AIP1 FGFR2 APC COL18A1 MAPK1 PLAU

TP53AIP1 12.5129 12.5129 12.5129 12.5129 12.5129 12.5129 12.5129 12.5129 12.5129
FGFR2 2.4265 2.6688 3.2374 4.0358 1.3471 4.0358 4.0358 1.4049 1.9927
APC 12.5129 12.5129 12.5129 12.5129 12.5129 12.5129 12.5129 12.5129 12.5129

PIK3CA 2.763 1.8667 3.5739 4.3722 3.5739 4.3722 4.3722 1.7414 2.3292
COL18A1 12.5129 12.5129 12.5129 12.5129 12.5129 12.5129 12.5129 12.5129 12.5129

Table 3: Example of PEN-diff computation.

2-node pair 𝑃 [𝑉𝑠 ,𝑉𝐶 − 𝑉𝑔 ] 𝑃 [𝑉𝑠 ,𝑉𝑔 ] PEN-Diff

(FGFR2, PIK3CA) 3.1732 2.4313 0.7419
(FGFR2, TP53AIP1) 7.6914 7.5303 0.1611

by the algorithm for breast cancer. Table 1 reports the features of
target-aware, cancer-specific signaling networks for four different
cancer types.

Phase 2: PEN distance computation. Given the constructed
target-aware cancer-specific signaling network𝐺𝐶 , this phase com-
putes the PEN distance between all pairs of nodes in the network
by exploiting Definition 4.1. The key step here is the computation
of PPR values of pairs of nodes. Since this phase incurs a one-time
cost for a specific signaling network, we calculate the exact PPR
values. It produces the PEN distance matrix P, which contains the
PEN distance values for all pairs of nodes in 𝐺𝐶 .

Consider Figure 1. The PEN distance matrix involving some of
the node pairs is shown Table 2. Observe that there are multiple
paths from various nodes to PIK3CA, resulting in low PEN distance
between these pairs. In contrast, TP53AIP1 and the other nodes
exhibit high distance, as there are very few (if any) paths linking
them to TP53AIP1.

Phase 3: PEN-diff computation phase In this phase, we uti-
lize the PEN distance matrix P to compute the PEN Diff (Defini-
tion 4.2) for 𝑘-node combinations in 𝐺𝑐 w.r.t. the oncogenes and
non-oncogenes. Consider the set of oncogenes 𝑋𝑔 in 𝐺𝑐 and a com-
bination size parameter 𝑘 (𝑘 > 1). For each 𝑘-nodes pair of 𝑉𝑐 ,
denoted as𝐻𝑘,𝑖 , we compute the average PEN-distance of the nodes
in 𝐻𝑘,𝑖 with the nodes in 𝑋𝑔 . Similarly, we calculate the average
PEN-distance with the nodes in 𝑉𝐶 − 𝑋𝑔 . Finally, the difference
between these two values is used to compute the PEN-diff of 𝐻𝑘,𝑖 ,
which is then stored in the PEN-diff hash table 𝐷 .

The PEN-diff values of two 2-node combinations in Figure 1 are
shown in Table 3. Notably, the PEN-diff values are positive. The
nodes FGFR2 and PIK3CA are both targets of the drug Fulvestrant,
a hormone treatment for advanced breast cancer. This pair has an
average PEN distance of 2.4313 with oncogenes and 3.1732 with
other nodes, indicating that they are, on average, significantly more
connected to oncogenes than to the rest of the network. In contrast,
the nodes FGFR2 and TP53AIP1 are not targets of the same drug
(i.e., not a target combination), resulting in a considerably lower
PEN-diff value of 0.1611.

Phase 4: Target combination profiling. The PEN-diff hash
table𝐷 generated in the preceding phase is exploited in this phase to
profile known target combinations in𝐺𝐶 . Given 𝐷 , a set of known
targets 𝑋𝑡 for the cancer 𝐶 , and the number of buckets 𝑁𝑏𝑢𝑐𝑘𝑒𝑡 , it
first groups the 𝑘-node combinations in 𝐷 according to their PEN-
diff values. Specifically, this step generates equi-width 𝑁𝑏𝑢𝑐𝑘𝑒𝑡 (by
default 𝑁𝑏𝑢𝑐𝑘𝑒𝑡 = 5) buckets based on the PEN-diff values and
assigns each combination in 𝐷 to the appropriate bucket 𝑏𝑖 =

[𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥 ]. That is, a node combination 𝑐 is assigned to a bucket
𝑏𝑖 if𝐷 [𝑐] > 𝑟𝑚𝑖𝑛 and𝐷 [𝑐] ≤ 𝑟𝑚𝑎𝑥 . Node combinations within each
bucket are sorted by their PEN-diff values in descending order (i.e.,

a lower rank indicates greater similarity in average connectivity or
influence between𝑉𝑔 and rest of the nodes). Then the percentage of
known 𝑘-target combinations in a specific bucket is computed by
counting the number of known target combinations in the top-𝑚
percentage of node combinations by varying𝑚 ∈ 1, 10, 20, 50. This
is used to construct the delta-histogram. The 𝑋 -axis of the delta
histogram represents the buckets, while the 𝑌 -axis indicates the
percentages of known 𝑘-target combinations in each bucket for
different values of𝑚. The [𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥 ] values of the bucket with the
highest coverage are returned as the target profile thresholds 𝛿𝑚𝑖𝑛

and 𝛿𝑚𝑎𝑥 (ties are broken arbitrarily). We define the coverage of a
bucket as the percentage of known target combinations in the top-
50% of its node combinations. These values for a specific cancer-type
network and the delta histogram can be used to prioritize 𝑘-target
combinations.

Figure 2 (left) depicts the delta histogram of the breast cancer-
specific signaling network in Table 1. Observe that majority of
the known targets are found in the first bucket. Specifically, the
bucket [−0.0045, 0.4301] has the highest coverage of known target
combinations for all values of𝑚. Hence, these values are returned
as 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥 , respectively, along with the delta histogram.
Additionally, most known target combinations fall within the top
1% of the first bucket, and for the remaining𝑚 values, there are no
known target combinations beyond those in the top 1%. As a result,
the bars in the first bucket are of equal length.

5 Performance Study
panacea is implemented using Python. We shall now present the
key performance results of panacea. Additional experiments are
reported in [18]. All experiments are performed on a 64-bit Win-
dows machine with 12th Gen Intel(R) Core(TM) i7-1250U CPU(1.10
GHz) and 32.0 GB of main memory.

5.1 Experimental Setup
Datasets.We use the four types of cancer signaling networks in
Table 1. We use the sets of oncogenes and known targets as detailed
in Section 2. We set 𝛼 = 0.2, 𝑘 = 2, and 𝑁𝑏𝑢𝑐𝑘𝑒𝑡 = 5 for our
experiments. Specifically, we set 𝑘 = 2 because most literature on in
silico target combination discovery primarily focuses on identifying
2 or 3 target combinations for combination therapy [5, 10, 15]. We
set𝑚 ∈ {10, 20, 40, 50}.
Baselines. We compare panacea with the following baselines.
(a) PPR-diff: Recall that a key motivation for introducing PEN
distance is that we cannot effectively use PPR to profile known
target combinations. Therefore, in this baseline, we use PPR values
of the node pairs in𝐺𝐶 to calculate the average difference instead of
PEN-diff. (b)Distance-diff: We leverage network distance between
a pair of nodes 𝑠 and 𝑡 in𝐺𝐶 (i.e., the length of the shortest path from
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Figure 2: [Best viewed in color] Delta histograms of breast,
bladder, colorectal, and prostate cancers.
Table 4: Characteristics of maximum-coverage buckets.

Type Candidate size Range constraint |𝑏 | Coverage

Breast Cancer 3, 275, 520 [−0.0045, 0.4301] 1, 770 95.81%
Bladder Cancer 2, 623, 195 [2.0884, 2.6112] 1, 985 100%

Colorectal Cancer 3, 041, 811 [0.0, 0.5461] 91 100%
Prostate Cancer 2, 449, 791 [0.1432, 0.4712] 741, 637 55.28%

𝑠 to 𝑡 ) in lieu of PEN distance to compute the average difference.
Note that distance has been exploited by several recent techniques
for target/drug combination discovery [3, 10]. Additionally, it serves
as the basis for various network centrality measures, including
betweenness and closeness centrality.

The computation of PPR-diff and Distance-diff is similar to PEN-
diff. Given a signaling network 𝐺𝐶 , for a 𝑘-node combination, we
compute the average PPR (resp. distance) to the set to oncogenes
𝑉𝑔 and rest of the nodes 𝑉𝐶 − 𝑉𝑔 in the cancer-specific signaling
network. We then find the difference to determine the PPR-diff
(resp. Distance-diff ).

5.2 Delta Histograms
We first report the delta histograms generated by panacea and
their characteristics. Figure 2 plots the results. We can make the fol-
lowing observations. Firstly, the buckets with the highest coverage
vary across different cancers. Specifically, for breast and colorec-
tal cancers, the first bucket shows the maximum coverage, while
for bladder and prostate cancers, the buckets [2.0884, 2.6112] and
[0.1432 − 0.4712] have the highest coverage, respectively. This
variation is expected given the complexity and heterogeneity of
different cancer types. Note that these buckets include 55.28%-100%
of the known target combinations. Specifically, the buckets with
the highest coverage encompass the majority of known target com-
binations for breast, bladder, and colorectal cancers. Secondly, a
significant portion of the known target combinations (with some
exceptions for breast cancer) exhibit positive PEN-diff values. This
suggests that these known target combinations are more closely
connected to the oncogenes than to the other nodes, indicating they
exert greater topological influence on the oncogenes compared to
the rest. Thirdly, the known target combinations are not always
grouped in buckets with high PEN-diff values (i.e., the rightmost

Table 5: Exploration Size Ratio (ESR).

Cancer Types 𝑀 |𝑏𝑤𝑜𝑟𝑠𝑡,𝑀 | ESR

Breast Cancer

PEN-diff 226, 049 1.00
PPR-diff 539, 293 2.39

Distance-diff 862, 918 3.82

Bladder Cancer

PEN-diff 195, 974 1.00
PPR-diff 881, 789 4.50

Distance-diff 322, 523 1.65

Colorectal Cancer

PEN-diff 296, 818 1.00
PPR-diff 542, 008 1.83

Distance-diff 649, 281 2.19

Prostate Cancer

PEN-diff 122, 070 1.00
PPR-diff 1, 131, 200 9.27

Distance-diff 432, 114 3.54

buckets) for every cancer type. This creates an opportunity to in-
vestigate candidate combinations in buckets with elevated PEN-diff
values for the discovery of novel target combinations.

5.3 Comparison of Exploration Space Size
In this set of experiments, we analyze the size of the exploration
space and compare it to those generated by the baseline strategies.

Size of themaximum-coverage bucket.We consider the buck-
ets that have maximum (i.e., highest) coverage of known target
combinations for the four types of cancer. Table 4 reports the num-
ber of candidate 𝑘-size combination in the cancer-specific signaling
network, along with the range constraints for the buckets with max-
imum coverage, their size |𝑏 | (i.e., number of 𝑘-node combinations),
and the coverage of known target combinations. We note that each
cancer-specific signaling network contains over two million can-
didate target combinations, making exhaustive exploration of this
space for potential target combinations computationally challeng-
ing. However, if one opts to explore the bucket with maximum
coverage, the exploration space is dramatically reduced by 99.95%,
99.92%, 99.997% and 69.73% for breast cancer, bladder cancer, col-
orectal cancer, and prostate cancer, respectively. For instance, if
one chooses the bucket [−0.0045, 0.4301] for further analysis in the
breast cancer-specific signaling network, they only need to exam-
ine 1, 770 out of a total of 3, 275, 520 candidate combinations in the
network. This significantly reduces the exploration space and has
the potential to enhance the efficiency of downstream tasks.

Comparison ofworst-case bucket size. The experiment above
highlights the benefit of exploring buckets with maximum coverage.
Note that one may choose to analyze other buckets as well. Hence,
a key question arises: What is the worst-case size of a bucket in
the delta histogram that one may need to explore, and how does it
compare to the buckets generated by PPR-diff and Distance-diff? In
this set of experiments, we shed insights into this question.

We compare the worst-case size of a bucket in the delta his-
tograms of panacea with the corresponding worst-case bucket
sizes in the delta histograms generated by PPR-diff and Distance-
diff, respectively. To this end, we define exploration size ratio (ESR)
as follows: 𝐸𝑆𝑅𝑋 =

|𝑏𝑤𝑜𝑟𝑠𝑡,𝑋 |
|𝑏𝑤𝑜𝑟𝑠𝑡,𝑃 | where 𝑋 ∈ {𝑃𝑃𝑅 − 𝑑𝑖 𝑓 𝑓 , 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 −

𝑑𝑖 𝑓 𝑓 , panacea}, 𝑃 denotes panacea, and 𝑏𝑤𝑜𝑟𝑠𝑡,𝑀 is the bucket
with the largest number of 𝑘-node combinations in the delta his-
togram generated by𝑀 . Note that 𝐸𝑆𝑅panacea = 1. The results are
shown in Table 5. Observe that 𝐸𝑆𝑅 consistently exceeds 1 across
all cancer types for both PPR-diff and Distance-diff. This indicates
that, in the worst case, significantly larger candidate combinations
must be explored when the delta histograms are generated using
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Figure 3: [Best viewed in color]Delta histograms generated by
baselines for breast cancer: Dist-diff (left); PPR-diff (right).

network distance or PPR. This occurs because the PPR-diff and
Distance-diff values for most candidate combinations are clustered
within a narrow range [18]. Figure 3 depicts the delta histograms
generated by Dist-diff and PPR-diff for breast cancer. It is evident
that the coverage of the maximum-coverage buckets is lower com-
pared to panacea. The results are qualitatively similar for other
cancer types, indicating that these baselines are not effective for
profiling known target combinations.

5.4 Usefulness of Delta Histograms
In this section, we undertake a case study to demonstrate the bene-
fits of delta histograms generated by panacea. We use the results
of Hu et al. [10] for identifying synergistic optimal control nodes
(OCN) pairs in breast cancer. It identifies 63 synergistic OCN pairs
involving 28 genes. In our breast cancer signaling network, three
of these genes–PSENEN,MAML2, and GNG11–are missing. As a
result, we pruned the OCN pairs involving these genes, leading to
35 synergistic OCN pairs. We found that all these OCN pairs are
confined to just two buckets in the delta histogram for breast cancer,
rather than being spread across all five buckets: [0.8647 − 1.2993]
and [1.2993 − 1.7338] (Figure 2). Specifically, the PEN-diff values
for these OCN pairs fall within [1.1446 − 1.6398]. Therefore, explor-
ing these two buckets instead of the entire breast cancer signaling
network can significantly aid in the discovery of all these OCN pairs.
Furthermore, it is important to note that the PEN-diff values of
all these OCN pairs are greater than one. This indicates that these
OCN pairs exert relatively less influence on the rest of the network
compared to the oncogenes (i.e., off-target effects), which is a de-
sirable characteristic, consistent with our PEN-diff-based model.
Additionally, exploring these two buckets for target combination
prediction may uncover novel target pairs with positive PEN-diff
values that were not identified by Hu et al.

6 Related Work
There is extensive research on efficient computation of PPR with
quality guarantees [20]. In this context, we investigate how two
PPR-based measures, PEN distance and PEN-diff, can be utilized to
profile known target combinations in cancer signaling networks.
Zhang et al. [22] introduced a PPR-based distance measure called
PDistance, designed to enhance graph visualization by strategically
positioning nodes. While PEN distance also uses degree-normalized
PPR, it has a different definition and application than PDistance.

Techniques such as random walks, random walks with restart
(e.g., PPR), and diffusion kernels have been used for network prop-
agation aimed at tasks like function prediction, gene prioritization,
module detection, patient stratification [7]. However, these meth-
ods typically yield scoring vectors or similarity matrices rather

than delta histograms, and they do not focus on profiling known
target combinations. In contrast, our research centers on profiling
known target combinations in cancer signaling networks using a
PPR-based approach and generates delta histograms.

7 Conclusions
This paper integrates data profiling with cancer signaling networks
and drug targets by introducing the novel influence-driven target
combination profiling problem and presenting panacea as a solu-
tion for large cancer signaling networks. It utilizes two innovative
personalized PageRank-based measures, PEN distance and PEN-
diff, to summarize the distribution of known targets in relation to
their influence on cancer-mutated genes and other nodes in the net-
work through delta histograms. Experimental results show that the
PEN-diff-based profiling outperforms several alternative methods.
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