
HyperThesis: The gRNA Spell on the Curse of
Bioinformatics Applications Integration

Sourav S Bhowmick
School of Computer

Engineering
Nanyang Technological

University
Singapore 639798

assourav@ntu.edu.sg

Vivek Vedagiri
HeliXense Pte Ltd

Science Park
Singapore 110254

vvedagiri@helixense.com

Amey Laud
HeliXense Pte Ltd

Science Park
Singapore 110254

alaud@helixense.com

ABSTRACT
In this paper, we describe a graphical workflow manage-
ment system called HyperThesis to address the challenges of
integrating bioinformatics applications. HyperThesis is an
integral component of the Genomics Research Network Ar-
chitecture (gRNA). The gRNA was designed and developed
to address the challenges of developing new bioinformat-
ics applications. Specifically, HyperThesis makes construct-
ing workflows (pipelines of execution of applications) in the
gRNA fast and intuitive for biologists and bio-programmers
alike. It provides a large repository of interconnectable, pa-
rameterized workflow components for processing and relat-
ing diverse biological data and software programs. It also
enables us to add new workflow components as new algo-
rithms develop in ones area of interest. HyperThesis has
been fully implemented using Java.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]; H.2.8 [Database Man-
agement]: Database Applications; H.5.2 [Information In-
terfaces and Presentation]: User Interfaces

General Terms
Management, Human Factors, Design

Keywords
Bioinformatics, applications integration, work flow, Hyper-
Thesis, GUI, visual components, XomatiQ, gRNA.

1. INTRODUCTION
The amount of biological data being generated worldwide

is growing rapidly, as is the need for analyzing and managing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’03, November 3–8, 2003, New Orleans, Louisiana, USA.
Copyright 2003 ACM 1-58113-723-0/03/0011 ...$5.00.

Figure 1: Typical sequence of steps.

this wealth of information. This data, which lies at the foun-
dation of hypothesis development and experiment valida-
tion, is often stored in geographically distributed databases
(eg. EMBL, GenBank, SwissProt etc.). These databases
contain annotated genomic sequence information (EMBL,
Genbank), or the results of new high-throughput techniques
such as microarray experiments, or curated databases con-
taining carefully scrutinized existing research, systemati-
cally compiled by domain experts [17]. It is critical for
biomedical and life science researchers to correlate these
databases with those containing medical records, informa-
tion on disease, references to literature, information on the
properties of chemicals and their molecular structure.

Most of these data is voluminous, highly evolving, highly
heterogeneous, semi-structured, and not consistently repre-
sented. This heterogeneity results from our evolving un-
derstanding of complex biological systems; the numerous
disparities in modeling biological systems across organisms,
across tissue, in different environments and over time; and
disparities across the scientific community in their under-
standing of these systems. Moreover, there continues to be
a lack of common standards in the representation of biolog-
ical data [4].

There is also a plethora of bioinformatics software tools
currently available. Many of these tools are freely available
on the Web. For example, the BLAST or FASTA programs
can be used to look for sequence similarity, InterProScan [5]
is a tool that can be used to search for motifs in protein

sequences, DALI [1] can be used to query protein struc-
tures and compare them to those in the Protein Data Bank
(PDB), and ClustalW [20] can be used to perform sequence
alignment. Most of these tools have different client inter-
faces (one interface for each server-side program) which are
made available to all potential users. However, this implies
that a user cannot customize the interface to his/her specific
requirements or preferences.

While these databases as well as these tools are suitable
for single pass analysis, such as comparing a new sequence
against a public database or calculating the reverse comple-
ment of a sequence, what is required is the ability to use the
results of some analysis as the basis for conducting further
downstream analysis (eg. identifying new genes) in a man-
ageable, efficient way. However, with the diverse range of file
formats, different computer platforms, as well as representa-
tions of bioinformatics data, it has become an increasingly
daunting task to work with different analysis tools. Re-
searchers wishing to perform multiple-pass analysis of data,
by feeding results of one program to another, encounter the
problem of changing data from one format to another. For
instance, Figure 1 [18] describes a typical sequence of steps
a scientist might take to accomplish a relatively simple anal-
ysis task. To examine a DNA sequence in alignment with
similar sequences from a public database, the scientist must
use three different tools with three different interfaces and
convert the output from each one to a format acceptable
as input to the next. For many complex analysis, many
other resources might be required. Consequently, scientists
find it slow, cumbersome, and labor-intensive to establish
connections across information resources that fuel scientific
research. It has been claimed in [18] that biologists spend
more than half of their time on tasks related to the inte-
gration of data from incompatible databases and software
tools.

Recognizing that integrating geographically distributed
heterogeneous biological data sources and different bioinfor-
matics tools is essential, there arises the need to develop a
standardized but flexible framework for integrating different
types of biological data (eg. primary sequences, functional
data, ESTs) and software programs. HyperThesis was de-
signed and developed at HeliXense Pte Ltd, Singapore [2]
to achieve this goal.
HyperThesis is a graphical workflow management sys-

tem for bioinformatics applications that represents sophis-
ticated functionality as intuitive workflow components. By
interconnecting workflow components the user can create
data-processing workflows which perform complex, large-
scale processing automatically. The components are ar-
ranged and connected based on an experimental approach
to the task to be accomplished, rather than a programmatic
one. HyperThesis allows developers to easily design com-
plex workflow components since it allows them a great deal
of flexibility in modularizing and parameterizing code into
workflow components. Note that HyperThesis is data flow
driven.
HyperThesis is an integral part of the Genomics Research

Network Architecture (gRNA) 1 [15] that was designed and
developed to address the challenges for developing new bioin-
formatics applications. The gRNA provides a development
environment and a deployment framework in which to main-

1The first version was officially released on 3rd Jan, 2002.

Figure 2: HyperThesis GUI.

tain distributed warehouses, and to model, query and inte-
grate disparate sources of data. The reader may refer to [15]
for a detailed discussion on the architecture and application
of the gRNA.

The rest of the paper is organized as follows. We dis-
cuss the logical structure of HyperThesis in Section 2. In
Section 3, we present the HyperThesis interface and discuss
how the anatomy is implemented in the gRNA. Then, in
Section 4 we illustrate with an example how HyperThesis

can be used to integrate bioinformatics applications. We
discuss related work in Section 5. Finally, the last section
concludes the paper.

2. ANATOMY OF HYPERTHESIS
In this section, we present the anatomy of HyperThesis.

HyperThesis is logically composed of two main parts: a
collection of workflow components and the execution engine.
The workflow components are the basic units of work within
HyperThesis. Each component is built to perform a specific
operation based on the inputs and parameters supplied to
it. The execution engine is the lifeline of HyperThesis in the
sense that it performs the most essential task: execution of
a collection of workflow components. We now elaborate on
these two parts.

2.1 Workflow Components
The workflow components are the basic building blocks

of HyperThesis. HyperThesis provides a rapidly growing
large repository of interconnectable, parameterized work-
flow components that opens a wide range of possibilities for
processing and relating diverse biological data. This reposi-
tory contains sophisticated algorithms for sequence, expres-
sion and structure analysis (e.g. BLAST, Hidden Markov
Models (HMM), clustering methods, Self Organizing Maps
(SOM), Support Vector Machines (SVM), and many more).
One can also expand the pool of workflow components in
HyperThesis simply by adding new user-defined workflow
components into this repository. Using an assortment of
them, one can then weave together a bioinformatic workflow
that performs a particular task as desired by the user. Each

workflow component in HyperThesis is designed to perform
a specific task such as reading a sequence from a file, per-
forming alignment on a given set of sequences, etc. Most
workflow components have inputs, parameters and outputs.
Outputs of one component can be connected to inputs of
other components and so on to form complex workflows.

The workflow components follow the object oriented
paradigm in the sense that all components fall into one of
two basic types. They either involve the instantiation of a
new object, or execution of a method of an object that has
been passed in via its input. There would be components
that perform both these tasks, but the fundamentals are the
same i.e., to create objects and make use of the methods
they provide. For example, in Figure 2 the boxes represent
workflow components. The screenshot shows how a set of
workflow components can be connected to perform a task
(multiple alignment of sequences [16]). While each compo-
nent appears to be a “black-box”, it actually represents code
written in Java or Python. The components communicate
with each other through their inputs and outputs. During
such communication the components actually pass in and
out Java (or Python) objects. We will elaborate on the
HyperThesis GUI in Section 3.

2.2 HyperThesis Execution Engine
The workhorse of HyperThesis is the execution engine.

The job of this engine is to execute the code written in
each of the workflow components in an orderly manner. All
workflows are processed automatically. The execution envi-
ronment is implemented as a Java application triggered by
any event on the user interface (discussed later), such as
start, stop, step, etc. The engine supports code written in
Jython (a seamless interface between Java and Python).

In HyperThesis terminology, a workflow component is
“ready for execution” only if all its object inputs (i.e. in-
puts that are derived from the output of another component)
have been satisfied . An object input is satisfied if the work-
flow component from which it is obtained has already been
executed. In that case, the engine takes care of transferring
the object from the executed workflow to the object input.

The working of the engine can be described in the follow-
ing steps:

1. Scan through all the workflow components to find one
that is ready for execution. (At the start of execution,
obviously, only a workflow component with no object
inputs will qualify as “ready for execution”).

2. If no such workflow component is found, then the work-
flow has been completely executed. Otherwise, execute
the code in the workflow component.

3. Once execution of one workflow component is done,
the outputs of that workflow component are collected
and passed to the next set of components (to which the
outputs are connected). After that the engine will find
the next workflow component ready to be executed (all
of its inputs are available) and execute it. Once done
it will pass the outputs to the appropriate workflow
components, and so on.

4. The above process is repeated until there are no more
workflow components that are to be executed and the
workflow execution is deemed finish.

It might seem that if two workflow components are likely
to be simultaneously ready for execution then their order of

Figure 3: A Visual Component.

execution is ambiguous. This is in fact true, but HyperThesis
provides a mechanism for averting this ambiguity through
the provision of activation inputs. These inputs determine
whether the workflow component is “activated” or not. A
workflow component is “activated” only when one of two
conditions occurs: (1) when there is no input to the activa-
tion input and (2) when there is an input to the activation
input, and the workflow component from which this input
is obtained has been executed. The HyperThesis engine ex-
ecutes only “activated” workflow components. Therefore,
activation inputs can be used to ensure that certain work-
flow components execute only after certain other compo-
nents have been executed.

3. INTERFACE OF HYPERTHESIS
We now discuss how the two parts of HyperThesis dis-

cussed in the preceding section are realized in the gRNA.
Specifically, we discuss the GUI of HyperThesis. Note that
we do not discuss the implementation of the HyperThesis

interface in great detail as the detailed description is propri-
etary and hence beyond the scope of the paper.

Figure 2 shows the graphical interface of HyperThesis

running on the gRNA platform. The HyperThesis user in-
terface is implemented as a Java application using Swing as
the user interface toolkit. The interface consists of three
parts as discussed below.

The Working Canvas occupies the centre of the window.
This is the area where users can drag visual components
around and construct an execution pipeline from various
components. The canvas visualizes the execution flow of the
program and enables intuitive understanding of the executed
operation.

On the left side is the Component Palette. This palette
contains all the available visual components. A visual com-
ponent (hereafter, unless otherwise specified we will use the
terms component and visual component interchangeably) is
the implementation of a workflow component in the
HyperThesis (discussed in the preceding section). Hence,
visual components are the basic building blocks of any work-
flow in HyperThesis and are basically an abstraction of
certain operation into easily managed visual representation
that can be reconfigured and reconnected on the fly to exe-
cute a larger and more meaningful task. Conceptually, there
are two parts to every visual component. The first part is
the configuration. A visual component should know how to
render its configuration panel , so that information specific
to its operation can be entered by users. The second part is
the definition of its execution behavior. Given the appropri-
ate parameters and inputs, visual components should follow
pre-defined steps when the operation is executed. We shall
discuss visual components in detail in Section 3.1.

Figure 4: Example of configuration panel.

The Configuration Panel occupies the bottom of the screen.
When a visual component is added to the working canvas,
this component needs to be configured. In most cases, the
configuration is specific to each component. For example,
the configuration panel in Figure 2 is specific to the Xo-
matiQ Sequence component in the workflow. To execute
this component, one has to specify a query in the configura-
tion panel to access relevant data from specified biological
source(s) (discussed later in Section 4). Figure 4 shows an-
other example of configuration panel.

3.1 Visual Components
As mentioned earlier, the visual components are the rep-

resentation of the workflow components in the HyperThesis

GUI. Each visual component added to the working canvas
is represented as a blue box. We first discuss the anatomy
of such a visual component and then elaborate on how they
can be used to create meaningful workflows.

Figure 3 depicts the various parts of a visual component.
The display name (multiAlign in Figure 3) is a good indica-
tion of the function of the component. In the above example,
it is used for multiple alignment of genomic sequences [16].
The input points are to be connected to outputs of other
components in order to facilitate the flow of objects from
one component to another. In most cases a component will
only be executed if all of its inputs are valid. There are
some exceptions such as Loop and Mux components where
the component will be executed as soon as one of its inputs
is valid. The Loop component allows a certain workflow to
be executed multiple number of times. The number of times
the loop is to be performed is specified in advance and can-
not be modified during runtime. The Mux component is
used for multiplexing two inputs. The output of this com-
ponent will be the first input if both inputs are available,
or the active input if only one of the inputs is active. The
activation input is a special type of input that determines
whether a component is “activated” or not. As described
in an earlier section, it is used to impose a specific order
of execution of components. The output points provide the
outputs for this component. Edges represent the data flow
in the pipeline. An edge from the output of a component to
the input of another component represents that the object
originating from the output of the first component is car-
ried through and used as an input parameter of the second
component. The execution status signifies the status of the
component during execution. A red box indicates that the
component has not been executed yet, while the green box
shows that the component has been executed.

3.2 Adding Existing Visual Components
HyperThesis provides a large repository of visual compo-

nents to the user for creating bioinformatic workflows. In
this section, we illustrate with an example how one can easily

Figure 5: Component Palette.

add these existing visual components to the Working Canvas
and create a workflow to perform a specific task. Consider
the workflow in Figure 2 which is created to perform multi-
ple alignment of sequences (We elaborate on the semantics of
the workflow in Section 4). The XomatiQ Sequences com-
ponent is used to retrieve specific set of sequences from the
TrEMBL database [7]. This component is imported to the
Working Canvas by selecting the “XomatiQ Query Panel”
component in the Component Palette and clicking on the
“Add” button (Figure 5). Once the component is visible in
the canvas, one can drag the component around and con-
nect it to other components. When one clicks on the added
component the configuration panel will automatically dis-
play a form so that information specific to the execution
of the component (if any) can be entered . In the above
example, the panel enables us to enter a query to retrieve
relevant data (Figure 2). Similarly, other components can be
selected from the Component Palette and connected to form
a workflow for a specific task. HyperThesis supports auto-
matic type checking. When one connects two components,
the types of objects being output from one component and
accepted as input by the other component are checked for
compatibility. If they are not matching, an error message
is displayed. Observe that the ease of connecting up com-
ponents and setting their parameters does not require users
such as biologists to grapple with the logic of what actually
happens “behind the scenes”.

Once the workflow is ready, it can be saved and executed
multiple times. Every time one needs to modify the work-
flow, (s)he only needs to click on the component and change
the configuration without recreating the entire workflow.
Upon using HyperThesis, it becomes obvious how easy it is
to translate one’s ideas into a meaningful workflow. Instead
of coding and debugging programs or scripts, a biologist can
concentrate on the formulation of the problem and solve it
quickly.

3.3 Creating new Visual Components
There will be instances when the components in the Com-

ponent Palette are insufficient to meet ones needs or inap-
propriate for use. For example, one may wish to implement
a new algorithm which (s)he has designed for a specific task.
Consequently, one would wish to add a new component to
the Component Palette. Hence, we now discuss how a new
visual component can be added in the HyperThesis compo-
nent repository.

The process of adding a new user-defined visual compo-
nent requires the user to first provide certain information
about the component. After that, the user also needs to sup-
ply information about where within the HyperThesis com-

Figure 6: GUI for information about components.

ponent palette the new component is to be placed. We now
elaborate on how these tasks are performed in HyperThesis.

Providing Component-related Data
In order to add a new component to the HyperThesis com-
ponent repository , the user needs to supply the following
data: information, configuration, parameters, and code. We
discuss how this is achieved by using the HyperThesis Com-
ponent Manager .
Information: This category refers to the general informa-
tion about the component. In specific, the following four
types of information are required:

• Type: This refers to the type of the component. The
type of a component can be either a constructoror a
method. A constructor is used to indicate the fact that
the component is one that creates an object. On the
other hand, a method is a component that takes in an
input object and executes some methods with it. In
most cases, a method also returns a result.

• Component Name: This refers to the name of the com-
ponent. Whenever the component is dragged on to the
HyperThesis canvas, this is the text that is displayed
within the blue box. In Figure 5, the component name
is XomatiQ Sequences.

• Description: This refers to a brief description of the
component’s functionality. Figure 5, depicts the de-
scription of the component XomatiQ Sequences.

• Display Text: This refers to the text that is dis-
played in the tree shown in the component panel of
the HyperThesis GUI. For example, the display text
of the XomatiQ Sequences component in Figure 5 is
XomatiQ Query Panel.

The information specified above is entered into the Edit
Component window of the component manager. A screen
shot of this window is shown in Figure 6.
Configuration: For each component, there is a configura-
tion interface associated with it. For simple user inputs such
as strings, numbers, choice, the HyperThesis automatically
creates the interface. For more complex inputs that are
not supported directly by the HyperThesis, the user would
need to create classes that display the required interface,
gather the inputs and process it. Once these classes have
been created, the user only needs to uncheck the “Use the
Configuration Assistant” checkbox and enter the names of
these classes in the configuration tab of the Edit Component
window (Figure 7).

Figure 7: GUI for configuration about components.

Type Description
Boolean True or False
Choice One out of a given list of choices
File The name of a file
String A string value (in one line)
Text A piece of text (multiple number of lines)

Figure 8: Types of input.

Each row within the interface corresponds to one input on
the configuration panel. To define an input, the following
fields are required:

• Name: This the variable name assigned to this par-
ticular input. This variable name can be used in the
Jython code for this component.

• Display Text: This refers to the text in the label along-
side the input, on the configuration panel.

• Type: This refers to the type of input that is required
from the user. Figure 8 shows the different types that
are currently supported in the configuration. Depend-
ing on the type chosen, the actual GUI component dis-
played by the gRNA on the configuration panel varies.
For example, if the input type is choice, a drop down
list is displayed whereas if the input type is string , a
text box is displayed on the configuration panel.

Out of the different types of configuration inputs, the
choice input is special in that it requires a list of choices
to be provided when the component is being created. For
this purpose, a tab labelled Item List is enabled whenever
a configuration input of type choice is selected (Figure 9).
Parameters: Parameters define how the component inter-
acts with other components. In other words, they are the
inputs that the component receives and the outputs that
it provides. For every parameter, the following fields are
specified (Figure 10):

• Name: This the variable name assigned to this partic-
ular parameter. This variable name can be used in the
Jython code for this component.

• Display Text: This is the text that is displayed when
the user moves the mouse over the input or output
arrow that corresponds to this parameter, when the
component is displayed on the HyperThesis canvas.

• Type: This refers to the class to which the parameter
belongs. In case the parameter is an input parameter,
the type field should contain a list of all the classes that
are compatible with this input.

Figure 9: GUI for item list.

Figure 10: GUI for parameter definition.

• Category: The HyperThesis Component Manager al-
low two types (or categories) of parameters; in and
return that corresponds to input and output param-
eters respectively.

Code: The most important part of the component is the
code that it executes. This code must be written in Jython
but need not necessarily be completely in Python. It can
make calls to Java classes and methods and thus execute
Java code. The code for the new component is entered into
the provided text area (Figure 11).

Placing the Component Within an Appropriate Group
Once the user has created a new visual component, (s)he
must add it within an appropriate group in the Component
Palette. Note that all the components in the HyperThesis

Component Palette are arranged into groups. Each group
contains a group of components with functionality related
to the subject of that group. The Component Palette in
Figure 2 depicts various groups. Apart from using the ex-
isting groups within the repository, new groups can also be
created.

3.4 Summary
In summary, some of the key advantages of using

HyperThesis are as follows:

• The graphical interface makes constructing bioinfor-
matic workflows fast and intuitive for biologists and
bio-programmers alike. If one can visualize it then
one can implement it using HyperThesis.

• One can expand the range of functionalities available
in HyperThesis simply by creating user-defined work-

Figure 11: GUI for code specification.

flow components and adding them to workflows. Keep-
ing one’s HyperThesis up-to-date is just a matter of
adding new components as new algorithms develop in
ones area of interest. The HyperThesis framework
guarantees that new and old components can commu-
nicate with each other.

• Finally, the ever increasing amount of bioinformatics
data can be gathered, and analyzed in a standard, inte-
grated manner in HyperThesis, allowing bioinformat-
ics researchers to concentrate on gathering and analy-
sis of data and relieving them of the burden of learning
and utilizing individual stand alone tools.

4. A CASE STUDY
In this section, we illustrate with an example how

HyperThesis can be used to integrate bioinformatics appli-
cations. We first briefly introduce the XomatiQ component
[11] of the gRNA which we are going to use in our example
later.

4.1 XomatiQ
In the gRNA, geographically distributed biological sources

are converted to XML format and then stored locally in
a commercial RDBMS using the Data Hounds component
[11]. In the Data Hounds component, we first generate a
relational schema. Second, we transform data from various
sources to XML format by creating valid XML documents
of the corresponding data. Third, we parse XML documents
created from the previous step and load them into tuples of
relational tables in a standard commercial DBMS.

XomatiQ [11] is build on top of the Data Hounds compo-
nent and provides an XML query language to facilitate the
querying of one or more such distributed or local warehouses
managed within the gRNA. It supports a visual XML-based
query interface. Through the interface, DTD structures of
stored XML documents are displayed, and users can formu-
late queries by clicking the relevant data elements and en-
tering conditions. Such queries are specified in a language
similar to XQuery [9].

Once a user formulates a query using XomatiQ, it is trans-
formed to corresponding one or more SQL queries over the
relational generic schema. These queries are evaluated against
the database where the data is stored in relational tables.
Upon successful execution of the SQL queries, the results are
formatted as XML documents (if necessary) and returned
back to the user or passed to another application for further

FOR $a IN
document("dTrEMBL.DEFAULT")/hlx trembl

WHERE (($a/db entry/keywords/keyword = "Kinase") AND
($a/db entry/sequence[@length < 200]) AND
($a/db entry/sequence[@length > 100]))

RETURN {
<MyResult>,
$a/db entry/sequence/text()
</MyResult>
}

Figure 12: Text version of the XomatiQ query.

Figure 13: Results of Multiple Sequence Alignment.

processing. The reader may refer to [11] for detailed discus-
sion on Data Hounds and XomatiQ. We now illustrate the
XomatiQ component with an example.

Assume that we have warehoused TrEMBL database [7]
using the Data Hounds component. The TrEMBL database
contains the translations of all coding sequences (CDS) present
in the EMBL Nucleotide Sequence Database, which are not
yet integrated into Swiss-Prot. Suppose we wish to retrieve
all the sequences in the TrEMBL database whose length is
between 100 and 200 and belongs to the “kinase” family.
The corresponding text format of the query is shown in Fig-
ure 12. Note that we can also evaluate queries spanning
multiple databases using the XomatiQ [11].

4.2 Multiple Alignment of Sequences (MAS)
We now discuss a workflow created by using HyperThesis

that demonstrates a typical procedure done by molecular
biologists. Through this example we shall show how bio-
logical data sources (TrEMBL [7]) and bioinformatics tools
(ClustalW [20] and HMM [13]) are integrated efficiently and
intuitively using HyperThesis.

Multiple alignment of sequences [16], since its introduc-
tion in the early seventies, has become a cornerstone of
modern molecular biology. It has traditionally been used
to deduce structure/function by homology, to detect con-
served motifs and in phylogenetic studies. In the most gen-
eral terms, a multiple alignment is a representation of a set
of related sequences, where equivalent residues are aligned
either in rows, or more usually in columns.

Multiple alignments are produced by a wide variety of
programs. For instance, ClustalW [20] is a very common
program to find MAS. It uses a progressive alignment tech-
nique. One of the problem with this algorithm is that it
is very time consuming even for a moderate number of se-
quences and the complexity grow’s polynomially with num-
ber of sequences. Hidden Markov Modeling (HMM) is an-
other very successful method for finding multiple sequence
alignment [13]. In this method a particular HMM is trained
to recognize a set of aligned sequences. Once we have this
model we can align any new set of sequences against the
model. The complexity of the alignment algorithm is linear
with number of sequences and one can align a very large
number of sequences. Hence, HMM is a better choice for
aligning large number of sequences compared to ClustalW.

We now demonstrate how we can perform multiple align-
ment of sequences using the HMM in HyperThesis. As-
sume that we have warehoused TrEMBL database [7] us-
ing the Data Hounds component [11]. Suppose we wish
to align all the sequences in TrEMBL that belongs to the
“kinase” family and whose length is between 100 and 200.
Figure 2 depicts the formulation of the problem using the
HyperThesis. Let us elaborate on the semantics of this
workflow. This problem can be broken down into the fol-
lowing two steps: (1) training the HMM model and (2)
use the trained model to align new sequences. In the first
step, we get a small set of sequences from a related protein
family (“kinase” in our case) and save them in FASTA for-
mat (FastaMultiSequences component in Figure 2). Then,
the multiple alignment of these sequences is generated using
ClustalW (multiAlign component). This set of alignments
are then given to an HMM to build the model (HMMBuild
component) and then saved for future use (HMMSave com-
ponent). Note that HMMSave component may not be
available in the component repository. Hence, the user has
to create this component (discussed in Section 3.3) to save
the Hidden Markov Model into a file.

In the second step, we retrieve all the sequences in the
TrEMBL database [7] whose length is between 100 and 200
and belongs to the “kinase” family using the XomatiQ (Fig-
ure 12) in the gRNA (XomatiQ Sequences component).
This component is discussed in Section 4.1. Note that
HyperThesis enables us to connect to the XomatiQ directly
through the visual components. Then, we use the trained
model to align the sequences (HMMAlign component in
Figure 2). Finally, we print out the results of the multiple
alignment as shown in Figure 13 (ListIterator, getSequence
and print components).

Observe that without HyperThesis we need to use three
different tools (ClustalW, HMM, and a data integration and
querying system) with three different interfaces to perform
the above task. Also, we would require to convert the output
from one tool to a format acceptable as an input to the
next. Indeed, HyperThesis allows bioinformatics researchers
to concentrate on gathering and analysis of data and relieves
them of the burden of learning and utilizing individual stand
alone tools.

5. RELATED WORK
Our proposed bioinformatics applications integration sys-

tem is largely influence by several recent technologies by two
research communities. In one hand, the bioinformatics com-
munity has been involved in the research and development of

generic biological data and applications integration system
that would facilitate integration of geographically dispersed,
heterogeneous, biological data sources and programs. On
the other hand, the workflow community has focused on ap-
plication development using processes, programs, databases,
and so on. We review some of these technologies here.

Conventional workflow management systems [10] do not
offer support for ad hoc integration of arbitrary data repos-
itories, programs, and the likes. Workflow technology has
been exploited in the past to develop several commercial
and research prototypes with limited success. Substantial
amount coding is still needed in such system to cope with
changes, specially when new resources are needed to be
added into the system.

Recently, several commercial biological workflow systems
such as Functional Bioinformatics System [3], TurboBench
Workflow [8], and überTool [6] has been proposed. These
tools provide a graphical interface to construct bioinformatic
workflows intuitively. However, it is not possible to do an
in-depth comparison with HyperThesis as to the best of our
knowledge the technical reports on these tools are not pub-
licly available. There are also several research prototypes
such as IntelliGEN [14], LABBASE [19], and BioFlow [12]
that address the issue of biological applications integration.

Let us next look at these above systems from the perspec-
tive of an average biologist. The richness and complexity
of the language constructs in the workflow systems such as
Functional Bioinformatics System [3], TurboBench Work-
flow [8], IntelliGEN [14], and LABBASE [19], prevent av-
erage biologists from exploiting the strengths provided by
these system, and often make it difficult to do anything with-
out mastering the system. In other words, these systems can
directly increase the productivity of a bioinformatics pro-
grammer, but they probably cannot directly increase the
productivity of an average biologist. However, HyperThesis
has been designed carefully to address this issue. It provides
a user-friendly graphical interface where sophisticated pro-
grams are represented as intuitive visual components which
enable biologists and bio-programmers to integrate bioinfor-
matics tools and programs in an intuitive manner.

Let us now look at these systems from the point of ef-
ficiency and availability. Most of the above systems need
to connect to the online databases and applications to per-
form certain tasks. These has several disadvantages such
as unavailability of sources, “denial of service” attack, slow
responses of sources, and errors in source data [21]. In
HyperThesis, we warehouse the geographically dispersed re-
mote databases locally using Data Hounds and XomatiQ
[11]. Furthermore, the bioinformatics tools are provided as
a large local repository of interconnectable, parameterized
workflow components. Hence, such problems do not arise in
HyperThesis.

6. CONCLUSIONS
We have demonstrated how the gRNA provides an effi-

cient and systematic mechanism for integrating heteroge-
neous bioinformatics applications. Specifically, the
HyperThesis component enables us to integrate diverse data
sources and bioinformatics tools. It is a graphical workflow
management system for genomic applications which repre-
sents sophisticated functionality as intuitive visual compo-
nents. It provides a large repository of interconnectable,
parameterized visual components that makes constructing

bioinformatic workflows fast and intuitive for biologists and
bio-programmers alike. Our system has been fully imple-
mented using Java.

Acknowledgment. The authors wish to thank Dr D. T. Singh,

Pedro Cruz, Reina Angelica, Yusdi Santoso and Wang Yi for their

contributions in making HyperThesis a reality.

7. REFERENCES
[1] DALI. http://www.ebi.ac.uk/dali/.
[2] Helixense Pte Ltd. http://www.helixense.com.
[3] Functional Bioinformatics System.

http://www.ppdiscovery.com/PPD DIS 5 1 4.htm.
[4] Interoperable Informatics Infrastructure Consortium (I3C).

http://www.i3c.org.
[5] InterProScan. http://www.ebi.ac.uk/interpro/scan.html.
[6] Science Factory.

http://www.science-factory.com/index.html.
[7] TrEMBL Database. http://www.ebi.ac.uk/trembl/.
[8] TurboBench Workflow System.

http://www.turbogenomics.com/products/
turbobench example.html.

[9] XQuery 1.0: An XML Query Language.
http://www.w3.org/TR/2001/WD-xquery-20011220.

[10] Wil van der Aalst, Kees van Hee. Workflow
Management: Models, Methods, and Systems. MIT Press,
January 2002.

[11] S. S. Bhowmick, P. Cruz, A. Laud. XomatiQ: Living
with Genomes, Proteomes, Relations and a Little Bit of
XML. In the Proceedings of ICDE , Bangalore, India, 2003.

[12] Z. Guan, H. M. Jamil. Streamlining Biological Data
Analysis using BioFlow. In the Proceedings of the 3rd
IEEE International Symposium on Bioinformatics and
Bioengineering (BIBE 2003), Washington DC, March
10-12, 2003.

[13] K. Karplus, C. Barett, R. Hughey. Hidden Markov
Models for Detecting Remote Protein Homologies.
Bioinformatics, 14, 846-856, 1998.

[14] K. J. Kochut, J. Arnold, A. Sheth et al. IntelliGEN:
A Distributed Workflow System for Discovering
Protein-Protein Interactions. International Journal on
Distributed and Parallel Database, 2002.

[15] A. Laud, S. S. Bhowmick, P. Cruz, D. T. Singh, G.
Ramesh. The gRNA: A Highly Programmable
Infrastructure for Prototyping, Developing and Deploying
Genomics-Centric Applications. VLDB , Hong Kong,
China, 2002.

[16] O. Lecompte, J. D. Thompson, F. Plewniak, J.
Thierry, O. Poch. Multiple Alignment of Complete
Sequences in the Post-Genomic Era. Gene: An
International Journal on Genes and Genomes, 270 (2001)
17-30.

[17] C. A. Ouzounis, P. D. Karp. The Past, Present and
Future of Genome-wide Re-annotation. Genome Biology,
3(2), 2002.

[18] A. C. Siepel, A. N. Tolopko, A. D. Farmer et al. An
Integration Platform for Heterogeneous Bioinformatics
Software Components. IBM Systems Journal , 40(2), pp.
570–591, 2001.

[19] L. Stein, S. Rozen, N. Goodman. Managing Laboratory
Workflow with LabBase. In Proceedings of the 1994
Conference on Computers in Medicine, (CompMed94).

[20] J. D. Thompson, D. G. Higgins, T. J. Gibsons.
CLUSTAL W: Improving the Sensitivityof Progressive
Multiple Sequence Alignment Through Sequence
Weighting, Position-specific Gap Penalties and Weight
Matrix Choice. Nucleic Acids Research, 22, 4673-4680,
1994.

[21] Limsoon Wong. Technologies for Integrating Biological
Data. Briefings in Bioinformatics, 3(4):389–404, 2002.

