
Discovering Frequently Changing Structures from
Historical Structural Deltas of Unordered XML

Qiankun Zhao† Sourav S Bhowmick† Mukesh Mohania‡ Yahiko Kambayashi§
†CAIS, Nanyang Technological University, Singapore. {pg04327224, assourav}@ntu.edu.sg

‡IBM India Research Lab, India. mkmukesh@in.ibm.com
§Department of Social Informatics, Kyoto University, Japan.

ABSTRACT
Recently, a large amount of work has been done in XML
data mining. However, we observed that most of the existing
works focus on the snapshot XML data, while XML data is
dynamic in real applications. To the best of our knowledge,
none of the existing works has addressed the issue of mining
the history of changes to XML documents. Such mining re-
sults can be useful in many applications such as XML change
detection, XML indexing, association rule mining, and clas-
sification etc. In this paper, we propose a novel approach
to discover the frequently changing structures from the se-
quence of historical structural deltas of unordered XML. To
make the structure discovering process efficient, an expres-
sive and compact data model, Historical-Document Object
Model (H-DOM), is proposed. Using this model, two basic
algorithms, which can discover all the frequently changing
structures with only two scans of the XML sequence, are
presented. Experimental results show that our algorithms,
together with the optimization techniques, are efficient and
scalable.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications – Data Mining.

General Terms: Algorithm, Design, Experimentation.

Keywords: XML, data mining.

1. INTRODUCTION
Recently, there has been increasing research efforts to

mine XML data. Existing work on mining XML data in-
cludes frequent substructure mining [6, 7, 9, 10], classifica-
tion [11] and association rule mining [1]. Among these, the
frequent substructure mining is the most well researched
topic. The basic idea is to extract substructures (subtrees
or subgraphs), which occur frequently among a set of XML
documents or within an individual XML document. Fre-
quent substructures have been used for efficient querying
and classification of XML documents [11].

1.1 Motivation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’04, November 8–13, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-874-1/04/0011 ...$5.00.

Existing research on frequent substructure mining, such as
AGM [6], FSG [7], TreeMiner [10], gSpan [9], focus on dis-
covering frequently occurred substructures from structural
data collections. For example, suppose there is a collec-
tion of XML documents that describe the detail informa-
tion about university professors. Figures 1(a) and (d) are
the tree representations of two XML documents. By ap-
plying existing state-of-the-art structure mining techniques,
frequent substructures among them can be discovered. For
example, by applying the gSpan [9] mining approach, the
structures shown in Figures 1 (b) and (c) will be returned
as frequent substructures mining results.

However, all the existing approaches of XML mining focus
only on snapshot XML data, while in real life XML data is
dynamic. That is, XML data may change at any time in dif-
ferent ways. For example, consider document 2 in Figure 1
(d), the publication and activity of a professor may change
over time. Figures 1 (e), (f), (g) are the tree representations
of three versions of document 2. The black circles repre-
sent for the newly inserted nodes (elements/attributes). The
gray circles denote for the deleted nodes. The bold circles
are nodes whose contents have been updated. Insertions and
deletions of nodes are considered as structural changes while
content changes refer to updates. To save space, only struc-
tural changes are presented. We use Ci, Ji, and Pi to rep-
resent the Conference, Journal, and Paper element whose
attribute id is i. The dynamic nature of XML leads to two
challenging problems. First, is the maintenance of frequent
substructures. As the data source changes, new frequent
structures may be added and some old ones may not be fre-
quent any more. Second, is the discovery of novel knowledge
hidden behind the historical changes to XML data, some of
which is difficult or impossible to be discovered from snap-
shot data. In this paper, we focus on discovering novel hid-
den knowledge from the historical changes to XML data.
Consider the four different versions of XML documents in
Figure 1, following novel knowledge can be discovered. No-
tice that, this list is by no means exhaustive.

• Frequently changing structure/content : The structure
rooted at XML and the content of Activity changed
more frequently, while the structure and content rooted
at Bio never changed in the history.

• Web delta association: Whenever the structure rooted
at Publication changes, structure Activity also changes.

• Change patterns: More and more papers are inserted
under the root of XML while nodes under CFP are
frequently deleted and inserted.

Professor

Bio Activity PublicationProject

Edu

Academic Industry Paper Paper
Author

Year Title Conf

…

…Phd from
UCLA

Assistant
Professor at

UIUC

IBM Almaden
Research

Center

Jack 2004 SIGMOD
04

SIGMOD

NSF001PC Chair

Professor

Activity

Project Publication

DM

XML

Paper

…

…

Bio

Edu

Academic

Industry Research

BS MS Phd

Paper Paper Paper
UCLA MIT CMU

Stanford IBM
Almaden

NSF002Editor

Bio

Edu Academic Industry

Professor

Bio

Activity

Publication

Project

Edu Academic Industry PaperPaper

(a) Tree Representation of XML Document 1 (d) Tree Representation of XML Document 2 (Version 1)

(b) Frequent substructure 1 (c) Frequent substructure 2

Professor

Activity

Project

…

…

Publication

DB AI

… …

Bio Research

DM

P1 P2 P3 P4 P6P5

XML

P1 P2 P3 P4

JournalConf
CFP

Professor

Activity

Project

…

…

Publication

Bio Research

Journal Conf
CFP

C1 J1 C2 C3 J2

…

Professor

Activity

Project

…

…

Publication

DB DM

… …

Bio Research

XML

P1 P2 P3 P4 P6P5

AI

P1 P2

Journal Conf
CFP

P3 P4 P1 P2

P2P

(e) Version 2 of Document 2

(f) Version 3 of Document 2

(g) Version 4 of Document 2

Figure 1: An Example

1.2 Applications
Such knowledge can be useful in many applications such

as association rule mining for changes of XML, XML change
detection, and web usage mining etc. We use the following
applications as representative of the potential wide range of
applications.

1.2.1 Association Rule Mining:
Given a set of the Frequently Changing Structures (FCSs),

the sequence of structural deltas can be represented as trans-
actions of FCSs. Consequently, association rules among the
FCSs can be discovered by treating each delta as a trans-
action. Considering the structural data shown in Figure 1,
suppose the set of structures rooted at nodes DM, XML,
P2P, AI and CFP are FCSs, then the sequence of structural
deltas can be transformed into three transactions, {DM,
XML}, {CFP}, and {XML, AI, P2P}. By applying the ex-
isting association rule techniques [5], the association among
structural changes can be discovered. Such association rules
can be very useful for monitoring and predicting the under-
lying change trends of web sites in e-commerce, monitoring
the change pattern of users’ navigation behavior etc. This
issue has been addressed in our previous work [2].

1.2.2 Web Usage Mining:
Recently, a lot of work has been done in web usage mining.

However, most of the existing works focus on snapshot web
usage data, while usage data is dynamic in real life. Knowl-
edge hidden behind historical changes of web usage data,
which reflects how web access patterns (WAP) change, is
critical to adaptive web, web site maintenance, business in-
telligence etc. The web usage data can be considered as a
set of trees, which have the similar structures as XML doc-
uments. By partitioning web usage data according to the
user-defined calendar pattern, we can obtain a sequence of
changes from the historical web access patterns. From the
changes, useful knowledge such as how certain web access

patterns changed, which parts changes more frequently and
which parts do not, can be extracted. Some preliminary re-
sults of mining the changes to historical web access patterns
have been shown in [12].

1.2.3 XML Change Detection:
One of the major limitations of existing XML change de-

tection systems [3, 8] is that they are not scalable for very
large XML documents. With the set of web delta associ-
ation rules and frozen structures extracted from historical
changes, the scalability of XML change detection system
can be improved. Suppose, we have a association rule which
states that when part A of the XML document changes most
of the time part B will not change. Then we can skip part B
of the document for change detection when part A changes.
Similarly, the frozen structures are not expected to change
or seldom change. Hence most of time we can eliminate
the corresponding parts of the XML document for change
detection. With such knowledge, rather than loading the
entire XML documents, only parts of the documents that
are likely to change are loaded and compared. We believe
that this will improve the efficiency and scalability of change
detection process, especially for very large XML documents.

1.3 Overview
From the above list of knowledge, we may observe that the

core foundation of such knowledge is the frequently changing
structure/content, from which knowledge are discovered. In
this paper, we focus on discovering the Frequently Changing
Structure (FCS) since there are many applications where
data are described in a more structural way, e.g. chemi-
cal compounds, biological data, computer network, and web
browsing history [9]. Also, in archive-based applications
such as the SIGMOD record and DBLP XML documents,
where content update is rare, the structural information is
also critical. In this paper, we deal with unordered XML
documents since the unordered model of XML is more suit-

able for most database applications [8]. Hereafter, whenever
we say XML, we mean unordered XML.

However, the existing state-of-the-art XML mining tech-
niques [9] fail to extract the frequently changing structure.
Even if we apply such techniques repeatedly to a sequence
of snapshots of XML data, they cannot discover such knowl-
edge accurately and efficiently. Suppose there are n versions
of XML collections denoted as X1, X2, · · · , Xn. We take
the gSpan [9] algorithm as an example. For each version,
gSpan is applied and the sets of frequent structure mining
results are denoted as M1, M2, · · · , Mn. By postprocess-
ing the sequence of mining results, we may find the sets of
structures I and J , where I = M1 ∩M2 ∩ · · ·Mn is the set
of structures that are frequent over all the time points from
1 to n; J = Mp −Mq (1 ≤ q < p ≤ n) is the set of struc-
ture that is frequent at time point p but not frequent at
time point q. However, such structures may not reflect their
change patterns and frequencies accurately. For example,
structures in I may have changed or may not have changed,
which may depend on the changes of other structures in the
data collections. Also, it is possible that some of them may
have been deleted from one position/document and inserted
into another position/document. Similarly, structures in J
may have changed or may not have changed. It may be the
result of other changes such as changes to the total num-
ber of transactions and the minimal support threshold etc.
Moreover, such mining and postprocessing processes can be
very expensive. This example shows that even by applying
existing XML mining techniques repeatedly, the above list
of knowledge cannot be discovered accurately and efficiently.

Given a sequence of XML documents, which are differ-
ent versions of the same XML document, FCS mining is
to discover all the substructures that change frequently and
significantly in the sequence of XML structural deltas.

We propose two algorithms to extract the frequently chang-
ing structure from the XML structural deltas. There are
three major phases: H-DOM construction phase, FCS ex-
traction phase, and the visualization phase. In the first
phase, given a sequence of historical XML documents, the
structural deltas are calculated and stored in the H-DOM
(Historical Document Object Model). The second phase
is to use data mining techniques to extract the frequently
changing structures by traversing the H-DOM tree. Lastly,
in the visualization phase, the frequently changing struc-
tures are presented within the tree representation so that it
can be easily interpreted.

Our experiment results show that our algorithms can suc-
cessfully extract all the frequently changing structures effi-
ciently. Also, the H-DOM tree is very compact, its size is
around 50% of the original size of the XML sequence. More-
over, it has been observed that the space optimization tech-
niques can make the H-DOM tree more compact by around
20% and consequently make our algorithms more scalable,
which can handle 450Mb XML sequence.

The major contributions of this paper can be summarized
as follows.

1. We propose a novel approach, to the best of our knowl-
edge, to discover hidden knowledge from the sequence
of historical structural deltas of XML documents.

2. Two algorithms for mining frequently changing struc-
ture, with three optimization techniques, have been
proposed and implemented.

3. We present a list of applications where the frequently
changing structure mining results can be useful.

4. We conduct extensive experiments by using different
datasets and varying the parameters to show the per-
formances our algorithms and optimization techniques.

The rest of the paper is organized as follows. In Section
2, we present some related work to our research. Section
3 presents the background of FCS mining. The H-DOM
model and the FCS mining algorithms, together with dif-
ferent optimization techniques, are described in Section 4.
The detailed experimental results are reported in Section 5.
Section 6 concludes this paper.

2. RELATED WORK
Since XML data is semi-structured and widely used, data

mining of semi-structured data has attracted many research
efforts recently [6, 7, 9, 10]. Most existing work focus on
discovering the frequent substructures from a collection of
semi-structured data such as XML documents. AGM [6]
is an Apriori-based algorithm for mining frequent substruc-
tures. But the results of AGM is restricted to only the
induced substructures. FSG [7] is also an Apriori-based al-
gorithm for mining all connected frequent subgraphs. Ex-
periments results in [7] show that FSG is considerably faster
than AGM. However, both AGM and FSG do not scale
to very large database. gSpan [9] is an algorithm for ex-
tracting frequent subgraphs without candidate generation.
It employs the depth-first search strategy over the graph
database. Like AGM, gSpan needs elaborate computations
to deal with structures with non-canonical forms. More re-
cently, TreeMiner [10] is proposed to discover the frequent
embedded substructure, which is a generalization of induced
substructure. But the TreeMiner does not scale to very large
XML documents either. The discovered frequent substruc-
tures are further explored to improve other applications such
as XML querying and XML classification [11] etc.

Different from the above techniques, which focus on de-
signing ad-hoc algorithms to extract structures that occur
frequently in the snapshot data collections, FCS mining is to
extract structures that change frequently from the sequence
of historical XML versions.

Considering the dynamic nature of XML data, many ef-
forts have been directed into the research of change detection
for XML data. Different techniques have been proposed [3,
8, 4]. XML TreeDiff [4] computes the difference between two
XML documents using hash values and simple tree compar-
ison algorithm. XyDiff [3] is proposed to detect changes of
ordered XML documents. Besides insertion, deletion, and
updating, XyDiff also support move operation. X-Diff [8] is
designed to detect changes of unordered XML documents.
In our FCS mining, we extend the XML change detection
technique in [8] to discover hidden knowledge from the his-
tory of changes to unordered XML data with data mining
techniques.

3. BACKGROUND
In this section, we present the background knowledge on

types of structural changes for XML data and dynamic met-
rics. We also give the problem statement of frequently chang-
ing structure mining.

3.1 Types of XML Structural Changes
The structure of XML document can be modelled as a tree

structure according to the Document Object Model (DOM)
specification. In this section, we present different types of
structural changes of XML documents in their tree repre-
sentations. Traditionally, all changes of XML documents
can be represented by five types of edit operations [8]. The
first three are basic operations and the last two are com-
posite operations that can be represented as a list of basic
operations.

• Insert(x (name, value), y): insert a node x, with node
name name and node value value, as a leaf child node
of node y.

• Delete(x): delete a leaf node x.

• Update(x, new value): change the value of a leaf node
x to new value. Note that only the value can be up-
dated, but not its name.

• Insert(Tx,y): insert a subtree Tx, which is rooted at
x, to node y.

• Delete(Tx): delete a subtree Tx, which is rooted at
node x.

Based on the edit operations, an edit script is defined as
a sequence of edit operations that transform an XML docu-
ment from one version to another [8]. However, not all the
edit operations can change the structure of the XML docu-
ments. For example, the Update operation will not change
the structure of a document. Corresponding to the struc-
tural changes, we define the structural edit script as a se-
quence of edit operations that convert one structure to an-
other. It is similar to the edit script except that all Update
operations are excluded in the structural edit script. For ex-
ample, the structural edit script of the structure in Figures 1
(e) and 1 (f) from version 2 to version 3 is 〈 Delete(C1),
Delete(J1), Insert(C3(v1), CFP), Insert(J2(v2), CFP)〉. To
make it easier to locate the edit operation, an affiliated node
is defined for each edit operation. For all the insertion oper-
ations, their affiliated nodes are nodes y; for all the deletion
and updating operations, their affiliated nodes are x.

3.2 Definitions
We model the structures of XML documents as unordered,

labeled, rooted tree structures. We denote the structure of
an XML document as S = (N, E, r), where N is the set of
labeled nodes, E is the set of edges, r ∈ N is the root. We
do not distinguish between elements and attributes, both of
them are mapped to the set of labeled nodes. Each edge,
e = (x, y) is an ordered pair of nodes, where x is the parent
of y. The size of the structure S, denoted by |S|, is the
number of nodes in N .

Definition 1. [Substructure] A structure S′ = (N ′,
E′, r′) is a substructure of S = (N, E, r), denoted as S′ ¹ S,
provided i) N ′ ⊆ N , and ii) e = (x, y) ∈ E′, if and only if x
is the parent of y in E.

If S′ ¹ S, we also say that S contains S′, and S is the su-
perstructure of S′. For example, according to this definition,
the structure in Figure 1 (b) is a substructure of the struc-
ture in Figure 1(a) but not a substructure of the structure
in Figure 1(d).

Definition 2. [Structural Delta] Let Si and Si+1 be
the tree representations of two XML documents Xi and
Xi+1. The structural delta from Xi to Xi+1 is represented
as 4i, where 4i is a structural edit script 〈o1, o2, · · · , om〉
that transforms Si into Si+1, denoted as Si

o1→o2→ · · · om→ Si+1.

The size of the structural delta, denoted as |4i|, is defined
as the number of basic edit operations in the structural edit
script. Consider the previous example, the structural delta
from version 2 to version 3 is 42=〈Delete(C1), Delete(J1),
Insert(C3(v1), CFP), Insert(J2(v2), CFP)〉 and the value
of |42| is 4 since there are 4 basic edit operations shown as
colored circles in Figure 1 (f).

Definition 3. [Structural Delta of Substructures]
Let 〈41,42, · · · ,4i〉 be a sequence of structural delta for
an XML document X, whose tree representation is S. Sup-
pose s = (Ns, Es, rs) is a substructure of S. The sequence
of structural delta for s is denoted as 〈4s1 ,4s2 , · · · ,4si〉,
where 4si ⊆ 4i and for all operation oj ∈ 4si , their affili-
ated nodes should be in Ns.

Reconsider the examples in Figure 1. For the substruc-
ture rooted at node Activity, the corresponding of structural
delta is 〈 41,42,43 〉 where 41 and 43 are empty, 42 is
the same as in the structural delta example.

Definition 4. [Consolidate Structure] Given two struc-
tures si and sj , where ri = rj . The consolidate structure of
them is denoted as si] sj , where i)Nsi]sj = Nsi ∪Nsj , ii)
e = (x, y) ∈ Esi]sj , if and only if x is the parent of y in Esi

or Esj .

Consider the structures in Figure 1. For the substructures
rooted at node Bio in Figure 1 (a) and (d), the consolidate
structure is the structure rooted at node Bio in Figure 1 (d).

From the example in Figure 1, we observed that differ-
ent substructures of the XML document might change in
different ways at different frequencies. To evaluate the his-
torical behavior of different substructures, we propose a set
of dynamic metrics.

Definition 5. [Structure Dynamic] Let 〈Si, Si+1〉 be
the tree representations of XML documents 〈Xi, Xi+1〉. Sup-
pose s ¹ Si. The structure dynamic of s from document Xi

to document Xi+1, denoted by Ni(s), is defined as: Ni(s) =
|4si

|
|si]si+1| .

Here Ni(s) is the structural dynamic of s from version
i to i + 1. By using the consolidation structure, the total
number of unique nodes in the two versions can be obtained
as |si] si+1|. It includes not only nodes that are in version
i + 1 but also nodes that have been deleted in version i.
Ni(s) is the percentage of nodes that have changed from Xi

to Xi+1 in s against the number of nodes in its consolidation
structure. For example, consider the two structures shown
in Figures 1 (d) and 1 (e). We calculate the structure
dynamic value for the substructure rooted at node DM from
version 1 to version 2. Based on the definition, |4DM1 | = 2,
|DM1] DM2| = 6. Consequently, N1(DM) = 0.33 (2/6).
It also can be observed that Ni(s) ∈ [0, 1]. If s is inserted or
deleted, then the corresponding value of structure dynamic
is 1 since 4si = si] si+1 = s. If s did not change from
version i to version i+1, then the value of structure dynamic

is 0 since |4si | is 0. It can be implied that larger the value
of structure dynamic is, more significantly the substructure
changed.

Definition 6. [Version Dynamic] Let 〈 S1, S2, · · · , Sn

〉 be the tree representations of XML documents 〈 X1, X2,
· · ·Xn 〉. Suppose s ¹ Sj . The version dynamic of s, de-
noted as V (s), is defined as:

V (s) =

∑n
i=1 vi

n− 1
where vi =

{
1, if |4si | 6= 0;
0, if |4si | = 0;

Consider the 4 different versions of the XML document
in Figure 1. We calculate the version dynamic value for the
substructure rooted at node XML. The n value here is 4.
For the first delta, |4XML1 | is not 0, so v1 = 1. Similarly,
v2 = 0, v3 = 1. Then,

∑3
i=1 vi = 2. Consequently, the

version dynamic of this substructure is 0.67 (2/3). It can
be observed that V (s) ∈ [0, 1]. If s changed in every ver-
sion in the history, then the corresponding value of

∑n
i=1 vi

is n − 1, so the version dynamic value is 1. If s did not
change in the history at all, then the value of

∑n
i=1 vi is 0

and version dynamic value is 0. Also, it implies that larger
the value of version dynamic is, more frequently the sub-
structure changed in the history.

A major difference between Ni(S) and V (S) is that V (S)
measures the overall changes over the history while Ni(S)
measures the local changes between two consecutive ver-
sions. Thus, for a substructure there is one value of version
dynamic and a sequence of values for structure dynamic.
To measure the overall change behavior of a substructure in
terms of both significance and frequency, we proposed an-
other dynamic metric named degree of dynamic, denoted as
DoD. DoD is the extension of structure dynamic by in-
corporating the version dynamic metric. It represents the
overall significance of the structural changes in the history.

Definition 7. [Degree of Dynamic] Let 〈S1, S2, · · · ,
Sn 〉 be the tree representations of XML documents 〈X1,
X2, · · · , Xn 〉. Suppose s ¹ Sj , Ni(s) and V (s) are the
values of structure dynamic and version dynamic of s. The
degree of dynamic, DoD, for s is defined as:

DoD(s, α) =

∑n
i=1 di

(n− 1) ∗ V
where di =

{
1, if Ni ≥ α
0, if Ni < α

where α is the pre-defined threshold for structure dynamic.

The metric DoD is defined based on the threshold of struc-
ture dynamic. It represents the fraction of versions, where
the structure dynamic values for the substructure are no less
than the predefined threshold α, against the total number
of version the substructure has changed over the history.
Consider the examples shown in Figure 1. We can calculate
the DoD value for the substructure rooted at node XML.
From the previous examples, we know that the structure
dynamic values of this substructure are 0.75, 0, and 0.33.
The version dynamic value is 0.67. Suppose the threshold
for structure dynamic is set to 0.30, then the value of DoD
is 1 (2/2). If the threshold for structure dynamic is set to
0.35, then the corresponding DoD value will be 0.5 (1/2).
It is obvious that, ∀ α, DoD(s, α) ∈ [0, 1]. Extended from
the structure dynamic, the value of DoD also implies the
overall significance of the substructure, larger the value is,
more significant the changes are.

3.3 Problem Statement
The problem of frequently changing structure mining is

to discover those structures that changed significantly and
frequently in the history. Based on the above set of metrics,
the frequently changing structure is defined as follows.

Definition 8. [Frequently Changing Structure] Let
〈S1, S2, · · · , Sn〉 be the tree representations of XML docu-
ments 〈X1, X2, · · · , Xn〉. The thresholds for structure dy-
namic, version dynamic, and degree of dynamic are α, β, γ
respectively. A structure s ¹ Sj is a frequently chang-
ing structure (FCS) in this sequence iff: V (s) ≥ β and
DoD(s, α) ≥ γ.

The FCS is defined based on the predefined thresholds of
the dynamic metrics. The significance of changes are defined
by structure dynamic α and degree of dynamic γ, while the
frequency of changes are defined by version dynamic β.

Example 1. Consider the versions of XML shown in Fig-
ure 1, an example of the frequently changing structure will
be the structure rooted at node XML as shown in Fig-
ure 1(d). This structure may indicate that the correspond-
ing professor is very active in the research area of XML.

4. ALGORITHMS
In this section, we present the algorithms for discovering

the frequently changing structures. First, a data model for
representing and storing the history of structural delta is
proposed. Next, we present an overview of the algorithms
followed by two algorithms for FCS mining. We identify
some limitations of the two algorithms and present a set of
optimization techniques.

4.1 H-DOM Model
The structure of an XML document can be represented

and stored as a tree such as the DOM tree proposed by
W3C. However, in our frequently changing structure mining
problem, given a sequence of history XML documents, it
is not efficient to store them in a sequence of DOM trees.
We present an H-DOM model to represent the history of
changes to XML data. The H-DOM is an extension of the
DOM model with some historical properties so that it can
compress the history of changes to XML into a single H-
DOM tree. It is a general model to store and representing
historical changes to XML data including both the structure
and content such as: insert, delete, and update. Formally,
we define an H-DOM tree as follows:

Definition 9. [H-DOM] An H-DOM tree is a 4-tuple
H = (N, A, v, r), where N is a set of object identifiers; A
is a set of labelled, directed arcs (p, l, c) where p, c ∈ N and
l is a string; v is a function that maps each node n ∈ N to
a set of values (Cn, Cv), Cn is an integer and Cv is a binary
string; r is a distinguished node in N called the root.

We now elaborate on the parameters Cn and Cv. The two
parameters are introduced to record the historical changes
for each substructure. Cn is an integer that records the num-
ber of versions that a substructure has changed significantly
enough (the structure dynamic is no less the corresponding
threshold). Cv is a binary string that represents the histor-
ical changes of a substructure. The length of the string is
equal to the number of deltas in the XML sequence. The ith

(1,001)

XML

P1 P2 P3 P4 P6P5
(0,000) (1,100) (1,100)(1,100) (1,001)

(2,101) DM

P1 P2 P3 P4 P6P5
(0,000) (0,000) (0,000)(0,000) (1,100)(1,100)

(1,100)AI

P1 P2 P3 P4
(0,000) (0,000) (1,001)(1,001)

(1,001)

P2P1
(1,001)(1,001)

P2P(1,001)

Publication

DB
(0,000)

(1, 101)

(1,001)

XML

P1 P2 P3 P4 P6P5
(0,000) (1,100) (1,100)(1,100) (1,001)

(2,101) AI

P1 P2 P3 P4
(0,000) (0,000) (1,001)(1,001)

(1,001)

P2P1
(1,001)(1,001)

P2P(1,001)

Publication

DM
(2,10001)

(1, 101)

(a)

(b)

Figure 2: Part of the H-DOM Tree

digit of the string denotes the change status of the structure
from Xi to Xi+1, where the value of 1 means this structure
changed, the value of 0 means it did not change. The types
of changes are not specified in Cv since we focus on the fre-
quency and significance of the changes. In the H-DOM tree,
the Cv value for each structure is finally updated by using
the formula: Cv(s) = Cv(s1) ∨ Cv(s2) ∨ · · · ∨ Cv(sj), where
s1, s2, · · · , sj are the substructures of s.

Figure 2 (a) is part of the H-DOM for the structure se-
quence in Figure 1. Suppose the threshold for structure dy-
namic is 0.30, the Cn value of node XML is 2, which means
that this structure has changed twice in the history with a
structure dynamic value no less than 0.30. The Cv value
100 of node p3 means that this node has changed from X1

to X2. The Cv value of the internal nodes and root node are
calculated according to the above formula. With Cv and Cn,
values of the dynamic metrics can be calculated as follows.

• Ni(s) =
∑

Cv(sj)[i]

|sti
]sti+1| , where sj is the list of descendant

nodes of s, Cv(sj)[i] is the ith digit of Cv(sj).

• V (s) =
∑n−1

i=1 Cv [i]

n−1
, where Cv[i] is the ith digit of Cv(s);

n is the total number of XML documents.

• DoD(s) = Cn∑n−1
i=1 Cv [i]

, where Cv[i] is the ith digit of

Cv(s); n is the total number of XML documents.

The H-DOM model is inspired by the FP-Tree in associ-
ation rule mining [5]. It is designed to preserve and com-
press the historical structural information of XML versions.
H-DOM compresses the historical structural data by repre-
senting the identical nodes only once in the H-DOM tree,
while the related historical information is preserved using
a binary string and an integer. Compared to the FP-Tree,
the compactness of H-DOM should be higher since the same
nodes may appear more than once with h-links in the FP-
tree. Moreover, the FCSs can be extracted without any can-
didate generation process by traversing the H-DOM exactly
once, while in FP-Tree there is an conditional FP-Tree gen-
eration process. Another feature of the H-DOM tree is that
it expresses the temporal features of the XML structures.

4.2 FCS Algorithm
There are three phases in our FCS mining. The H-DOM

construction phase, the FCS extraction phase, and the visu-
alization phase. Given a sequence of historical XML docu-

ments, an H-DOM tree will be constructed in the first phase.
Rather than store each structural delta into XML files as in
the original X-Diff algorithm, we integrate the change detec-
tion and mapping processes. The second phase is to extract
FCS from the H-DOM tree. Finally, the mining results are
displayed to users in the visualization phase. In this section,
we focus on H-DOM construction and the FCS extraction
since the visualization phase is quite straightforward.

4.2.1 H-DOM Construction:
Algorithm 1 in Figure 3 describes the process of H-DOM

construction. Given a sequence of historical XML docu-
ments, the H-DOM tree is initialized as the structure of the
first version. After that, the algorithm iterates over all the
other versions by extracting the structural deltas and map-
ping them into the H-DOM tree. The SX-Diff function is a
modification of the X-Diff [8] algorithm that generates only
the structural change, given two different versions of the
document. The structural delta is mapped into the H-DOM
tree according to mapping rules as described in Algorithm
2. This process iterates until no more XML document is left
in the sequence. Finally, the H-DOM tree is returned as the
output of this phase.

Algorithm 2 in Figure 3 describes the mapping function.
Given the H-DOM tree and the structural changes, this func-
tion is to map the deltas into the H-DOM tree and return
the updated H-DOM tree. The idea is to update the corre-
sponding values of the nodes in the H-DOM tree, for all the
nodes in the structural delta. The values of the nodes are
updated according to following rules:

i) If the node does not exist in the H-DOM tree, then the
node is inserted. The value of Cv is set to 000 · · · 1 where
the ith digit of the string is set to 1 and i is the version
number of the structural delta. In addition, the Ni value is
calculated. If Ni ≥ α, then Cn is set to 1 and the Cn values
of its parent nodes are incremented by 1 until Ni is less than
α. Otherwise, Cn is set to 0 and the process terminates.

ii) For nodes that exist in the H-DOM, the value of Cv is
updated by inserting a 1 at the ith digit of Cv where i is the
version number of the structural delta. The value of Cn is
also updated based on Ni and α. Similarly, If Ni ≥ α, then
Cn is incremented by 1 and the Cn values of its parent nodes
are updated based on the same rule until Ni is less than α.
Otherwise, Cn does not change and the process terminates.

4.2.2 FCS Extraction:
In this phase, given the H-DOM tree, the values of the re-

quired parameters (structure dynamic, version dynamic, and
degree of dynamic) for each node are calculated and com-
pared against the predefined thresholds. Since for a FCS,
both its version dynamic and degree of dynamic should be
no less than the thresholds, we first calculate only one of
the parameters and determine whether it is necessary to
calculate the other parameter. Because if any of the two
parameters does not satisfy the definition, the substructure
cannot be a FCS. In our algorithm, the version dynamic for
a node is checked against the corresponding threshold first.
If it is no less than the threshold, then we check its degree of
dynamic. Considering the traversal strategy of the H-DOM
tree, two approaches are analyzed: the bottom-up (level by
level) approach and the top-down (breath first) approach.
Before we come to the details of the traversal strategies, we
present two lemmas that will be used to make the extraction

phase more efficient.

Lemma 1. Let ni, nj ∈ N be any two nodes, the substruc-
tures rooted at ni and nj are denoted as Sni and Snj respec-
tively. If ni is the ancestor of nj , then V (Sni) ≥ V (Snj).

Proof. The proof is intuitive. Based on the previous def-
inition, once a node changes, superstructures that include
this node are considered as changed. It indicates that the
number of versions a superstructure has changed should be
no less than its substructures. Consequently, it can be con-
cluded that the version dynamic of a superstructure should
be no less than the version dynamic of its substructures,
while the total number of versions is the same.

Lemma 2. Let S1 and S2 be any two structures, S2 is
a substructure of S1. Given the threshold for DoD as γ,
the necessary condition for structure S1 to be a FCS is that
Cn(S1) ≥ γ × V (S2)× (n− 1).

Proof. From Lemma 1, we can infer that V (S1) ≥ V (S2).
The necessary condition for structure S1 to be a FCS is that
its degree of dynamic is no less than the threshold γ, which

is γ ≤ Cn(S1)
V (S1)×(n−1)

. Then, Cn(S1) ≥ γ × V (S1) × (n − 1),

while V (S1) ≥ V (S2), it can be inferred that Cn(S1) ≥
γ × V (S2)× (n− 1).

Based on the above lemmas, we observed that it is not
necessary to traverse the entire H-DOM tree. We can skip
checking some structures that cannot be FCSs. Lemma
1 can be used in the top-down traversal strategy. When
we reach a node where its version dynamic is less than the
threshold, it is not necessary to further traverse down this
substructure since the version dynamic of its substructures
will definitely be less than the threshold and they cannot
be FCSs. Lemma 2 can be used in the bottom-up traversal
strategy. In this case, for any node, rather than calculate its
version dynamic value, the Cn value of the node is checked
against the value of γ × V (Si), where Si is any of its sub-
structures. If Cn < γ × V (Si), then it is not necessary to
calculate the version dynamic and degree of dynamic for this
structure since it cannot be a FCS. Based on the lemmas,
the top-down FCS extraction algorithm and the bottom-up
FCS extraction algorithm are presented in Algorithm 3 and
Algorithm 4 in Figure 3.

4.3 Algorithm Analysis
In this section, we analyze the time complexity and space

complexity of the FCS basic algorithms. Since the visual-
ization is trivial, we focus on analysis of the first and second
phases.

4.3.1 Time Complexity:
In phase 1, the H-DOM tree is constructed based on the

sequence of historical XML documents. In this phase, each
XML document is parsed once and only consecutive ver-
sions are compared. Let 〈 |T1|, |T2|, · · · , |Tn| 〉 and 〈 |t1|,
|t2|, · · · , |tn−1| 〉 denote the number of nodes in the se-
quence of XML documents and the structure deltas respec-
tively. The complexity of SX-Diff is O(|Ti| × |Ti+1|) ×
max{deg(Ti), deg(Ti+1)} × log2(max{deg(Ti), deg(Ti+1)}))
according to [8]. The complexity of the mapping process
is O(|ti|). The SX-Diff and mapping process iterate k −
2 times in this phase, while the cost of the initialization

is O(|T1|). Since |ti| ≤ |Ti|, the dominant of this itera-
tion is the SX-Diff. The overall complexity of phase 1 is
O((k − 2)× max{ |Ti| × |Ti+1|)× max{deg(Ti), deg(Ti+1)}
× log2(max{deg(Ti), deg(Ti+1)})}), where i ∈ [2, k − 1]. In
phase 2, the H-DOM is traversed and the parameters for all
the potential FCSs are calculated and compared against the
predefined thresholds. No matter which traversal strategy
we choose, the upper bound of this phase is O(|T |), which
is an entire traversal of the H-DOM tree, where |T | is the
total number of nodes in the H-DOM tree. In practice, the
actual cost of this phase is substantially cheaper than this,
since we use Lemma 1 and Lemma 2 to reduce the traver-
sal space. From the above analysis, it can be inferred that
the bottleneck of the FCS mining is the structural change
detection process, which is the most expensive process.

4.3.2 Space Analysis:
In the FCS basic algorithms, the history of XML struc-

tural deltas is stored in the H-DOM tree and it is processed
in memory. The space cost of this algorithm is the size of
the H-DOM tree. Based on the algorithm, we observed that
the size of the H-DOM tree depends on the overlaps between
the consecutive versions. For the same number of XML doc-
uments with the same value of average number of nodes, the
more significantly they change, larger the size of the H-DOM
is. Since only the structural data is stored and each unique
node is store only once, the size of the H-DOM should be no
larger than the total size of the sequence of XML documents.
However, as the sizes of the XML documents increase or the
changes become more significant, or the number of XML
documents increases, the size of H-DOM will increase ac-
cordingly. However, the upper bound of the space require-
ment is O(|S1] S2] · · · ,]Sn|), where 〈S1, S2, · · · , Sn〉 are
the tree representations of the XML documents sequence
〈X1, X2, · · · , Xn〉.
4.4 Optimization Techniques

Based on the analysis of the FCS basic algorithms, in this
section we propose three optimization techniques. The com-
pression techniques, the build and merge strategy, and the
DTD-based pruning technique. The objective of these tech-
niques is to make the algorithm more scalable by reducing
the size of the H-DOM tree.

4.4.1 Compression Technique:
In the H-DOM model, suppose there are n versions of

XML in the sequence. Then, for each node a length n binary
string is used to represent the history of changes. However,
we observed that the size of the string can be very large,
while only 2 out of n digits are useful since each node itself
in the H-DOM could change at most twice, insertion and
deletion. Consequently, rather than using the binary string,
we use two integers to represent the changes. Consider the
H-DOM tree in Figure 2 as an example. For node p2, sup-
pose it is deleted in the i+1th version, then the Cv value of
this node will be 1000 · · · 01 in the basic approach. Now we
only store two integers 1 and i to represent the changes. Us-
ing the basic algorithm the space requirement is i bites, but
using this strategy it only requires 8 bites (for two integers).
It is obvious that when i > 8, the later strategy is more
efficient in terms of space. Usually, to get useful knowledge
from the changes, the number of versions is greater than 8.

4.4.2 Building and Merging Strategy:

2000

3000

4000

5000

6000

7000

8000

9000

0% 20%
 40%
 60%
 80%
 100%
Percentage of Change

S
i
z
e

o
f

t
h
e

H
-
D
O
M

(
K
B
)

PoD
 PoI

Input:

 A sequence of XML versions: <X
 1
, X
2
,
¡› X
n
>

 Threshold of structure dynamic:
 alpha

Output:

 H-DOM tree: H

1: H is initialized as S(X
 1
)

2:
 for all
 k less than
n
 do

3: Delta = SX-Diff(X
 k
, X
(k-1)
)

4: H= Mapping (H, Delta) //algorithm 2

5: k++

6:
 endfor

7: Return(H)

Input:

 H-DOM tree: H

 Threshold of version dynamic and DoD:
 beta, gamma

Output:

 A set of FCS root nodes: F

1:
 for all
 n
i
 is not null do (Top-down bread first approach)

2:
 if V(
n
i
)
 is no less than
 beta
 then

3:
 if
DoD(n
i
) is no less than
 gamma

4: F is updated by incorporating n
 i

5:
endif

6:
 else

7: prune all descendants of n
 i

8:
endif

9:
endfor

10:Return(F)

Input:

 H-DOM tree: H

 Threshold of structure dynamic:
 alpha

 Structural delta: Delta

Output:

 Updated H-DOM tree: H

1:
 for all
 n
i
 in Delta

2:
 if
n
i
 is not null

3:
 for all
n
i
 in H do

4: update C
 n
(n
i
)

5:
if
N
i
(n
i
) is no less than
 alpha

6: update C
 v
(n
i
)

7: n
 i
= n
i
.parent(H)

8:
 endif

9:
 endfor

10:
endif

11:
endfor

12:Return(H)

Input:

 H-DOM tree: H

 Threshold of version dynamic and DoD:
 beta, gamma

Output:

 A set of FCS root nodes: F

1:
 for all
 n
i
 that is not null in H

2:
 if
C
n
 is less than
gamma
times V(s) then

3:
 n
i
 = n
i
.next

4:
else

5:
if
V(n
i
) is no less than
 beta

6:
 if
 DoD(n
i
) is no less than
gamma

7: F is updated by incorporating n
 i

8:
 endif

9:
 endif

10:
endif

11:
endfor

12:Return(H)

Input:

 H-DOM tree: H

 Threshold of structure dynamic: alpha

 Structural delta: Delta

Output:

 Updated H-DOM tree: H

1:
 for all
 n
i
 in Delta

2:
 if
n
i
 is deleted and V(n
 i
) is less than
alpha
then

3:
 update(n
i
, H)

4: prune all descendants of n
 i

5:
else

6: update(n
 i
, H)

7:
endif

8:
 endfor

9:Return(H)
(a) Algorithm 1: H-DOM construction

(b) Algorithm 2: Mapping

(c) Algorithm 3: FCS extraction (Top-down)

(d) Algorithm 4: FCS extraction (Bottom-up)

(e) Algorithm 5: Building and merging

(f) Experimental results: Size of H-DOM tree

Figure 3: Algorithms and Experimental Results

(a) Statistics of Datasets

Symbol Description

NoN Number of Nodes
NoV Number of Versions
PoC % of Changes

(b) Parameters

Symbol Description

α Threshold of Ni(s)
β Threshold of V (s)
γ Threshold of DoD(s, α)

(c) Description of Datasets

dataset NoN NoV PoC α β γ

1 10644 20 10% 0.2 0.2 0.4
2 21464 20 10% 0.2 0.2 0.4
3 43196 20 10% 0.2 0.2 0.4
4 87642 20 10% 0.2 0.2 0.4

(d) Description of Datasets

Source data NoN NoV PoC α β γ

SIGMOD1 1124 20 10% - 0.2 0.4
DBLP1 1143 20 10% 0.2 - 0.4

Synthetic1 1264 20 10% 0.2 0.4 -

(e) Description of Datasets

Source data NoN NoV PoC α β γ

SIGMOD2 - 30 10% 0.2 0.2 0.4
DBLP2 5743 - 10% 0.2 0.2 0.4

Synthetic2 1264 20 - 0.2 0.2 0.4

Table 1: Symbols, Descriptions, and Datasets

Based on the basic algorithms, we observed that for any
structure that has been deleted their Cn and Cv values
would not change since no change could happen to them
again. Thus, whether this structure is a FCS or not can be
determined by then. Differ from the FCS basic algorithms,
we propose not to keep all substructures in the H-DOM tree.
If the structures are not a FCS when they are deleted, only
the root nodes are stored in the H-DOM, with the sum-
marized historical information. By using this strategy, the
size of the H-DOM tree will be reduced. Consider the H-
DOM tree in Figure 2. Suppose in the coming version the
substructures rooted at DM and DB are deleted. Based on
the thresholds substructure DM is a FCS while substructure
DB is not. Then, rather than store the entire substructure
of DM and DB, only the root node of DM is stored with
the summarization of historical information. Similarly, the
substructure DB is merged into its parent node as shown in
Figure 2 (b).The building and merging algorithm is shown
in Algorithm 5 in Figure 3.

4.4.3 DTD-based Pruning Technique:
We observed from the history of the structural changes

that some of the nodes never change in the history. Thus,
it is not necessary to store such information since it cannot
be used for FCS mining. If we can prune such nodes during
the H-DOM construction phase, then the H-DOM tree will
be more compact and the efforts of checking such nodes can
be avoided. With the help of DTD and schema, elements
and attributes in the XML documents can be categorized
into two classes. Elements and attributes that can be in-
serted or deleted individually are classified to class 1, while
elements and attributes that cannot be inserted or deleted
individually are in class 2. With the DTD, we know that
elements defined with more than one occurrences can be in-
serted or deleted while elements that are defined as default
and required for exactly one occurrence cannot be deleted
or inserted individually. Our DTD-based pruning strategy
maps only nodes belong to class 1, while nodes in class 2 are
merged into their parent nodes to save space. For example,
suppose elements BS, MS and PhD are defined as required

subelements with exactly one occurrence for element Edu in
Figure 1 (d). Then, rather than store the entire substruc-
ture rooted at node Edu, it can be represented as a single
node Edu in the H-DOM tree.

5. PERFORMANCE STUDY

5.1 Experimental Setup and Dataset
We ran experiments on a PC with Intel Pentium 4, 1.7GHz

CPU, 256 RAM, 40G hard disk, and Microsoft Windows
2000. We have implemented two basic algorithms, the bottom-
up based algorithm FCS-BASIC-B and the top-down based
algorithm FCS-BASIC-T. We also implemented optimization-
based algorithms by combining the optimization techniques
we proposed. Since their performances are quite similar,
only two of them are presented in this section due to space
constraint. FCS-A is implemented by integrating the three
optimization techniques. FCS-C is implemented with the
compression technique and the building and merging tech-
nique for XML data sequences without DTDs. Note that
the optimization-based algorithms are implemented using
the bottom-up traversal strategy since the metrics can be
calculated more efficiently in this way.

We use synthetic XML delta sequences generated from
three XML documents, which are real and synthetic XML
documents. The two real XML documents we use are DBLP
and SIGMOD XML downloaded from UW XML repository
1, while the synthetic XML is generated by IBM XML Gen-
erator 2. From such XML documents, sequences of XML
versions are generated by using our synthetic XML delta
generator. We do experiments by using datasets of differ-
ent characteristics and varying the parameters of each algo-
rithm. For each algorithm, different XML datasets are used
to show how the datasets affect the performance. Experi-
ments with the same dataset and all possible variations of
the parameters have also been done to show how the pa-
rameters can affect the performance. The symbols for char-
acteristics of the datasets and parameters of the algorithms
are shown in Tables 1(a) and 1(b) with their descriptions.

5.2 Variation of Algorithm Parameters
We evaluate the performance of the four algorithms, FCS-

BASIC-T, FCS-BASIC-B, FCS-A, and FCS-C, by varying
the thresholds of the three major parameters, Structure dy-
namic, version dynamic, and degree of dynamic. Table 1
(d) shows the characteristics of the datasets and some pa-
rameters used in our experiments. Hereafter, we use the
symbol “-” to denote the parameters or characteristics of
the dataset that will be varied in the experiments. Figure 4
(a) shows the performance of the algorithms by varying the
threshold α. We use the SIGMOD1 XML dataset. Figure 4
(b) shows how the algorithms perform when the threshold
β changes. We use the DBLP1 XML dataset. Figure 4 (c)
describes how the changes of threshold γ may affect their
performances. We use the Synthetic1 XML dataset. From
the above figures, following observations can be made.

None of the algorithms is sensitive to the changes of α, β
or γ. However, the overall observation is that as any of
the thresholds increases, the execution time decreases. This
is due to the fact that when the threshold increases, the

1http://www.cs.washington.edu/research/xmldatasets
2http://www.alphaworks.ibm.com/tech/xmlgenerator

pruning techniques are more efficient and the search space
of FCS is reduced. The execution time does not change
significantly with the changes of thresholds because that the
major cost of the algorithms is the cost of SX-Diff, which is
independent to the thresholds. As shown in Figure 4 (d),
the SX-Diff cost is more than 50% of the total cost. From
Figure 4 (d), we also observed that as the total number of
nodes increases the percentage of SX-Diff cost also increases.

The FCS-BASIC-T algorithm is more stable than others
as α changes, but it is more sensitive to the changes of β.
This is due to the fact that FCS-BASIC-T uses the heuristic
in Lemma 1 to prune the H-DOM tree, and other algorithms
use the heuristic in Lemma 2, where Lemma 1 is solely based
on β and Lemma 2 is based on α.

For the same dataset, with the same parameters, we ob-
served that the differences of execution time for the four
algorithms are in constant order. It means that although dif-
ferent traversal strategies, optimization techniques are used,
the time cost does not change significantly.

5.3 Characteristics of Datasets
We evaluate the performance of the four algorithms by

varying the characteristics of the datasets. Table 1 (e) shows
the values of the parameters and some of the characteris-
tics of the datasets used in our experiments. Figure 4 (e)
shows the performance of the algorithms using SIGMOD2

by varying NoN , the average number of nodes in each XML
document, from 8,000 to 40,000 (the corresponding size of
each XML document is from 3M to 15M), with 30 versions
in the sequence. Figure 4 (f) presents the performance of
the algorithms using DBLP2 by varying NoV , the number
of version in the sequence, from 30 versions to 150 versions .
With the average size of each XML document is 2.3M (5743
nodes). Figure 4 (g) evaluates the performance of the al-
gorithms by varying PoC. The Synthetic2 dataset is used.
From the above figures, several observations can be made.

As the average number of nodes NoN in the XML docu-
ment increases, the time cost increases. Changes are more
significant compared to the changes in Figures 4 (f) and 4
(g). It is because when the average number of nodes in-
creases, the SX-Diff cost increases, the pruning and extrac-
tion phase become more expensive too.

As the total number of versions NoV in the XML sequence
increases, the execution time of the algorithms increases
too. It is obvious that when the total number of versions
increases, the number of comparison increases accordingly.
Consequently, the cost for detection the structural changes
increases. Compared with the changes of NoN , the changes
of NoV do not affect the performance significantly.

As the percentage of changes PoC in the XML sequence
increases, the execution time also increases. Since our FCS
mining is actually dealing with the deltas rather than the
original sequence, as the PoC increases, the size of the delta
increases. Consequently, the SX-Diff, the pruning and ex-
traction phases become more expensive.

5.4 Compression Efficiency Experiments
We evaluate the space efficiency of the algorithms by com-

paring the compactness of the H-DOM tree. Table 1 (c)
shows the characteristics of the datasets and parameters
used in the experiments. Figure 4 (h) show the size of the
H-DOM trees for different datasets and different algorithms.

From Figure 4 (h), we can observe that compared to the

��

��

��

��

��

��

��

��

� �
	
� �

	

 �

	
� �

	
� �

��
����
��������

�
�
�
�
��
�
�
�
 �
!
�
"
#$

%&�
'
()�*&

'
+ %&�

'
()�*&

'
(

%&�
'
) %&�

'
&

(a) Variation of α

��

��

��

��

��

��

��

��

��

	 	

� 	

� 	

 	

� �

��������������

�
�
�
�
 !
"
#
$
%"
&
�
'
()

*+,
-
./,0+

-
1 *+,

-
./,0+

-
.

*+,
-
/ *+,

-
+

(b) Variation of β

��

��

��

��

� �
�
� �

�
� �

�
� �

�
� �

�	
�		�
�������

�
�
�
�
��
�
�
�
��
�
�
�
 !

"#$
%
&'$(#

%
) "#$

%
&'$(#

%
&

"#$
%
"#$

%
'

(c) Variation of γ

��

���

���

���

���

����

� � ��
��	
��
��
������

�
�
�
�
��
�
�
�
��
�
�

� !"#�� $%&&#'()*�+,-�%.-#
'

(d) Execution Time

�

����

����

����

����

�����

�����

�����

�����

���� ����� ����� ����� �����
���

	

�
�

�
�
�
�
��
�
�
�
��

���
�
�����

�
� ���

�
�����

�
�

���
�
� ���

�
�

(e) Variation of NoN

�

���

���

���

���

���

���

���

���

�� �� 	� ��� ���

��

�
�
�
��
�
�
�
��
�
�
�
��

���
�
� �!�

�
" ���

�
� �!�

�
�

���
�
� ���

�

(f) Variation of NoV

��

��

��

��

��

��

��

��	 ��	 ��	 ��	
�	
��

�
�
�
�
��
�
�
�
��
�
�
�
��

�
�
�
� �!

�
" �
�

�
� �!

�
�

�
�
�
 �
�

�

(g) Variation of PoC

�

�����

�����

�����

�����

�����

�����

�����

� � � ��	
	��

�
�
�
��

�
��
��
��
�
�
�
��

������	 !�"� #$!%&'!($

#$!%$ #$!%'

(h) Size of the H-DOM tree

Figure 4: Experiment Results

original dataset, the H-DOM trees are very compact. The
compression rate of the H-DOM tree is almost 50% without
any optimization techniques. With the optimization tech-
niques, the FCS-C, and FCS-A are more compact than the
FCS-BASIC. Especially, the H-DOM tree built using the
FCS-A is the most compact one. The compression rate of
the FCS-A is around 30% according to our experiments.
This fact also explains why the time cost of the FCS-C, and
FCS-A are relatively more expensive as shown in the results
shown in Figures 4 (a) to 4 (g).

We evaluate the compression rate of the H-DOM tree us-
ing datasets of different characteristics. Among all the char-
acteristics of the dataset, we observed that only the percent-
ages of deletion and insertion affect the compression rate
significantly. Figure 3 (f) shows how the size of the H-DOM
tree changes as the percentages of deletion and insertion
change. The H-DOM tree is built by the FCS-A algorithm.
We use dataset 1 in Table 1 (c). The percentage of changes
is set to 60%. From Figure 3 (f), we observed that as the
percentage of deletion increases and the percentage of in-
sertion decreases the size of the H-DOM decreases. This is
because when more and more nodes are deleted the pruning
and merging function is more efficient.

5.5 Summary
From the above observations, we can conclude that our

proposed algorithm FCS-BASIC-T and FCS-BASIC-B are
efficient and scalable while three optimization techniques,
compression technique, building and merging strategy, and
DTD-based pruning strategy, have improved the space ef-
ficiency substantially. Based on the experiment results, if
users want to find out FCS with higher version dynamic,
the FCS-BASIC-T is recommended. Otherwise, the FCS-
BASIC-B is the best choice, since the three optimization
techniques work in a bottom-up manner. The FCS-C algo-
rithm can be applied to any datasets, while the FCS-A can
only be used for datasets with DTDs.

6. CONCLUSIONS
In this paper, we propose an approach to discover useful

and hidden knowledge from the history of XML structural
changes. Specifically, we focus on extracting the FCSs. We
propose an H-DOM model to represent and store the XML
structural data, in which the history of structural data is
preserved and compressed. Based on the H-DOM model,
we present two basic algorithms, FCS-BASIC-T and FCS-
BASIC-B, to discover the FCSs. By analyzing the perfor-
mance of the basic algorithms, some optimization techniques
are also discussed. Extensive experimental evaluations us-
ing dataset generated from both synthetic and real XML
documents have been conducted for all the algorithms we
proposed. Recommendations of when to choose which al-
gorithm are also discussed based on the experiment results.
Finally, we show the usefulness of the frequently changing
structures by presenting a list of potential applications.

7. REFERENCES
[1] D. Braga, A. Campi, S. Ceri, M. Klemettinen, and P. L. Lanzi.

A tool for extracting XML association rules. In Proc. ICTAI,
57–65, 2002.

[2] L. Chen, S. S. Bhowmick and C. Chia. Mining Association
Rules from Structural Deltas of Historical XML Documents. In
In Proc. PAKDD, 452–457, 2004.

[3] G. Cobena, S. Abiteboul, and A. Marian. Detecting changes in
XML documents. In Proc. ICDE, 41–52, 2002.

[4] Curbera and D. A. Epstein. Fast difference and update of
XML documents. In Proc. XTech’99, 1999.

[5] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without
candidate generation. In Proc. SIGMOD, 1–12, 2000.

[6] A. Inokuchi, T. Washio, and H. Motoda. An apriori based
algorithm for mining frequent substructures from graph data.
In Proc. PKDD, 13–23, 2000.

[7] M. Kuramochi and G. Karypis. Frequent subgraph discovery.
In Proc. ICDM, 313–320, 2001.

[8] Y. Wang, D. J. DeWitt, and J.-Y. Cai. X-diff: An effective
change detection algorithm for XML documents. In Proc.
ICDE, 519–530, 2003.

[9] X. Yan and J. Han. gSpan: Graph-based substructure pattern
mining. In Proc. ICDM, 721–724, 2002.

[10] M. J. Zaki. Efficiently mining frequent trees in a forest. In
Proc. SIGKDD, 71–80, 2002.

[11] M. J. Zaki and C. C. Aggarwal. XRules: An effective structural
classifier for XML data. In Proc. SIGKDD, 316–325, 2003.

[12] Q. Zhao and S. S. Bhowmick. Mining changes to historical web
access patterns. In Pro. PKDD, 2004.

