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ABSTRACT
Recently, a number of main memory algorithms for detect-
ing the changes to XML data has been proposed. These
techniques suffer from scalability problem and fail to de-
tect changes to large XML documents. As a result, sev-
eral relational approaches have been proposed to detect the
changes to XML documents by using relational databases.
These approaches store the XML documents in the rela-
tional database and issue SQL queries (whenever appropri-
ate) to detect the changes. All of these relational-based
approaches use the schema-oblivious XML storage strategy
for detecting the changes. However, there is growing ev-
idence that schema-conscious storage approaches perform
significantly better than schema-oblivious approaches as far
as XML query processing is concerned. In this paper, we
study a relational-based unordered XML change detection
technique (called Helios) that uses a schema-conscious ap-
proach (Shared-Inlining) as the underlying storage strategy.
Helios is up to 52 times faster than X-Diff [10] for large
datasets (more than 1000 nodes). It is also up to 6.7 times
faster than Xandy [6]. The result quality of deltas detected
by Helios is comparable to the result quality of deltas de-
tected by Xandy.

Categories and Subject Descriptors: H.2.4 [Database
Management]: Systems – Relational databases.

General Terms: Algorithms, Design, Experimentation.

Keywords: XML, change management, change detection.

1. INTRODUCTION
Detecting changes to XML data is an important research

problem. The XML change detection problem is related to
the problem of detecting the changes to trees. In [2], the
authors address the problem of detecting changes to two
snapshots of hierarchically structured information that are
represented as ordered trees. MH-Diff [1] is an efficient al-
gorithm for meaningful change detection to unordered trees.
Recently, a number of techniques for detecting the changes
to XML data has been proposed. XyDiff [4] is a main-
memory algorithm for detecting the changes to ordered XML
documents. In an ordered XML, both the parent-child re-
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lationship and the left-to-right order among siblings are im-
portant. Wang et al. proposed X-Diff [10] for computing
the changes to unordered XML documents. In unordered
XML, the parent-child relationship is significant, while the
left-to-right order among siblings is not important. All these
algorithms suffer from scalability problem as they fail to de-
tect changes to large XML documents due to lack of main
memory.

In [3, 6], we have addressed this scalability problem by
using the relational database system. In this approach,
given the old and new versions of an XML document, we
store both documents in relational database. Next, we is-
sue a set of SQL queries to detect the changes. The rela-
tional approach-based XML change detection has potential
to gain popularity due to its stability, scalability, and its
wide spread usage in the commercial world. However, effi-
cient change detection in this approach largely determined
by the underlying storage approach. Particularly, there are
two major approaches for storing XML documents in a re-
lational database. In schema-conscious approach, a rela-
tional schema is created based on the DTD/schema of the
XML documents. First, the cardinality of the relationships
between the nodes of the XML document is established.
Based on this information a relational schema is created.
The structural information of XML data is modeled by us-
ing primary-key foreign-key joins in relational databases to
model the parent-child relationships in the XML tree. In
the schema-oblivious approach, a fixed schema used to store
XML documents is maintained. The basic idea is to capture
the tree structure of an XML document. This approach does
not require existence of an XML schema/DTD. Also, num-
ber of tables is fixed in the relational schema and does not
depend on the structural heterogeneity of XML documents.

<!ELEMENT catalog (item*)>
<!ELEMENT item (name, 
   category?, price, details)>
<!ELEMENT details (info*)>
<!ELEMENT pname (#PCDATA)>
<!ELEMENT category (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ELEMENT info (#PCDATA)>

Document (Doc_ID, Doc_Name)

Catalog (Doc_ID, ID)

Item (Doc_ID, ID, PID, PName, 

     Category, Price, Details)

Info (Doc_ID, ID, PID, Val)

(a) An example of DTD (b) Relational schema

Figure 1: XML Trees and XML in RDBMS.

Our previous approaches for detecting changes to XML
data [3, 6] were all based on the schema-oblivious approaches.
This is motivated by the fact that schema-oblivious ap-
proaches have the following two advantages. First, ability
to handle XML schema changes better as there is no need
to change the relational schema. Second, there is no need to
modify SQL queries to detect changes even if the structure
of XML data changes.
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Figure 2: XML Trees and XML in RDBMS.

In this paper, we present a novel relational approach for
detecting the changes to unordered XML documents called
Helios (scHEma-conscious xml -enabLed change detectIOn
System) using a schema-conscious approach (Shared-Inlining
[8] in our case). Our effort is motivated by the fact that a
growing body of work suggests that schema-conscious ap-
proaches perform better than schema-oblivious approaches
as far as XML query processing is concerned [5, 9]. Hence, is
it possible to design a schema-conscious XML change detec-
tion system that can accurately detect all types of changes
yet outperform existing XML change detection approaches?
In this paper, we address this issue. Note that the char-
acteristics of schema-conscious approach raise certain chal-
lenges. For instance, in this approach no special relational
schema needs to be designed as it can be generated on the
fly based on the DTD of the XML document(s). That is, un-
like schema-oblivious approaches, the underlying relational
schema is DTD-dependent. Consequently, the challenge is
to create a general framework for change detection so that
the framework is independent of the structural heterogeneity
of various XML documents. In other words, given a specific
schema-oblivious approach, our framework should be able to
detect all changes accurately independent of the changes to
the underlying relational schema due to different structure
of XML documents. Note that the framework discussed in
this paper is only for XML documents whose schemas do
not contain recursive elements.

In our approach, first, we store two versions of XML docu-
ments in RDBMS by using Shared-Inlining schema [8] gen-
erated based on their DTD. Next, our approach starts to
detect the changes in bottom-up fashion. Our approach
consists of two phases, namely, the finding the best matching
subtrees phase (Phase 1) and the detecting the changes phase
(Phase 2). For each phase, the algorithm executes several
SQL queries. Note that “[param]” in the SQL queries used
in the later discussion will replaced the parameter param
defined in the algorithm. The detected delta will be stored
in several relations in RDBMS.

We have implemented the prototype of Helios using Java
on top of Shared-Inlining [8], a schema-conscious storage
strategy for XML documents. We compared Helios to
Xandy [6], a published schema-oblivious unordered XML
change detection system, and X-Diff [10], a published main
memory-based approach. We observe that the overall per-
formance of Helios performs up to 6.7 times faster than
Xandy. Also, although X-Diff outperforms Helios for small
data sets (less than 1000 nodes), for larger data sets, He-
lios is up to 52 times faster than X-Diff. X-Diff is unable to
detect the changes on XML documents that have more than
5000 nodes due to lack of main memory. The result quality
of Helios is comparable to the one of Xandy.

Input
  U : DTD of the XML documents
  Two versions of an XML document 
      stored in RDBMS
Output
  the Matching table
   /* --- STEP 1 --- */
1  for all ax in U do
2 tbName    rax; tempTb    Max;
3   findMatchingLeafNodes(tbName, 
                           tempTb);
4  end for
   /* --- STEP 2 --- */
5  maxLevel = maximum level at which 
        there is dx in U
   /* bottom-up matching */
6  for lev = maxLevel down to 1 do
7    for all dx at level lev do
8 childNode    child(dx);
9      tempMChild     MchildNode;
10     tbName    rdx; tempTb    Mdx;

       /* --- STEP 2.1 --- */
11     findMatchingInternalNodes(tbName, 
                    tempTb, tempMChild);
       /* --- STEP 2.2 --- */
12     maximizeScore(dx);
13   end for
14 end for
   /* --- STEP 3 --- */
15 root is the root node of U
16 Queue Q {root}
17 while (Q is not empty) do
18   q = Q.get();
19   Q    the child internal 
             nodes of q in U;
20   nodeName name(q); tempTb rq;
21   parentNode parent(q);
22   parentNodeName name(parentNode);
23   attrName attribute(q);
24   retrieveMatching(nodeName, tempTb,

parentNodeName, attrName);
25 end do

Figure 3: The bestMatchingFinder Algorithm.

2. FINDING BEST MATCHING SUBTREES
The Finding Best Matching Subtrees phase is important

because it facilitates the system in finding minimum delta.
In this paper, the minimum delta is defined as a delta that
has the least number of changed nodes. Given a DTD as de-
picted in Figure 1(a), we generate a Shared-Inlining schema.
We extend the schema such that an internal node that has
in-degree one and out-degree one in DTD tree is stored as
Boolean attribute. This will enable us to detect the in-
serted/deleted of this type of internal nodes. For example,
node “details” in the DTD. The modified schema is depicted
in Figure 1(b). Note that we use the XML documents de-
picted in Figure 2(a) as our running example.

2.1 Preliminaries
We first present notations that will be used in the later

discussion. Suppose we have a Shared-Inlining schema S
generated based on DTD U . Schema S consists of a set of
tables R(S)= {rn1 , rn2 , ..., rnx}, where np is the name of
the relation. The nodes in DTD U are categorized into two
types as follows.

• Inlined Nodes. The inlined node is one that is stored
as an attribute of the relation of its parent node. There
are two types of inlined nodes, namely, inlined leaf
nodes (denoted by a) and inlined internal nodes (de-
noted by b). The attribute that stores the information
on an inlined node n is denoted as attribute(n). For
example, a leaf node “price” is also an inlined node as
it is stored as attribute Price in the ritem relation.

• Non-inlined Nodes. The non-inlined node is one
that is stored as a relation. Similarly, there are two
types of non-inlined nodes, namely, non-inlined leaf
nodes (denoted by c) and non-inlined internal nodes
(denoted by d). The relation that stores the infor-
mation on a non-inlined node n is denoted as rn. For



1  INSERT INTO [ t empTb]
2 SELECT A1. DOC_I D AS DI D1,  
3    A2. DOC_I D AS DI D2,  
4    A1. PI D AS PI D1,  
5    A2. PI D AS PI D2,   
6    COUNT( A1. I D) * 2 AS COUNTER,  
7    0 AS TOTAL,  0 AS SCORE
8 FROM [ t bName]  AS A1,  
9       [ t bName]  AS A2
10 WHERE A1. DOC_I D = doc_id1 AND 
11    A2. DOC_I D = doc_id2 AND 
12    A1. VAL = A2. VAL
13 GROUP BY A1. DOC_I D,  A2. DOC_I D,  
14    A1. PI D,  A2. PI D

1 UPDATE [ t empTb]  T 
2 SET TOTAL = 
3   ( SELECT COUNT( A. I D)  
4    FROM [ t bName]  AS A 
5    WHERE A. DOC_I D = doc_id1 AND 
6       A. PI D = T. PI D1)  
7    + 
8   ( SELECT COUNT( A. I D)  
9 FROM [ t bName]  AS A 
10   WHERE A. DOC_I D = doc_id2 AND 
11       A. PI D = T. PI D2)  
12 WHERE T. DI D1 = doc_id1 AND
13  T. DI D2 = doc_id2

1 UPDATE [ t empTb]  
2 SET SCORE = COUNTER /  TOTAL
3 WHERE DI D1 = doc_id1 AND DI D2 = doc_id2

(b) Update Attribute “Total”

(c) Update Attribute “Score”

(a) Find Matching Leaf Nodes

1  INSERT INTO [ t empTb]
2  SELECT
3    A1. DOC_I D AS DI D1,  A2. DOC_I D AS DI D2,  
4    A1. PI D AS PI D1,  A1. PI D AS PI D2,
5    A1. I D AS I D1,  A2. I D AS I D2,  
6    0 AS COUNTER,  0 AS TOTAL,  0 AS SCORE
7  FROM [ t bName]  AS A1,  [ t bName]  AS A2
8  WHERE
9    A1. DOC_I D = doc_id1 AND 
10   A2. DOC_I D = doc_id2 AND
11   [ mor eCondi t i ons]  AND 
12   NOT EXISTS 
13     ( SELECT I D1,  I D2 FROM [ t empTb]  AS B
14      WHERE B. DI D1 = doc_id1 AND 
15            B. DI D2 = doc_id2 AND 
16            B. I D1 = A. I D1 AND B. I D2 = A. I D2)  

1  INSERT INTO [ t empTb]
2  SELECT A1. DOC_I D AS DI D1,  
3     A2. DOC_I D AS DI D2,  
4     A1. PI D AS PI D1,  A2. PI D AS PI D2,
5     A1. I D AS I D1,  A2. I D AS I D2,  
6     0 AS COUNTER,  0 AS TOTAL,  0 AS SCORE
7  FROM [ t empMChi l d]  AS A,  
8       [ t bName]  AS A1,  [ t bName]  AS A2
9  WHERE
10   A. DI D1 = doc_id1 AND 
11   A. DI D2 = doc_id2 AND
12   A1. DOC_I D = doc_id1 AND
13   A2. DOC_I D = doc_id2 AND
14   A1. I D = A. PI D1 AND 
15   A2. I D = A. PI D2 AND
16   NOT EXISTS
17    ( SELECT I D1,  I D2 FROM [ t empTb]  AS B
18     WHERE B. DI D1 = doc_id1 AND 
19           B. DI D2 = doc_id2 AND 
20           B. I D1 = A. I D1 AND 
21           B. I D2 = A. I D2)  
22 GROUP BY A1. DOC_I D,  A2. DOC_I D,  A1. PI D,  
23   A2. PI D,  A1. I D,  A2. I D 

(e) Find Matching Internal Nodes (2)

(d) Find Matching Internal Nodes (1)

1  INSERT INTO MATCHI NG
2  SELECT I . DI D1,  I . DI D2,  I . PI D1,  I . PI D2,  I . I D1,  
3    I . I D2,  I . SCORE,  ' [ nodeName] '  AS NAME
4  FROM MATCHI NG AS M,  [ t empTb]  AS I
5  WHERE
6    M. DI D1 = doc_id1 AND 
7    M. DI D2 = doc_id2 AND 
8    I . DI D1 = doc_id1 AND 
9    I . DI D2 = doc_id2 AND
10   M. NAME = ' [ par ent NodeName] '  AND
11   I . PI D1 = M. I D1 AND I . PI D2 = M. I D2

(g) Merging Internal Nodes (2) (h) Merging Internal Nodes (3)

1  INSERT INTO MATCHI NG
2  SELECT
3    M. DI D1 AS DI D1,  M. DI D2 AS DI D2,  
4    I 1. I D AS PID1,  I 2. I D AS PID2,  
5    NULL AS I D1,  NULL AS I D2,  
6    NULL AS SCORE,  
7    ' [ nodeName] '  AS NAME
8  FROM MATCHI NG AS M,  
9      [ par ent TbName]  AS I 1,  
10     [ par ent TbName]  AS I 2
11 WHERE
12   M. DI D1 = doc_id1 AND 
13   M. DI D2 = doc_id2 AND 
14   I 1. DOC_I D = doc_id1 AND 
15   I 2. DOC_I D = doc_id2 AND
16   M. NAME = ' [ par ent NodeName] '  AND
17   I 1. I D = M. I D1 AND 
18   I 2. I D = M. I D2 AND
19   I 1. [ at t r Name]  IS NOT NULL AND
20   I 2. [ at t r Name]  IS NOT NULL

1  INSERT INTO MATCHI NG 
2  SELECT DI D1,  DI D2,  PI D1,  PI D2,  I D1,  
3    I D2,  SCORE,  ' [ nodeName] '  AS NAME  
4  FROM [ t empTb]
5  WHERE 
6    DI D1 = doc_id1 AND DI D2 = doc_id2

(f) Merging Internal Nodes (1)

Figure 4: SQL Queries (1).

example, an internal node “item” is a non-inlined node
as it is stored as ritem relation.

We now define some other symbols to facilitate exposition.
Let Lv be a set of leaf nodes in the version v of an XML
document. Let `v be a leaf node in the version v of an
XML document, where `v ∈ Lv. The textual content of
`v is denoted by value(`v). A set of internal nodes in the
version v of an XML document is denoted as Iv, and iv
denotes an internal node in version v of an XML document,
where iv ∈ Iv. The name and level of node n are denoted
by name(n) and level(n) respectively. The parent node,
child node, and ancestor node of n are denoted as parent(n),
child(n), and ancestor(n) respectively.

The bestMatchingFinder algorithm that is used to de-
termine the best matching subtrees from two versions of an
XML document consists of three steps: finding matching
leaf nodes, finding best matching internal nodes, and collect-
ing best matching internal nodes. We shall elaborate these
steps in the later discussion.

2.2 Finding the Matching Leaf Nodes
The objective of this step is to determine the matching

leaf nodes. Informally, the matching leaf nodes are ones
that have the same node name, node level, and value. For-
mally, the matching leaf nodes are defined as follows. Let
`1x and `2y be two leaf nodes in the first and second versions
of an XML tree respectively. Then, `1x and `2y are match-
ing leaf nodes (denoted as `1x ↔ `2y ) if name(`1x) =
name(`2y ), level(`1x) = level(`2y ), and value(`1x) = value(`2y ).
Note that we only match the non-inlined leaf nodes in this
step. The inlined leaf nodes will be matched when we match
internal nodes (Step 2). Suppose we have two versions of
an XML document stored in RDBMS as depicted in Fig-
ure 2(b). We only have one non-inlined leaf node, namely,
info node stored in the Info table. Let n(p,q) be a leaf node
n stored in the rn table with doc id=p and id=q. We notice
that there are four matching leaf nodes, namely, info(1,2) ↔
info(2,7), info(1,4) ↔ info(2,1), info(1,5) ↔ info(2,2), and
info(1,5) ↔ info(2,5).

Instead of storing the matching leaf nodes directly, we
group them according to their parent nodes and store these
matching groups in a temporary table in order to reduce
storage space requirement. Let G(1,pid1) = {`11 , `12 , ..., `1x}
and G(2,pid2) = {`11 , `22 , ..., `2y} be two sets of non-inlined
leaf nodes in the first and second versions of an XML doc-
ument respectively, where ∀`1p ∈ G1 have the parent node
id pid1, and ∀`2p ∈ G2 have the parent node id pid2. Then

G(1,pid1) and G(2,pid2) are matching groups (denoted by
G(1,pid1) ⇔ G(2,pid2)) if ∃`1p ∃`2q such that `1p ↔ `2q where
`1p ∈ G(1,pid1) and `2q ∈ G(2,pid2). Recall the example de-
picted in Figure 2(b). Let G(v,w) be a matching group in
which there is a set of leaf nodes with parent node id w
in the version v. We have three matching groups, namely,
G(1,1) ⇔ G(2,3), G(1,2) ⇔ G(2,1), and G(1,2) ⇔ G(2,2).

After grouping the matching leaf nodes, we need to mea-
sure how similar the matching groups are by calculating
their similarity scores. The similarity score < of two match-
ing groups G1 and G2 is defined as follows: <(G1, G2) =
2|G1∩G2|
|G1|+|G2| , where |G1|+ |G2| is the total number of leaf nodes

in G1 and G2, and |G1 ∩G2| is the number of matching leaf
nodes in G1 and G2. The value of similarity score is be-
tween 0 and 1. If two matching groups have no matching leaf
nodes, then their similarity score is 0. The similarity score
of two matching groups is equal to 1 if they are identical.
For example, the similarity score of G(1,1) and G(2,3) is equal
to “0.600” as |G(1,1) ∩G(2,3)| = 1 and |G(1,1)|+ |G(2,3)| = 5.

Given two versions of an XML document shredded in
RDBMS, we use three SQL queries encapsulated in the find-
MatchingLeafNodes algorithm to find matching groups . The
first SQL query is depicted in Figure 4(a). This query is used
to find the matching leaf nodes (line 12) and group them into
matching groups (lines 13-14). This SQL query is also used
to calculate the number of matching leaf nodes in the match-
ing groups (line 6). Figure 4(b) depicts the SQL query that
is used to calculate total number of leaf nodes in the match-
ing groups. The third SQL query that is used to calculate
the similarity scores of the matching groups is depicted in
Figure 4(c). Given the Info table depicted in Figure 2(b),
the findMatchingLeafNodes algorithm results the M Info

table that stores the matching groups. The M Info table is
the instance of the tempTb1 table as depicted in Figures 6(a)
and (b).

2.3 Finding Best Matching Internal Nodes
The objective of this step is to determine best matching

non-inlined internal nodes between two XML documents.
Lines 5-14 in Figure 3 are used to find best matching internal
nodes. The algorithm works as follows. First, the algorithm
determines the highest level of the internal nodes in DTD
U . Then, the algorithm starts to find best matching inter-
nal nodes in bottom-up fashion. There are two sub steps as
follows. First, finding matching internal nodes (line 11, Fig-
ure 3). Second, determining best matching subtrees (line 12,
Figure 3).
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Figure 5: Temporary Matching, Matching, and Delta Tables.

Finding matching internal nodes . Informally, two inter-
nal nodes are matching internal nodes if they have at least
one matching leaf nodes that are their descendants. Let
i1 and i2 be two internal nodes from the old and new ver-
sions of an XML document respectively. Then, i1 and i2 are
matching internal nodes (denoted by i1 l i2) if the fol-
lowing conditions are satisfied: 1) name(i1) = name(i2), 2)
level(i1) = level(i2), and 3) ∃`1x ∃`2y such that `1x ↔ `2y ,
where i1 = ancestor(`1x) and i2 = ancestor(`2y ).

For each non-inlined internal node dx, the bestMatching-
Finder algorithm invokes the findMatchingInternalNodes al-
gorithm. The findMatchingInternalNodes algorithm executes
the SQL query as depicted in Figure 4(d). This SQL query
is used to find matching internal nodes from the temporary
matching relations of the child nodes of the input node.
Lines 14-15 are used to ensure that the parent-child rela-
tionship between the matching nodes and the internal nodes
that are going to be matched. The result will be grouped
by their parent nodes (lines 22-23). Lines 16-21 are used to
avoid duplicate matching internal nodes. The result of the
SQL query in Figure 4(d) is stored in a temporary match-
ing table Mdx that is the instance of the tempTb2 table as
depicted in Figures 6(a) and (b).

If node dx has inlined child leaf nodes, then the find-
MatchingInternalNodes algorithm also executes the SQL query
depicted in Figure 4(e). Before executing the SQL query,
the algorithm prepares one more parameter, namely, more-
Conditions that is used to replace a part of the SQL query.
Formally, the value of moreConditions is as follows. Sup-
pose we have two internal nodes i1 and i2 from the old and
new versions of XML documents respectively. Nodes i1 and
i2 are matching internal nodes (i1 l i2) if ∃a1z∃a2z such
that value(a1z ) = value(a2z ), where a1z = child(i1), a2z =
child(i2), and attribute(a1z ) = attribute(a2z ). For example,
given the “Item” table, the value of parameter moreCondi-
tions is equal to “(A1.PName = A2.PName OR A1.Category

= A2.Category OR A1.Price = A2.Price)”. The result of
the SQL query in Figure 4(e) is also stored in a temporary
matching table Mdx .

Determining the best matching internal nodes . The
best matching internal nodes are formally defined as follows.
Let i ∈ I1 be an internal node in the old version of an XML
document. Let Z ⊆ I2 be a set of internal nodes in new
version, where ∀zp ∈ Z such that i l zp. i and zq are
best matching internal nodes (denoted by i m zq) iff
(<(i, zq) > <(i, zp)) ∀ 0 < p ≤ |Z| and q 6= p. For example,
in the M Item table we notice that item(1,2) can be matched
to item(2,1) and item(2,2). The similarity score of matching
catalog nodes (catalog(1,1) l catalog(2,2)) will be maximized
if we have item(1,1) l item(2,3) and item(1,2) l item(2,1).
That is, <(catalog(1,1),catalog(2,2)) will be “0.636”. Other-
wise, <(catalog(1,1),catalog(2,2)) will be “0.364”. Therefore,
the task in this step is to find best matching configurations
that facilitate us to find best matching internal nodes.

The problem of finding best matching configuration is sim-
ilar to the problem of finding maximum weighted bipartite
matching. Hence, we are able to solve the problem of find-
ing best matching configuration by using the algorithm for
finding maximum weighted bipartite matching. In our im-
plementation, we use the Hungarian method [7]. Note that
we need to update the values of the attributes Counter, To-
tal, and Score accordingly as initially their values are equal
to “0”. Intuitively, the value of attribute Counter is equal to
(p +

P
qz), where p is the number of matching non-inlined

leaf nodes, and qz is the number of matching inlined leaf
nodes retrieved from the temporary matching table. The
value of attribute Total is equal to (2k +

P
lz), where k is

the total number of non-inlined leaf nodes, and lz the total
number of inlined leaf nodes retrieved from the temporary
matching table. The SQL query for updating the Score at-
tribute is same as the one depicted in Figure 4(c).

2.4 Collecting Best Matching Internal Nodes
The result of the previous step is the best matching inter-

nal nodes stored in several relations. The objectives of this
step are to merge/collect the best matching internal nodes
from different relations and to determine the best matching
inlined internal nodes. Lines 15-25 in Figure 3 depict the
algorithm. The intuition behind this algorithm is to collect
best matching internal nodes in top-down fashion, starting
from the root nodes to the highest level of matching internal
nodes. To retrieve the best matching internal nodes in each
level, the algorithm invokes the retriveMatching algorithm
(line 24, Figure 3).

Given an internal node x as the input, the retriveMatch-
ing algorithm works as follows. First, the algorithm checks
whether node x is a root node, an inlined internal node,
or a non-inlined internal node. If node x is a root node,
then the algorithm executes the SQL query depicted in Fig-
ure 4(f). If node x is a non-inlined internal node, then the
algorithm executes the SQL query depicted in Figure 4(g).
The intuition behind the SQL query in Figure 4(g) is to find
best matching node x in the Mx table whose parent nodes
are best matching node in the Matching table. If node x
is an inlined internal node, the algorithm executes the SQL
query depicted in Figure 4(h). Given the temporary match-
ing tables (Figures 5(b)-(c)) and the XML documents stored
in RDBMS (Figure 2(a)), the retriveMatching algorithm re-
sults the Matching table as depicted in Figure 5(d). The
semantics of the Matching table is depicted in Figures 6(a)
and (b). The Matching table keeps the best matching inter-
nal nodes of two XML documents that will be used as the
facilitator in detecting the changes (Phase 2).

3. DETECTING THE CHANGES
In section, we discuss how the changes are detected af-

ter the best matching subtrees are determined. We con-
sider five types of changes as follows: insertion of internal



tempTb1 (DID1, DID2, PID1, PID2,
    Counter, Total, Score)

tempTb2 (DID1, DID2, PID1, PID2, 
    ID1, ID2, Counter, Total, Score)

Attributes

MATCHING (DID1, DID2, PID1, PID2, 
    ID1, ID2, Score, Name)

INS_INT (DID1, DID2, PID, ID, Name)

DEL_INT (DID1, DID2, PID, ID, Name)

INS_LEAF (DID1, DID2, PID, ID, 
    Name, Value)

DEL_LEAF (DID1, DID2, PID, ID, 
    Name, Value)

UPD_LEAF (DID1, DID2, PID, ID, 
    Name, Value1, Value2)

Description

DID1 Document id of the first version

DID2
Document id of the second 
version

PID Parent node id

PID1
Parent node id in the first 
version

PID2
Parent node id in the second 
version

ID Node id

ID1 Node id in the first version

ID2 Node id in the second version

Name Node name

Value Leaf node content

Value1 The old value of a leaf node

Value2 The new value of a leaf node(a) Additional Tables

(b) Attributes and Descriptions

Score Similarity score

Total Total number of nodes

Counter Number of matching nodes

Input
  U : DTD of the XML documents
  the Matching table
  Two versions of an XML document stored in RDBMS
Output
  the delta tables  

1  A    all the inlined leaf nodes in U
2  B    all the inlined internal nodes in U
3  C    all the non-inlined leaf nodes in U
4  D    all the non-inlined internal nodes in U
5  for all d in D do
6 nodeName    name(d); tbName    rd;
7    detectInsertedInternalNodes(nodeName,tbName);
8    detectDeletedInternalNodes(nodeName,tbName);
9  end for
10 for all b in B do
11 parentNode    parent(b); parentTbName    rparentNode;
12    parentNodeName    name(parentNode);
13 attrName    attribute(b); nodeName    name(b); 
14    detectInsertedInternalNodes(nodeName,
          attrName,parentTbName,parentNodeName);

15    detectDeletedInternalNodes(nodeName, 
          attrName, parentTbName,parentNodeName);
16 end for
17 for all a in A do
18    parentNode    parent(a); parentTbName    rparentNode;
19 parentNodeName    name(parentNode);
20 nodeName    name(a); attrName    attribute(a);
21    detectInsertedLeafNodes(nodeName,
           attrName,parentTbName,parentNodeName);
22    detectDeletedLeafNodes(nodeName,
           attrName,parentTbName,parentNodeName);
23    detectUpdatedLeafNodes(nodeName,
           attrName,parentTbName,parentNodeName);
24 end for
25 for all c in C do
26 nodeName    name(c); parentNode    parent(c);
27    parentNodeName    name(parentNode); tbName    rc;
28    detectInsertedLeafNodes(nodeName,tbName,parentNodeName);
29    detectDeletedLeafNodes(nodeName,tbName,parentNodeName);
30    detectUpdatedLeafNodes(nodeName,parentNodeName);
31    refineUpdatedLeafNodes(c);
32 end for

(c) The changesDetector Algorithm

Figure 6: Additional Tables, Their Attributes, The changesDetector Algorithm.

1  INSERT INTO I NS_I NT
2 SELECT doc_id1 AS DI D1,  doc_id2 AS DI D2,  
3     PI D,  I D,  ' [ nodeName] ' AS NAME
4  FROM [ t bName]  AS A
5  WHERE 
6    A. DOC_I D = doc_id2 AND 
7    NOT EXISTS ( SELECT B. I D2 
8 FROM MATCHI NG AS B
9       WHERE B. DI D1 = doc_id1 AND 
10         B. DI D2 = doc_id2 AND 
11         B. NAME = ' [ nodeName] '  AND 
12         B. I D2 = A. I D)

(a) Insertion of Internal Nodes (1)

1  INSERT INTO I NS_I NT
2  SELECT doc_id1 AS DI D1,  
3 doc_id2 AS DI D2,  I 2. I D AS PI D,  
4     NULL AS I D,  ' [ nodeName] '  AS NAME
5  FROM [ par ent TbName]  AS I 1,
6       [ par ent TbName]  AS I 2 
7  WHERE I 1. DOC_I D = doc_id1 AND 
8   I 2. DOC_I D = doc_id2 AND 
9   I 1. [ at t r Name]  IS NULL AND 
10  I 2. [ at t r Name]  IS NOT NULL AND 
11  EXISTS ( SELECT I D1,  I D2 
12     FROM MATCHI NG AS B
13     WHERE B. I D1 = I 1. I D AND 
14       B. I D2 = I 2. I D AND
15       B. DI D1 = doc_id1 AND 
16       B. DI D2 = doc_id2 AND 
17       B. NAME = ' [ par ent NodeName] ' )

(b) Insertion of Internal Nodes (2)

1  INSERT INTO I NS_I NT
2  SELECT DISTINCT doc_id1 AS DI D1,  
3 doc_id2 AS DI D2,  I . I D AS PI D,  
4 NULL AS I D,  ' [ nodeName] '  AS NAME
5  FROM I NS_I NT AS I ,  [ par ent TbName]  AS A
6  WHERE 
7    I . DI D1 = doc_id1 AND 
8    I . DI D2 = doc_id2 AND
9    I . NAME = ' [ par ent NodeName] '  AND 
10   I . I D = A. I D AND
11   A. DOC_I D = doc_id2 AND
12   A. [ at t r Name]  IS NOT NULL

(c) Insertion of Internal Nodes (3)

1  INSERT INTO I NS_LEAF
2  SELECT doc_id1 AS DI D1,  doc_id2 AS DI D2,  
3     I 2. I D AS PI D,  NULL AS I D,  
4     ' [ nodeName] '  AS NAME,  
5     I 2. [ at t r Name]  AS VALUE
6  FROM [ par ent TbName]  AS I 1,  
7       [ par ent TbName]  AS I 2
8  WHERE I 1. DOC_I D = doc_id1 AND 
9   I 2. DOC_I D = doc_id2 AND 
10  I 1. [ at t r Name]  IS NULL AND 
11  I 2. [ at t r Name]  IS NOT NULL AND 
12  EXISTS  
13    ( SELECT I D1,  I D2 FROM MATCHI NG AS B
14     WHERE DI D1 = doc_id1 AND 
15      DI D2 = doc_id2 AND 
16      NAME = ' [ par ent NodeName] '  AND
17      B. I D1 = I 1. I D AND B. I D2 = I 2. I D)

1  INSERT INTO I NS_LEAF
2  SELECT 
3 doc_id1 AS DI D1,  doc_id2 AS DI D2,
4    I . I D AS PI D,  NULL AS I D,  
5    ' [ nodeName] '  AS NAME,  
6    A. [ at t r Name]  AS VALUE
7  FROM I NS_I NT AS I ,  [ par ent TbName]  AS A
8  WHERE 
9    I . DI D1 = doc_id1 AND I . DI D2 = doc_id2 AND
10   I . NAME = ' [ par ent NodeName] '  AND 
11   I . I D = A. I D AND 
12   A. DOC_I D = doc_id2 AND 
13   A. [ at t r Name]  IS NOT NULL

(d) Insertion of Leaf Nodes (1)

1  INSERT INTO I NS_LEAF
2  SELECT 
3 doc_id1 AS DI D1,  doc_id2 AS DI D2,  A. PI D,  A. I D,  ' [ nodeName] '  AS NAME,  A. VAL AS VALUE
4  FROM [ t bName]  AS A,
5    ( SELECT M. DI D1,  M. DI D2,  M. PI D1,  M. PI D2,  VAL
6     FROM [ t bName]  AS A,  MATCHI NG AS M
7     WHERE A. DOC_I D = doc_id2 AND  A. PI D = M. PI D2 AND M. NAME = ' [ par ent NodeName] '  AND
8        M. DI D1 = doc_id1 AND M. DI D2 = doc_id2
9     EXCEPT ALL
10    SELECT M. DI D1,  M. DI D2,  M. PI D1,  M. PI D2,  VAL
11    FROM [ t bName]  AS A,  MATCHI NG AS M
12    WHERE A. DOC_I D = doc_id1 AND A. PI D = M. PI D1 AND M. NAME = ' [ par ent NodeName] '  AND
13       M. DI D1 = doc_id1 AND M. DI D2 = doc_id2 )  AS D
14 WHERE A. DOC_I D = doc_id2 AND A. PI D = D. PI D2 AND A. VAL = D. VAL

1  INSERT INTO I NS_LEAF
2  SELECT 
3 doc_id1 AS DI D1,  doc_id2 AS DI D2,  
4    I . I D AS PI D,  A. I D AS I D,  
5    ' [ nodeName] '  AS NAME,  
6    A. VAL AS VALUE
7  FROM I NS_I NT AS I ,  [ t bName]  AS A
8  WHERE 
9    A. DOC_I D = doc_id2 AND
10   I . DI D1 = doc_id1 AND 
11   I . DI D2 = doc_id2 AND
12   I . NAME = ' [ par ent NodeName] '  AND 
13   I . I D = A. PI D

(e) Insertion of Leaf Nodes (2)

(f) Insertion of Leaf Nodes (3)

(g) Insertion of Leaf Nodes (4)

Figure 7: SQL queries (2).

nodes, deletion of internal nodes, insertion of leaf nodes,
deletion of leaf nodes, and content updates of leaf nodes.
The changesDetector algorithm for detecting these types
of changes is depicted in Figure 6(c).

3.1 Insertion and Deletion of Internal Nodes
Intuitively, the inserted internal node is an internal nodes

that is only available in the new version of XML documents.
Similarly, the deleted internal node is an internal nodes that
is only available in the old version of XML documents. This
implies that the inserted and deleted internal nodes must not
be best matching internal nodes as best matching internal
nodes are available in both versions. The inserted/deleted
non-inlined and inlined internal nodes are detected by using
the changesDetector algorithm (Figure 6(c), lines 5-9 and
lines 10-16 respectively).

Non-inlined Internal Nodes . For each non-inlined in-
ternal node d in DTD U , the changesDetector algorithm
defines two parameters (line 6), and invokes the detectIn-
sertedInternalNodes (line 7) and detectDeletedInternalNodes
functions (line 8) for detecting inserted and deleted non-
inlined internal nodes respectively.

The detectInsertedInternalNodes function executes the SQL
query as depicted in Figure 7(a). Lines 7-12 are used to en-
sure that the inserted internal nodes are not best matching
internal nodes. The detectInsertedInternalNodes function
returns inserted internal nodes stored in the INS INT table.
For example, given the Item table (Figure 2(b)) and the
Matching table (Figure 5(d)), the first row of INS INT table
depicted in Figure 5(e) is the result of the detectInsertedIn-
ternalNodes function.

The detectDeletedInternalNodes function executes the mod-
ified SQL query of the SQL query depicted in Figure 7(a).
The INS INT in line 1 is replaced by DEL INT. The “doc id2”
(line 6) and “ID2” (lines 7 and 12) are replaced by “doc id1”
and “ID1” respectively. The detectDeletedInternalNodes func-
tion returns deleted internal nodes stored in the DEL INT ta-
ble. For example, given the Item table (Figure 2(b)) and the
Matching table (Figure 5(d)), the first row of DEL INT table
depicted in Figure 5(f) is the result of the detectDeletedIn-
ternalNodes function.

Inlined Internal Nodes . For each non-inlined internal
node b in DTD U , the changesDetector algorithm defines
four parameters (lines 11-13). Next, the algorithm invokes
the detectInsertedInternalNodes (line 14) and detectDeleted-
InternalNodes functions (line 15) for detecting inserted and
deleted inlined internal nodes respectively.

The detectInsertedInternalNodes function executes the SQL
queries as depicted in Figures 7(b) and (c). The SQL query
in Figure 7(b) is used to detect inserted inlined internal
nodes whose parent nodes are best matching internal nodes.
Lines 9-10 are used to ensure that the inserted inlined inter-
nal nodes are only available in the new version. Lines 11-17
are used to ensure that the parent nodes of the inserted in-
lined internal nodes are best matching internal nodes. The
SQL query depicted in Figure 7(c) is used to detect inserted
inlined internal nodes whose parent nodes are inserted inter-
nal nodes. Line 10 is used to ensure that the parent nodes
are inserted internal nodes. For example, given the Item

table (Figure 2(b)) and the Matching table (Figure 5(d)),
the second row of the INS INT table depicted in Figure 5(e)
is the result of the detectInsertedInternalNodes function.



To detect the deleted inlined internal nodes the detect-
DeletedInternalNodes function shall also execute two SQL
queries derived from the SQL queries depicted in Figures 7(b)
and (c). The “INS INT” in line 1 (Figures 7(b) and (c)) is
replaced by “DEL INT”. The SQL query depicted in Fig-
ure 7(b) is modified as follows. The “I2” (line 3), “IS NULL”
(line 9), and “IS NOT NULL” (line 10) are replaced by “I1”,
“IS NOT NULL”, and “IS NULL” respectively. We modify the
SQL query depicted in Figure 7(c) as follows. The “INS INT”
(line 5) and “doc id2” (line 11) are replaced by “DEL INT”
and “doc id1” respectively. For example, given the Item ta-
ble (Figure 2(b)) and the Matching table (Figure 5(d)), the
second row of the DEL INT table depicted in Figure 5(f) is
the result of the detectDeletedInternalNodes function.

3.2 Insertion and Deletion of Leaf Nodes
Intuitively, the inserted leaf node is a leaf node that is only

available in the new version of XML documents. We observe
that the new leaf nodes should be either in the best matching
subtrees or in the inserted subtrees. Similarly, the deleted leaf
node is a leaf node that is only available in the old version of
XML documents and should also be either in the best match-
ing subtrees or in the deleted subtrees. If an inserted/deleted
leaf node is in a best matching subtree, then the parent node
of this leaf node must be a best matching internal node. If
an inserted leaf node is in a newly inserted subtree, then the
parent node of this leaf node must be an inserted internal
node. If a deleted leaf node is in a deleted subtree, then
the parent node of this leaf node must be a deleted inter-
nal node. The inserted/deleted non-inlined and inlined leaf
nodes are detected by using the changesDetector algorithm
(Figure 6(c)) in lines 17-24 and lines 25-32 respectively.

Inlined Leaf Nodes . For each inlined leaf node a in DTD
U , the changesDetector algorithm defines four parameters
(lines 18-20). Next, the algorithm invokes the detectInsert-
edLeafNodes (line 21) and detectDeletedLeafNodes functions
(line 22) for detecting inserted and deleted inlined internal
nodes respectively. Note that line 23 is used to detect up-
dated leaf nodes that will be discussed in the later section.

The detectInsertedLeafNodes function executes two SQL
queries as depicted in Figures 7(d) and (e). Figure 7(d) is
used to detect inserted inlined leaf nodes that are in the
best matching subtrees. Lines 10-11 are used to ensure that
inserted leaf nodes are only available in the new version.
Lines 12-17 are used to guarantee that the parent nodes of
inserted leaf nodes are best matching internal nodes. To
detect inserted inlined leaf nodes that are in the newly in-
serted subtree we use SQL query depicted in Figure 7(e).
Lines 12-13 are used to indicate that inserted leaf nodes
must be only available in the new version. Lines 10-11 are
used to make sure that the parent nodes are inserted in-
ternal nodes. Given the Item table (Figure 2(b)) and the
Matching table (Figure 5(d)), the tuples marked by “#” in
the INS LEAF table depicted in Figure 5(g) are the result of
the detectInsertedLeafNodes function.

The detectDeletedLeafNodes function executes two modi-
fied SQL queries of the SQL queries depicted in Figures 7(d)
and (e). The “INS LEAF” in line 1 (Figures 7(d) and (e))
is replaced by the “DEL LEAF”. The SQL query in Fig-
ure 7(d) is modified as follows. The “I2” in lines 3 and
5 is replaced by “I1”. The “IS NULL” (line 10) and “IS
NOT NULL” (line 11) are replaced by “IS NOT NULL” and
“IS NULL” respectively. The SQL query in Figure 7(e) is
modified as follows. The “INS INT” (line 7) and “doc id2”
(line 12) are replaced by “DEL INT” and “doc id1” respec-
tively. Given the Item table (Figure 2(b)) and the Matching

table (Figure 5(d)), the tuples marked by “#” in the DEL LEAF

table in Figure 5(h) are the result of the detectDeletedLeafN-
odes function.

Non-inlined Leaf Nodes . For each non-inlined leaf node
c in DTD U , the changesDetector algorithm defines three
parameters (lines 26-27). Next, the changesDetector algo-
rithm invokes the detectInsertedLeafNodes (line 29) and de-
tectDeletedLeafNodes functions (line 29) for detecting the in-
serted and deleted non-inlined leaf nodes respectively. Note
that line 30 (Figure 6(c)) is used to detect the updated leaf
nodes that will be discussed in the later section.

The detectInsertedLeafNodes function shall execute the
SQL queries as depicted in Figures 7(f) and (g). Figure 7(f)
is used to detect inserted non-inlined leaf nodes that are
in the best matching subtrees. Lines 5-8 and lines 10-13
are used to find the non-inlined leaf nodes that are in the
new and old versions respectively. Operator “EXCEPT ALL”
in line 9 is used to find non-inlined leaf nodes that are only
available in the new version. Figure 7(g) is used to detect
inserted non-inlined leaf nodes that are in the deleted sub-
trees. Lines 12-13 are used to guarantee that the parent
nodes of the leaf nodes are inserted internal nodes. Given
the Info table (Figure 2(b)) and the Matching table (Fig-
ure 5(d)), the tuples in the INS LEAF table depicted in Fig-
ure 5(g) that are not marked with “#” are the result of the
detectInsertedLeafNodes function.

The detectDeletedLeafNodes function executes the SQL
queries as depicted in Figures 7(f) and (g) after slightly
modifications. The “INS LEAF” in line 1 (Figures 7(f) and
(g)) is replaced by the “DEL LEAF”. The “doc id2” in lines 7
and 14 (Figure 7(f)) and line 9 (Figure 7(g)) is replaced by
“doc id1”. We replace the “doc id1” in line 12 (Figure 7(f))
with “doc id2”. The “PID2” in lines 7 and 14 (Figure 7(f)) is
replaced by “PID1”. We replace the “PID1” in line 12 (Fig-
ure 7(f)) with “PID2”. Given the Info table (Figure 2(b))
and the Matching table (Figure 5(d)), the tuples in the
DEL LEAF table depicted in Figure 5(h) that are not marked
with “#” are the result of the detectDeletedLeafNodes func-
tion. The detectInsertedLeafNodes and detectDeletedLeafN-
odes functions return the updated non-inlined leaf nodes as
the updated non-inlined leaf nodes can be decomposed into
pairs of deleted and inserted leaf nodes. The highlighted
tuples in Figures 5(g) and (h) are the updated non-inlined
leaf nodes detected as inserted and deleted leaf nodes re-
spectively.

3.3 Content Updates of Leaf Nodes
Intuitively, the updated leaf nodes are the leaf nodes that

are available in both versions and have the same node names,
but have different values. In addition to this, the parent
nodes of the updated leaf nodes must be the best matching
internal nodes. In the changesDetector algorithm, the up-
dated leaf nodes are detected after the inserted and deleted
leaf nodes are detected.

Inlined Leaf Nodes . The detectUpdatedLeafNodes func-
tion executes the SQL query as depicted in Figure 8(a).
Lines 10-12 are used to ensure that the updated leaf nodes
are available in both versions (lines 10-11) and they have
different values (line 12). For example, given the Item table
(Figure 2(b)) and the Matching table (Figure 5(d)), the de-
tectUpdatedLeafNodes function shall result the first tuple of
the UPD LEAF table as depicted in Figure 5(i).

Non-inlined Leaf Nodes . The detectUpdatedLeafNodes
function shall execute the SQL query depicted in Figure 8(b).
We notice that we join three tables, namely, the DEL LEAF,



1  INSERT INTO UPD_LEAF
2  SELECT DISTINCT
3    doc_id1 AS DI D1,  doc_id2 AS DI D2,  
4    I 1. I D AS PI D1,  I 2. I D AS PI D2,  
5    NULL AS I D1,  NULL AS I D2,  ' [ nodeName] '  AS NAME,  
6    I 1. [ at t r Name]  AS VALUE1,  I 2. [ at t r Name]  AS VALUE1
7  FROM [ par ent TbName]  AS I 1,  [ par ent TbName]  AS I 2
8  WHERE
9    I 1. DOC_I D = doc_id1 AND I 2. DOC_I D = doc_id2 AND 
10   I 1. [ at t r Name]  IS NOT NULL AND
11   I 2. [ at t r Name]  IS NOT NULL AND
12   I 1. [ at t r Name]  ! = I 2. [ at t r Name]  AND
13   EXISTS
14     ( SELECT I D1,  I D2 FROM MATCHI NG AS B
15      WHERE DI D1 = doc_id1 AND DI D2 = doc_id2 AND
16         B. NAME = ' [ par ent NodeName] '  AND
17         B. I D1 = I 1. I D AND B. I D2 = I 2. I D )       

1  INSERT INTO UPD_LEAF
2  SELECT DISTINCT
3    doc_id1 AS DI D1,  doc_id2 AS DI D2,  
4    D. PI D AS PI D1,  I . PI D AS PI D2,  
5    D. I D AS I D1,  I . I D AS I D2,  
6    ' [ nodeName] '  AS NAME,
7    D. VALUE AS VALUE1,  I . VALUE AS VALUE2
8  FROM DEL_LEAF AS D,  I NS_LEAF AS I ,  MATCHI NG AS M
9  WHERE
10   M. DI D1 = doc_id1 AND M. DI D2 = doc_id2 AND
11   D. DI D1 = doc_id1 AND D. DI D2 = doc_id2 AND
12   I . DI D1 = doc_id1 AND I . DI D2 = doc_id2 AND
13   M. PI D1 = D. PI D AND M. PI D2 = I . PI D AND
14   D. NAME = I . NAME AND D. VALUE ! = I . VALUE AND
15   I . NAME = ' [ nodeName] '  AND 
16   M. NAME = ' [ par ent NodeName] '

(a) Update of Leaf Nodes (1) (b) Update of Leaf Nodes (2)

Dataset
Code

Sigmod-01

Nodes

331

Filesize 
(KB)

13

Sigmod-02 554 21

Sigmod-03 890 34

Sigmod-04 1,826 70

Sigmod-05 2,718 104

Sigmod-06 4,717 180

Sigmod-07 8,794 337

Sigmod-08 18,866 721

Sigmod-09 37,725 1,444

Sigmod-10 89,323 3,431

(c) Sigmod Dataset

Dataset
Code

Univ-01

Nodes

485

Filesize 
(KB)

36

Univ-02 930 68

Univ-03 2,298 167

Univ-04 4,577 334

Univ-05 6,785 493

Univ-06 9,057 664

Univ-07 18,154 1,319

Univ-08 45,264 3,294

(d) University Dataset

<! ELEMENT uni v ( school ) *  >
<! ELEMENT school  
     ( sname, depar t ment s)  >
<! ELEMENT depar t ment s ( depar t ment ) *  >
<! ELEMENT depar t ment  ( dname, cour ses)  >
<! ELEMENT cour ses ( cour se) *  >
<! ELEMENT cour se( #PCDATA)  >
<! ELEMENT sname ( #PCDATA)  >
<! ELEMENT dname ( #PCDATA)  >

(e) University DTD

Figure 8: SQL Queries for Detecting Updated Leaf Nodes and Data sets.

INS LEAF, and Matching tables. This is because the up-
dated non-inlined leaf nodes are already decomposed into
pairs of deleted and inserted non-inlined leaf nodes stored
in DEL LEAF and INS LEAF respectively. Line 13 is used to
guarantee that the parent nodes of the deleted and inserted
leaf nodes are the best matching internal nodes. The up-
dated leaf nodes must have the same node name, but differ-
ent values (line 14).

We observed that the detectUpdatedLeafNodes function for
detecting updated non-inlined leaf nodes may return incor-
rect results in some conditions as follows. First, there are
more than one updated non-inlined leaf nodes under the
same parent nodes. Second, there are deletion/insertion and
update of non-inlined leaf nodes occurred under the same
parent nodes. In our example, we have node with value
“Extra 1 year warranty” deleted and node with value “Se-
ries 170S6FG” updated. These nodes are under the same
parent node. The SQL query depicted in Figure 8(b) re-
turns the last two rows of the UPD LEAF table as depicted in
Figure 5(i). Therefore, we use the refineUpdatedLeafNodes
function to correct the result of the detectUpdatedLeafNodes
function. The refineUpdatedLeafNodes algorithm is similar
to the one in [6].

For example, given the DEL LEAF table (Figure 5(h)), the
INS LEAF table (Figure 5(g)), and the Matching table (Fig-
ure 5(d)), the detectUpdatedLeafNodes function shall result
the UPD LEAF table as depicted in Figure 5(i) (the last two
tuples). After the changesDetector algorithm invokes re-
fineUpdatedLeafNodes function, the highlighted row of the
UPD LEAF table as depicted in Figure 5(i) is deleted.

4. EXPERIMENTAL RESULTS
We have implemented Helios entirely in Java. The Java

implementation and the database engine were run on a Mi-
crosoft Windows 2000 Professional machine having Pentium
4 1.7 GHz processor with 512 MB of memory. The database
system was IBM DB2 UDB 8.1. Appropriate indexes on the
relations are created. We used a set of synthetic XML docu-
ments based on SIGMOD DTD1 and University DTD (Fig-
ure 8(e)). The characteristics of the datasets are depicted
in Figure 8(c) and (d). We generated the second version
of each XML document by using our own change generator.
We distributed the percentage changes equally for each type
of changes. We compare Helios with Xandy [6] and X-Diff
[10]2. Note that we focus on the number of nodes in the
datasets as the higher the number of nodes the database en-
gine will join more number of tuples. Figure 9(a) depicts the
comparison of the execution time of Helios, Xandy, and X-
Diff for different file size while we fix the number of nodes to
890 nodes and the percentage of changes to 3%. The perfor-
mances of Helios, Xandy, and X-Diff are slightly affected
by the increments of the file size. We shall see in the later

1
http://www.sigmod.org/record/

2
Downloaded from http://www.cs.wisc.edu/∼yuanwang/xdiff.html

discussion that the increments of the number of nodes have
more influences on the performances of these approaches.

Execution Time vs Number of Nodes . In this set of
experiments, we study the performance of all approaches
for different number of nodes. The percentage of changes is
set to “3%” and “9%”. The threshold θ is set to “0.0” which
shall give us the upper bound of the execution time.

Sigmod Data Sets. Figure 9(c) depicts the comparison
of the execution time of Xandy and Helios for the first
phase (3% changes). Helios is 3 times faster than Xandy
in average. Figure 9(d) depicts the comparison of the exe-
cution time of different approaches for the change detection
phase (3% changes). Helios performs better than Xandy
except for the smallest data set. Helios is 60 times faster
than Xandy in average. We notice that the difference of
execution time between Helios and Xandy increases as the
number of nodes increases. Figure 9(e) and (f) depict the
overall performance of each approach when the percentage
of change is set to 3% and 9% respectively. X-Diff performs
better than Xandy for the first three data sets, and He-
lios for the first two data sets. Helios is 3.3 times faster
than Xandy in average. Helios is faster than Xandy for
the following reasons. As Helios uses the Shared-Inlining
schema for storing the XML documents, the leaf and in-
ternal nodes are shredded into several tables. Xandy uses
SUCXENT schema in which the leaf and internal nodes are
stored in the LeafValue and AncestorInfo tables respec-
tively. Therefore, there are more tuples to be joined by the
SQL queries issued by Xandy. Note that X-Diff is unable to
detect the changes on the XML documents that have num-
ber of nodes over 5000 nodes due to lack of main memory.

In the next set of experiments, we examine the sub phases
in first and second phases. We use the first five data sets.
The percentage of changes is set to “3%” and the threshold θ
is set to “0.0”. Figure 9(g) shows the sub phases of the first
phase in Helios. We observe that the execution time of the
first phase is mostly taken by the execution time of finding
the matching article nodes (around 54.23%). Figure 9(h)
shows the sub phases of the second phase in Helios. The
total execution time of this second phase is mostly taken
by the execution time of detecting updates (around 30.2%),
of detecting deletion of leaf node (around 28.5%), and of
detecting insertion of leaf node (around 27.6%).

University Data Sets. Figure 9(i) depicts the overall per-
formance of Helios and Xandy. We set the percentage of
the changes to “3%”. We observe that Helios is up to 6.2
times faster that Xandy.

Next, we vary the number of inlined leaf nodes. We in-
crease the number of inlined leaf nodes up to eight additional
inlined leaf nodes while we fix the numbers of nodes in the
first versions of XML documents to 1175 nodes. Figure 9(j)
depicts the performance of Helios and Xandy for different
number of inlined leaf nodes. We observed that the perfor-
mances of Helios and Xandy are influenced by number of
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Figure 9: Experimental Results.

inlined leaf nodes. This is because we have less number of
subtrees to be matched as we increase the number of inlined
leaf nodes and fix the total number of nodes.

In the next experiments, we vary the number of non-
inlined leaf nodes. We increase the number of non-inlined
leaf nodes up to three additional inlined leaf nodes while the
numbers of nodes in the first versions of XML documents are
fixed to 2345 nodes. Figure 9(k) depicts the performance of
Helios and Xandy for different number of non-inlined leaf
nodes. We observed that both approaches are influenced by
number of non-inlined leaf nodes. In Helios, we shall have
more relations for storing the non-inlined leaf nodes. The
size of each relation will be smaller. That is, we have less
number of tuples to join for each SQL query.

In the next set of experiments, we examine the effects of
the percentages of changes to the performance of each ap-
proach. We use dataset “SIGMOD-03”. Figure 9(l) shows
the performance of each approach when we vary the percent-
ages of changes. We notice that the percentage of changes
slightly affects the performances of Helios and Xandy.
The performance of X-Diff is affected by the percentage of
changes.

Result Quality . In this set of experiments, we examine the
result quality of Helios and Xandy by using the “UNIV-01”
dataset. We vary the percentage of change from 3% up to
30%. We calculate the ratio R = x/y, where x is the num-
ber of changed nodes in result delta of Helios and Xandy,
and y is the number of changed nodes in the result delta of
X-Diff. The ratios are plotted in Figure 9(b). We observed
that Xandy is able to detect the optimal or near optimal
deltas. We observed that Xandy detects the same deltas
as X-Diff until the percentage of the changes reaches 18%.
Helios detects the same deltas as X-Diff until the percent-
age of the changes reaches 15% The quality ratios of X-Diff
and Xandy, and of X-Diff and Helios are smaller than 1
when the percentage of the changes is larger than 20%. This
happens because X-Diff detects a deletion and insertion of
subtrees as a set of update operations.

5. CONCLUSIONS
In this paper, we present a novel relational approach for

detecting the changes on unordered XML documents using

a schema-conscious approach (called Helios). This paper
is motivated by the fact that a growing body of work sug-
gests that schema-conscious approaches perform better than
schema-oblivious approaches as far as XML query process-
ing is concerned. The characteristics of schema-conscious
approach raise certain challenges. For instance, the under-
lying relational schema is DTD-dependent. To address the
challenges, we present a general framework that is able to
detect all changes accurately independent of the changes to
the underlying relational schema due to different structure
of XML documents. We compare Helios to Xandy and
X-Diff. The experimental results show that Helios is up
to 6.7 times faster than Xandy, and up to 52 times faster
than X-Diff. The result quality of Helios is comparable
to Xandy. As parts of our future work, we would like to
extend our framework so that it can handle recursive DTDs.
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