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ABSTRACT
Recent study showed that native twig join algorithms and tree-
aware relational framework significantly outperform tree-unaware
approaches in evaluating structural relationships in XML twig queries.
In this paper, we present an efficient strategy to evaluate high-
selective twig queries containing only parent-child relationships in
a tree-unaware relational environment. Our scheme is built on top
of our SUCXENT++ system. We show that by exploiting the en-
coding scheme of SUCXENT++, we can devise efficient strategy
for evaluating such twig queries. Extensive performance studies on
various data sets and queries show that our approach performs bet-
ter than a representative tree-unaware approach (GLOBAL-ORDER)
and a state-of-the-art native twig join algorithm (TJFAST) on all
benchmark queries with the highest observed gain factors being
243 and 95, respectively. Additionally, our approach reduces sig-
nificantly the performance gap between tree-aware and tree-unaware
approaches and even outperforms a tree-aware approach
(MONETDB/XQUERY) for certain high-selective twig queries. We
also report our insights to the plan choices a relational optimizer
made during twig query evaluation by visually characterizing its
behavior over the relational selectivity space.

Categories and Subject Descriptors: H.2.4 [Database Manage-
ment]: Systems – Relational databases.

General Terms: Algorithms, Design, Experimentation.

Keywords: XML, tree-unaware RDBMS, twig query evaluation,
parent child edges.

1. INTRODUCTION
Finding all occurrences of a twig pattern in a database is a core

operation in XML query processing. The basic strategy is to (i)
first develop a labeling scheme to capture the structural informa-
tion of XML documents, and then (ii) perform twig pattern match-
ing based on the labels alone without traversing the original XML
documents [11]. For the first sub-problem of designing appropriate
labeling scheme, various methods have been proposed that are pri-
marily based on tree-traversal order [1, 7, 8], region encoding [3]
or path expressions [11, 15]. By applying these labeling schemes,
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one can determine the structural relationship between two elements
in XML documents from their labels alone. The goal of second sub-
problem of matching twig patterns is to devise efficient techniques
for structural relationship matching.

In literature, evaluation strategies of twig pattern matching can
be broadly classified into the following three types: (a) binary-
structure matching, (b) holistic twig pattern matching, and (c) string
matching. In the binary-structure matching approach, the twig
pattern is first decomposed into a set of binary (parent-child and
ancestor-descendant) relationships between pairs of nodes. Then,
the twig pattern can be matched by matching each of the binary
structural relationships against the XML database, and “stitching"
together these basic matches [1, 6, 8, 10, 14]. In the holistic twig
pattern matching approach, the twig query is decomposed into its
corresponding path components and each decomposed path com-
ponent is matched against the XML database. Next, the results of
each of the query’s path expressions are joined to form the result
to the original twig query [3, 11]. Lastly, approaches like ViST
[16] are based on string matching method and transform both XML
data and queries into sequences and answer XML queries through
subsequence matching.

It has been observed that typical twig queries on XML databases
retrieve only a small portion of the data, generating, however, a
large number of intermediate results [9]. Hence, one of the key
challenge in twig query evaluation is to develop techniques that
can reduce generation of large intermediate results. For instance,
the binary-structure matching approaches may introduce very large
intermediate results. Consider the sample document fragment from
UNIPROTKB/ SWISS-PROT and the twig query in Figures 1(a)
and 1(b), respectively. The path match (e2, g2, n1) for path
entry/geneLocation/name does not lead to any final result
since there is no comment/location path under e2. Note that
this problem is exacerbated for queries that are high-selective1 but
each path in the query is low-selective. For example, the query in
Figure 1(b) is high-selective as it returns only 8 results. However,
all the paths are low-selective. Note that the number associated
with each rooted path in the query represents the number of occur-
rences of the path in the XML database. To solve this problem, the
holistic twig pattern matching has been developed in order to mini-
mize the intermediate results. Although several of these approaches
(such as TwigStack [3]) achieve optimality for twig queries with
ancestor-descendant (AD) relationships, these solutions may still
generate large numbers of useless matches when the queries con-
tain parent-child (PC) relationships [10]. In this paper, we propose
a novel approach for evaluating high-selective twig queries contain-
ing parent-child relationship.

1Throughout the paper, we use “high-selective" to characterize a twig query with few
results and “low-selective" to characterize a query with many results.
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Figure 1: Example of XML data and twig query.

1.1 Motivation
Recently, several native implementation of holistic twig join al-

gorithms have focused on efficient evaluation of twig queries con-
taining PC relationships [4, 10, 11]. Simultaneously, finding ways
to evaluate such twig queries in relational environment has gained
significant momentum in recent years. Specifically, there has been
a host of work [2, 3, 5, 7, 8] on enabling relational databases to
be tree-aware by invading the database kernel to implement XML
support. On the other side of the spectrum, some completely jet-
tison the approach of internal modification of the RDBMS for twig
query processing and resort to alternative tree-unaware approach
[6, 13, 14, 15] where the database kernel is not modified in order to
process XML queries.

While the state-of-the-art tree-aware and native approaches are
certainly innovative and powerful, we have found that these strate-
gies are not directly applicable to relational databases. The RDBMS
systems need to enhance their array of query processing strate-
gies by incorporating special purpose external index systems, al-
gorithms and storage schemes to perform efficient XML query pro-
cessing. However, such invasion of the system’s kernel seems hardly
an option for any DBMS vendor. On the other hand, there are con-
siderable benefits in tree-unaware approaches with respect to porta-
bility as they do not invade the database kernel. Consequently,
they can easily be incorporated in an off-the-shelf RDBMS. How-
ever, one of the key stumbling block for the acceptance of tree-
unaware approaches has been query performance. To get a bet-
ter understanding of this problem, we experimented with 100MB
and 1GB XBench DCSD datasets [18]. We use four high-selective
twig queries containing only PC relationships as shown in Figure 2
where K denotes the number of subtrees returned by a query. We
compare the query evaluation times (denoted as Ti where i de-
notes an approach) of GLOBAL-ORDER [15] (denoted as GO), a
tree-unaware approach, with a twig join algorithm (TJFAST [11]
(denoted as TJ)) and a tree-aware approach (MONETDB/XQUERY
[2] (denoted as MX)). One can observe that native and tree-aware
approaches significantly outperform GO for all queries. Is it possi-
ble to design a tree-unaware storage scheme that can significantly
reduce this performance gap between these approaches or outper-
form them? In this paper, we show that it is indeed possible to
devise such tree-unaware strategy for high-selective twig queries
containing only parent child edges.

1.2 Overview
Our approach for twig query evaluation is based on the SUCX-

ENT++ system [13], a tree-unaware approach designed primarily
for query-mostly workloads. It stores only leaf elements, their cor-
responding data values, auxiliary encodings and root-to-leaf paths.
The key features of SUCXENT++ are as follows. Firstly, it uses a
novel labeling scheme that does not require labeling of internal ele-

Query
K=20 K=100

/catalog/item/publisher/contact_information 
[FAX_number and web_site]

/catalog/item/publisher/contact_information 
[FAX_number and web_site and phone_number]

/catalog/item[related_items and pricing/
quantity_in_stock]

/catalog/item[related_items and attributes/
size_of_book]

       6.23        7.49 

       3.22        2.37 

       8.29      12.51 

       8.72      11.25 

TGO/TTJ  (1GB) TGO/TMX (100MB)

K=20 K=100

     23.26      26.16 

     27.79      32.34 

     34.74      28.01 

     33.53      27.37 

Figure 2: Performance of GO against TJFAST & MONETDB.

ments in the XML tree. These labels are designed to process ordered
XPATH queries efficiently [13]. In this paper, we shall show that
these labels can also be used to efficiently evaluate high-selective
twig queries containing PC edges only. Specifically, we use the
DeweyOrderSum and RValue attributes to evaluate twig queries ef-
ficiently. Secondly, by storing only root-to-leaf paths it has lower
storage size and, consequently, lower I/O-cost for query process-
ing. Thirdly, it uses a novel query hints-based strategy to efficiently
evaluate XPATH queries by enforcing “left-to-right" join order.

Our study revealed that our approach significantly outperforms
TJFAST [11] and GLOBAL-ORDER [15] for 1GB dataset. Specifi-
cally, for 76% of the benchmark queries, SUCXENT++ is 14 - 243
times faster than GLOBAL-ORDER. It is also 3-95 times faster than
TJFAST for 74% of benchmark queries. Furthermore, it signif-
icantly reduces the performance gap with MONETDB/XQUERY.
While both TJFAST and GLOBAL-ORDER are slower than MON-
ETDB for all benchmark queries, interestingly, for several high-
selective twig queries SUCXENT++ has comparable performance
or even faster than MONETDB. In summary, the main contribu-
tions of this paper are as follows.

• Based on a novel labeling scheme, in Section 3, we present
an efficient algorithm for twig query evaluation by efficiently
determining nearest common ancestor (NCA) of two elements
in an XML document. Importantly, our proposed algorithm is
capable of working with any off-the-shelf RDBMS without
any internal modification.

• Through an extensive experimental study in Section 4, we
show that our approach significantly outperforms state-of-
the-art tree-unaware schemes and native twig join algorithms
for evaluating high-selective twig queries containing only PC
relationships. Additionally, our approach reduces signifi-
cantly the performance gap with a tree-aware (MONETDB
[2]) approach and even outperform it for certain queries.

• In Section 5, we provide insights to the plan choices a rela-
tional optimizer makes during twig query evaluation by visu-
ally characterizing its behavior over the relational selectivity
space. To the best of our knowledge, this is the first effort
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Figure 3: SUCXENT++ schema and an example of twig query evaluation.

that attempts to systematically study the behavior of the op-
timizer in the context of XPATH processing.

Next, we briefly review the storage scheme of SUCXENT++.

2. SCHEMA OF SUCXENT++
The schema of Sucxent++ [13] is shown in Figure 3(a). The

Document table stores the document identifier DocId and the name
Name of a given input XML document T . We associate each dis-
tinct (root-to-leaf) path appearing in T , namely PathExp, with an
identifier PathId and store this information in the Path table. For
each leaf element n in T , we shall create a tuple in the PathValue

table.
SUCXENT++ uses a novel labeling scheme that does not require

explicit labeling of internal elements in the XML tree. For each
leaf element it stores four additional attributes namely LeafOrder,
BranchOrder, DeweyOrderSum and SiblingSum. Also, it encodes
each level of the XML tree with an attribute called RValue. We
now elaborate on the semantics of these attributes. Given two leaf
elements n1 and n2, n1.LeafOrder < n2.LeafOrder iff n1 precedes
n2. LeafOrder of the first leaf element in T is 1 and n2.LeafOrder

= n1.LeafOrder+1 iff n1 is a leaf element immediately preceding
n2. Given two leaf elements n1 and n2 where n1.LeafOrder+1 =
n2.LeafOrder, n2.BranchOrder is the level of the nearest common
ancestor (NCA) of n1 and n2. The data value of n is stored in
n.LeafValue.

To discuss DeweyOrderSum, SiblingSum and RValue, we intro-
duce some auxiliary definitions. Consider a sequence of leaf el-
ements C: 〈n1, n2, n3, . . . , nr〉 in T . Then, C is a k-consecutive
leaf elements of T iff (a) ni.BranchOrder≥ k for all i ∈ [1,r]; (b) If
n1.LeafOrder > 1, then n0.BranchOrder < k where n0.LeafOrder+1
= n1.LeafOrder; and (c) If nr is not the last leaf element in T , then
nr+1.BranchOrder < k where nr .LeafOrder+1 = nr+1.LeafOrder.
A sequence C is called a maximal k-consecutive leaf elements of
T , denoted as Mk, if there does not exist a k-consecutive leaf ele-
ments C′ and |C|<|C′|.

Let Lmax be the largest level of T . The RValue of level `, de-
noted as R`, is defined as follows: (i) If ` = Lmax−1 then R` = 1;
(ii) If 0 < ` < Lmax − 1 then R` = 2R`+1 × |M`+1| + 1. For
example, consider the XML tree shown in Figure 1(a). Lmax = 5.
The values of |M1|, |M2|, |M3|, and |M4| are 9, 4, 1, and 1, re-
spectively. Then, R4 = 1, R3 = 3, R2 = 2× 3× |M3|+ 1 = 7,
and R1 = 2× 7× |M2|+ 1 = 57. In order to facilitate evaluation
of XPATH queries, the RValue attribute in DocumentRValue stores
R`−1

2
+ 1 instead of R`.

DeweyOrderSum is used to encode an element’s order informa-
tion together with its ancestors’ order information using a single
value. Consider a leaf element n at level ` in T . Ord(n, k) = i iff a
is either an ancestor of n or n itself; k is the level of a; and a is the
i-th child of its parent. DeweyOrderSum of n, n.DeweyOrderSum, is

defined as
∑`

j=2 Φ(j) where Φ(j)=[Ord(n, j)-1]×Rj−1. For ex-
ample, consider the rightmost name element in Figure 1(a) which
has a Dewey path “1.4.3.1". DeweyOrderSum of this element is:
n.DeweyOrderSum = (Ord(n, 2)−1)×R1 +(Ord(n, 3)−1)×
R2+(Ord(n, 4)−1)×R3 = 3×57+2×7+0×3 = 185. Note that
DeweyOrderSum is not sufficient to compute position-based predi-
cates with name tests, e.g., entry[2]. Hence, the SiblingSum at-
tribute is introduced to the PathValue table. We do not elaborate
further on SiblingSum as it is beyond the scope of the paper.

To evaluate non-leaf elements, we define the representative leaf
element of a non-leaf element n to be its first descendant leaf el-
ement. Note that the BranchOrder attribute records the level of
the NCA of two consecutive leaf elements. Let C be the sequence
of descendant leaf elements of n and n1 be the first element in
C. We know that the NCA of any two consecutive elements in
C is also a descendant of element n. This implies (a) except n1,
BranchOrder of an element in C is at least the level of element n
and (b) the NCA of n1 and its immediately preceding leaf element
is not a descendant of element n. Therefore, BranchOrder of n1 is
always smaller than the level of n. The reader may refer to [13]
for details on how these attributes are used to efficiently evaluate
ordered XPATH axes (following, preceding, following-sibling, and
preceding-sibling) and position predicates. Observe that the above
implementation of SUCXENT++ is purely relational in the sense
that we do not require to invade the relational database kernel to
implement XPATH support.

3. EVALUATION OF TWIG QUERIES
In this section, we present the evaluation strategy of twig queries

containing parent-child edges in SUCXENT++.

3.1 Data Model
We model XML documents as ordered trees. In our model we ig-

nore comments, processing instructions and namespaces. Queries
in XML query languages make use of twig patterns to match rele-
vant portions of data in an XML database. The twig pattern node
may be an element tag, a text value or a wildcard “*". We distin-
guish between query and data nodes by using the term “node" to
refer to a query node and the term “element" to refer to a data el-
ement in a document. In this paper, we focus only on twig pattern
edges that represent parent-child relationships (denoted by “/").

A twig query can be considered as a collection of rooted path
patterns, where a rooted path pattern (RP) is a root-to-leaf path in
the query. Each rooted path represents a sequence of nodes hav-
ing parent-child edges. If the number of children of a node in
the twig query is more than one, then we call this node a NCA
(nearest common ancestor) node. Otherwise, when the node has
only one child, it is a non-NCA node. The level of the NCA node
is called NCA-level. For example, Figure 1(b) is an example of a
twig query containing parent-child edges and has two rooted paths:



uniprot/entry/comment/location and uniprot/
entry/geneLocation/name. Further, the node entry is a
NCA node with NCA-level two.

Given a twig query Q and an XML document D, a match of Q in
D is identified by a mapping from the nodes in Q to the elements
in D, such that: (a) the query node predicates are satisfied by the
corresponding database elements, wherein wildcard “*" can match
any single tag; and (b) the parent-child relationship between query
nodes are satisfied by the corresponding database elements. Next,
we present our approach to match Q in D.

3.2 Twig Pattern Matching
Given a twig query Q and document D, our goal is to use the en-

coding scheme of SUCXENT++ to efficiently determine those root-
to-leaf paths that satisfy Q. Note that these paths must satisfy the
NCA node constraints of the twig query. For example, consider
the twig query in Figure 1(b) over the document in Figure 1(a).
The root-to-leaf paths in the document must satisfy the follow-
ing conditions. First, they must be instances of the rooted paths
uniprot/entry/geneLocation/name and uniprot/
entry/comment/location. Second, the NCA element of an
instance of a pair of these rooted paths must be an instance of the
entry node having NCA-level equal to 2. Consequently, the root-
to-leaf paths represented by the DeweyOrderSums D4 and D5 in
Figure 1 do not satisfy the query but the paths represented by D8,
D9, and D10 do. Hence, given a set of root-to-leaf paths satis-
fying the rooted paths of a twig query, the key challenge here is to
determine efficiently whether these paths satisfy the NCA node con-
straints in the query. In this section, we shall discuss how this issue
is addressed in SUCXENT++. We begin by formally introducing
the following lemma that we will be using subsequently.

LEMMA 1.
∑`

j=k Φ(j) ≤ Rk−2−1

2
where Φ(j) =[Ord(n, j)-

1]×Rj−1, k ∈ (2,`] and n is a leaf element in an XML document
at level `. 2

PROOF. Let Mj be the maximum consecutive j-consecutive leaf
element set. Then, the maximum number of consecutive leaf ele-
ments with BranchOrder ≥ j is |Mj |. Given any element at level j,
all but one of the descendants of this element has BranchOrder≥ j.
Hence, any element at level j has at most |Mj |+1 descendant leaf
elements.

In SUCXENT++, the first sibling has local order equal to 1. Given
Ord(n,t) of n at each level t ∈ [k, `], any ancestors of n at level
t− 1 has at least [Ord(n,t)-1] that are not n nor n’s ancestor. Each
of these elements either is a leaf element, or has at least one de-
scendant leaf element. Hence, an ancestor of n at level t − 1 has,
excluding n, at least [Ord(n,t)-1] descendant leaf elements, all of
which are descendants of the n’s ancestor at level k−1 and are not
descendants of any n’s ancestor at level greater than t − 1. There-
fore, there is an element at level k−1 with at least (

∑`
t=k[Ord(n,t)-

1]) + 1 descendant leaf elements (including n). This implies that∑`
t=k[Ord(n,t)-1] ≤ |Mk−1|. Therefore,

∑̀

j=k

Φ(j) =
∑̀

j=k

[Ord(n, j)− 1]×Rj−1

≤
∑̀

j=k

[Ord(n, j)− 1]×Rk−1

≤ |Mk−1| ×Rk−1 ≤ Rk−2 − 1

2

LEMMA 2. Let n1 and n2 be two leaf elements in an XML doc-
ument. If |n1.DeweyOrderSum - n2.DeweyOrderSum| < R`−1

2
+ 1

then the level of the nearest common ancestor is greater than `. 2

PROOF. Assume the level of the nearest common ancestor of n1

and n2 is ≤ `, then |n1.DeweyOrderSum - n2.DeweyOrderSum| <
(R` - 1)/2 + 1. Let `1 be the level of n1 in X and `2 be the level of
n2 in X .
When level of nearest common ancestor is `: In this case, Φ1(j)−
Φ2(j) = 0 for all j < `+1 and Φ1(j)−Φ2(j) 6= 0 for j ≥ `+1.
Consider the following cases.

Case n1.LeafOrder > n2.LeafOrder:

∆ = n1.DeweyOrderSum− n2.DeweyOrderSum

=

`1∑

j=`+1

Φ1(j)−
`2∑

j=`+1

Φ2(j)

= [Ord(n1, ` + 1)− 1]×R` − [Ord(n2, ` + 1)− 1]×R` +
`1∑

j=`+2

Φ1(j)−
`2∑

j=`+2

Φ2(j) (1)

Since, Ord(n1,`+1) 6= Ord(n2, ` + 1) and Ord(n1, ` + 1) >
Ord(n2, ` + 1), the above equation satisfies the following:

∆ ≥ R` +

`1∑

j=`+2

Φ1(j)−
`2∑

j=`+2

Φ2(j)

≥ R` − R′` − 1

2
(From Lemma 1)

≥ R` − 1

2
+ 1

Case n1.LeafOrder < n2.LeafOrder:
Since in this case, Ord(n1,`+1) 6= Ord(n2, `+1) and Ord(n1, `+

1) < Ord(n2, ` + 2), Equation 1 satisfies the following:

∆ ≤ −R` +

`1∑

j=`+2

Φ1(j)−
`2∑

j=`+2

Φ2(j)

≤ −R` +
R` − 1

2
(From Lemma 1)

≤ −(
R` − 1

2
+ 1)

Therefore,

|∆| ≥ (
R` − 1

2
+ 1) (contradiction)

When level of nearest common ancestor is less than `: Let level

of nearest common ancestor be k. Then,
Case n1.LeafOrder > n2.LeafOrder:

∆ ≥ Rk − 1

2
+ 1 (Shown to be true above)

> (
R` − 1

2
+ 1) since k < ` (contradiction)

Case n1.LeafOrder < n2.LeafOrder:

|∆| ≥ Rk − 1

2
+ 1

> (
R` − 1

2
+ 1) since k < ` (contradiction)

Hence, elements n1 and n2 cannot have a nearest common an-
cestor at level lesser than or equal to `. The level of nearest common
ancestor must be greater than `.

Similarly, we can prove the following lemma. Due to space con-
straints, the proof is given in [17].



evaluatePC-TwigQuery ( queryTwig )

01 i = 1
02 for every rootedPath in the queryTwig {
03   from_sql.add("PathValue as V i ")
04   where_sql.add("V i .pathid in rootedPath i .getPathId()")
05   where_sql.add("V i .branchOrder < rootedPath i .level()")
06   if (i > 1) {
07     where_sql.add("V i .DeweyOrderSum BETWEEN 
         V i-1 .DeweyOrderSum –
             RValue(rootedPath i .NCAlevel() - 1) + 1 AND
         V i-1 .DeweyOrderSum + 
             RValue(rootedPath i .NCAlevel() - 1) - 1")
08   }
09   i++
10 }
11 select_sql.add("DISTINCT V i-1 .docId, ... , V i-1 .DeweyOrderSum")
12 order_sql.add("ORDER BY V i-1 .docId, V i-1 .DeweyOrderSum")
13 if ((i-1)>1)
14    option_sql.add("OPTION (FORCE ORDER)");
15    return select_sql + from_sql + where_sql + or der_sql + option_sql
16 else
17    return select_sql + from_sql + where_sql + or der_sql

XPath: /uniprot/entry[comment/location and 
  geneLocation/name]

01 SELECT DISTINCT V2.DocId, V2.BranchOrder, V2.Dew eyOrderSum,
        V2.PathId, V2.LeafValue, V2.LeafOrder
02 FROM PathValue V1, PathValue V2
03 WHERE V1.pathid in (2,3,4)
04 AND V1.branchOrder < 4
05 AND V2.docId = V1.docId
06 AND V2.pathid in (5)
07 AND V2.branchOrder < 4
08 AND V2.DeweyOrderSum BETWEEN 

V1.DeweyOrderSum - CAST(29 as BIGINT) + 1 AND
V1.DeweyOrderSum + CAST(29 as BIGINT) – 1 

09 ORDER BY V2.DocId, V2.DeweyOrderSum
10 OPTION (FORCE ORDER)

(a) evaluatePC-TwigQuery algorithm (b) An example of Translated SQL query

Figure 4: evaluatePC-TwigQuery algorithm.

LEMMA 3. Let n1 and n2 be two leaf elements in an XML doc-
ument. If |n1.DeweyOrderSum - n2.DeweyOrderSum| ≥ R`−1

2
+ 1

then the level of the NCA is equal to or smaller than `. 2

Combining Lemma 2 and Lemma 3 above, we can find the exact
level of the NCA.

THEOREM 1. Let n1 and n2 be two leaf elements in an XML

document. If R`+1−1

2
+1 ≤|n1.DeweyOrderSum - n2.DeweyOrderSum|

< R`−1
2

+ 1 then the level of the nearest common ancestor of n1

and n2 is ` + 1. 2

Let us illustrate with an example the above lemmas and theorem.
Consider the last leaf element in Figure 1. The DeweyOrderSum of
this element is 193. Let D1 be the DeweyOrderSum of leaf elements
that have NCA at level 2. Using the above theorem, D1 falls within
the following range: (R2 − 1)/2 + 1 ≤ |D1 − 193| < (R1 −
1)/2+1⇒ 4 ≤ |D1−193| < 29 which returns the sixth, seventh,
and eighth leaf elements (DeweyOrderSums are 171, 178, and 185,
respectively). Let D2 be the DeweyOrderSum of leaf elements that
have NCA at level 4. Then D2 falls within the following range:
(R4 − 1)/2 + 1 ≤ |D2 − 193| < (R3 − 1)/2 + 1⇒ 1 ≤ |D2 −
193| < 2 which returns the ninth leaf element (DeweyOrderSum

is 192). Now let say we want to get the leaf elements that have
NCA at level 2 or deeper and let D3 be the DeweyOrderSum of these
elements. D3 falls within the following range: |D3−193| < (R1−
1)/2 + 1 ⇒ |D3 − 193| < 29 (Lemma 2) which returns the last
five leaf elements.

We now illustrate Theorem 1 further in the context of a twig
query. Consider the query in Figure 1(b) and the fragment of the
PathValue table in Figure 3(b) (Step 1). Note that for clarity, we
only show the DeweyOrderSums of the root-to-leaf paths in the
PathValue table. Let Da be DeweyOrderSum of the representative
leaf elements satisfying /uniprot/entry/comment/location
(second, fifth, and ninth leaf elements) and Db be DeweyOrderSum

of the representative leaf elements satisfying /uniprot/entry/
geneLocation/name (fourth, seventh, and eighth leaf elements).
This is illustrated in step 2 of Figure 3(b). From the query we know
that Da and Db have NCA at level 2 (/uniprot/entry level).
Hence, based on Theorem 1 we can find pairs of (location,name)
elements which have NCA at level 2. Da and Db fall on the follow-
ing range: (R2 − 1)/2 + 1 ≤ |Da − Db| < (R1 − 1)/2 + 1
⇒ 4 ≤ |Da − Db| < 29 which return the (seventh, ninth) and
(eighth, ninth) leaf elements pairs (Step 3 of Figure 3(b)). We can
easily return the entry subtree by applying Lemma 2 on any one
of these pairs (Steps 4 and 5 of Figure 3(b)). Observe that the

leaf element pairs with DeweyOrderSums 7 and 57 do not satisfy
the above condition and hence do not satisfy the query. Note that
since from the XPATH we know that Da and Db cannot have NCA
at level greater than 2, we only need to use Lemma 2 for matching
twig patterns. Observe that the above approach can reduce unnec-
essary comparison as we can determine the NCA directly by using
the DeweyOrderSum and RValue attributes.

3.3 Query Translation Algorithm
Given a query twig (XPATH), the evaluatePC-TwigQuery

procedure (Figure 4(a)2 ) outputs SQL statement. A SQL statement
consists of four clauses: select_sql, from_sql, where_sql, and
order_sql. In addition, we also have an option clause (option_sql)
to enforce a “left-to-right” join order on the translated SQL query
using query hints. The performance benefits in SUCXENT++ be-
cause of such enforcement is discussed in [13]. We assume that
a clause has an add() method which encapsulates some simple
string manipulations and simple SUCXENT++ joins for construct-
ing valid SQL statements. In addition to preprocessing PathId, for
a single XML document, we also preprocess RValue.

The procedure firstly breaks the query twig into its subsequent
rooted path (Line 02). Then for every rooted path, it gets the rep-
resentative leaf elements of the rooted path by using PathId and
BranchOrder (Lines 04-05). After that, for the second rooted path
onwards, it uses Lemma 2 to get the pair of leaf elements that have
NCA at the NCA-level (Line 07). After processing the set of rooted
paths, we return all attributes of the rightmost rooted path except
SiblingSum (Line 11). As the results must be in document order,
we sort it according to the DocId and DeweyOrderSum attributes
(Line 12). Finally, if there are more than one table joined in the
SQL query (Line 13), then the procedure adds the option clause to
the SQL query (Lines 14–15) and returns the final SQL statement.
Otherwise, the procedure directly returns the SQL statement (Line
17). For example, consider the query in Figure 1(b). The output
SQL statement is shown in Figure 4(b). Lines 03-04 and 06-07 are
used to get the representative leaf elements of the respective rooted
path. Line 08 is used to get the pair of leaf elements that have
NCA at the NCA-level. Line 09 sorts the results by the DocId and
DeweyOrderSum attributes. Line 10 enforces the join order option.

4. PERFORMANCE STUDY
We now present the performance results of our proposed ap-

proach and compare it with a state-of-the-art tree-unaware approach
2We assume the attribute and element nodes are stored in PathValue table instead
of separate tables as shown in Figure 3(a).
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XPath

/catalog/item/publisher/contact_information[FAX_number and web_site]

Q2
/catalog/item/authors/author[name/middle_name and contact_information/mailing_address/name_of_state]/
contact_information/email_address

Q3 /catalog/item/publisher/contact_information[FAX_number and web_site and phone_number]
Q4 /catalog/item[related_items and pricing/quantity_in_stock]
Q5 /catalog/item[related_items and attributes/size_of_book]

Q6
/catalog/item/publisher/contact_information[FAX_number and web_site and phone_number and mailing_address/
name_of_state]

Query

Q7 /catalog/item[related_items and attributes/size_of_book]/publisher/contact_information[FAX_number and web_site]

(b) Benchmark Twig Query Set
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Figure 5: Query and data sets.

and a native implementation of twig join algorithm. Since there
are several tree-unaware schemes proposed by the community, our
selection choice was primarily influenced by the following two cri-
teria. First, the representative storage scheme should not be de-
pendent on the availability of DTD/XML schema. Second, the se-
lected approach must have good query performance for a variety of
XPATH axes (ordered as well as unordered) for query-mostly work-
loads. Hence, we chose the GLOBAL-ORDER storage scheme as
described in [15]. We chose TJFAST [11] as a representative of
native implementation of twig join algorithm because it has bet-
ter performance in terms of I/O cost and CPU time compared to
TwigStack [3] and TwigStackList [10]. Note that we did not se-
lect TWIG2STACK [4] as we were unable to get the implementation
from the authors due to legal reasons. However, we shall still com-
pare our results intuitively based on the results presented in [4].

Prototypes for SUCXENT++ (denoted as SX), GLOBAL-ORDER
(denoted as GO), and TJFAST3(denoted as TJ) were implemented
with Java. The experiments were conducted on an Intel Pentium 4
3GHz machine running on Windows XP with 1GB of RAM. The
RDBMS used was Microsoft SQL Server 2005 Developer Edition.

Data and Query Sets: In our experiments, we used XBench
DCSD [18] as synthetic dataset. We vary the size of XML docu-
ments from 10MB to 1GB (denoted as DC10, DC100, and DC1000,
respectively). For simplicity, we generate only element nodes (no
attribute nodes). Figure 5(a) shows the characteristics of the datasets
used. Recall that we wish to explore twig queries that are high-
selective although the paths are low-selective. Hence, we mod-
ified XBench dataset so that we can control the number of sub-
trees (denoted as K) that matches a twig query and the number
of instances of the rooted paths in the XML document. We set
K ∈ {0, 10, 20, 50, 100, 250}. Note that K = 0 is significant
in an environment where users would like to issue exploratory ad
hoc queries. In this case, the user would like to know quickly if
the query returns any results. If the result set is empty then he/she
can further refine his/her query accordingly. Figure 5(b) depicts
the benchmark XPATH queries containing only PC edges as well
as the number of PathValue tables involved in the translated SQL.
The corresponding SQL queries are given in [17]. Note that these
queries have different twig structures in terms of depth of the twig,
number of rooted paths, and number of NCA nodes. The number of
occurrences of subtrees that satisfies a twig query Q and the mini-
mum and maximum numbers of instances of rooted paths of Q in
the datasets are shown in Figure 5(c).

Test Methodology: Appropriate indexes were constructed for
all approaches (except for TJFAST) through a careful analysis on
the benchmark queries. Particularly, for SUCXENT++ we create the
3The implementation of this algorithm was kindly provided by the first author Jiaheng
Lu from the National University of Singapore.

following indexes on PathValue table: (a) unique clustered index
on PathId and DeweyOrderSum, and (b) non-unique, non-clustered
Index on PathId and BranchOrder. Furthermore, since our dataset
consists of a single XML document, we removed the DocId column
from the tables in SX and GO. Prior to our experiments, we ensure
that statistics had been collected. The bufferpool of the RDBMS
was cleared before each run. The queries were executed in the re-
construct mode [15] where not only the internal nodes are selected,
but also all descendants of those nodes. Each query was executed
6 times and the results from the first run were always discarded.

4.1 Shredding and Label Generation Times
Prior to processing twig queries in SX (or GO), it is necessary to

shred the XML document into the RDBMS. In the case of TJ, it is
necessary to generate the extended dewey labels [11] before it can
be used for twig query evaluation. Figure 5(d) show the insertion
times for the SX and GO approaches as well extended dewey gener-
ation time of TJ. It can be observed that SUCXENT++ performs the
best for all experiments as it stores the least amount of data com-
pared to GO. Also, observe that the shredding time of SX is up to 8
times faster than extended dewey generation time for TJ.

4.2 Query Evaluation Times
Figure 6 depicts the twig query evaluation times of SX, GO, and

TJ for different values of K.
Comparison with GLOBAL-ORDER (GO): First, we observe

that SX significantly outperforms GO. As the data size increases, the
difference between SX and GO increases. For DC10 dataset, SX is
2− 36 times faster than GO for 74% queries (31 out of 42 queries).
On the other hand, GO is faster than SX for queries Q4 and Q5 when
K ≥ 20 and when K = 10 and K ≥ 50, respectively. However,
for DC100, SX is faster than GO for 95% (40 out of 42) queries.
Particularly, for 81% queries it is 2-62 times faster than GO. For
DC1000 dataset, SX is faster than GO for all queries. In fact, we
noticed that it is 10 − 243 times faster for 76% of the benchmark
queries (all queries except for Q6 and Q7 when K ≥ 10).

The reasons for such significant performance differences between
SX and GO can be summarized as follows. Firstly, SX uses an effi-
cient strategy based on Theorem 1 to reduce useless comparisons.
Furthermore, the number of join operations in GO is more than SX.
For example, for Q2, GO and SX join eight tables and three tables,
respectively. Secondly, GO stores every element of an XML docu-
ment whereas SX stores only the root-to-leaf paths. Consequently,
the number of tuples in the Edge table is much more than that in the
PathValue table.

Another interesting observation is that the performance differ-
ence between SX and GO grows with the increase in selectivity of
the queries (lower K value) as well as data size. For K = 250,



SX TJ GO SX TJ GO SX TJ GO
Q1 28.00      157.00 733.80    143.40    1,047.00 2,994.00 1,297.20   9,734.00   80,493.80   
Q2 37.80      937.00 1,309.40 318.20    7,750.00 6,146.60 4,336.80   78,954.00 111,085.40 
Q3 22.00      328.00 793.60    108.80    3,188.00 4,282.20 867.60      31,203.00 100,358.40 
Q4 30.60      140.00 480.20    139.80    969.00    2,960.80 1,321.40   9,328.00   104,983.60 
Q5 28.80      156.00 618.20    146.60    922.00    2,829.60 1,322.60   8,437.00   79,768.80   
Q6 16.00      563.00 554.60    90.40     5,453.00 5,570.40 679.80      64,219.00 165,011.60 
Q7 104.60    531.00 509.20    667.00    3,297.00 3,190.80 6,421.80   55,625.00 121,077.40 

DC10 DC100 DC1000

(a) K = 0

SX TJ GO SX TJ GO SX TJ GO
Q1 102.40    234.00    683.00    185.40    1,047.00 2,912.60 1,297.20   9,922.00     62,137.40   
Q2 49.20      843.00    1,000.60 940.20    7,828.00 4,765.40 9,223.80   79,906.00   155,225.20 
Q3 67.20      390.00    685.00    233.60    3,188.00 4,599.40 1,899.80   31,172.00   97,541.00   
Q4 511.60    187.00    572.60    702.20    968.00    2,838.40 2,072.00   8,484.00     100,562.00 
Q5 566.60    172.00    547.60    583.00    938.00    3,125.60 1,322.60   8,406.00     89,932.00   
Q6 85.60      625.00    1,027.80 2,651.20 5,516.00 5,332.40 25,132.40 59,437.00   156,453.40 
Q7 140.00    609.00    619.00    3,789.20 3,297.00 3,643.00 33,910.20 58,093.00   139,502.80 

DC10 DC1000DC100

(b) K = 10

SX TJ GO SX TJ GO SX TJ GO
Q1 106.40    172.00 768.40    281.40    1,063.00 3,052.40 1,394.60   9,781.00   60,914.40   
Q2 44.80      938.00 1,341.80 970.40    7,891.00 5,597.60 9,294.80   79,672.00 148,968.60 
Q3 108.80    328.00 810.80    257.60    3,172.00 4,429.20 1,887.20   31,359.00 100,982.60 
Q4 715.80    140.00 569.00    1,378.20 1,016.00 3,365.60 2,427.00   8,484.00   70,298.00   
Q5 507.00    156.00 586.60    828.80    953.00    3,248.00 2,171.60   8,453.00   73,674.40   
Q6 83.60      562.00 837.00    2,648.00 5,531.00 5,604.40 25,279.00 58,625.00 134,971.60 
Q7 167.40    547.00 898.20    3,653.60 4,421.00 4,966.00 33,984.00 61,516.00 217,533.60 

DC10 DC100 DC1000

(c) K = 20

SX TJ GO SX TJ GO SX TJ GO
Q1 233.80    360.00 814.40    381.00    1,547.00 3,024.60 1,528.40   10,172.00 76,146.60   
Q2 61.00      938.00 1,334.80 949.20    7,907.00 4,704.40 9,204.80   79,719.00 128,644.60 
Q3 217.00    578.00 1,033.40 437.60    3,438.00 4,345.20 1,963.40   31,750.00 75,394.00   
Q4 1,281.20 172.00 783.60    1,523.80 1,032.00 3,064.00 2,331.80   9,172.00   114,753.40 
Q5 1,373.20 234.00 828.60    1,476.20 1,062.00 3,079.40 2,570.40   9,109.00   102,477.00 
Q6 195.00    953.00 879.60    2,753.20 5,718.00 5,035.60 25,091.60 57,953.00 160,047.00 
Q7 312.40    766.00 662.20    3,915.75 6,735.00 4,168.20 33,922.00 82,203.00 143,880.80 

DC10 DC100 DC1000

(e) K = 100

SX TJ GO SX TJ GO SX TJ GO
Q1 151.00    218.00    813.00    282.00    1,390.00 2,905.00 1,414.00   10,282.00   94,490.60   
Q2 63.40      937.00    918.60    1,047.40 7,906.00 4,445.40 9,289.80   79,500.00   165,193.80 
Q3 141.60    609.00    809.00    494.60    3,375.00 4,480.40 1,880.40   31,719.00   108,656.20 
Q4 1,131.20 219.00    758.40    973.40    1,188.00 2,894.80 1,997.40   9,828.00     92,458.20   
Q5 800.40    187.00    699.60    946.60    1,078.00 3,327.40 2,000.80   9,437.00     105,996.00 
Q6 129.40    1,094.00 1,006.80 2,672.80 5,625.00 5,468.80 25,100.20 58,328.00   125,850.00 
Q7 232.20    593.00    1,054.80 3,695.00 5,063.00 4,011.40 33,830.60 69,765.00   160,203.00 

DC10 DC100 DC1000

(d) K = 50

SX TJ GO SX TJ GO SX TJ GO
Q1 693.40    312.00    802.00    669.40    1,406.00 3,040.40 1,643.00   10,609.00   69,973.00   
Q2 92.60      953.00    809.20    1,559.40 7,890.00 4,300.60 9,393.40   79,531.00   151,147.40 
Q3 386.40    531.00    943.60    756.80    3,438.00 4,532.20 2,112.40   31,734.00   111,894.40 
Q4 3,043.40 188.00    1,182.60 3,106.40 1,093.00 3,733.20 3,852.00   9,297.00     106,146.40 
Q5 3,338.80 187.00    1,175.00 2,994.00 1,093.00 3,452.40 3,997.00   9,109.00     107,271.00 
Q6 397.00    937.00    1,149.80 3,016.20 5,688.00 4,892.00 25,407.20 57,813.00   189,539.40 
Q7 473.00    1,140.00 1,304.20 4,110.20 9,938.00 4,054.40 34,434.20 117,657.00 129,659.80 

DC1000DC10 DC100

(f) K = 250

Figure 6: Query evaluation times (in msec).

SX is 3.8 − 53 times faster than GO for DC1000 dataset. This re-
duces to up to 8.7 times for DC10 dataset. However, for K = 0,
the observed gain factor increases from 5 − 36 times for DC10 to
19− 243 times for DC1000.

Comparison with TJFAST (TJ): SX outperforms TJ with the
increase in data size. For DC10 and DC100, it is 2−35 and 2−60
times faster than TJ, respectively, for 64% queries (27 out of 42
queries). On the other hand, for DC10 dataset, TJ outperforms SX
for queries Q4 and Q5 when K ≥ 10, and for Q1 when K = 250.
For DC100, only 14% (6 queries) in TJ are faster than SX. Similar
to GO, as data size increases to 1GB, SX outperforms TJ for all
queries. Specifically, 74% queries in SX are 3 − 95 times faster
than TJ.

Similar to our observation on selectivity earlier, the performance
difference between SX and TJ grows with the increase in selectivity
of the queries and data size. For K = 250, SX is 2−15 times faster
than TJ for DC1000 dataset. This factor increases to 6.4−95 times
for K = 0.

Comparison with TWIG2STACK: As mentioned earlier, we did
not compare our approach with TWIG2STACK as we were not able
to obtain the source code from the authors. However, in [4], Chen
et al. compared the performance of TWIG2STACK with TJ. They
showed that in general TWIG2STACK is 2-3 times faster than TJ.
Based on this observation, we expect SX to outperform TWIG2STACK
for majority of the benchmark queries as SX is at least 2 and 3 times
faster than TJ for 76% (96 out of 126 queries) and 59% queries (74
queries), respectively, in all the datasets.

4.3 Comparison with MonetDB/XQuery
Recently, in [2], it has been shown that MONETDB/XQUERY, a

tree-aware XQuery implementation built on the foundation of the
main memory DBMS MONETDB, is among the fastest and most
scalable XQuery processor and outperforms the current generation
of XQuery systems by quite a big margin. Hence, we would like to
observe how “far off" SX is from MONETDB in comparison with
GO and TJ. We used the Windows version of MONETDB/XQuery
0.16.0 [2] (denoted as MX) downloaded from http://monetdb.cwi.nl/
XQuery/Download/index.html (Win32 builds).

Figure 7 shows how SX, GO, and TJ perform compared to MX.
We code each approach with “Y N", where ‘Y ’ is one of ‘SX’
(SUCXENT++), ‘GO’ (GLOBAL-ORDER), or ‘TJ’(TJFAST), and ‘N ’
is the dataset (‘10’ for DC10 and ‘100’ for DC100). We define a

MonetDB Factor (denoted as MXF ) as TY N/TMX where TMX

and TY N are the query evaluation times for MONETDB and SX/GO/TJ,
respectively. Note that we did not show any results of MONETDB
for 1GB dataset as it is currently vulnerable to the virtual memory
fragmentation in Windows environment4. Consequently, it failed
to shred 1GB XBench dataset.

We can make the following two key observations from Figure 7.
First, the performance gap between tree-unaware approaches and
MONETDB is significantly reduced when it is compared against
SUCXENT++. Except for Q4 and Q5, SX has the best performance
compared to GO and TJ. For Q1, Q2, and Q3, MX is at most 7
times faster than SX for majority of the queries whereas it is up to
32 times faster than GO and TJ. Specifically, MX is at least 10 times
faster than GO and TJ for 95% and 55% of benchmark queries,
respectively. However, only 31% (26 queries out of 84) of bench-
mark queries are at least 10 times slower in SX compared to MX.
Second, the performance difference between SX and MX is signif-
icantly reduced for majority of high-selective twig queries (low K
value). Interestingly, SX has comparable performance or faster than
MX for most of the benchmark queries when K = 0. Note that both
TJ and GO are slower than MX for all benchmark queries.

5. CHARACTERIZING BEHAVIOR OF
RELATIONAL OPTIMIZER

In this section, we explore and characterize how the relational
optimizer behaves for evaluating twig queries over the relational
selectivity space. We begin by introducing a powerful tool called
PICASSO [12], which we shall be using subsequently.

5.1 PICASSO
Given a SQL query template and a relational engine, PICASSO

[12] is a tool that automatically generates a variety of diagrams that
characterize the behavior of the engine’s optimizer over the rela-
tional selectivity space. It is operational on a suite of industrial-
strength database query optimizers including DB2, Oracle, Sybase,
and SQL Server. A PICASSO query template is an SQL query
that additionally features predicates of the form “relation.attribute
:varies" - these attributes are termed as Picasso Selectivity Pred-
icates (PSP). The reader may refer to [17] for a sample template.
4We have confirmed this vulnerability with Peter Boncz, one of the architect of MON-
ETDB/XQuery.
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Figure 7: Comparison with MONETDB.
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Q1 21 0.5042.86% 14 0.6728.57% 11 0.5745.45%

Q2 18 0.7322.22% 11 0.6336.36% 10 0.5640.00%

Q3 27 0.6529.63% 14 0.6135.71% 10 0.6530.00%

Q4 27 0.6525.93% 14 0.6335.71% 11 0.4154.55%

Q5 21 0.6528.57% 13 0.6730.77% 8 0.6537.50%

Q6 26 0.6334.62% 16 0.5931.25% 10 0.6730.00%

Q7 33 0.5339.39% 20 0.6030.00% 12 0.5841.67%

Average 24.71 0.5631.89% 14.57 0.6332.62% 10.29 0.5839.88%

Figure 8: Skew in plan space coverage.

Each template defines an n-dimensional relational selectivity space,
where n is the number of PSP relations. That is, the selectivity of
each of the PSP relations is varied over the range [0-100%].

There are few conditions to satisfy for the choice of PSP. First,
each relation can participate in at most one PSP. Second, the PSP
relations should feature only in join predicates in the query, but
not in any other equality or range predicates. Third, the PSP at-
tributes must have pre-generated statistical summaries and should
be on dense-domain attributes in high-cardinality relations.

With this information, the tool automatically generates SQL queries
that are evenly spaced across the relational selectivity space (the
statistics present in the database catalogs are used to compute the
selectivities). For example, with a grid spacing of 100 × 100, a
plan diagram is produced by firing 10000 queries, each query cov-
ering 0.01 percent of the plan diagram area. The resulting plans
are stored persistently in the database, and in the postprocessing
phase, a unique color is assigned to each distinct plan, and the area
covered by the plan is also estimated. For each plan diagram, the
corresponding cost diagram is obtained by feeding the query points
and their associated costs to a 3-D visualizer.

5.2 Experimental Setup
We generate query templates for the query sets, Q1 through Q7,

in Figure 5(b). We use all three XBench datasets when K = 50.
To ensure coverage of the full range of selectivities, the relational
axes in the plan diagrams are chosen from the large-cardinality ta-
bles occurring in the query (PathValue table). We chose the PathId

and DeweyOrderSum attributes of the rightmost and leftmost tables
in the FROM clause, respectively, as PSP. Note that for ease of

Figure 9: Plan Diagram of Q3 (DC10).

presentation and visualization, the query workloads are restricted
to 2-dimensional selectivity spaces. Further, we use a query grid
spacing of 30× 30, unless explicitly mentioned otherwise. Finally,
as our focus here is characterizing the choices made by the opti-
mizer, for every query the plan to execute the query was generated,
but not executed.

5.3 Plan Diagram
A plan diagram in PICASSO is a color-coded pictorial enumer-

ation of the execution plan choices of a database query optimizer
over the relational selectivity space. In this section, we analyze the
plan choices made by the optimizer for the queries in Figure 5(b).

Skewness of plan space coverage: We start off our analysis of
plan diagrams by investigating the skew in the space coverage of
the optimal set of plans. Figure 8 shows the skewness in plan space
coverage for various benchmark queries. The “Plan Card" column
represents the cardinality of the optimal plan set; the “80% Cover-
age" column represents the minimum percentage of plans required
to cover 80% of the space, and the last column measures the Gini
Index.

The statistics shown in Figure 8 leads to the following observa-
tions. Firstly, that the cardinality of the optimal plan set can reach
high values for a large number of queries. Further, the average car-
dinality decreases with the increase in dataset size. Note that these
numbers are conservative in that they are obtained with a 30 × 30
grid - with finer granularity grids, the plan cardinality may increase



Figure 10: Plan Diagram of Q4 (DC10).

Figure 11: Plan Diagram of Q4 (DC100).

even further [12]. Secondly, in most queries 22% to 45% plans
cover 80% of the space, highlighting the inequity in the plan space
distribution. This is captured by the Gini index values, which are
mostly in excess of 0.56, indicating high skew in the plan space dis-
tribution. In summary, the relational optimizer makes fine-grained
choices in the context of XPATH evaluation.

Representative plan diagram patterns: We now present some
representative patterns (Figures 9 to 125) that emerged in the plan
diagrams across some of the benchmark queries (Q3, Q4, and Q7)
and datasets and summarize our observations. The reader may refer
to [17] to view all diagrams. First, in all plan diagrams, we noticed
that the variety of plans and their space distribution differs signif-
icantly for a specific query with the increase in data size. This
is highlighted by the plan diagrams of Q4 in Figures 10 and 11
for datasets DC10 and DC100. Second, in several plan diagrams
across different datasets, the optimizer frequently changes its plans
when the selectivities of PathId and DeweyOrderSum are high (less
than 15%). Majority of these plans, however, occupies a small
area in the selectivity space. Third, we noticed that a given op-
timal plan may have duplicates in that it may appear in several
disjoint locations. For example, P4 (yellow) occurs in two dis-
joint locations at the upper right quadrant in Figure 9. Similarly,
P5 (violet) is present in upper left quadrant (around 33% – 80%
selectivity of DeweyOrderSum axis) as well as top part (selectivity
of DeweyOrderSum is more than 92%) of the plan diagram in Fig-
ure 11. Apart from duplicates, we also see existence of instances
of plan islands, where a plan is completely enclosed by another.
For example, in Figure 12 some of P6 (yellowish brown) is con-
tained as a set of islands in P3 (brown) in the middle part of the
diagram. In general, the reason for the occurrence of such dupli-
cates and islands is because the optimizer makes fine-grained plan
choices even though the costs of the competing plans are close to

5For clarity, we recommend viewing all diagrams presented in this section directly
from the color PDF, or from a color print copy. Also, for clarity, sometimes we only
show a subset of the color codes on the right hand side of the plan and cost diagrams.

Figure 12: Plan Diagram of Q7 (DC1000).

Figure 13: Cost Diagram of Q4 (DC10).

one another in that area [12]. For example, when plans P6 and
P3 in Figure 12 are compared, we find that the former uses hash
match whereas the latter does not employ any [17]. Finally, in ma-
jority of the plan diagrams, we find plan switch-points [12]. These
are lines parallel to the axes that run through the entire selectivity
space, with a plan shift occurring for all plans bordering the line.
Specifically, we observed that there are one or more plan switch-
points for majority of the plan diagrams when the selectivities of
DeweyOrderSum or PathId are very high (typically, less than 20%
and 10%, respectively).

5.4 Cost Diagram
Cost diagram is complimentary to the plan diagram and repre-

sents 3D-visualization of the estimated plan execution costs over
the same selectivity space. We now present some representative
patterns (Figures 13 to 15) that emerged in the cost diagrams across
some of the benchmark queries (Q4 and Q7) and datasets and sum-
marize our observation. The reader may refer to [17] to view all
cost diagrams. The diagrams compliment the results in Figure 6(d).
In majority of the diagrams the cost is low when the selectivities
of DeweyOrderSum and PathId are high (Figures 14 and 15), es-
pecially for larger datasets, confirming efficient evaluation times of
SX for high-selective XPATH queries. Consider the cost diagrams of
Q4 in Figures 13 and 14 for another example. Note that the evalu-
ation time of Q4 for DC10 is relatively higher than that for DC100
(Figure 6(d)). This is reflected in Figure 13 where the cost in DC10
increases at comparatively higher selectivity (around 40% selectiv-
ity of DeweyOrderSum axis) compared to that in DC100 (around
80% selectivity of DeweyOrderSum) depicted in Figure 14.

6. RELATED WORK
Our approach differs from existing tree-unaware techniques [6,

13, 14, 15] in the following ways. First, we use a novel and pow-
erful numbering scheme that only encodes the leaf elements and
the levels of the XML tree. In contrast, most of the tree-unaware



Figure 14: Cost Diagram of Q4 (DC100).

approaches encode both internal and leaf elements. Second, the
translated SQL of SUCXENT++ does not suffer from large num-
ber of joins. Specifically, if there are n rooted paths in the twig
query then we use n − 1 joins. Third, all previous tree-unaware
approaches, reported query performance on XML documents with
small/medium sizes – smaller than 500MB. We investigate query
performance on large datasets (up to 1GB). This gives more insights
on the scalability of the state-of-the-art tree-unaware approaches
for twig query processing. Finally, for the first time, we report vi-
sually the plan choices a tree-unaware relational optimizer makes
during twig query evaluation over the selectivity space.

In our previous work [13], we focused on efficiently evaluat-
ing ordered path expressions rather than tree-structured queries. In
this paper, we investigate how the encoding scheme in [13] can be
used for efficiently processing high-selective tree-structured twig
queries containing only parent-child relationship.

Recently, there have been several efforts to efficiently evaluate
twig queries containing PC relationships in native XML storage [4,
10, 11]. Our work differs in the following ways. First, we take
relational-based approach and showed that this approach is more
efficient especially for high-selective twig queries. Second, the na-
tive approaches typically report query performance on documents
smaller than 600MB and containing at most 8 million nodes. In
contrast, we explore the scalability of our approach for larger XML
documents having more than 22 million nodes. In fact, our results
show that SUCXENT++ is, in general, more scalable than these na-
tive approaches. Lastly, majority of the twig queries considered in
the experiments of native strategies contain a combination of AD
and PC relationships whereas we evaluate the “worst case" scenario
where all relationships in the twig query are parent-child in nature.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we present an efficient strategy to evaluate high-

selective twig queries having parent-child relationship in a tree-
unaware relational environment. Our scheme is build on top of
SUCXENT++ [13]. We showed that by exploiting the encoding
scheme of SUCXENT++ we can reduce useless structural compar-
isons in order to evaluate twig queries. Our results showed that
our proposed approach significantly outperforms GLOBAL-ORDER
and TJFAST, two representative tree-unaware and native schemes,
respectively. Although tree-aware approaches are often the best
in terms of query performance [2], our scheme reduces signifi-
cantly the performance gap between tree-aware and tree-unaware
approaches and even outperform it for certain high-selective twig
queries. Importantly, unlike tree-aware approaches, our scheme
does not require invasion of the database kernel to improve query
performance and can easily be built on top of any commercial RDBMS.

Additionally, using PICASSO, we attempted to analyze the be-

Figure 15: Cost Diagram of Q7 (DC1000).

havior of a commercial relational optimizer on SQL queries trans-
lated from XML twig patterns. Our study revealed that all the queries
have a large number of plans covering the relational space and are
heavily skewed highlighting the fine-grained nature of the opti-
mizer. The plan diagrams showed that the optimizer often makes
frequent plan switches when the selectivities of PathId and
DeweyOrderSum are high. The cost diagrams revealed that in gen-
eral the cost is low when the selectivities of DeweyOrderSum and
PathId are high especially for larger datasets. Thus, supporting ef-
ficient evaluation times of our approach for high-selective queries.
In the future, we would like to conduct a deeper investigation of the
behavior of relational optimizer for wider variety of XPATH queries.
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