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ABSTRACT
Information propagation within the blogosphere is of much
importance in implementing policies, marketing research,
launching new products, and other applications. In this pa-
per, we take a microscopic view of the information propa-
gation pattern in blogosphere by investigating blog cascade
affinity. A blog cascade is a group of posts linked together
discussing about the same topic, and cascade affinity refers
to the phenomenon of a blog’s inclination to join a specific
cascade. We identify and analyze an array of features that
may affect a blogger’s cascade joining behavior and utilize
these features to predict cascade affinity of blogs. Evaluated
on a real dataset consisting of 873,496 posts, our svm-based
prediction achieved accuracy of 0.723 measured by F1. Our
experiments also showed that among all features identified,
the number of friends was the most important factor affect-
ing bloggers’ inclination to join cascades.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
Search and Retrieval—Information Filtering ; J.4 [Computer
Applications]: Social and Behavior Sciences

General Terms
Algorithms, Experimentation

Keywords
Social networks, Network evolution, Blog cascade, Informa-
tion flow

1. INTRODUCTION
The popularity of blogs has been increasing dramatically

over the last few years. According to a recent report by
Technorati1 [19], a popular blog search engine, more than

1http://technorati.com
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Figure 1: Blog cascade.

a half of the Internet users read blogs. Technorati have
indexed more than 133 million blogs since 2002, and have
tracked blogs in 81 languages by June, 2008. Blogs con-
tain diverse varieties of information. General topics include
personal diaries, experiences, opinions, information technol-
ogy, and politics to name a few. Due to their accessible and
timely nature, many bloggers surveyed have advertisement
on their blogs. The mean annual revenue for blogs with ad-
vertisement is estimated to be $6,000 [19]. This figure jumps
to $75,000 when we consider only those blogs having 100,000
or more unique visitors per month. Thus, blogosphere pro-
vides large amount of latest information on the Web and is of
much importance in viral marketing and on-line advertising.

1.1 Motivation
A blog consists of several entries. Each entry within a

blog, called a post, is time-stamped and the most recent
entries always appear at the top. Bloggers can also create
hyperlinks to other blogs or websites in their posts. The
universe of all these blogs and their interconnections is of-
ten referred to as blogosphere [18, 19]. Blogosphere is an
intuitive source for data involving the spread of informa-
tion and influence within the network of bloggers [1, 7, 11,
18]. By analyzing the linking patterns from one blog post
to another, we can infer the way information is propagated
through the blog network over the Web. In particular, a
piece of information flows from a post to another along the
hyperlink between them. For example, consider the Fig-
ure 1(a). The ellipses represent different blogs (e.g., b1, b2,
b3, b4, b5, and b6), and each ellipse contains a set of posts.
The edges in the figure indicate hyperlinks between posts.
Assume that post p1 in blog b1 contains opinion about re-
cent events related to the spread of h1n1 virus. Some time
later, blog b2 visited b1 and wrote a post p2 in response to
this topic of discussion and explicitly created a hyperlink to



p1. Subsequently, new posts will join this conversation by
linking to existing posts. For instance, at time T0, the struc-
ture of this conversation related to h1n1 virus containing a
group of posts (p1, p2, p3, and p4) is depicted by the dashed
rectangular component in Figure 1(a). Aggregating all the
linked posts by backtracking the hyperlinks will result in a
dag (Directed Acyclic Graph), where each node is a post.
Such a dag is called a cascade [14, 20] (also known as con-
versation tree). All the posts in the same cascade typically
discuss about a similar topic.

Observe that at time T0 there were two blogs, b5 and b6,
which did not join the conversation on h1n1 virus by writ-
ing a post and linking to the cascade. Now assume that at
time T1 > T0 b6 joined the cascade by writing a post p6

and linking it explicitly to p2. The modified structure of the
cascade is now depicted in Figure 1(b). Notice that b5 still
did not join the conversation. Why did b6 join the cascade
but b5 did not? Is it possible to predict the cascade affinity
of b5 and b6 by analyzing the information embedded in the
cascade at time T0? In order to provide answers to these
questions, in this paper we propose an svm-based technique
that analyze an array of cascade features to predict which
blogs are highly likely to join the cascade in the future. We
refer to the phenomenon of a blog’s inclination to join a spe-
cific cascade as cascade affinity. In the sequel, we shall use
blog and blogger interchangeably in the context of cascade
affinity.

Although the notion of information cascade was formally
introduced by Sushil Bikhchandani [4], it was first system-
atically studied in the context of blogosphere by Kumar et
al. [11]. Majority of research on blog cascades [14] have
focused their attention at the macroscopic level. In partic-
ular, these efforts investigated information flow in cascades,
common shapes of cascades and their frequencies, and per-
formed a series of topological analysis. In contrast, we take
a microscopic view by analyzing cascade affinity behavior of
individual bloggers. To the best of our knowledge, this is the
first approach that undertakes a systematic study to predict
such behavior.

The knowledge of a blogger’s affinity to cascades is useful
in several applications. It not only facilitates the design of
advanced blogging system with more sophisticated person-
alized recommendations and filters, but also help us to set
up intelligent strategies in on-line advertising. By predicting
which blogs have stronger affinity to a cascade, we can make
recommendations to those bloggers in case they have not yet
read any post in the cascade. Consequently, we can influence
the population faster by accelerating the information propa-
gation process. In this way, new services or products can be
disseminated and popularized in a shorter time. Further, we
can also predict to what scale of population a cascade will
finally expand so that when disseminating an advertisement
along blog cascade we can understand the final effect of the
advertisement ahead of time and adjust our advertisement
strategy accordingly.

1.2 Overview
At first glance, it may seem that we can predict a blog-

ger’s affinity to a cascade by analyzing the textual content
of existing posts in the cascade and estimating the over-
lap between the content of the blogger’s previous posts and
cascade content. However, such content-aware strategy is
computationally expensive and may adversely affect the ac-

curacy of prediction for several reasons. Firstly, the content
of posts are often in conversational language containing fla-
vors of abbreviated words and local lingo. Secondly, a blog
cascade may consists of posts written in different languages.
Thirdly, posts may only contain multimedia objects such as
pictures or video clips. Consequently, these factors make
content analysis significantly challenging. Hence, we take a
content-oblivious strategy to address this issue.

We propose a group of content-oblivious features of a blog
cascade that may influence a blog’s affinity to the cascade.
These features are as follows: number of friends that are
already in the cascade, popularity of participants in the cas-
cade, number of participants in the cascade, time elapsed
since the genesis of the cascade, and citing factor of the
blog. Note that all these features can be computed by ana-
lyzing only the link structure and topology of the cascade.
For each of the proposed feature, we investigate how it in-
fluences a blog’s affinity to the given cascade and performed
a one-way analysis of variance (anova) to test the signifi-
cance of each feature’s influence. Then we present an svm
classification-based approach that exploits these features to
predict the probabilities of blogs’ affinity to a cascade and
rank them accordingly. Although we did not exploit the
content of the posts, our experimental results demonstrated
that our prediction strategy can generate high quality results
(F1-measure of 72%). In summary, the main contributions
in this paper are as follows.

• We propose an array of content-oblivious features that
influence a blog’s inclination to join a cascade. To the
best of our knowledge, these features have not been
studied together in the context of a blog network ear-
lier. Further, we present different measures to calcu-
late each feature’s effect on the cascade affinity phe-
nomenon.

• We formulate the task of predicting cascade affinity
of blogs into a standard classification problem. We
present an svm classification-based technique to eval-
uate the probability of a blog’s affinity to a particular
cascade and rank blogs accordingly.

• We present an evaluation of our proposed prediction
and ranking scheme demonstrating its practical signif-
icance using real data sets. In particular, our proposed
technique performs the best when all features except
citing factor is used.

The rest of this paper is organized as follows. Section 2
presents a brief review of related work. In Section 3, we
introduce the data set as well as the cascade extraction pro-
cess. We propose a group of features for modeling cascade
affinity of each blogger in Section 4. In Section 5 we describe
our proposed technique to measure and rank the probability
of a blog to join a cascade. In Section 6, we conduct an
empirical study to evaluate many aspects of our proposed
approach and its effectiveness. The last section concludes
the paper.

2. RELATED WORK
Much work have been done in the field of information flow

modeling and word-of-mouth effect. We conduct a brief re-
view of related work on these fields. Actually the work in
this area can be traced back to the epidemic research in
virus propagation problem [6]. Similar work have been done



Table 1: Definitions of symbols.
Symbol Definition

bj blog j
ci cascade i
T ∗ the timestamp of the last post in the data set
T i the timestamp when the first post appeared in

ci

φi(t) set of blogs that appeared in ci before time t
φi set of all the blogs that appeared in ci, φi =

φi(T ∗)
ti(j) the timestamp when bj joins ci if bj ∈ φi;

otherwise, ti(j) = T ∗

posti(t) the posts appeared in ci before time t
postj(t) the posts appeared in blog j before time t
K friendship threshold

within large online social networks recently focusing on mod-
eling the word-of-mouth effect in different social networks.
Backstrom et al. [2] showed the probability of joining a so-
cial community depends on the number of acquaintances
already in it. Leskovec et al. [12] showed that an individ-
ual’s probability of buying a dvd increases with the number
of recommendation he has received. There is a saturation
point at the value of 10, which means after a person receives
10 recommendations on buying a particular dvd, the prob-
ability of buying does not increase anymore. Cha et al. [5]
conducted a study on Flickr over the same problem. They
showed the probability for a user to become a fan of a photo
increases with the number of her friends who are already fans
of the photo. These above work all focused on the number
of friends feature. This feature is also used in our work to
model the probability of a blog’s affinity to a cascade. Addi-
tionally, as we shall see later, our work examines some other
features that may affect this behavior.

Several recent papers have focused on modeling the in-
formation diffusion patterns within social networks, which
is considered to play a significant role in political science
and viral marketing [20]. In particular, several algorithms
are proposed to find a set of nodes which have the most
influence on the others so that by selecting those nodes as
seeds we can make our piece of information spread over a
large population [8, 10]. Gruhl et al. [7] modeled the in-
formation diffusion within blogosphere by defining a read
probability and copy probability for each blogger, and itera-
tively computed the two and finally converged to the best
solution. Agarwal et al. [1] proposed a ranking function for
the blogs according to their influence based on the influence
of posts appeared in each blog. The influence of a post is
computed based on its length, comments, and a propagation
factor which is the aggregated influence from the posts that
linked to and from the current one. Another research by Ma
et al. [15] focused on finding a set of k candidates as target
for marketing strategy using heat diffusion models.

Our research differs from these studies in two ways. Firstly,
these current approaches mainly focused on finding the most
influential blogs in blogosphere [1], while ours is targeted on
discovering the blogs that are most probably to be influenced
by other blogs. Hence, our work is orthogonal to these ef-
forts. A recent study showed that large-scale changes in
public opinion are not driven by highly influential people
who influence everyone else but by easily influenced people

Table 2: Statistics of the data set.
Property Value
Number of posts 873,469
Number of blogs 156,195
Number of blog-to-blog edges 340,124
Number of edges with weight ≥ 2 139,974
Number of cascades 7,269

influencing other easily influenced people [21]. The authors
investigated at a global scale the average size of cascades
that are initiated by influential nodes and average nodes
using different influence models. They showed that early
adopters enrolled in a cascade is more important to affect
the final cascade size than the initiators. Our work differs
from it in that we study in detail under what situation a
blogger will be influenced as well as to retrieve the most
easily influenced individuals. Secondly, in our work we pro-
pose a group of features of blogs and cascades to model the
probability of a blog to join a cascade.

In a recent work, Karagiannis et al. [9] studied the hu-
man behavior related to email responses. They showed that
the email replying probability depends on a series of factors.
By conditioning on each individual factor, they can achieve
moderate prediction gains with respect to predicting replied
emails. Putting together all the factors achieves a signif-
icant prediction gain. In contrast, our work analyzed the
joining behavior of each individual blogger using a group of
features. Additionally, we also proposed a ranking scheme
that can compute the probability of a blog to join a cascade.

3. DATA PREPARATION
In this section, we first introduce the real-world data set

we have used for our study. Then, we present our approach
of cascade extraction from the data set. In the sequel, we
shall use the notations shown in Table 1 to represent differ-
ent concepts. Generally, we shall use superscript to denote
a cascade identifier and subscript to denote a blog identifier.

3.1 Data Set
We extracted our blog data set in September, 2008 using

Technorati API2. The data set contains blog posts published
from June, 2008 to September, 2008. We first selected the
group of top 100 blogs indexed by Technorati as seeds. From
these seeds, we retrieved the blogs that had linked to these
seeds in their posts, and then we iteratively retrieve the
posts that linked to the previous level till the sixth level
which has been shown as the upper boundary size for most
chain cascades [14]. From the xml collection of blogs, we can
get the post-to-post relationships. Notice that a post of blog
bi linking to another post of blog bj do not always indicate a
friendship that author of bi knows author of bj or bi regularly
reads bj ’s blog. So we additionally extracted blog-to-blog
relationships with weighted edges where the weight of an
edge from bi to bj indicates the number of times bi has cited
bj ’s posts. Such a case, to some extent, indicates that bi does
not read bj ’s blog by chance. We use this weighted graph as
an indication of friends by filtering out the edges with weight
less than a friendship threshold K. The characteristics of the
data set is shown in Table 2. For each blog, the posts that do
not participate in any cascade are excluded from our data

2http://technorati.com/developers/api
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Figure 2: (a) Blog in-degree distribution (b) Cascade size distribution (c) Number of posts joining versus
days elapsed.

Algorithm 1: Cascade extraction algorithm.

Input: A set of post-to-post relations
E = {e1, e2, . . . , em}, each element is a pair of
posts connected by a hyperlink

Output: A set of isolated cascades C = {c1, c2, . . . , cs}
each of which comprised of connected posts

begin
initialize each cascade as a single link C ←− E ;
while ∃cp, cq and cp ∩ cq 6= ∅ do

forall ci, cj ∈ C and ci 6= cj do
if φi ∩ φj then

add j to i: ci ←− ci, cj ;
remove j: C ←− C \ {cj};

end

set. Figure 2(a) shows the in-degree distribution of blogs
indexed by Technorati till September, 2008. This figure is
plotted using the information extracted from our data set.
It is shown to follow a power law distribution with exponent
equal to −1.505, while in [14] this exponent is reported to
be −1.7. Such a phenomenon indicates a few blogs are more
connected than the rest. It is consistent with the result of
“preferential attachment” model (rich get richer) [3].

3.2 Cascade Extraction
Recall that each blog participates in a cascade by writing

a post which links to another post that is already in the
cascade. We denote a set of cascades as C = {c1, c2, . . . , cs}.
The algorithm for extracting cascades from our data set is
shown in Algorithm 1.

Note that the proposed cascades extraction procedure is
slightly different from the one described in [14]. Let us elab-
orate on this further. Consider the scenario in Figure 3(a)
which depicts posts and hyperlinks between them. Based
on [14], each cascade should have only one initiator (top-
most post). Hence, the scenario illustrated in Figure 3(a)
have to be considered as two different cascades (have two
initiators p1 and p2) as depicted in Figure 3(b). In contrast,
we treat the scenario in Figure 3(a) as one cascade. The
intuitive justification for this is as follows. Observe that the
posts in Figure 3(a) are all linked together. That is, both p1

and p2 share some common posts in the conversation (e.g.,

(a)

p1

p5

p3 p4

p5 p6

p2

(b)

p1

p4

p5

p3

p6

p2

Figure 3: Different approaches for cascades extrac-
tion: (a) observed post-to-post relationship, it is also
the cascade identified by our approach; (b) the cas-
cades identified from (a) using the approach in [14].

p5). This may indicate that all these posts are discussing
about a common topic. Hence, it makes sense to consider
them as part of a single cascade instead of separating them
into different ones.

The next step is to post-process the extracted cascades
to eliminate the ones which have been there not more than
a month till the time T ∗. The set of “matured” cascades
extracted after the post-processing is represented as: C =
{ci

∣∣T i ≤ T ∗ − 30}. The number of cascades detected after
filtering out the immature ones is shown in Table 2. The
reason for post-processing the cascade set is as follows. We
need to ensure that the extracted cascades can provide a
robust and accurate framework for feature extraction and
subsequent prediction. However, quantifying values of dif-
ferent features based on immature cascades (cascades which
have not absorbed all potential participants) will distort the
prediction accuracy of cascade affinity. Many participants
may join these cascades after time T ∗ and consequently ad-
versely affect the modeling of the ground truth based on
the features set. Obviously, this may result in a deviation
between our knowledge about the participants of these cas-
cades and the ground truth. It is worth mentioning that it
is not possible to justify the prediction performance without
knowing the ground truth.

Figure 2(b) shows the distribution of cascade size ex-
tracted from our data set. It is defined as the number of
blogs within a cascade. The X-axis is the different sizes of
cascades and the Y -axis represents the number of cascades.
The minimum size of cascades is defined as 2 which is the
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Figure 4: (a) Number of quasi-friends versus K (b) Cascade affinity ratio versus number of quasi-friends (c)
Joining probability by cascade rank.

trivial case, while the maximum size of a cascade is found to
be 34 in our data set. The distribution of cascade size also
follows a power law. The exponent found in our data set is
−3.1, while this exponent is found to be −2 in the data set
used by Leskovec et al. [14]. This deviation is due to the
differences between the characteristics of the two data sets
and different definition of a cascade in these two approaches.

4. ANALYSIS OF CASCADE FEATURES
In this section, we first present an array of content-oblivious

cascade features that may influence a blog’s affinity to a
cascade. Then, we conduct a one-way variance analysis
(anova) on each of these features to quantify their signifi-
cance related to cascade affinity.

4.1 Elapsed Time
First we present the role of the elapsed time. Informally,

it refers to the difference between the time a blogger joins
a cascade and the cascade creation time. Formally, it is
defined as follows.

Definition 1. Let ti(j) be the time a blogger bj joins a
cascade ci. Let T i be the time of creation of ci. Then, the
elapsed time, denoted as di(j), is defined as follows:

di(j) = ti(j)− T i

We use day as the unit of elapsed time as most bloggers
write posts once per day. The distribution of this feature
is shown in Figure 2(c). The X-axis represents the time
elapsed in days, while the Y -axis represents the number of
blogs that join cascades at a specific elapsed time. Observe
that 91% bloggers join a cascade during the first week. After
that affinity to cascades drops almost exponentially with
elapsed time. Note that the above results deviate from other
types of social networks, shown in [13], where the authors
found that the average number of edges attached to each
node did not change much over the lifetime of the node.

4.2 Number of Friends
We introduce the notion of quasi-friend to model friend-

ship within blogosphere based on post citings. Formally,
quasi-friend is defined as follows.

Definition 2. Given two blogs b1 and b2, b1 is a quasi-
friend of b2 if and only if b2 cites b1’s posts more than K
times.

a

b c

d

f
g

h

(a)T0

a

b c

d

f

g

(b)T0+ T

h

d

(c)without T

Ground truth
Problem of 

ignoring the time

a

b c

f

g

h

Figure 5: Effect of friendship creation time.

A quasi-friend indicates that b2 probably often reads b1’s
blog. This probability of frequent reading is controlled by
the friendship threshold K. Obviously, K will affect the num-
ber of quasi-friends discovered. As shown in Figure 4(a), K
affects the number of quasi-friends exponentially with expo-
nent α = −3.37. Notice that if we set K to a large value then
we may extract a very limited number of quasi-friends for a
blog. Hence, we set K to 2 by default. We shall justify this
value empirically in Section 6.2. Note that quasi-friendship
is directed. That is, b2 is not a quasi-friend of b1 unless b1 has
cited b2 more than K times. Given a value of K, we denote
the set of quasi-friends of a blog bj as Fj = {f1, f2, . . . , fr},
where each element fr is a blog.

Several recent papers have shown that personal behavior
in a social network is highly affected by the person’s neigh-
bors [2, 5, 12]. Hence, the number of friends a blogger may
have in a cascade is an important feature that may influ-
ence her decision to join the cascade. Näıvely, the number
of friends a blogger has in a cascade can be computed at
any time after she has joined the cascade. However, this
may mislead us from the actual phenomenon as the number
of friends is highly influenced by the temporal state of the
cascade. Let us elaborate on this further.

Consider the Figure 5(a). Each node is a blog and the
dashed rectangle denotes a cascade at a particular time.
Edges represent hyperlinks related to this cascade. Assume
that a blog d joined it at time T0. Note that at time T0, d did
not have any friend in that cascade. We refer to T0 as join-
ing time. Now assume that at time T0 +∆T node h became
a friend of d as shown in Figure 5(b). We refer to this time
when a friendship is created as friendship creation time. Ob-
serve that the number of friends d had during joining time
and friendship creation time may be different. However, if
we discard these two different phenomenons, then at any
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time after T0 +∆T it may seem that d had a friend h in this
community when she joined it (Figure 5(c)). Obviously, this
is not an accurate reflection of the ground truth. Note that
existing work ignore these two types of temporal features
while modeling number of friends in a social network.

There is another problem if we ignore the above tempo-
ral behavior. Consider the Figure 6(a), which represents
the same scenario as depicted in Figure 5(a). Now assume
that another blog i, who is a friend of d, joined this com-
munity at time T0 + ∆T as shown in Figure 6(b). If we do
not distinguish between times T0 and T0 + ∆T , then it may
seem that d had a friend i in the cascade when she joined
it (Figure 6(c)). However, the truth is that when d joined
this cascade at time T0, she did not have any friend. Hence
in our approach, we distinguish between the joining time
and the friendship creation time to accurately reflect the
ground truth. As we shall see in Section 6.2, this distinction
improves the cascade affinity prediction performance signif-
icantly.

In our approach, we represent the set of blogs having α
quasi-friends in a cascade ci using Γi(α) taking into consid-
eration the time ti(j). It is computed as follows.

Γi(α) = {bj

∣∣|Fj(t
i(j))

⋂
φi(ti(j))| = α}

Fj(t
i(j)) denotes the set of blogs that became a quasi-friend

of j’s before time ti(j), φi(ti(j)) is the set of blogs that
appeared in ci before time ti(j). Note that by incorporating
ti(j) in our approach, we make a contribution to address
the above issues (Fig 5(c) and Fig 6(c)). Based on Γi(α),
we define the notion of cascade affinity ratio with respect to
the number of quasi-friends.

Definition 3. Given the set of Γi(α), the cascade affinity
ratio, denoted as Pα, is defined as:

Pα =

∑
i

|Γi(α)
⋂

φi|
∑
i

|Γi(α)|

We computed Pα for the whole collection of cascades, and
plotted the values in Figure 4(b). The X-axis is the α value
(number of quasi-friends in a cascade). The Y -axis repre-
sents the values of Pα. From the figure, we observe a dimin-
ishing return phenomenon. That is, beyond a number each
additional quasi-friends in the cascade will contribute less
to the probability of joining that cascade. This number is
around 7 in this figure. Note that the curve showed in the
figure follows similar trend as found in other social networks
in [2], and also in [12] where the author found a saturation
point in the probability of buying a dvd by the number of
recommendations received.

4.3 Popularity of Participants
Next we study the effect of popularity of cascade partici-

pants on the cascade affinity of a blogger. The idea is sim-
ilar to the preferential attachment model which was first
proposed in [3]. In this model, whenever a new vertex ar-
rives in a network it attaches an edge to an existing vertex
with a probability proportional to that of the old vertex’s
degree. Newman performed a series of analysis on the model
in [17]. Leskovec et al. [13] also showed a similar pattern
in some real-world data sets. Here we conduct an analysis
based on this model. However, in our study when a blog
joins a cascade we consider the model at the cascade-level
whereas the above approaches consider it at the node level.
Then, the popularity of a cascade ci is the highest rank of
the blogs in the cascade. Formally, it is defined as follows.

Definition 4. Let D(b) be the rank of a blog b. Then the
popularity rank of a cascade ci that bj wants to join, denoted
as Dj(c

i), is defined as:

Dj(c
i) = min

b∈φi(ti(j))
(D(b))

Note that the rank of each blog is based on its in-degree
(indexed by Technorati). A blog having the largest in-degree
has the highest rank as 1. Observe that the above definition
can be intuitively explained from the social aspect. When
a blogger bj reads a post pr she can also see other posts in
the same cascade by tracing back the hyperlinks. If there is
a popular blog which has a large in-degree in that cascade,
then bj will probably join this cascade. Interestingly, this
effect is not so obvious in our result shown in Figure 4(c).
The X-axis in the figure is the popularity rank of cascades.
A cascade having lower rank means it contains a more pop-
ular blog. We plot the numbers of blogs that join a cascade
(“positive count”) and those who do not (“negative count”)
by varying the ranks. The curve labeled “probability” repre-

sents the ratio:
positive count

positive count+negative count . As shown

in the figure although the values along X-axis is in log-
scale, the number of joined blogs in each bin do not vary
much. This phenomenon indicates that a minority of cas-
cades which have high popularity ranks influence a large
number of bloggers to join.

4.4 Number of Participants
Intuitively, a blogger may have stronger affinity to a cas-

cade which has absorbed a lot of participants. Hence, we
now conduct an analysis using number of participants in a
cascade as a feature. We compute the probability of joining
a cascade as a function of the number of participants exist-
ing in the cascade. The number of participants is formally
defined as follows.

Definition 5. Let ti(j) be the time when a blog bj joins a
cascade ci. Then, the number of participants in ci at time
ti(j), denoted as Nj(c

i), is defined as:

Nj(c
i) = |φi(ti(j))|

Figure 7 shows the probability of joining a cascade as a
function of the number of participants in that cascade. The
number of blogs inside a cascade ranges from 1 to 33. The
probability of joining a cascade with β participants, referred
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Figure 7: Cascade affinity probability versus cascade
size.

to as cascade affinity probability (denoted as Pro(β)), can
be computed as follows.

Pro(β) =

∑
ci |{bj |Nj(c

i) = β, bj ∈ φi}|∑
ci |{bj |Nj(ci) = β}|

We separate the cascades size range into 11 bins each with
length 3. The height of each bar denotes the mean of the
three cascade affinity probability values inside that bin. No-
tice that at the beginning, as the number of participants
grows, the probability slightly grows, but after some point,
the probability drops down. There is a peak at the point of
cascades with the size 13−15. It indicates that before a cas-
cade absorbed 13−15 participants, the probability for a blog
to join this cascade increases. This represents the cascade
initiation period where many new blogs keep on joining the
cascade. However, after the number of participants in the
cascade has reached a value between 13 and 15, the proba-
bility of a blog joining this cascade drops down to a stable
value. This represents the stable period after a cascade has
got enough attention.

4.5 Citing Factor
The features discussed above are all related to the cascade

that a blog is inclined to join. Here we analyze a personal
characteristics related to the joining behavior of each blog-
ger. The reason for analyzing this feature is based on the
hypothesis that a blogger bj is more inclined to join a cas-
cade if bj likes to cite others’ posts.

Definition 6. Let out(·) be the number of outlinks of ·.
Then the citing factor of a blogger bj , denoted as Hj(c

i), is
defined as:

Hj(c
i) = |out(postj(t

i(j)))|
We can compute the probability for a blog bj with p cita-

tions to join a cascade as follows.

Procf (p) =

∑
ci |{bj |Hj(c

i) = p, bj ∈ φi}|∑
ci |{bj |Hj(ci) = p}|

The result is shown in Figure 8. It is distributed almost
uniformly with the change to the number of out-links. It
is evident that this feature is not very informative as far as
cascade affinity is concerned.

4.6 ANOVA Test
We now perform a series of variance analysis on each of

these features. For each feature, we compare the values be-
tween blogs which finally joined a cascade and those did
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Figure 8: Procf (p) versus number of citations.

Table 3: ANOVA test on cascade features.
Feature Name F p-value
Time elapsed 6.88 ¿ 0.001
Number of friends 2.85 0.017
Popularity of participants 1.50 0.029
Number of participants 4.36 ¿ 0.001
Citing factor 0.77 0.968

not using the one-way analysis of variance (anova) to test
whether the difference is really caused by the feature values
or just by noise in the data. The F and p-values for each fea-
ture is shown in Table 3. The result shows that the p-value
for citation factor is 0.968 while other features are all less
than 0.05. It indicates that the different values of citation
factor in both groups should only be considered as noise.
The remaining four cascade features are all significant for
predicting cascade affinity of a blogger.

5. CASCADE AFFINITY PREDICTION
In this section, we describe how the features discussed

in previous section can be exploited to predict bloggers who
may join a cascade. The prediction involves two steps, namely
candidate blog extraction and cascade joining prediction. We
elaborate on these steps in turn.

5.1 Candidate Blog Extraction
For a given cascade, all blogs in the blogosphere are po-

tential blogs that may join the cascade in the future. Nev-
ertheless, many of these potential blogs have no interaction
(e.g., read the posts) with the blogs/posts already in the
cascade and are unlikely to join the cascade. We therefore
only consider a much smaller set of candidate blogs that are
likely to read one or more posts in the cascade. The can-
didate blogs are those that have at least one quasi-friend
in the given cascade. Formally, for a given cascade ci, the
candidate blogs cand(ci) that may join ci is given by the
following equation.

cand(ci) = {j
∣∣Fj ∩ φi 6= ∅} (1)

The algorithm for extracting candidate blogs is shown in
Algorithm 2. Recall that quasi-friend is defined based on
the number of times (i.e., K) a blog cites posts from another
blog. Hence, the number of candidate blogs extracted for a
given cascade naturally depends on the threshold K. In our
experiments, we set K = 2 by default.

For all cascades in our data set, there are 312, 414 candi-
date blogs extracted by Algorithm 2. On average, 43 candi-



Algorithm 2: Candidate blog extraction algorithm.

Input: cascade set C = {c1, c2, . . . , cs} extracted from
the data set

Output: candidates ∆i for each cascade ci

begin
foreach cascade ci ∈ C do

foreach blog bj ∈ φi do
∆i(j) = {r

∣∣bj ∈ Fr(t
i(j))};

∆i = ∆i ⋃
∆i(j);

end

dates are extracted for each cascade. Naturally, the number
of candidate blogs increases along the number of participants
in a cascade. Particularly, for a cascade having fewer than
10 participants, there are 39 candidate blogs on average; for
a cascade having 11 − 20 participants, this value increases
to 64 candidates on average; for a cascade having more than
20 participants, there are 81 candidates on average. From
the numbers reported, candidate blog extraction greatly re-
duces the number of blogs to be considered in the prediction
with respect to the total number of blogs in our data set. As
an evaluation of candidate extraction, Table 4 shows 76.1%
blogs that join a cascade have at least a quasi-friend in it
when we set K = 2.

5.2 Cascade Joining Prediction
As discussed in Section 1, in advertising we need to select

a limited set of blogs that have the highest probability of
joining a cascade. Ideally, we would like to compute a score
for each candidate blog extracted with respect to a cascade
indicating its likelihood of joining the cascade.

Based on the features identified in the preceding section,
the prediction task can be naturally formulated as a bi-
nary classification task. Many existing classifiers (e.g., Näıve
Bayes, k-Nearest Neighbors, and Support Vector Machines)
indeed return a category relevance score for each data in-
stance to be classified indicating its likelihood of belonging
to a pre-defined category.

In our experiments, we adopted Support Vector Machines
(svm) classifier [22] due to its promising results reported in
many data mining/machine learning tasks. The training of
svm learns a hyperplane that separates the positive training
examples from the negative ones with the largest margin.
The hyperplane is defined by a vector w and a parameter
b to be learned from the training data. The learned model
computes a score for an unlabeled object x using its decision
function f(x) = w · x − b. In our setting, a larger f(bj)
indicates more likelihood of bj joining the target cascade. To
learn an svm classifier, those candidate blogs that eventually
joined and did not join the target cascades were used as
positive and negative examples, respectively.

6. EXPERIMENTS

6.1 Experimental Setting
To evaluate the effectiveness of the features in predicting

cascade affinity of candidate blogs, we conducted experi-
ments on our data set using 5-fold cross validation. That is,
the data set was randomly partitioned into 5 parts and in
each evaluation, 4 parts were used as training data and the

Table 4: Effect of different values of K.
Value of K Candidate size

(max. recall)
Highest F1-measure

K=1 946,329 (0.916) 0.702
K=2 312,414 (0.761) 0.723
K=3 80,482 (0.242) 0.227

remaining part was used as test data. The results reported
are averaged over the 5 runs.

The commonly used performance evaluation measures in
classification tasks are precision, recall and F1. Precision,
denoted by Pr, is the percentage of blogs that eventually
joined the target cascade among all blogs predicted to be
joining. Recall, denoted by Re, is the percentage of the cor-
rect predictions among all blogs that eventually joined the
target cascade. Note that, recall is computed with respect
to all blogs that finally joined the target cascade regard-
less of whether the blogs are identified as candidate blogs or
otherwise. F1 = 2×Pr×Re

Pr+Re
is the harmonic mean of precision

and recall. However, both precision and recall are threshold-
dependent. A higher threshold leads to higher precision but
lower recall. In our experiments, we are more interested
in the effectiveness of the features in ranking the candidate
blogs according to the likelihood of joining the target cas-
cade. We therefore adopted the area under Precision-Recall
curve (auc-pr) as the evaluation metric.

6.2 Experimental Results
Justification of candidate set. Recall that the num-

ber of candidate blogs is affected by the parameter K. As K
increases, the number of quasi-friends identified decreases.
Consequently, the candidate blog set shrinks. As a result,
the maximum recall decreases, but the prediction perfor-
mance may not. To determine the optimum value for K, we
conducted the prediction using different values of K. Table 4
shows the sizes of candidate blog sets for different K as well
as the highest F1-measures achieved by selecting the best
SVM thresholds. Observe that best F1-measure is achieved
for K = 2. Hence, in the subsequent experiments we shall
set K = 2.

Comparison of feature sets. Recall that we have iden-
tified five features for cascade affinity prediction, namely
number of friends, popularity of participants, number of par-
ticipants, citing factor, and elapsed time. To evaluated the
effectiveness of these features, we conducted 6 sets of ex-
periments. The first set of experiments used all 5 features
for prediction. This feature set is denoted by “ALL” in Ta-
ble 5. In each of the following five experiments, one feature
is removed. For instance, “A-NF” denotes that the feature
number of friends is removed and the remaining four fea-
tures were used for prediction. In Table 5, a ‘X’ indicates
that the feature is used and ‘-’ otherwise.

The prediction performances measured by auc-pr are re-
ported in the last row in Table 5. Using all the five features,
the prediction achieved auc-pr of 0.599. The following ob-
servations are made:

• Removal of number of friends resulted in significant
drop in prediction performance to 0.044 indicating that
number of friends is the most important factor that af-
fects a blogger’s cascade affinity. We validated this by
performing another experiment using only the number



Table 5: Feature set notations and prediction performance in AUC-PR
Features/AUC-PR/Feature set ALL A-NF A-PP A-NP A-CF A-ET
Number of friends X - X X X X
Popularity of participants X X - X X X
Number of participants X X X - X X
Citing factor X X X X - X
Elapsed time X X X X X -

AUC-PR 0.599 0.044 0.584 0.595 0.603 0.598
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Figure 9: Precision-Recall Curves for different fea-
tures.

 0

 0.2

 0.4

 0.6

 0.8

 1

-1.2 -1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4

P
re

ci
si

on
, R

ec
al

l a
nd

 F
1-

m
ea

su
re

Threshold

Precision
Recall

F1-measure

Figure 10: Precision, Recall and F1-measure for “A-
CF”.

of friends as feature. The result auc-pr in this case is
0.445.

• Removal of either popularity of participants, number of
participates, or elapsed time led to a very small perfor-
mance degradation. These three features indeed con-
tributed to the cascade affinity modeling.

• An interesting observation is that removal of the cit-
ing factor led to a better auc-pr than using all the
five features. This result clearly indicate that the cit-
ing factor introduced noise in the prediction, which
is consistent with our anova test results reported in
Section 4.6. The remaining four features: number of
friends, popularity of participants, number of partici-
pates, and elapsed time achieved the best performance.

For the completeness of the results, Figure 9 plots the
Precision-Recall curves of using six different feature sets.
All the five runs (except for“A-NF”) achieved almost perfect
precision before recall reached 0.57. Sharp drop of precision
is then observed along with the increase of recall.

Figure 10 shows the precision, recall and F1-measure by
varying the threshold for the feature set “A-CF”, which has
the best prediction performance among all the approaches.
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Figure 11: Significance of time for modeling number
of friends.

Significance of time for modeling number of friends.
Recall that in Section 4.2, we illustrated the significance of
time in modeling the number of friends. To justify the good-
ness of our solution, we compared it with the approach that
ignores time. Specifically, if we discard temporal issue in
modeling quasi-friends then the definition of Γi(α) (the set
of blogs having α friends in cascade ci) is modified as follows.

Γi(α) = {bj

∣∣|Fj(T
∗)

⋂
φi| = α}

We updated the number of friends feature in each can-
didate vector using the above formula. Using the updated
feature vectors, we performed the prediction again. The
performance of ignoring the time in quasi-friend identifica-
tion shows a small auc-pr 0.203 whereas our proposed solu-
tion achieves 0.599. The comparison between the Precision-
Recall curve of this approach and our proposed solution is
shown in Figure 11. Both of the curves use all the five
features. “FRTM” represents the approach that discards
the temporal aspects in number of friends. It is clear that
time is an important factor in quasi-friend identification as
it achieved significantly better prediction compared to the
approach that ignores time.

Prediction of top-k bloggers. To study the prediction
of accuracy of top-k blogs that are inclined to join a cascade,
we computed the precision of our approach to retrieve top-k
bloggers ranked based on the predicted scores. Specifically,
for each cascade ci having more than k positive samples, we
generate the top-k predicted blogs and compute the preci-

sion as follows: Pri(k) =
#true positive

k
. Then for a given

k, we compute the average precision, denoted as Pravg(k),
using the following formula.

Pravg(k) =

∑
|φi|≥k Pri(k)∣∣{ci

∣∣|φi| ≥ k}
∣∣

Table 6 shows average precision values for different k val-
ues highlighting the goodness of our approach. Note that



predicted 

score

target 

cascade ID
candidate blog URL of the posts that joined the target cascade

0.8856 3442 http://redux.quinews.com http://redux.quinews.com/2008/06/nba-finals-game-1-react/ 

0.8854 532 http://redux.quinews.com http://redux.quinews.com/2008/06/cohens-on-race-and-politics/ 

0.8852 4530 http://redux.quinews.com http://redux.quinews.com/2008/06/google-launching-gmail-labs-tonight/ 

0.8844 1032 http://genealogy.darlingranges.com http://genealogy.darlingranges.com/genealogy-2008-05-06-181713/ 

0.8841 5411 http://politics.nuovoportale.com http://politics.nuovoportale.com/huffpo-mccain-mooched-off-the-vietnamese-taxpayers

0.8841 4705 http://redux.quinews.com http://redux.quinews.com/2008/05/spencer-tunick-section-2008-people-at-the/ 

0.8841 7230 http://www.dailynewscaster.com http://www.dailynewscaster.com/2008/06/16/orbiting-the-blogoshpere-2/ 

0.884 2039 http://redux.quinews.com http://redux.quinews.com/2008/05/haze-review-610-score-swedish-gamereactor/ 

0.8839 2822 http://www.francislarkin.com http://www.francislarkin.com/2008/06/fivethirtyeightcom-electoral-projections-done-right

0.8836 5933 http://redux.quinews.com http://redux.quinews.com/2008/05/does-chyler-leigh-sex-tape/ 

Figure 12: Top 10 candidates that are most probable to join a cascade.

Table 6: Average precision versus top-k.
k 1 2 3 4 5
Pravg(k) 0.970 0.783 0.707 0.734 0.750

Pravg(k) may not monotonically decrease with increasing k
as the number of cascades in the denominator depends on
k. Figure 12 shows the top-10 candidate blogs over entire
cascades collection. If the candidate is a positive sample, we
also showed the corresponding url of the post that joins the
target cascade.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we analyzed a large publicly available collec-

tions of blog information, to investigate bloggers’ behavior
and interaction with blog cascades. We have identified in
total five features, namely number of friends, popularity of
participants, number of participants, time elapsed since the
genesis of the cascade, and citing factor of the blog, that may
play important role in predicting blog cascade affinity so as
to identify most easily influenced bloggers. Such bloggers
play important role in several real-world applications such
as viral marketing. Note that our proposed features are de-
rived from structural information of the cascades without
any content analysis of posts/blogs. We performed anova
test on these features and showed that all of them, except
citation factor, have significant impact on cascade affinity.
The cascade affinity prediction is then formulated as a clas-
sification task and svm classifier is employed in our experi-
ments. Using the prediction scores from svm, the candidate
blogs can be ranked according to their probability of join-
ing a cascade. We have evaluated different combinations of
the features and our results on cascade affinity prediction
is consistent with the anova test. The four features that
have significant impact on cascade affinity achieved the best
prediction accuracy of 0.603 measured by auc-pr. Our ex-
perimental results also showed that the number of friends
plays a significant role in blog cascade affinity prediction.

As part of future work, we intend to investigate how to ex-
ploit cascade contents effectively along with structural fea-
tures for predicting cascade affinity. In particular, recent
results showed that cascade types may indicate the genre of
the content in a cascade [16]. We wish to exploit them in
the context of cascade affinity prediction.
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