
Towards Non-Directional XPath Evaluation in a RDBMS

Sourav S Bhowmick† Curtis Dyreson§ Erwin Leonardi† Zhifeng Ng†
†School of Computer Engineering, Nanyang Technological University, Singapore

§Department of Computer Science, Utah State University, USA
{assourav | ngzh0006 | lerwin}@ntu.edu.sg, curtis.dyreson@usu.edu

ABSTRACT
XML query languages use directional path expressions to locate
data in an XML data collection. They are tightly coupled to the
structure of a data collection, and can fail when evaluated on the
same data in a different structure. This paper extends path ex-
pressions with a new non-directional axis called the rank-distance
axis. Given a context node and two positive integers α and β, the
rank-distance axis returns those nodes that are ranked between α
and β in terms of closeness from the context node in any direc-
tion. This paper shows how to evaluate the rank-distance axis
in a tree-unaware XML database. A tree-unaware implementation
does not invade the database kernel to support XML queries, in-
stead it uses an existing RDBMS such as Microsoft’s SQL server as
a back-end and provides a front-end layer to translate XML queries
to SQL. This paper presents an overview of an algorithm that trans-
lates queries with a rank-distance axis to SQL.
Categories and Subject Descriptors: H.2.4 [Database Manage-
ment]: Systems – Relational databases.
General Terms: Algorithms, Design, Experimentation.
Keywords: XML, non-directional axis, XPath, rank distance, tree-
unaware RDBMS.

1. INTRODUCTION
A wealth of existing literature has extensively studied evaluation

of various navigational axes in XPath expressions in a relational
environment [5]. These well-studied axes are all directional since
they locate nodes in a fixed direction relative to a context node (e.g.,
the descendent axis corresponds to the “down” direction). Unfor-
tunately, queries that rely on directional axes become dependent on
the data being in the specified direction, even though data has no
“natural” direction and can be organized in different hierarchies.
Users who are unfamiliar with a document structure or are knowl-
edgeable about a structure which subsequently changes will some-
times formulate unsatisfiable queries, which are queries that fail
to produce desired results. In contrast to incorrect queries, which
result in a compilation error, unsatisfiable queries are difficult to
debug since they run to completion and produce a result, though
not the intended or desired result.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

league

arena

teamname founded

division

1 2

5 6

7 8 9

name

10 11

founded players

player player

positionname nationality positionname nationality

“NBA” “1946”

“Rockets” “southwest” “Toyota

Center”
“1967”

“Mutombo” “center” “Congo” “Wells” “guard” “US”

12

3 4

league

nationality

playername founded

position

1 2

5

6 7 8 9

name

10 11

founded

team

player

teampositionname nationality

name

“NBA” “1946”

“Rockets” “southwest” “Toyota

Center”
“1967”

“Mutombo” “center” “Congo”

“Nash” “guard”

12

3 4

name division arena foundeddivision arena

“US”

“Maveric” “southwest” “AI

center”
“1980”

13 14 15 16

(a) XML document

(b) Restructured XML document

e1 e2 e3 e4 e5

e6

e7e8

e9
e10

e11 e12 e13 e14 e15 e16

c1

team

Figure 1: Examples of XML data.

As an example of the directional nature of XPath queries, con-
sider the XML document in Figure 1(a) containing league infor-
mation organized by teams. Each team consists of a set of play-
ers. Suppose that a user, Sally, wishes to find the names of teams
in the southwest division founded prior to 1970. Sally can issue
the following XPath query to retrieve desired information: Q1:
//team[division=’southwest’ and founded<1970]
/name. Suppose now that Sally wishes to also find the names of
the players for the teams, she can issue another query Q2:
//team[division=’southwest’ and founded<1970]
//player/name, to retrieve this information. Finally, the name
of the league the teams play for can be retrieved by issuing the fol-
lowing query Q3: /league/name. Note that these three XPath
fragments can be combined into a single XPath query using the
union operator (Q1|Q2|Q3), or combined in a single XQuery
query.

To properly formulate these queries, Sally has to know some-
thing about the hierarchical structure of the XML data. For instance,
she must know that the player elements are descendants of a
team element and information related to the name of a team is
available in some part of the team subtree. Furthermore, the name
of a league is available in the league subtree. This subtree also
includes information related to teams and players. But if Sally mis-
understands the structure or if the structure changes over time then
this partial knowledge may not be useful anymore for formulating
satisfiable queries as demonstrated below.

Assume that the XML document in Figure 1(a) is now reorga-
nized to the structure depicted in Figure 1(b). Now the league in-
formation is organized according to players instead of teams. Both
documents contain the same data and same element labels but they
have different hierarchical relationships. These documents may re-
flect the scenario where (a) the structure of a document has evolved
into another or (b) two different sources represent similar data in
different hierarchies. Due to the lack of non-directional axes in
XPath, for some queries different path expressions are needed to
query each hierarchy. Consequently, some of the above XPath frag-
ments may become unsatisfiable on the document in Figure 1(b).
Sally has to formulate a different set of XPath fragments to retrieve
relevant information. For instance, Q2 needs to be replaced now
with the following query Q′2: //player[team/division=
’southwest’ and team/founded<1970]/name.

At first glance, it may seem that the above structural heterogene-
ity can be addressed by simply appending Q′2 to the XPath query
over the document in Figure 1(a) using the union operator. While
this approach surely works, it is not a practical solution as it re-
quires a user to be familiar with the structural heterogeneities of
different XML documents. This is unrealistic to expect from users
as such “structure-awareness" does not scale with increasing struc-
tural heterogeneity. Is it possible to retrieve the above information
using a single query without being aware of the underlying struc-
tural heterogeneities of elements? Ideally, such a query technique
should work even if the document structure is reorganized. In or-
der to answer this question affirmatively, in this paper we propose
a new XPath axis called rank-distance axis, which enables us
to locate all elements around the context node within a specified
distance in any direction.

2. RANK-DISTANCE AXIS
Reconsider the XPath queries in Section 1 over the XML docu-

ments in Figure 1. To retrieve players’ information in Figure 1(a),
a query has to navigate down from the team node. On the other
hand, in Figure 1(b), the direction of navigation is reversed. Con-
sequently, a key reason for the brittleness of these queries is the
directional nature of classical XPath axes. We address this issue in
this paper by extending XPath language with a non-directional axis
called rank-distance.

Informally, given a context node c and two positive integers α
and β where α ≤ β, the rank-distance axis returns those
nodes that are ranked between α and β from the context node based
on their “closeness" from c. Here “closeness” is measured by the
distance from the context node in any direction in the XML tree.
Informally, the distance between nodes u and v is the number of
edges in the unique, simple undirected path between u and v. For
example, assume that the team and name nodes in Figure 1(a)
are the context and test nodes, respectively. Observe that the name
of a team is closest to the team node (at distance one). The sec-
ond most closest node is the name of the league (at distance two).
Lastly, the name node(s) that are furthest from the context node are
the names of the players (at distance three). Hence, if α = 1 and
β = 3 for a rank-distance query Q involving these context
and test nodes, then all the above name nodes are part of the an-
swer set. Observe that Q will retrieve the same information when
it is evaluated over Figure 1(b) as well. More importantly, a user
does not need to be aware of the structural relationship between
the context and test nodes. By arbitrarily manipulating α and β,
he/she can retrieve relevant information from a collection of struc-
turally heterogeneous XML documents. The formal definition of
the rank-distance axis is given in [7].

The syntax for expressing rank-distance nodes is of the form

rank-distance::NodeTest[α to β]. We refer to α and
β as lower and upper rank, respectively. For example, consider the
query Q4: //team [founded <’1970’]/rank-distance
::name[1, 3] on the document in Figure 1(a). It returns the
nodes e1, e8, e11, and e14. These nodes contain information related
to the name of the league, the names of teams which were founded
before 1970, and their players’ names. Similar to traditional XPath
axes, the results of rank-distance axis are in document or-
der. Hence, the output of the above example will be [name:NBA,
name:Rockets, name:Mutombo, name:Wells, . . .]. At first glance
it may seem that sorting the results by distance instead of docu-
ment order is a more appropriate choice. However, introducing a
distance-based ordering would impact evaluation of subsequent lo-
cation steps. Hence we decided to use document order.

Note that Q4 will also return the name element of each of the
remaining teams (denoted as e′) as its distance from the context
node c1 is also three. However, this may not be desirable for cer-
tain applications. Fortunately, we can easily filter out e′ by post-
processing the result set using node type information. Specifically,
both e1 and e′ have same node type (league.team.name) but
different ranks with respect to c1 (1 and 3, respectively). Hence,
for nodes with identical types we can filter out irrelevant nodes by
selecting the one with lowest rank (e1) as part of the result set.

Now consider the XML document in Figure 1(b). Although the
document structure of Figure 1(b) is different, Q4 returns the above
information when evaluated on this document. Specifically, in this
case the first team element is the context node and it will return the
name elements of team, league and players (e.g., Mutombo)
as they are ranked 1, 3, and 2, respectively, based on the distance
from the context node. Hence, the output in document order will
be [name:NBA, name:Mutombo, name:Rockets, . . ., name:NBA,
name:Wells, name:Rockets, . . .]. Note that in this case there is no
need to post-process the result set based on node types.

Remark. Reconsider the XPath queries in Section 1 over the
documents in Figure 1. In order to ensure Q2 is satisfiable on the
document in Figure 1(b), Sally needs to modify the axis of one or
more steps in Q2 or rearrange the labels to satisfy document hi-
erarchy. As mentioned earlier, this requires partial knowledge of
the underlying document(s). In contrast, in a rank-distance query
a user does not need to undertake such modifications. He/she can
explore different results of the query by setting different values for
α and β. Intuitively, this has lesser cognitive overhead as a user
does not need to have knowledge of the underlying document struc-
ture. In the next section, we shall see that our proposed evaluation
strategy supports such exploratory querying by exploiting the pre-
viously computed answer set whenever a user modifies α or β.

3. OVERVIEW OF RANK-DISTANCE AXIS
EVALUATION

Our proposed algorithm for evaluation of a rank-distance
axis is built on top of the SUCXENT++ system [3, 11], a tree-
unaware relational approach designed primarily for read-mostly
workloads. Different from other encoding schemes, namely pre-
post encoding and Dewey numbering [5], SUCXENT++ uses a novel
numbering scheme that only explicitly encodes the leaf nodes and
the levels of the XML tree. Internal nodes are encoded implicitly.
Also, this scheme does not require a relational back-end to support
SQL/XML standard or XML data type. It can be effectively used,
without any further extension, to evaluate the rank-distance
axis. This feature is important as queries with non-directional axis
should seamlessly blend with conventional XPath processing.

In SUCXENT++, each level ` of an XML tree is associated with

DocID

1

1

1

1

1

1

1

1

1

1

1

1

Leaf

Order

1

2

3

4

5

6

7

8

9

10

11

12

Branch

Order

0

1

1

2

2

2

2

4

4

3

4

4

Path

ID

1

2

3

4

5

6

7

8

9

7

8

9

Dewey

Order

Sum
0

919

1838

1839

1940

1991

2042

2043

2044

2047

2048

2049

Sibling

Sum

0

0

0

0

0

0

0

0

0

5

5

5

Leaf

Value

NBA

1946

Rocket

southwest
Toyota

Center
1967

Mutombo

center

Congo

Wells

guard

US

Path

ID
1

2

3

4

5

6

7

8

9

PathExp

.league#.name#

.league#.founded#

.league#.team#.name#

.league#.team#.division#

.league#.team#.arena#

.league#.team#.founded#

.league#.team#.players#.player#.name#

.league#.team#.players#.player#.position#

.league#.team#.players#.player#.nationality#

DocID

1

1

1

1

Level

1

2

3

4

RValue

460

26

3

1

DocID

1

Name

NBA.xml

Path PathValue

Document

DocumentRValue

Figure 2: Relations in SUCXENT++.

an attribute called RValue. Each leaf node n is associated with
four attributes, namely LeafOrder, BranchOrder, DeweyOrderSum,
and SiblingSum. The LeafOrder captures the document order of a
leaf node. The BranchOrder of n is the level of the nearest com-
mon ancestor (NCA) of this node and the preceding leaf node. The
DeweyOrderSum is used to encode a node’s order information to-
gether with its ancestors’ order information using a single value.
Each non-leaf node n′ is implicitly assigned the DeweyOrderSum

of the first descendant leaf node. The SiblingSum attribute is intro-
duced to evaluate position predicates with name test. The reader
may refer to [3, 11] for detailed description of these attributes and
the role they play in XPath evaluation. This encoding information
is captured by the schema of SUCXENT++ as shown below. Fig-
ure 2 depicts an example of storage of XML representation of league
data (Figure 1(a)) in SUCXENT++.

• Document(DocID, Name)

• Path(PathId, PathExp)

• PathValue(DocID, DeweyOrderSum, PathId, BranchOrder,

LeafOrder, SiblingSum, LeafValue)

• Attribute(DocID, LeafOrder, PathId, LeafValue, AttrOrder)

• DocumentRValue(DocID, Level, RValue)

Algorithm 1 depicts the algorithm for SQL query translation. For
simplicity, in the sequel we assume that an XPath expression has
a single rank-distance axis and parent-child directional axis.
Note that our strategy can be extended to expressions containing
multiple rank-distance axes and we plan to explore this ex-
haustively in the future. The algorithm consists of the following
phases. We briefly describe them in turn. The reader may refer
to [7] for detailed description of the algorithm.

Phase 1: XPath Decomposition. In this phase, the algorithm
splits the XPath expression P into two types of XPath compo-
nents (Algorithm 1, Line 01). One of them represents the XPath
fragments that do not contain a rank-distance axis and the
other represents the rank-distance axis expressions. For ex-
ample, consider the expression P = /league/team/rank-
distance::name[1 to 3] over the XML document in Fig-
ure 1(a). In this phase, P is split into the fragments E1 and E2 rep-
resenting /league/team and //name, respectively. Note that
we transform rank-distance::NodeTest into //NodeTest
as the rank-distance axis is non-directional and the path of
NodeTest cannot yet be determined.

Phase 2: Directional XPath to SQL Translation. Next, the al-
gorithm invokes the SQL translation algorithm for the XPath ex-
pression without a rank-distance axis in Line 02 in Algo-
rithm 1. Since this algorithm has already been described in [3, 11],
we do not elaborate on this further. Here we focus our attention on
the translation of the rank-distance axis component.

Phase 3: NCA Computation. In Algorithm 1, Line 03 is used
to generate an SQL query to determine the level of the NCA using

Algorithm 1: The RankDistance algorithm.
Input: XPath P
Output: Translated SQL Srd

(E1, E2) ← decomposeXPath(P) ;1
S1 ← translate(E1) ;2
S2 ← SQLToFindNCA(S1, E1, E2) ;3
S3 ← SQLToComputeDistance(E1, E2) ;4
S4 ← SQLForRankDistance() ;5
Srd ← finalTranslatedSQL(S2, S3, S4) ;6
return Srd7

S1, E1, and E2 as input. The idea is to find the level of the NCA
of the context node (in our example, team node) and the test node
(name node). This is achieved by exploiting the DeweyOrderSum,
BranchOrder, and RValue attributes of SUCXENT++.

Phase 4: Ranked Distance Computation. The next step is to
compute the ranked distances between the context and test nodes
(Algorithm 1, Line 04). Intuitively, we can compute the distances
of only those nodes that have rank at most β based on their dis-
tances from the context node. The advantage of this approach is
that it is not necessary to compute and rank distances of all test
nodes. However, if a user wishes to explore more results by modi-
fying values of α or β then the algorithm may have to either com-
pute new results incrementally or from scratch. Hence, we first
compute distances of all pairs of context and test nodes for the
query and rank them. Then, nodes satisfying user-specified α and
β values can be efficiently retrieved using a simple SELECT query
(achieved in Phase 5). Note that this approach supports efficient
exploratory query evaluation as the ranks of all relevant nodes have
been already computed. Also, observe that the algorithm computes
distance information of relevant nodes “on-the-fly" for generating
the answer set. Consequently, there is no overhead of computing,
maintaining, and storing distance information (O(n2) space com-
plexity) a priori.

Next, the algorithm ranks the test nodes based on their distances
from the context node (Algorithm 1, Line 05) by invoking the SQL-
ForRankDistance function. Here we exploit the ranking function
"DENSE_RANK"1 of an industrial-strength RDBMS.

Phase 5: SQL Merge. At this point of time, we have three SQL
queries, namely, S2, S3, and S4. The finalTranslatedSQL func-
tion combines these SQL queries to generate the final translated
query of P (Algorithm 1, Line 06). We illustrate this procedure
using the running example discussed in Phase 1. Figure 3 depicts
the final translated SQL query. Lines 01–19 are used to determine
the level of the NCA. In particular, Lines 06 and 13 exploit the
DeweyOrderSum and RValue values to determine the level of NCA
of the context and rank-distance nodes. The MINVAL function
(Line 15) is used to compute the minimum value between the level
of the context node, and the level of the test nodes, computed by in-
voking the user-defined SQL function computeLevel. The distances
between context nodes and test nodes are computed by Lines 20–
24. It first determines the node labels of the context and test nodes
and then compute the distance using the user-defined SQL func-
tion computeDistance. Lines 25–28 rank the test nodes based on
their distance (Phase 4). Lines 29-39 return tuples containing pairs
of context nodes and the test nodes satisfying the lower and upper
ranks.

The algorithm for Phase 5 includes two optional steps which are
common to producing results in real-world queries. First, it extends

1The "DENSE_RANK" is part of the SQL:1999 OLAP amendment.

01 WITH S2 (V1DEWEYORDERSUM, V1PATHID, V1.BRANCHORDER, V2DEWEYORDERSUM, V2PATHID, NCALEVEL) AS (
02 SELECT V1.DEWEYORDERSUM, V1.PATHID, V1.BRANCHORDER, V2.DEWEYORDERSUM, V2.PATHID,
 MAX(RX.LEVEL+1) AS NCA_LEVEL
03 FROM DOCUMENTRVALUE RX, PATHVALUE V1, PATHVALUE V2
04 WHERE V1.PATHID IN (5,4,6,3,7,9,8) AND V1.BRANCHORDER < 2
05 AND V2.PATHID IN (1,3,7)
06 AND V2.DEWEYORDERSUM BETWEEN V1.DEWEYORDERSUM - CAST(RX.RVALUE AS BIGINT) + 1
 AND V1.DEWEYORDERSUM + CAST(RX.RVALUE AS BIGINT) - 1
07 AND V1.DEWEYORDERSUM <> V2.DEWEYORDERSUM
08 GROUP BY V1.DEWEYORDERSUM, V1.PATHID, V1.BRANCHORDER, V2.DEWEYORDERSUM, V2.PATHID
09 UNION
10 SELECT DISTINCT V1.DEWEYORDERSUM, V1.PATHID, V1.BRANCHORDER, V2.DEWEYORDERSUM, V2.PATHID, 1

AS NCA_LEVEL
11 FROM PATHVALUE V1, PATHVALUE V2
12 WHERE V1.PATHID IN (5,4,6,3,7,9,8) AND V1.BRANCHORDER < 2
13 AND V2.PATHID IN (1,3,7) AND ABS(V1.DEWEYORDERSUM - V2.DEWEYORDERSUM) >= 460
14 UNION
15 SELECT DISTINCT V1.DEWEYORDERSUM, V1.PATHID, V1.BRANCHORDER, V2.DEWEYORDERSUM,
 V2.PATHID, MINVAL(2, computeLevel('.name#', P.PATHEXP)) AS NCA_LEVEL
16 FROM PATHVALUE V1, PATHVALUE V2, PATH P
17 WHERE V1.PATHID IN (5,4,6,3,7,9,8) AND V1.BRANCHORDER < 2 AND V2.PATHID IN (1,3,7)
18 AND V2.PATHID = P.PATHID AND V1.DEWEYORDERSUM = V2.DEWEYORDERSUM
19),

20 S3 (V1DEWEYORDERSUM, V1PATHID, V1BRANCHORDER, V2DEWEYORDERSUM, V2LEVEL, DISTANCE) AS (
21 SELECT B.V1DEWEYORDERSUM, B.V1PATHID, B.V1BRANCHORDER, B.V2DEWEYORDERSUM,
 computeLevel('.name#', P1.PATHEXP), comput eDistance(B.NCALEVEL,
 '.name#', P1.PATHEXP, '.team#', P2.PATHEXP) AS DISTANCE
22 FROM [S2] B, PATH P2 , PATH P1
23 WHERE B.V2PATHID = P2.PATHID AND B.V1PATHID = P1.PATHID
24),
25 S4 (V1DeweyOrderSum, V2DeweyOrderSum, DISTANCE, RANK) AS (
26 SELECT C.V1DeweyOrderSum, C.V2DeweyOrderSum, C.DISTANCE,
 DENSE_RANK() OVER(PARTITION BY C.V1DeweyOrderSum ORDER BY C.DISTANCE)
27 FROM [S3] C
28)
29 SELECT DISTINCT C.V1DeweyOrderSum, U.LeafVALUE, V.*
30 FROM [S4] X, [S3] C, PATHVALUE U, DOCUMENTRVALUE R, PAT HVALUE V
31 WHERE C.V1DeweyOrderSum = X.V1DeweyOrderSum AND C.DISTANCE = X.DISTANCE
32 AND C.V2DeweyOrderSum = X.V2DeweyOrderSum
33 AND U.DEWEYORDERSUM = C.V1DeweyOrderSum AND U.BRANCHORDER = C.V1BRANCHORDER
34 AND U.PATHID = C.V1PATHID AND V.PATHID = C.V2PATHID
35 AND R.LEVEL = (C.V2LEVEL - 1)
36 AND X.RANK BETWEEN 1 AND 3
37 AND V.DeweyOrderSum BETWEEN C.V2DeweyOrderSum - CAST(R.RVALUE AS BIGINT) + 1
 AND C.V2DeweyOrderSum + CAST(R.RVALUE AS BIGINT) - 1
38 ORDER BY C.V1DeweyOrderSum, V.DEWEYORDERSUM
39 OPTION (FORCE ORDER)

Figure 3: Final SQL query generated by Algorithm 1.

the query result to include all of the nodes in the subtree rooted at
the test nodes by performing an additional join with the PathValue

table (denoted as V). Second, the context node values are added
to the result through another join with the PathValue table (denoted
as U). Line 38 sorts the result according to the document order.
Line 39 enforces the join order option due to performance benefits
as highlighted in [6, 11].

4. RELATED WORK
Our objective to flexibly issue XML queries independent of the

structure is shared by several recent papers [1, 2, 4, 8]. [4] presents
a semantic search engine for XML. The search relies on an inter-
connection relationship to decide whether nodes are semantically
related. Two nodes are interconnected if and only if the path be-
tween them contains no other node that has the same label as the
two nodes. [8] proposes a schema-free XQuery, facilitated by a
Meaningful Lowest Common Ancestor Structure (MLCAS) opera-
tion. Both these techniques are similar to the “closest” relationship
between nodes. Unlike rank-distance axis, these approaches
do not retrieve nodes based on distances from the context node.
Furthermore, these approaches do not leverage on relational tech-
nology for structure-independent query evaluation.

Recently, several XML keyword search techniques [9, 10, 12]
have been proposed to offer more user-friendly solution for retriev-
ing relevant results. Essentially, these approaches return vari-
ants of the subtree rooted at the lowest common ancestor (e.g.,
VLCA, SLCA) of all the keywords. Due to the lack of expressivity
and inherent ambiguity of keyword search, several techniques have
been also been developed to infer and retrieve relevant results for
a search query [9, 10]. Our work differs from the keyword search
paradigm in the following ways. Firstly, we retrieve nodes based
on distances from the context node and not the entire LCA-variant
of all the keywords. Note that existing keyword search strategies
do not exploit node distances for retrieving results. Secondly, as a
rank-distance query is an extension of conventional XPath query, it
can impose more complex predicates compared to keyword search
queries. Furthermore, it does not suffer from expressivity and am-
biguity issues similar to keyword search.

More germane to this work is the effort by Zhang and Dyre-
son [13]. They extended the XPath language with a symmetric lo-
cator, called the closest axis, which locates nodes that are closest
to a context node. The authors focused on the syntax and seman-
tics of closest axis and showed how the closest axis can be im-
plemented using main-memory and a native XML DBMS. It was
shown that this axis can replace many directional steps in path ex-
pressions in XML queries. Our work differs from this effort in the
following ways. First, rank-distance is a more generic non-

directional axis compared to the closest axis. Not only it can find
closest node(s) (by setting α and β to one) but also nodes that are
further away from the context node. Second, in [13] the closest
node types are computed prior to query execution and stored in a
special index to facilitate closest axis evaluation. In contrast, in our
proposed approach the node distances are computed on-the-fly dur-
ing query execution. Third, closest axis is built on top of a native
XML database whereas we show how an industrial-strength RDBMS
can be exploited effectively to support a non-directional XPath axis.

5. CONCLUSIONS
In this paper, we present a relational-based strategy to evaluate a

non-directional XPath axis, called the rank-distance axis, to
locate nodes that are within the specified distance range with re-
spect to a context node. The rank-distance axis is useful for
formulating XML queries in an environment where there is insuffi-
cient familiarity with an underlying XML document’s structure or
changes to the structure. Our scheme is built on top of the SUCX-
ENT++ system. It exploits the encoding scheme of SUCXENT++
and ranking facility of an off-the-shelf RDBMS to effectively com-
pute the distances between pairs of nodes and rank them in order
to compute rank-distance nodes. In this context, we presented an
overview of an XPath-to-SQL translation algorithm to translate a
rank-distance axis query to its equivalent SQL form.

6. REFERENCES
[1] S. AMER-YAHIA, S. CHO, ET AL. Tree Pattern Relaxation. In EDBT , 2002.
[2] S. AMER-YAHIA, L. LAKSHMANAN, S. PANDIT. Flexpath: Flexible

Structure and Full-Text Querying for XML. In SIGMOD, 2004.
[3] S. S. BHOWMICK, E. LEONARDI, H. SUN. Efficient Evaluation of

High-Selective XML Twig Patterns with Parent Child Edges in Tree-Unaware
RDBMS. In CIKM, 2007.

[4] S. COHEN, J. MAMOU, Y. KANZA, AND Y. SAGIV. XSEarch: A Semantic
Search Engine for XML. In VLDB, 2003.

[5] G. GOU, R. CHIRKOVA. Efficiently Querying Large XML Data Repositories:
A Survey. In IEEE TKDE, 19(10), 2007.

[6] T. GRUST, J. RITTINGER, J. TEUBNER. Why Off-the-Shelf RDBMSs are
Better at XPath Than You Might Expect. In SIGMOD , 2007.

[7] E. LEONARDI, S. S. BHOWMICK, Z. NG, C. DYRESON. Symmetric XPath
Processing in a Tree-Unaware RDBMS. Technical Report, 2008. Available at
www.cais.ntu.edu.sg/~assourav/TechReports/
RankDistance-TR.pdf.

[8] Y. LI, C. YU, AND H. V. JAGADISH. Schema-Free XQuery. In VLDB, 2004.
[9] Z. LIU, Y. CHEN. Identifying Meaningful Return Information for XML

Keyword Search. In SIGMOD, 2007.
[10] Z. LIU, Y. CHEN. Reasoning and Identifying Relevant Matches for XML

Keyword Search. In VLDB, 2007.
[11] B.-S SEAH, K. G. WIDJANARKO, S. S. BHOWMICK, ET AL. Efficient

Support for Ordered XPath Processing in Tree-Unaware Commercial
Relational Databases. In DASFAA, 2007.

[12] Y. XU, Y. PAPAKONSTANTINOU. Efficient Keyword Search for Smallest
LCAs in XML Databases. In SIGMOD, 2005.

[13] S. ZHANG AND C. DYRESON. Symmetrically Exploiting XML. In WWW,
2006.

