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ABSTRACT
Social influence analysis in online social networks is the study of
people’s influence by analyzing the social interactions between in-
dividuals. There have been increasing research efforts to under-
stand the influence propagation phenomenon due to its importance
to information dissemination among others. Despite the progress
achieved by state-of-the-art social influence analysis techniques, a
key limitation of these techniques is that they only utilize positive
interactions (e.g., agreement, trust) between individuals, ignoring
two equally important factors, namely, negative relationships (e.g.,
distrust, disagreement) between individuals and conformity of peo-
ple, which refers to a person’s inclination to be influenced.

In this paper, we propose a novel algorithm CASINO (Conformity-
Aware Social INfluence cOmputation) to study the interplay be-
tween influence and conformity of each individual. Given a so-
cial network, CASINO first extracts a set of topic-based subgraphs
where each subgraph depicts the social interactions associated with
a specific topic. Then it optionally labels the edges (relationships)
between individuals with positive or negative signs. Finally, it
computes the influence and conformity indices of each individual
in each signed topic-based subgraph. Our empirical study with
several real-world social networks demonstrates superior effective-
ness and accuracy of CASINO compared to state-of-the-art meth-
ods. Furthermore, we revealed several interesting characteristics of
“influentials” and “conformers” in these networks.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Information Filtering; J.4 [Computer Applications]:
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General Terms
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Figure 1: Social influence propagation scenario.

1. INTRODUCTION
Though the field of social network analysis (SNA) has developed

over many years, it is with the recent emergence of large-scale on-
line social networking applications that techniques from this area
have received a great deal of attention. We are now faced with the
opportunity to analyze social network data at unprecedented lev-
els of scale and temporal resolution. In this paper, we present our
work towards addressing one of the challenges, namely the social
influence analysis problem.

The goal of social influence analysis is to study individuals’ in-
fluence by analyzing the social interactions. By identifying the
“influentials” in a social network, users may be able to maximize
the influence of a piece of information [6]. Informally, influentials
are those individuals whose opinions or advices are often accepted
and supported by others. For instance, Kempe et al. [6] proposed a
greedy algorithm which aimed to find a limited number of influen-
tials from whom the information diffusion can be maximized.

Recently, social networks are viewed as signed networks [7],
where social interactions involve both positive and negative rela-
tionships. Consider the signed network in Figure 1 depicting inter-
actions between a set of individuals. An edge pointing from u to v
denotes that person u trust/agree (resp., distrust/disagree) person v.
An edge representing trust relationship is labeled as positive (e.g.,
−→uv), otherwise negative (e.g., −→wv). Note that social influence flows
in the opposite direction of the edges (i.e., v influenced u and w).

A closer analysis of social influence phenomenon in signed net-
works reveals that there are three important factors. Firstly, an in-
dividual’s ability to influence others (e.g., v). Secondly, the nature
of social interactions (positive/negative) between individuals (e.g.,
−→uv, −→wv). Lastly, conformity of an individual, which is a person’s in-
clination to be influenced by others [2]. Note that an individual’s
ability to influence or conform is context-sensitive. For example, in
Figure 1 u conforms to v’s opinion on iPad 2 . However, it does not
necessarily mean that u will always conform to v on any topic. For
instance, u may not agree with v on conversation related to salsa
dancing as u may believe that she is a better dancer than v.

Despite the benefits of the state-of-the-art social influence anal-
ysis techniques, a key limitation is their inability to systematically
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Figure 2: Conformity and negative edge effect.

exploit the aforementioned second and third factors for superior
analysis. Consider the two signed networks in Figure 2 where an
edge −→uv with positive (resp., negative) sign indicates u trust (resp.,
distrust) v. The shadowed part depicts the conformity of individuals
u1 and u2. Specifically, u1 is easily convinced by others whereas u2
is not. Thus, it is easier for v1 to influence u1 than v2 to influence
u2. However, state-of-the-art approaches have ignored this issue
and failed to differentiate between these two cases. Thus, they may
compute the same influence score for v1 and v2. However, an indi-
vidual’s influence should be increased if a larger number of users
conform to her (positive interactions) but decreased if she is dis-
trusted by many individuals (negative interactions).

We propose a novel algorithm called CASINO (Conformity-Aware
Social INfluence cOmputation) that somewhat departs from exist-
ing influence analysis techniques in the following way: CASINO
focuses on integrating the interplay of influence and conformity
of individuals for social influence analysis by exploiting the posi-
tive and negative signs of edges. To the best of our knowledge, we
are the first to study the interplay of influentials and conformers
with the goal of social influence analysis. Additionally, CASINO is
context-aware, allowing the same individual to exhibit different in-
fluence and conformity over different topics of social interactions.

Given a social network, if it is a context-aware one, then CASINO
first extracts a set of topic-based subgraphs. Each subgraph de-
picts the social interactions between individuals associated with a
specific topic. Since the edges of a social network may not be al-
ways explicitly labeled with positive or negative signs, CASINO ex-
ploits an existing sentiment analysis technique to label the edges
in each topic-based subgraph. Finally, given a set of signed topic-
based subgraphs, the algorithm iteratively computes the influence
and conformity indices of each individual in each subgraph. By
applying CASINO to real-world online social media sites (Slash-
dot (slashdot.org ), Epinions (www.epinions.com ), and Twit-
ter), we strongly demonstrate the effectiveness and superiority of
CASINO compared to state-of-the-art approaches and at the same
time reveal several interesting characteristics of influentials and
conformers in these sites.

2. RELATED WORK
Leskovec et al. [7] used logistic regression to predict the signs of

edges in signed networks by exploiting 7-dimensional degree fea-
tures and 16-dimensional triad features. Cai et al. [3] proposed
another feature (i.e., influence) aside from the 7-dimensional de-
gree features in [7]. A PageRank-like algorithm was developed to
compute the influence of individual users and then use it as another
feature in an SVM classifier to predict the signs of edges. In con-
trast, we not only study the influence of u on the sign of edge−→uv but
also investigate the conformity of v and its effect on u’s influence.
Moreover, we also enable the same individual to exhibit different
influence and conformity in different topics.

The notion of conformity originated in social psychology and is
defined as yielding to perceived group pressure by copying the be-

havior and beliefs of others [2]. We are inspired by the conformity
study in social psychology and utilize it to enhance social influ-
ence analysis in online social networks. We take into account the
conformity in social influence and propose a model to evaluate the
conformity in a social group.

3. INFLUENCE AND CONFORMITY
In this section, we formally introduce the notion of influence and

conformity in the context of signed social networks.
Social interactions in online social networks can be either posi-

tive (i.e., friendship) or negative (i.e., distrust and opposition). For
instance in Epinions, people can give both positive and negative
ratings to other users. In online discussion sites such as Slashdot,
users can tag other users as “friends” (positive) and “foes” (nega-
tive). In Twitter, the retweet can be a positive or a negative one. In
the following discussion, we treat such social interaction as signed
directed graph.

In a signed social network G(V,E), each edge has a positive or
negative sign depending on whether it expresses a positive or neg-
ative attitude from the generator of the edge to the recipient [7].
A positive sign indicates that the recipient supports the opinion of
the generator whereas the negative sign represents otherwise. For
example, Figure 2(b) depicts a signed social network. The positive
edge E+ = {−−→u2v2} represents trust relationship while the negative
ones (E− = {−−−→w20v2,

−−−→u2w21,
−−−→u2w22,

−−−→u2w23}) represent distrust rela-
tionships. Note that the signs on the edges are not always available
explicitly. In networks such as Epinions and Slashdot, the sign of
each edge is explicitly provided. However, in other networks such
as blogosphere and Twitter the sign of each edge is not explicitly
available. In this case, we need to preprocess the network using
text mining methods to discover signs associated with the links (de-
tailed in Section 4). Consequently, a social network G(V,E) con-
taining both positive and negative edges can be represented using
a pair of graphs G+(V,E+) and G−(V,E−) denoting the induced
graph of positive edges E+ (trust/agreement) and negative edges
E− (distrust/disagreement), respectively.

In our approach, each individual (vertex) in a signed network
is associated with a pair of influence index and conformity index
to describe the power of influence and conformity. Reconsider
the signed network in Figure 2(b). Intuitively, the influence of v2
should increase as aggregated conformity of those who trust v2 (i.e.,
u2) increases. On the other hand, the influence of v2 should de-
crease if the aggregated conformity of those who distrust v2 (i.e.,
w20) increases. Thus, the influence index of an individual should
capture this interplay of influence and conformity and penalize her
whenever necessary.

DEFINITION 1. [Influence Index] Let G+(V,E+) and
G−(V,E−) be the induced graphs of the signed social network
G(V,E). The influence index of vertex v ∈ V , denoted as Φ(v),
is defined as follows.

Φ(v) = ∑
−→uv∈E+

Ω(u)− ∑
−→uv∈E−

Ω(u)

where Ω(u) represents the conformity index of vertex u ∈V .
Similarly, the conformity index of u2 in Figure 2(b) depends on

the influences of vertices which are trusted or distrusted by u2. Intu-
itively, as the aggregated influence of those vertices which u2 trust
(e.g., v2) increases, u2 is more inclined to conform to others. On the
other hand, when the aggregated influence of vertices which u2 dis-
trust (e.g.,, w21,w22,w23) increases, u2 is less inclined to conform
to others. This intuition is captured by conformity index which is
defined as follows.



Algorithm 1: The CASINO algorithm.
Input: Social network G(V,E)
Output: the influence index IA = (ΦA(u1),ΦA(u2), . . . ,ΦA(uℓ)) and

conformity index CA = (ΩA(u1),ΩA(u2), . . . ,ΩA(uℓ)) for
V = {u1,u2, . . . ,uℓ} and for each topic A

1 begin
2 if G is context-aware then
3 G ← extractSubgraph(G);

4 else
5 G = {G};
6 foreach GA ∈ G do
7 if GA is not a signed network then
8 (G+

A (VA,E+
A ),G−A (VA,E−A ))← edgeLabel(GA);

9 (IA,CA)← indicesCompute(G+
A (VA,E+

A ),G−A (VA,E−A ));

DEFINITION 2. [Conformity Index] Let G+(V,E+) and
G−(V,E−) be the induced graphs of the signed social network
G(V,E). The conformity index of vertex u ∈V , denoted as Ω(u), is
defined as follows.

Ω(u) = ∑
−→uv∈E+

Φ(v)− ∑
−→uv∈E−

Φ(v)

where Φ(v) is the influence index of vertex v ∈V .
Thus, according to the above definition the influence index of v2

in Figure 2(b) can be computed as Φ(v2) = Ω(u2)−Ω(w20). The
conformity index of u2 is computed as Ω(u2) = Φ(v2)−Φ(w21)−
Φ(w22)−Φ(w23). Observe that the aforementioned definitions of
influence and conformity are mutually dependent on each other.
Consequently, a recursive computation framework is necessary to
compute these two indices.

4. THE CASINO ALGORITHM
In this section, we formally describe the algorithm CASINO for

computing conformity and influence indices of individuals in a so-
cial network containing positive and negative edges. Online social
networks can be classified into context-aware and context-free net-
works. The former represent networks where the edges are associ-
ated with topics (context) as social interactions may often involve
conversations on specific topics. For example, each conversation in
Twitter is based on a specific topic. On the other hand, interactions
in context-free networks do not involve specific topics. For exam-
ple, in Epinions and Slashdot individuals trust (distrust) each other
regardless of any specific topic. The leftmost social network in Fig-
ure 3 is an example of context-aware social network where an edge
labeled as A1,A2 indicates that the pair of individuals communicate
with each other on topics A1 and A2.

The CASINO algorithm is outlined in Algorithm 1 and consists
of three phases, namely the topic-based subgraph extraction phase
(Line 3), the edge labeling phase (Line 8), and the indices compu-
tation phase (Line 9).

Figure 3 depicts an overview of CASINO algorithm. Given a so-
cial network G(V,E), if it is context-aware then the topic-based
subgraph extraction phase extracts a set of subgraphs G where
each subgraph GA(VA,EA) ∈ G contains all the vertices and edges
in G associated with a specific topic A. Each subgraph GA repre-
sents positive or negative attitudes of individuals toward opinions
of others in G with respect to the topic A. For instance, in Fig-
ure 3, this phase generates three topic-based subgraphs, namely,
GA1 , GA2 , and GA3 , for topics A1, A2, and A3, respectively. Recall
that edges of a social network may not be explicitly labeled with
positive or negative signs. This is especially true for context-aware

Algorithm 2: The edgeLabel procedure.
Input: Topic-based subgraph GA(VA,EA) induced by topic A,
Output: G+

A (VA,E+
A ) and G−A (VA,E−A ) such that: E+

A ∪E−A = EA and
E+

A ∩E−A = /0
1 begin
2 E+

A = E−A = /0;
3 foreach

−→
uAv ∈ EA do

4 u.sentiment← LingPipe.sentExtr(u);
5 v.sentiment← LingPipe.sentExtr(v);
6 if |u.sentiment− v.sentiment|< ε then
7 E+

A = E+
A ∪{

−→
uAv}

8 else
9 E−A = E−A ∪{

−→
uAv}

networks (e.g., Twitter). On the other hand, links in many context-
free networks (e.g., Slashdot and Epinions) are explicitly labeled
with signs. Hence, it is important to label the edges in each topic-
based subgraph GA. The objective of the edge labeling phase is to
assign sign to each edge by analyzing the sentiment expressed by
the edge. Figure 3 depicts the labeling of GA1 . Finally, given a set
of signed topic-based subgraphs G , the goal of the indices compu-
tation phase is to iteratively compute the influence and conformity
indices of each individual in each GA ∈ G . Observe that a vertex v
in G may have multiple pairs of indices if v is involved in more than
one topic-based subgraph. Since the first phase is straightforward,
we now elaborate on the remaining two phases in turn.

The edge labeling phase. The edge labeling method varies with
dataset. In this paper, we adopt the method described in Algo-
rithm 2. For each edge

−→
uAv (the edge pointing from u to v on con-

text topic A) in GA, we identify 5-level sentiment (i.e., like, some-
what like, neutral, somewhat dislike, dislike) expressed at both ends
using LingPipe [1] which is a popular sentiment mining package
adopted in several recent research [4] (Lines 4-5). If the sen-
timents at both ends are similar (sentiment similarity threshold is
less than ε), we denote the edge as positive (Lines 6-7). Otherwise,
we denote it as negative (Lines 8-9).

Indices computation phase. Given a topic A and topic-based
subgraph GA, the preceding phase generates G+

A and G−A . Without
loss of generality, assume that there are |G | different topics. Then,
we are able to compute an individual’s influence and conformity
indices for each topic (i.e., ΦA(u) and ΩA(u)). Algorithm 3 out-
lines the strategy for computing a pair of influence and conformity
indices (Φ(u), Ω(u)) for each vertex u. It first initializes the influ-
ence index and conformity index of all vertices to be 1 (Lines 1-4).
Subsequently, in each iteration it computes them for each vertex by
using the values of the indices in previous iteration (Lines 6-8) and
normalizing these values using the square root of the summation of
all vertices’ index values (Lines 9-13). The algorithm terminates
when both indices converge. In [8], we have proved that CASINO
is guaranteed to converge after a fixed number of iterations n. Ob-
serve that the technique can easily be extended to compute the ag-
gregated indices of an individual by taking into account the entire
social network G over all topics A= 1, . . . , |G |. In this case, E+ and

E− in Definitions 1 and 2 are replaced by
∪|G |

A=1 E+
A and

∪|G |
A=1 E−A ,

respectively.

5. EXPERIMENTAL STUDY
In this section, we present the experiments conducted to evaluate

the performance of CASINO and report some of the results obtained.
A more detailed results is available in [8]. To this end, we borrow
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Figure 3: Overview of CASINO.

Algorithm 3: The indicesCompute procedure.
Input: G(V,E) = G+(V,E+)∪G−(V,E−)
Output: the influence index I= (Φ(u1),Φ(u2), . . . ,Φ(uℓ)) and

conformity index C= (Ω(u1),Ω(u2), . . . ,Ω(uℓ)) for
V = {u1,u2, . . . ,uℓ}

1 begin
2 k = 1 /*initialize iteration counter*/ ;
3 foreach u ∈V do
4 Φk(u) = Ωk(u) = 1

5 while I or C not converged do
6 foreach u ∈V do
7 Φk+1

0 (u) = ∑
−→vu∈E+

Ωk(v)− ∑
−→vu∈E−

Ω(v);

8 Ωk+1
0 (u) = ∑

−→uv∈E+
Φk(v)− ∑

−→uv∈E−
Φ(v);

9 foreach u ∈V do

10 Φk+1(u) = Φk+1
0 (u)√

∑
v∈V

Φk+1
0 (v)2

;

11 Ωk+1(u) = Ωk+1
0 (u)√

∑
v∈V

Ωk+1
0 (v)2

;

12 Ik+1 = (Φk+1(u1),Φk+1(u2), . . . ,Φk+1(ul));
13 Ck+1 = (Ωk+1(u1),Ωk+1(u2), . . . ,Ωk+1(ul));
14 k = k+1;

Table 1: Statistics of datasets.

Dataset #nodes #edges #positive edges #negative edges

Slashdot 77,357 516,575 396,378 120,197
Epinions 131,828 841,372 717,667 123,705

Twitter 576,894 1,230,748 1,015,492 195,256

the experimental framework articulated by Leskovec et al. [7], in
which machine-learning based approach is used for discovering the
presence of unknown edges and edge sign prediction by exploiting
various edge features. By considering conformity and influence
indices as new features for classification, it is expected that these
additional features will provide more concrete evidence for edge
prediction compared to state-of-the-art strategies.

We consider the following context-free and context-aware net-
works where each link is explicitly or implicitly labeled as posi-
tive or negative. (a) Context-free network data: In order to com-
pare the performance of CASINO with state-of-the-art efforts on in-
fluence evaluation in signed networks [3, 7], we adopt the same
datasets that have been used in these work: Slashdot and Epin-
ions 1 (Table 1). Recall that these network data are context-free and
contain explicit signs of edges to indicate the attitudes of individ-

1http://snap.stanford.edu/data/

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0  20K  40K  60K  80K  100K  120K  140K  160K  180K  200K

A
c
c
u
ra

c
y

#Edges

P
PN

ICP
IPN

ICPN

(a) Epinions

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 2K  20K  40K  60K  80K  100K  120K  140K  160K  180K  200K

A
c
c
u
ra

c
y

#Edges

P
PN

ICP
IPN

ICPN

(b) Slashdot
Figure 4: Positive edge presence prediction.

uals towards one another. (b) Context-aware network data: We
use the Twitter dataset to investigate the performance on a context-
aware network. The dataset was crawled using the Twitter API 2

during Dec 2010 to Feb 2011 (Table 1). We extracted top 20 trends
keywords at hourly duration and retrieved up to 1500 tweets for
each trend. Then we identified the relationships between all the
tweets in the dataset. The reader may refer to [8] for details re-
lated to statistics of the dataset and construction of context-aware
interaction graphs from it.

5.1 Experimental Setup
We have implemented CASINO in Java and run all the experi-

ments on a 1.86GHz Intel 6300 machine with 4GB RAM with Win-
dows XP. The algorithm converges after average 30 iterations. We
set the sentiment similarity threshold ε (Algorithm 2) to 1.

Similar to [3,7], in our experiments, the task of edge sign predic-
tion is considered as a binary classification problem. We adopted
SVMlight classifier [5] and classification accuracy is taken as the
main measure for evaluation. The reason for adopting accuracy as
evaluation measure over precision and recall is that the former is
suitable for quantifying the prediction performances of both posi-
tive and negative samples. This is crucial in our framework as in
most experiments both positive and negative edges are being pre-
dicted. In order to avoid biased classification, we adopt the same
strategy used in [3, 7]. Specifically, we create a balanced dataset
with same number of positive and negative edges for training and
testing. Based on the learned model (discussed below), we predict
a label 1 or -1 for each target edge indicating its possibility to be
positive or negative, respectively.

In order to compare the prediction accuracy of the proposed ap-
proach with state-of-the-art efforts, a baseline classifier is constructed
by referring to the structural features discussed in [7]. Specifi-
cally, given an edge from vertex u to v, a 7-dimensional feature
vector {d+

in(v), d−in(v), d+
out(u), d−out(u), din(v), dout(u), C(u,v)}

is constructed, where features d+
in(v) and d−in(v) denote the num-

ber of positive and negative incoming edges to v, features d+
out(u)

and d−out(u) represent the number of positive and negative outgo-

2http://dev.twitter.com/doc



Table 2: Features involved in different approaches. (P: positive,
N: negative, I: influence, C: conformity, A: topic)`````````Features

Approaches
P PN IPN ICP ICPN ICAPN

d+
in(v) X X X X X X

d−in(v) - X X - X X
d+

out(u) X X X X X X
d−out(u) - X X - X X
din(v) - X X - X X
dout(u) - X X - X X
C(u,v) X X X X X X
Φ(u) - - X - - -
Φ(v) - - X X X X
Ω(u) - - - X X X

context A - - - - - X
ΦA(v) - - - - - X
ΩA(u) - - - - - X
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Figure 5: Signed edge prediction.

ing edges from u, features din(v) and dout(u) denote the number of
in-degree and out-degree of v and u, and C(u,v) denotes the total
number of common neighbors of u and v without considering the
edge direction. Then, we create variants of this baseline classifier
by adding influence index and conformity index as new features.
Table 2 describes the features involved in the feature vector for each
edge −→uv for different variations of the baseline classifier.

5.2 Experimental Results
Positive edge presence prediction. We first conduct a series of

experiments to predict the presence of positive edges. In order to
test the effect of negative edges in predicting the presence of pos-
itive edges, we adopted a regression function of SVMlight where
presence of positive edges are labeled as 1 and negative edges are
labeled as −1. Figure 4 shows the average accuracy for the bench-
mark datasets, where the results are compared between different
classifiers for different size of training and testing data. We can
make the following observations. First, for each dataset PN per-
forms better than P indicating that information related to negative
edges enhance the quality of edge presence prediction. Second,
the prediction accuracy is further improved when we incorporate
the influence index or conformity index as a feature (ICP and IPN).
Note that ICP performs slightly better than IPN but the improvement
is not significant. When the training set is large both approaches
exhibit similar performance. Third, ICPN consistently reports the
best prediction performance. That is, edge presence prediction is
enhanced when we consider the interplay between influentials and
conformers.

Signed edge prediction. Next, we undertake a series of experi-
ments to predict the signs of edges. Our goal is to predict the signs
of edges which maybe either positive or negative. Figure 5 reports
the prediction accuracies of the classifiers. Observe that among the
three approaches involving both positive and negative edges (PN,
IPN, and ICPN), ICPN performs the best, followed by IPN and PN,
respectively. Thus, by taking into account the influence and confor-
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Figure 6: Context-aware prediction accuracy.

mity of vertices, the accuracy of sign prediction task can improve
significantly.

Edge presence and signed edge prediction in context-aware
networks. We now report the performance of our model on a
context-aware network (Twitter). In this experiment we adopt the
classifier ICAPN which takes into account the topic information as-
sociated with each edge. Figure 6 plots the prediction accura-
cies of the relevant classifiers. Observe that in both figures ICAPN
outperforms the rest. Note that the performances of ICAPN and
ICPN are similar when the training set is very small. This is be-
cause there may not be enough training edges in each topic-based
subgraphs GA when the training set is very small. Consequently,
not enough information is available to accurately compute ΦA(v)
and ΩA(u). All these evidences demonstrate that by leveraging on
the influence and conformity indices in topic-based subgraphs, the
proposed model leads to superior prediction performance for both
positive edge presence and edge sign prediction tasks.

Influentials and conformers. We analyze the list of influen-
tials and conformers detected by the CASINO algorithm. Figure 7
depicts the distribution heatmaps of influence index versus confor-
mity index for each benchmark dataset. For each individual u in
a network we compute Φ(u) and Ω(u) and represent it as a point
in the influence-conformity 2-D plane. Then we separate the plane
into grids of size 0.005× 0.005 and count the number of points in
each grid. The color shade of a grid denotes the number of points
residing in it. Note that both influence index and conformity index
are normalized into the range of [0,1). For each figure, we explic-
itly draw a boundary line along which the vertices exhibit identical
influence index and conformity index. Observe that the line sepa-
rates the influence-conformity plane into two areas. In the sequel,
we refer to the top area as ‘Area I’ and the down one as ‘Area
II’. The points belonging to ‘Area I’ exhibit higher influence index
compared to conformity index, indicating that individuals in this
area are more prone to influence others than being influenced. We
refer to them as influence-biased. On the other hand, ‘Area II’ rep-
resent individuals who are more prone to be influenced than influ-
encing others. We refer to these individuals as conformity-biased.

We first analyze the context-free networks (Figures 7(a)(b)). Con-
sider Figure 7(a) related to Epinions dataset. Observe that 31% of
all individuals belong to ‘Area I’. Consequently, fewer number of
individuals in this network are influence-biased. That is, majority
of individuals in Epinions are often conforming to the others. Sim-
ilar phenomenon also exists in the Slashdot dataset. Observe that
those vertices in Epinions which exhibit very high conformity index
values also have high influence index values. On the other hand,
vertices with highest influence index values have a wider range of
conformity indices (i.e., from 0 to 0.11). Such phenomenon indi-
cates that in Epinions most influence-biased individuals may also
conform to others whereas the most conformity-biased individu-
als are always influencing others. Interestingly, the phenomenon is
different in Slashdot dataset (Figure 7(b)). Specifically, individuals
who are associated with highest influence index values have very
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Figure 7: Influence vs. conformity distribution heatmap.

Table 3: Top 10 authors with the highest influence index and conformity index.
Rank Influential twitter (#positive in-links/#in-links) Conformer twitter (#positive out-links/#out-links)

All Top-1 Top-2 All Top-1 Top-2

1 142987924 (66/73) 3453454 (13/13) 950596 (31/34) 51389816 (35/37) 121836131 (14/16) 49276778 (101/144)
2 49276778 (61/82) 56068621 (11/11) 190108655 (11/11) 172039151 (31/34) 105332925 (13/14) 202346609 (45/61)
3 119394881 (60/77) 3984874 (10/10) 3498571 (8/9) 177173204 (30/35) 177255919 (11/12) 197538544 (26/30)
4 231134989 (55/71) 133282617 (11/11) 147327886 (5/5) 143062806 (27/34) 193206052 (11/12) 184930795 (22/26)
5 2109823 (56/72) 199855121 (7/7) 49126931 (5/5) 128118710 (25/33) 36525648 (9/10) 148335502 (21/23)
6 92503401 (55/78) 8234375 (5/5) 121158546 (5/5) 130414633 (30/41) 90723076 (7/8) 171387567 (17/20)
7 206661373 (51/66) 1465130 (3/3) 129009252 (5/5) 4782790 (23/30) 123606641 (6/8) 126407259 (18/22)
8 220490093 (46/60) 2894822 (3/3) 79897503 (4/4) 125551983 (22/34) 51513825 (6/6) 114455733 (14/20)
9 168175236 (40/51) 21755211 (2/2) 83629945 (4/4) 91930055 (21/28) 203774695 (5/6) 217826740 (15/20)

10 171287044 (41/62) 4051581 (2/2) 166830172 (4/4) 145339829 (22/31) 203780314 (4/4) 159724683 (12/17)

small conformity index (i.e., less than 0.02). But individuals with
highest conformity index may not exhibit small influence index val-
ues. In fact, the conformity index values of these conformity-biased
individuals are distributed along the boundary line (Φ(u) = Ω(u)).
Thus, we can make the following observations regarding Slashdot.
Firstly, there are a few influence-biased individuals who exhibit
very high influence but are not easily influenced by others. Sec-
ondly, there do not exist conformity-biased individuals who are not
influencing others at all.

Next, we analyze the context-aware network (Figures 7(c)(d)).
Figures 7(c) show the distributions of influence and conformity in-
dices for the top-1 topic (Mumford & Sons ) with the most num-
ber of tweets (4390). Observe that 40% of all the individuals fall
in ‘Area I’ for Figure 7(c). Notably, it exhibits certain influence-
biased characteristics similar to Slashdot. That is, there are a few
influence-biased individuals who exhibit very high influence but
are not easily influenced by others. This similarity may be due to
the fact that both Slashdot and Twitter are driven by user conver-
sations where majority individuals are commenting or following a
few individuals who started the conversations. Figure 7(d) plots the
distribution of indices computed over all topics. In this case, 41%
of all individuals belong to ‘Area I’.

Table 3 shows IDs of top-10 authors who exhibit the highest in-
fluence index and conformity index for top-1, top-2 and all topics.
Consider the top two twitters for all topics. The author ‘142987924’
who has the highest influence index receives 66 conforming edges
out of 73 in-links over 22 topics. On the other hand, the author
‘51389816’ who exhibits the highest conformity index initiates
35 conforming edges out of 37 out-links over 37 topics indicating
that she has high chance to conform to others’ opinions in almost
all the topics she is involved in. We can make the following ob-
servations. Firstly, none of the top-10 authors occupies a position
in both indices. Secondly, the top-10 individuals having highest
influence and conformity indices are different for different topics.
This confirms our hypothesis that social influence phenomenon is
context-sensitive as same individual may exhibit different influence
and conformity over different topics of social interactions.

6. CONCLUSIONS
The social influence analysis for online social networks is an im-

portant problem with applications to viral marketing and informa-
tion dissemination among others. State-of-the-art social influence
analysis techniques ignore two equally important factors, namely,
negative relationships and conformity of people. In this paper,
we propose a novel algorithm for social influence analysis called
CASINO, which quantifies the influence and conformity of each in-
dividual in a network by utilizing the positive and negative rela-
tionships between individuals. Our exhaustive experimental study
using several online social media sites demonstrates the effective-
ness and superior accuracy of CASINO compared to state-of-the-art
methods. Specifically, our investigation revealed that the knowl-
edge of conformity of individuals enhance the accuracy of social
influence analysis. We also observed several interesting charac-
teristics of influentials and conformers in Slashdot, Epinions, and
Twitter.
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