
Interruption-Sensitive Empty Result Feedback: Rethinking
the Visual Query Feedback Paradigm for Semistructured

Data

Sourav S Bhowmick
School of Computer Engg.

Nanyang Technological
University, Singapore

assourav@ntu.edu.sg

Curtis Dyreson
Department of Computer Sc.
Utah State University, USA

curtis.dyreson@usu.edu

Byron Choi
Department of Computer Sc.
Hong Kong Baptist University,

Hong Kong, China

choi@hkbu.edu.hk

Min-Hwee Ang
School of Computer Engg.

Nanyang Technological
University, Singapore

Y070005@e.ntu.edu.sg

ABSTRACT

The usability of visual querying schemes for tree and graph-structured
data can be greatly enhanced by providing feedback during query
construction, but feedback at inopportune times can hamper query
construction. In this paper, we rethink the traditional way of provid-
ing feedback. We describe a novel vision of interruption-sensitive

query feedback where relevant notifications are delivered quickly

but at an appropriate moment when the mental workload of the user
is low. Though we focus on one class of query feedback, namely
empty result detection, where a user is notified when a partially
constructed visual query yields an empty result, our new paradigm
is applicable to other kinds of feedback. We present a framework
called iserf that bridges the classical database problem of empty-
result detection with intelligent notification management from the
domains of hci and psychology. Instead of immediate notification,
iserf considers the structure of query formulation tasks and break-

points when reasoning about when to notify the user. We present
an hci-inspired model to quantify the performance bounds that iserf

must abide by for checking for an empty result in order to ensure
interruption-sensitive notification at optimal breakpoints. We im-
plement this framework in the context of visual xml query formu-
lation and highlight its effectiveness empirically.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems - Query processing

General Terms

Algorithms, Experimentation, Human Factors, Performance

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

CIKM’15, October 19–23, 2015, Melbourne, Australia.

c© 2015 ACM. ISBN 978-1-4503-3794-6/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2806416.2806432.

Keywords

Visual querying; query formulation; graphs; XML; query feedback;
empty result detection; interruption; notifications; breakpoints

1. INTRODUCTION
Formulating queries over semistructured databases (e.g., xml,

json, graphs) using database query languages (e.g., XQuery, sparql,
Cypher) often demands considerable cognitive effort from users
and requires “programming” skill that is at least comparable to
sql. Providing a visual query interface (gui) is a popular approach
to making query construction user-friendly [1, 6, 7, 10, 30]. Typi-
cally, these interfaces enable visual query formulation involving a
sequence of tasks ranging from primitive operations such as point-
ing and clicking a mouse button to higher-level tasks such as selec-
tion of a menu item.

1.1 Interactive Visual Query Feedback
A user-friendly visual query system is expected to interactively

guide users into constructing correct queries. A non-exhaustive list
of the kinds of guidance such a system may employ is given below.

• Syntactic and semantic help. A visual query system can de-
tect and notify users when there is a syntax or semantic prob-
lem in a query (e.g., a missing quote on a string or a wrong
type passed to a function). A system could even suggest bet-
ter alternative syntax. These techniques can greatly enhance
users’ ability to formulate syntactically correct queries visu-
ally without resorting to memorizing various syntactic fla-
vors of a query language.

• Empty result feedback. When a user specifies “Leningrad”

instead of “St. Petersburg” (Leningrad is the former name of
St. Petersburg) as a value predicate on an attribute city in
a query on the Mondial dataset1, the query returns an empty
result. It is important to detect such scenarios during query
construction and alert a user in a timely fashion so that she
can undertake appropriate remedial action(s).

• Long-running query feedback. A recent study [29] shows
that a graph query that runs fast may slow down significantly
after a slight modification to the query’s structure. Unex-
pected query behaviors like this can confuse and annoy users

1
http://datahub.io/dataset/mondial.

of visual query systems, especially in the context of exploratory
search. It would be better if the system could warn a user
about a potentially long-running query fragment during query
formulation.

• Query fragments suggestion. Given a partially-constructed
visual xml or subgraph query, it is useful to suggest top-k
possible query fragments that the user may potentially add
to her query in the subsequent step. Such suggestions can
enhance user experience by greatly reducing the query for-
mulation time.

There are two common threads in the above scenarios. First,
without the aid of a visual query feedback mechanism, users would
be unaware of these cases, since each case requires comprehensive
knowledge of the underlying data or query language. Feedback
about various problems encountered during query construction as
well as possible solutions is critical to enhancing the usability of
a visual querying system. Second, as query conditions in a vi-
sual querying environment are typically constructed iteratively, it
is often critical to detect and notify the aforementioned issues op-

portunely. It is ineffective to provide feedback at the end of query
formulation. For instance, consider the empty result problem. It
is ineffective to provide feedback after the query formulation as a
user may have wasted her time and effort in formulating additional
query conditions. Similarly, it is ineffective if the visual querying
scheme fails to alert the user opportunely when a “long-running”
query fragment is detected. Such opportune notification is also im-
portant in the context of query fragment suggestion as it is not ben-
eficial if suggestions are made after the query has been visually
constructed.

1.2 Importance of Intelligent Notifications
Feedback during visual query construction can be intuitively mod-

eled as an alert or notification for a secondary task (e.g., handling
the empty result problem) when a user is working on a primary
task (query formulation). It is desirable to build an intelligent no-

tification system that can efficiently detect issues and notify users
effectively. Such notification systems play a pivotal role in visual
query systems, as well as in many software systems. Research in
hci demonstrates that there are numerous benefits of notifications
such as quick availability of important and relevant information
(e.g., long-running query fragment, empty answer) as well as ac-
cess to nearly instantaneous communication [18].

A notification can be intrusive or non-intrusive [19]. Non-intrusive

notifications are usually less disruptive to user activities as they are
often presented in the periphery of a user’s attention. In general,
non-urgent information can be presented to a user in a non-intrusive
fashion. Intrusive notifications are for urgent messages. They de-
mand immediate action from the user and hence they need to grab
a user’s attention. For instance, an empty result problem that arises
during visual query formulation might generate an intrusive notifi-
cation since an immediate response is needed by the user.

1.3 Interruption - The Other Side of the Coin
Notifications, however, come with a cost: they interrupt a pri-

mary task (i.e., query formulation). This is because notifications
divert attention [15, 25]. Intuitively, an interruption is a distrac-
tion that causes one to stop a scheduled task to respond to a stim-
ulus. Many studies in the cognitive psychology and hci commu-
nities have reported that interrupting users engaged in tasks by
delivering notifications inopportunely can negatively impact task
completion time, lead to more errors, and increase user frustra-
tion [3, 5, 9, 12, 15, 16, 21, 22]. In summary, three key findings are
reported in these studies. First, interruptions slow and degrade per-

formance on the primary task. In particular, interruptions lead to
resumption lag, which is the additional time needed to resume the
primary task after interruption [22]. Second, the timing of the inter-
ruptions can adversely impact performance. It has been observed
that notifications occurring at points of higher mental workload are
more disruptive in nature compared to those that occur during lower
mental workload [3, 9, 15, 16]. The former may lead not only to
larger resumption lags but also increase frustration. Third, inter-
ruptions with similar content with the main task could be quite dis-
ruptive even if they are very short [12].

For instance, suppose a user is notified intrusively (e.g., invoking
a pop-up dialog box, highlighting a condition) of an empty result
(due to previously formulated condition) when she is dragging an
attribute from one panel and preparing to drop it in to another panel
to construct a new condition. This interruption may frustrate her as
mental resources allocated for the current task are disrupted. Such
inopportune, intrusive feedback adversely affects the usability of
the system.

It is worth noting that recent research [28] in the hci community
has demonstrated that acceptability of a notification is essentially a
tradeoff between the cost of interrupting the user’s activities and the
value of receiving the notification message. Specifically, accept-
ability of low-urgency and medium-urgency messages (e.g., query
fragment suggestions) improves when presented in a non-intrusive
manner. This is because this type of notification is expected to be
less disruptive of the primary task (e.g., visual query formulation)
in comparison to its intrusive counterpart. Furthermore, recent re-
search has suggested that users typically delay processing of a non-
intrusive interruption, when it is sent to them at points of higher
mental workload, until they have reached a point of lower mental
workload [26]. On the other hand, acceptability of high-urgency
messages (e.g., empty results, syntax error) is expected to be low
when presented non-intrusively as immediate user response is ex-
pected for such notifications. In other words, a user would typically

like to see urgent messages in an immediate and intrusive way (e.g.,

modal boxes, highlighting query conditions).

1.4 Interruption-sensitive Query Feedback
Classical visual query feedback strategies are “interruption-

insensitive”. These strategies have historically focused on speed
and scalability, often devoting very little attention to the cognitive
aspect of a solution. Hence, we need to make our visual query feed-
back mechanism “cognitive-aware” by devising models and tech-
niques to deliver a notification (especially an intrusive one) quickly

but at an appropriate moment when the mental workload of the
user is minimal. Detecting such an opportune moment should be
transparent to the user and must not seek explicit input from her.

In this paper, we rethink the classical interruption-insensitive
query feedback paradigm and lay down the vision of interruption-

sensitive visual query feedback by taking the first step to mitigate
the problem of inopportune interruptions made by intrusive2 query
feedback notifications. Specifically, we focus on one class of visual

query feedback problem to illustrate this novel paradigm, namely
empty result (er) feedback3 , where a user is notified when a par-
tially constructed visual query yields an empty result. Note that an
empty result is not always undesirable to an end user especially in
an exploratory querying environment. However, whenever a visual
query fragment returns an empty result, it is particularly important
to notify the user about4 the following: (a) The er problem re-

2We focus on intrusive notification in this paper as this type of notification delivers
messages that are important to the user and requires immediate attention.
3We chose the er feedback as a representative problem as it has consistently received
attention from the database community over decades [8, 17, 20, 23].
4
The notification can be a single message.

sulted from the constructed query fragment opportunely so that she
can avoid wasting time and effort in continuing constructing new
conditions; (b) Identify the constructed query condition(s) that is
responsible for an empty result; and (c) Optionally, suggest a query
modification to mitigate the er problem.

Hence our proposed paradigm bridges the classical visual query

feedback problem with intelligent notification management from the

domains of hci and cognitive psychology. We propose a novel psy-
chology and hci-inspired model for delivering intrusive notifica-
tion of an empty result for visual queries, the theory based on this
model, and a framework for detecting empty results efficiently and
delivering notifications at opportune times. Although as we shall
see later, our proposed paradigm can be realized on visual query
interfaces for tree or graph-structured databases, to demonstrate its
effectiveness we realize it on top of a visual xml query formulation
framework. Specifically, we make the following contributions.

• We present a psychology-inspired notification scheme that
exploits a defer-to-breakpoint strategy [14–16] for the effec-
tive delivery of intrusive notification to the user when a visual
query fragment returns an empty result (Section 3).

• We present an hci-inspired extensible quantitative model for
estimating the optimal notification time available for empty-
result detection so that the defer-to-breakpoint notification
scheme can be effectively realized. The model takes into
consideration the time to undertake various actions in order
to construct a visual query condition (Section 4).

• We propose a novel and generic framework called iserf

(Interruption-Sensitive Empty Results notiFication), grounded
on well-founded principles from hci and cognitive psychol-
ogy, to efficiently detect an empty result during visual query
formulation and intrusively notify users along with the query
condition(s) that is responsible for this problem. Note that
here we do not focus on providing to the user suggestions on
how to modify or relax the visual query to get a non-empty
result as it is orthogonal to our framework (we shall elab-
orate on it further in Section 6). Additionally, iserf is not

designed with the explicit aim to minimize query construc-
tion time, which is an orthogonal problem. Instead, the broad
goal of iserf is to improve each user’s experience during vi-

sual query formulation by reducing the adverse effects of in-

trusive notifications (Section 5).

• We implement iserf on a visual xml querying environment
to demonstrate its effectiveness in realizing the interruption-
sensitive visual query feedback paradigm (Section 6).

• We conduct an empirical study on real xml data with real
users to demonstrate the effectiveness of iserf (Section 7).

2. BACKGROUND
We begin by laying out the generic structure of a visual query

interface for tree or graph-structured data. Then, we formally de-
fine the empty result feedback problem. Lastly, we discuss related
research in this arena.

2.1 Visual Query Interfaces for Trees or Graphs
Most visual query interfaces for tree or graph-structured data are

comprised of at least three key panels: (a) a Schema Panel to dis-
play the structural summary (e.g., xml schema or DataGuide [13])
or distinct set of node and edge labels of the underlying tree or
graph data, respectively, (b) a Query Panel for iteratively construct-
ing the query conditions (value and structural constraints) graphi-
cally, and (c) a Results Panel (Panel 4) that displays the query re-
sults.

1

2

3

4

Figure 1: A visual interface for formulating xml queries.

Example 1. Figure 1 depicts a screen dump of a visual interface
for querying xml data [31]. Observe that Panels 1, 3, and 4 in this
gui correspond to the Schema, Query, and Results Panel, respec-
tively. In addition it has an Output Panel (Panel 2) that displays the
item(s) to be returned by the query. Note that this panel may not
appear in other interfaces for querying xml data as different inter-
faces may visually specify the result nodes differently. A new xml
query can be formulated using the interface as follows.

1. Specify the output item(s) by dragging selected item(s) from
Panel 1 and dropping it to Panel 2.

2. Move the mouse pointer to Panel 1.

3. Scan and select an item in Panel 1.

4. Drag the item to Panel 3 and drop it. Each such action repre-
sents formulation of a non-join predicate (condition).

5. A Dialog Box will automatically appear for users to fill (op-
tionally) in the value predicates, comparison operators, ag-
gregate functions, etc.

6. Combine two or more conditions in Panel 3 using and/or
connectives. Note that in this step one may also build join
predicates if necessary.

7. Repeat Steps 2–6 for each new condition.

8. Execute the query by clicking on the Run icon. Panel 4 dis-
plays the query results.

Very similar visual query interfaces for graph queries are de-
scribed elsewhere [6, 30]. Hence we treat tree and graph query
interfaces as the same for the purposes of this paper. �

2.2 Empty Result (ER) Feedback Problem
Given a visual query Q (tree or graph query), we denote the re-

sult set of Q as R(Q). A visual query fragment Q′ of Q consists of a
subset of conditions C′ ⊆ C of Q. Then the result set satisfying C′ is
denoted as R(C′). A visual query fragment Q′ (query Q) returns an
empty result iff R(C′) = ∅ (R(Q) = ∅). In this paper, we present a
framework for (a) detecting if R(C′) = ∅ for a partially-constructed
visual query Q′; (b) identifying the condition(s) in Q′ responsible
for an empty result, and (c) notifying the user intrusively at an op-

portune time so that the “interruption cost” is minimized. Observe
that traditional er feedback techniques typically focus on (a) and
(b) but not (c).

2.3 Related Work
To the best of our knowledge, none of the state-of-the-art visual

querying schemes [1,6,7,10,30] are interruption-sensitive. In [17],
an empty-result detection method is proposed for sql queries. The

key idea is to reuse the evaluation results from prior empty-result
queries by leveraging lowest-level query fragments from the query
plans that lead to an empty result. In our proposed paradigm, we
operate in a visual querying environment where the entire query is
available only at the end of query formulation. Hence, the afore-
mentioned technique is inapplicable here. Importantly, iserf sup-
ports interruption-sensitive notification which is absent from [17].

Research in non-interactive [8] and interactive [20, 23] query re-
laxation solutions propose solutions to the empty-result problem.
However, none of these efforts focus on opportune notification de-
livery of the relaxation solutions. In fact, the work reported in this
paper complements these efforts as it automatically determines the
opportune time to notify users about relaxation suggestions.

Research in cognitive psychology and hci has investigated intel-
ligent notification management [5,9,15,21,24], focusing on visual
tasks such as document editing, diagram editing, image manipula-
tion, and programming. However, prior to our work, it has not been
studied in the context of database query feedback.

3. DEFER-TO-BREAKPOINT-BASED

INTRUSIVE NOTIFICATION
The hci community has shown that the negative effects of inter-

ruption (recall from Section 1.3) can be mitigated by deferring in-
terruptions until more opportune moments in a task sequence [5,15,
16]. The argument being that when a user completes a task, mental
resources allocated to perform the task are released, momentarily
reducing workload before the cycle of allocation and deallocation
occurs again in the next task. One particular approach for deferring
interruptions is to schedule them at breakpoints.

Defer-to-breakpoint strategy. A breakpoint represents the mo-
ment of transition between two observable, meaningful units of task
execution, and reflects a change in perception or action [24]. Re-
cent research in the hci community identified three granularities
(types) of breakpoints during interactive tasks - Coarse, Medium,
and Fine [14]. Coarse exists between the largest units while Fine
exists between the smallest. For example, consider the task of edit-
ing documents. Fine may be switching paragraphs, Medium may
be switching documents, and Coarse may be switching to an activ-
ity other than editing (e.g., checking emails).

Iqbal and Bailey have recently shown that the best moment to
interrupt a user is on breakpoints between tasks [15]. That is, to
defer the notification to appear at the next breakpoint detected in
the user’s task-sequence. We shall adopt this defer-to-breakpoint-

based strategy for interrupting query formulation tasks.

Our decision to choose the above strategy is bolstered by the fol-
lowing interesting results demonstrated by the hci community [5,
15]. First, the interruption cost is reduced and users are less frus-
trated when intrusive notifications are scheduled to occur at break-
points rather than when delivered immediately. Second, users pre-
fer having notifications scheduled at breakpoints and they react
faster to notifications that were scheduled at breakpoints. Third, ap-
plications that generate notifications that are relevant to the user’s
ongoing activity should request that they be delivered at Medium or
Fine breakpoints. This ensures that notifications are delivered when
they have most utility, and are least disruptive. In contrast, notifica-
tions of general interest should be delivered at Coarse breakpoints.

Generic Breakpoints in Visual Query Formulation. Recon-
sider the generic structure of the guis for tree or graph query con-
struction tasks as described in Section 2.1. The different types of
breakpoints for these tasks are shown in Table 1. Observe that for
each of the tasks related to Medium and Fine breakpoints, mental
resources allocated to perform the task are released at the end of
the task, thus momentarily reducing the workload. For instance,

Type Tasks for Tree Queries Tasks for Graph Queries

Coarse CB1: User switch to another
application (e.g., email); CB2:

Minimize query window.

Same as tree queries.

Medium MB1: Clicking a menu item
to initiate creation of a new
query; MB2: Switching to an-
other query.

Same as tree queries.

Fine FB1: Move mouse to Schema

Panel to search items; FB2:

Selection of an item in the
Schema Panel; FB3: Drag-
ging an item from Schema

Panel to Query Panel; FB4:

Combining/joining query con-
ditions; FB5: Clicking OK
on any Dialog box related to
predicates;FB6: Click on the
Run icon.

FB1: Move mouse to Schema

Panel to search node labels; FB2:

Selection of a label in the Schema

Panel; FB3: Dragging a label from
Schema Panel to Query Panel for
query node creation, FB4: Con-
necting two nodes with an edge;
FB5: Clicking OK any Dialog box
for node/edge predicates; FB6:

Click on the Run icon.

Table 1: Breakpoints for visual query formulation.

consider the task of selecting an item or node label in the Schema

Panel. The mental resource of a user is allocated to scanning it and
selecting an item/label. Upon completion the resource is released
which reduces the mental workload. The mental resource alloca-
tion cycle begins again when the subsequent task of dragging the
selected item/label to the Query Panel begins.

Example 2. Reconsider the steps for formulating xml queries
using the gui in Example 1. The Fine breakpoints according to
Table 1 are at the end of Steps 2, 3, 4, 5, 6, and 8. In addition, there
is another Fine breakpoint at the end of Step 1, which is specific to
this interface. �

Observe that for a given query there is only one Medium break-
point. Hence, in the subsequent sections we shall combine Medium
and Fine breakpoints as a single type of breakpoint. Specifically,
our objective is to ensure delivery of intrusive notifications at Fine

breakpoints.

4. MODELING NOTIFICATION TIME
We now present a quantitative model for estimating the optimal

notification time (ont) so that the defer-to-breakpoint notification
scheme can be effectively realized for the query feedback problem.
We first discuss it w.r.t the er problem and then highlight how it
can also be used to model other types of query feedback.

4.1 Optimal Notification Time
Let C′ be a non-empty set of currently constructed conditions

representing a twig pattern or a subgraph pattern and R(C′) , ∅.
Let Cnew be a new condition (i.e., a new edge in a subgraph query
fragment, a new XPath condition in an XQuery fragment) drawn
by a user (drawn after the construction of C′). For each Cnew, our
proposed framework takes two key steps. First, it checks whether
R(C′ ∪ Cnew) = ∅. If so then the query formulated thus far does
not produce any results and the next available breakpoint to deliver
the empty-result notification is found. Clearly, efficient checking
for an empty result is pivotal as breakpoint selection can only pro-
ceed after detection. Consequently, inefficient execution of the first
step can result in inopportune notification delivery, which may in-
crease user frustration. Ideally, we should be able to deliver empty-
result notification before the construction of the succeeding condi-
tion Cnext (e.g., the next edge in a subgraph query fragment) is fin-
ished. In this situation, a user does not need to waste her time and
effort in constructing additional conditions before realizing that the
query produces an empty result. Hence, notifications should be de-
livered at fine breakpoints FB1 and FB2 (Table 1). We refer to these
breakpoints as optimal breakpoints. Observe that construction of
Cnext is already completed after FB3.

Given the most recent constructed condition Cnew and a set of pre-
viously constructed conditions C′, the ont, denoted as Tont , refers
to the amount of time available for checking if R(Cnew∪C′) = ∅, so
that notification can be delivered at optimal breakpoints. We now
present an hci-inspired quantitative model to estimate this time.

Given C′, adding a new condition Cnew in a tree or graph query
involves tasks related to the breakpoints FB1-FB5 in Table 1. Let
us now refer to the times taken to complete tasks that end with fine
breakpoints FB1, FB2, and FB3 as movement time (denoted by Tm),
selection time (Ts), and drag time (Td), respectively. Then, Tont can
be bounded by the following equation.

0 < Tont < Tm + Ts (1)

That is, as long as the check for an empty result of (C′ ∪Cnew) can
be finished before the breakpoint FB2 of Cnext , notification can be
easily delivered at an optimal breakpoint. Observe that we did not
include Td in the right-hand side of the above equation. When a
user starts dragging a selected item or label, Cnext is in the process
of materialization. Hence, the notification related to the conditions
(C′∪Cnew) will be displayed only when she drops Cnext on the Query

Panel (breakpoint FB3). This may confuse the user as the notifica-
tion related to Cnew appears only after the creation of Cnext . Addi-
tionally, she may have wasted her time in constructing Cnew. Hence,
Equation 1 enforces a tighter bound on Tont . Note that the values
of Tm and Ts vary with end users. For a given gui, how can we
theoretically quantify (Tm + Ts)? We now address this question.

4.2 Estimating Movement and Selection Times
Estimating movement time Tm. Reconsider the task ending

with breakpoint FB1. It involves acquisition of a target from the
Schema Panel at a distance D from the mouse cursor which is in
the Query Panel. Note that typically the Schema Panel is a rect-
angular two-dimensional target. Consequently, the item selection
is constrained by both the width and height of the panel and the
cursor must travel along a two-dimensional vector to it. Hence, we
adopt the model proposed by Accot and Zhai [2] that focuses on ac-
quiring targets having rectangular, square, or circular shapes. The
movement time Tm is quantified as follows.

Tm = a + b log2

√

(

D

W

)2

+ η
(

D

H

)2

+ 1

(2)

where D is the Schema Panel’s distance to the cursor, H and W de-
note Schema Panel’s height and width, respectively. The parameter
a varies approximately in the range of [-50, 200], b in [100, 170],
and η in [1/7, 1/3]. Note that η allows the model to weight the
effect of the height differently from the effect of the width.

Estimating selection time Ts. The above model for computing
Tm can only be applied if the mouse movement is one-directional
and involves a single target which is rectangular, square, or circu-
lar in shape. Consequently, selection of a label or item cannot be
modeled using it. Observe that searching for a label involves mov-
ing the cursor over multiple targets to select an item. In fact, the
Schema Panel is similar to a hierarchical menu and one needs to
select an item during query formulation by navigating the cursor
through the hierarchy using predominately vertical movements to
select the desired label.

Note that we assume the labels or items are organized vertically
and hence ignore horizontal movements in this panel as the hori-
zontal width is negligible here. Furthermore, we assume that they
are organized in a specific order (e.g., lexicographically ordered).
Hence, a user can move to the direction of the target item rapidly
using an “open loop” movement. Consequently, we adopt the fol-
lowing logarithmic model proposed by Ahlström [4] for modeling

selection time of an item, which integrates both the time to find the
item and the time to move to the target.

Ts = m + n × (log2(p + 1)) (3)

where p is the position number of the target item, and m and n are
empirically-determined constants. For xml or graph data, p can
be computed as the total number of items below or above the item
selected in the preceding condition.

Remark. Observe that Equation 1 demands empty result check
should consume less than (Tm + Ts) time. Although, as we shall see
in Section 7, it is possible to realize this for a variety of queries,
certain framework may possibly take more than (Tm + Ts) time for
certain scenario. Can our proposed model be easily extended to
handle such scenario? We posit that it is indeed the case as addi-
tional times (e.g., Td) to complete tasks related to breakpoints FB3,
FB4, etc. can easily be added to the right hand side of Equation 1
and notifications can then be delivered during corresponding break-
points. Although such delivery is not at optimal breakpoints, it is
still delivered opportunely when the mental workload is low.

4.3 Applicability to Other Feedback Problems
Equation 1 can also be used to model other kinds of query feed-

back problems (discussed in Section 1.1). We answer to this ques-
tion affirmatively for the following reason. Consider the long-running
query feedback or the query fragment suggestions problem. Given
C′ and Cnew already constructed in the gui, the long-running query
feedback problem aims to detect if this query fragment will take
a long time to run and notify the user opportunely. Similarly, the
query fragment suggestions problem aims to provide top-k sugges-
tions based on conditions C′ and Cnew constructed by the user. Ob-
serve that these notifications must be delivered to the user before
the construction of Cnext for reasons identical to the er problem.
For instance, it is ineffective to provide suggestions when the user
has already constructed Cnext . Hence, similar to the er problem, no-
tifications for these problems must also be delivered at breakpoints
FB1 and FB2. That is, Equation 1 is applicable for these scenar-
ios as well. This is also the case for the query syntax feedback
problem. Hence, our proposed model is applicable for a variety of

interruption-sensitive query feedback problems.

5. THE ISERF FRAMEWORK
We now present the iserf framework to efficiently detect the

empty-result (er) phenomenon during query construction and to
effectively deliver appropriate notification by realizing our defer-
to-breakpoint-based notification scheme. It is comprised of two
key modules, which are described below.

Empty results detection module. The goal of this module is
to efficiently detect if the partially constructed query fragment re-
turns an empty result. If it does, then the interruption-sensitive

notification module is invoked to deliver intrusive notification at an
opportune time. Specifically, there are two scenarios for empty re-
sult. Scenario 1: a newly constructed condition Cnew does not have
any match in the underlying database (i.e., R(Cnew) = ∅). Scenario

2: the constructed conditions are connected by and connectives and
each has a non-empty result match but there does not exist any data
instance that satisfies all constructed conditions (i.e., R(C′) = ∅
and ∀Ci ∈ C′, R(Ci) , ∅). Observe that efficient implementation
of this module depends on the type of database (graphs or xml).

Interruption-sensitive notification module. Algorithm 1 out-
lines a generic implementation framework of this module. It takes
as input parameters nullCond and allCond (output from the above
module representing Scenarios 1 and 2 of empty-result queries, re-
spectively) and are set to true if the query returns an empty result.

The reason we use two separate parameters to represent the two
scenarios is because we intend to deliver two different notifications
with different content to explain these scenarios. The values of the
remaining input parameters a, b, m, n, and η (Equations 2 and 3)
are empirically determined. The hasCoarseBreakpoint procedure
in Line 3 detects Coarse breakpoints (Table 1). Lines 4 - 21 are
executed if there are no Coarse breakpoints. The getCursorDirec-

tion procedure checks if the user is moving the cursor towards the
Schema Panel (Panel 1). One approach to determine this move-
ment is to use the following heuristic. Consider Figure 2(a). Let
the cursor be at point A in the Query Panel and the rectangular box
represents the Schema Panel with height H. Let the perpendicular
distance from the cursor to the Schema Panel be Z. Then,

θ1 + θ2 = arctan(
tan(θ1) + tan(θ2)

1 − tan(θ1) tan(θ2)
) (4)

where tan(θ1) =
H1

Z
, tan(θ2) =

H2

Z
, and H1 + H2 = H.

Let the angle of motion of the mouse be β . Then, as long as the
direction of motion of the mouse is on the left of A and β is within
(θ1 + θ2), the cursor is moving towards the Schema Panel. That
is, given the angle of movement β , we can determine whether the
cursor is moving towards the Schema Panel using (θ1 + θ2).

If the mouse pointer is moving towards the Schema Panel, the
movement time Tm is computed using Equation 2 (Line 6) and the
notification delivery is suspended by Tm time (Line 7) to allow the
cursor to move to the Schema Panel. Note that Tm is not constant
for a given query as the distance D varies with each constructed
condition. A keen reader may observe that we estimate Tm to deter-
mine the waiting time instead of waiting until the cursor reaches the
Schema Panel. This is due to two key reasons. First, the theoretical
estimate of Tm has been proven to have high real-world accuracy [2]
and as a result it simulates the time to reach the Schema Panel with
high degree of accuracy. Second, the mouse movement may be dis-
rupted or stalled half way as a user may be distracted with other
non-query activities (e.g., phone call, discussion with a colleague).
Consequently, it will prevent the notification to be delivered to the
user even when she has stalled query formulation temporarily.

Lines 10 - 17 capture the case when the mouse pointer is already
in the Schema Panel searching for an item. The selection time Ts

is computed in Line 13. The notification delivery is suspended by
Ts time (Line 14) to allow the item to be selected (for reasons justi-
fied above). Finally, Lines 22 - 26 display appropriate notification
message identifying condition(s) C∅ responsible for empty result.

Observe that the above strategy delivers interruption-sensitive
notifications by considering only optimal breakpoints (FB1 or FB2).
However, as remarked in Section 4.2, it can be easily augmented to
deliver such notifications when empty result checking time exceeds
(Tm + Ts) by simply adding the wait times associated with tasks re-
lated to FB3, FB4, etc.

Generality of the framework. Observe the two notable features
of the iserf framework. First, it is orthogonal to the expressiveness
of the gui as well as the underlying query processor. Hence, iserf

can easily be built on top of any xml or graph query processor. Fur-
thermore, it does not impact query evaluation time as it is only in-
voked during query formulation. Second, the interruption-sensitive
notification module is not tightly coupled to the er detection mod-
ule. Hence, it can be easily incorporated to support other types of
interruption-sensitive query feedback problem.

6. ISERF FOR XML QUERY FORMULATION
In the preceding section we have presented the generic imple-

mentation of iserf on tree or graph-structured data. To demonstrate
its effectiveness, we have implemented it on top of XBlend [27,31],

Algorithm 1: Interruption-sensitive notification module

Input: nullCond, allCond, C∅, a, b, m, n, η .
Output: Notification N

1 Initialize canInterrupt = false;
2 while canInterrupt is false do

3 if !hasCourseBreakpoint() then

4 moveDir ← getCursorDirection() ;
5 if moveDir is true then

6 Tm ← movementTime(D, W , H , a, b, η) /* Equation 2 */;
7 wait(Tm) ;
8 canInterrupt = true;

9 else

10 if cursor is in Schema Panel then

11 if an item is not dragged then

12 p ← getPosition();
13 Ts ← selectionTime(m, n, p) /*Equation 3 */;
14 wait(Ts) ;
15 canInterrupt = true;

16 else

17 canInterrupt = false;

18 if cursor is in Query Panel and selected item is dropped then

19 canInterrupt = true;

20 else

21 canInterrupt = false;

22 if NullCond is true then

23 Display N = “The condition C∅ will return an empty result.”;
24 else

25 if NullCond is false ∧ AllCond is true then

26 Display N = “The conditions C∅ will return an empty result.”;

A

H

W

Z

H1

H2

q1
q2

b

(a) β

Source Size
No. of

Attributes

No. of

Elements

UniProt 1.5GB 38,380,645 20,836,316

Interpro 69MB 1,427,234 988,079

PDB 287MB 692,583 5,578,498

No. of

files

1

1

30

(b) Datasets.

Figure 2: (a) Computing movement angle; (b) Datasets.

a visual xml query processor built on top of a relational framework.
XBlend interleaves visual query construction and query processing
to prune false results and prefetch partial query results by exploiting
the latency offered by the gui-based query formulation. Note that
we chose XBlend as it supports materialization of intermediate re-

sults synopsis during visual query construction, which we leverage
for realizing the iserf framework. However, the techniques we de-
velop in the rest of the paper are largely independent of this choice,
and we can replace XBlend with another visual querying system
that supports such a query processing paradigm.

Next, we introduce the visual xml query model that we use to
demonstrate the iserf framework. Then, we briefly elaborate on
the XBlend gui for formulating visual queries. We propose a data
structure called a condition-results tree (cr-tree) to support efficient
detection of the er phenomenon in XBlend. Lastly, we present the
algorithm for realizing iserf.

6.1 A Visual XML Query Model
For ease of presentation, we primarily focus on a special type

of visual xml query prevalent in many applications. Specifically, it
can be textually represented by an XQuery query Q = (F ,W,R)
where F is a set of for clause items, W is a set of predicates
logically connected by and or or operators in the where clause, and
R contains the output expression specified in the return clause.
The predicates inW can be categorized into two types, namely join

expressions and non-join expressions. A join expression captures
value-based join between elements (attributes) of single or multiple

data sources. On the other hand, a non-join expression expresses a
non-join filtering condition on a single data source. In the sequel,
we refer to each expression in the where clause as a condition. We
denote a set of conditions as C. Finally, the return clause has a
single output expression r representing the output node.

Remark. The above query model can easily be extended to sup-
port a wider variety of features such as different location steps5

and qualifiers (e.g., position predicate, not-predicate) as long as the
underlying xml database engine can support their evaluation. For
instance, if a user visually specifies a condition c involving a path
expression containing descendant and preceding axis at a par-
ticular formulation step, then this visual action will be translated
to a corresponding textual query and forwarded to the underlying
query engine for execution. The result set of c is then used by iserf

to detect whether the partially-constructed query yields an empty
result. Having said this, it is paramount to balance expressiveness
and usability in a visual querying environment as a wide variety of
xml queries (e.g., queries with nested fors) are not easy to formu-
late even visually as it requires a deep understanding of the lan-
guage which many end-users do not possess [7]. Nevertheless, as
we shall see later, our strategy to realize the iserf framework on

an xml querying system is orthogonal to the expressiveness of its

visual querying environment.

6.2 Visual Query Interface of XBLEND
A visual xml query interface can be classified into two types,

namely, node-based and path-based. In a node-based interface
an xml query is constructed by taking a node-at-a-time approach.
On the other hand, in a path-based interface, a query is formu-
lated by taking a path-at-a-time strategy. The visual interface of
XBlend belongs to the latter type. Figure 1 depicts a screen dump
of the XBlend visual interface. Specifically, the DataGuide [13] is
adopted to construct the structural summary of an xml document
in Panel 1. When a user drags a vertex from Panel 1, the path
expression corresponding to this vertex is automatically built. To
formulate a query, a user takes the steps described in Section 2.1.

6.3 Condition-Results Tree (CR-Tree)
A condition-results tree (cr-tree), denoted as U , describes the

set of currently constructed conditions that are connected by and or
or connectives and corresponding sets of intermediate results that
satisfy these conditions. Specifically, each internal node of U rep-
resents an and or or connective. Each leaf node of U contains a
set of non-join conditions that are processed together6 and the ver-

tex identifier set M in which the prefetched vertices7 satisfying the
conditions are stored. Figure 3 depicts examples of cr-trees. Note
that we only materialize the vertex identifiers of an xml document
� in M instead of entire content of xml subtrees because it is more
space-efficient. Furthermore, the identifier scheme is not tightly
coupled to any specific system as any numbering scheme that can
uniquely identify vertices in an xml tree can be deployed.

Definition 1. The condition-results tree (cr-tree) is a 2-tuple

U = (Vu,Eu), where Vu is a set of nodes in U and Eu is a set of

edges. A leaf node v ∈ Vu is a 2-tuple v = (Cn j,M), where Cn j is a

set of non-join conditions that are processed together and M is the

vertex identifier set that stores the prefetched data satisfying Cn j . If

vi ∈ Vu is an internal node then label(vi) ∈ {AND, OR}. �

5We consider parent-child (/) and attribute (/@) location steps due to the avail-
ability of structural summaries of underlying xml data in the gui (Panel 1 in Figure 1).
6The set of conditions that need to be processed together is determined by
XBlend [31].
7For clarity, we distinguish between a node in a cr-tree and a node in an xml document
or structural summary by using the terms “node” and “vertex”, respectively.

Algorithm 2: iserf on XBlend

Input: Actions on the Query Panel, set of vertex identifiers Ro satisfying the
output expression r.

Output: Notification N

1 Initialize nullCond and allCond to false ;
2 Initialize cr-tree U ;
3 Initialize set of conditions C = ∅;
4 Set parameters a, b, m, n, η ;
5 A ← getGUIAction();
6 while (A , "Run" or A , "Abort") do

7 if (A == "Add") then

8 /* Thread 1 */;
9 Cnew is the new condition and Ct is the drop target;

10 Rnew ← prefetch(Cnew, Ct , C, Ro) //XBlend ;
11 C.insert(Cnew);
12 U .insert(Cnew, Rnew);
13 (nullCond, allCond,C∅)← checkEmpty(U , nullCond, allCond);
14 Lines 1–21 in Algorithm 1 /* Thread 2 */;
15 if nullCond is true ∨ allCond is true then

16 N ← Lines 22– 26 in Algorithm 1 ;
17 return N;

18 A ← getGUIAction();

(a)

AND

C1 C2 OR

C3 C4M1 M2

M3 M4

AND

C1 C2 C3,C5

M1 M2 M4

(b)Figure 3: cr-trees.

Note that for practical cases the number of leaf nodes in a cr-
tree is small as users typically do not formulate a large number of
conditions using a visual interface. Furthermore, each leaf node
is associated with an identifier set and not a set of xml subtrees.
Hence, a cr-tree can easily fit in the main memory of a modern
commodity desktop machine.

Observe that the cr-tree can be leveraged to efficiently detect the
two scenarios of empty results (recall from Section 5). Consider
the cr-tree with an and node in Figure 3(a) and the vertex identi-
fier sets M1, M2, and M4. Here, M1 = R(C1), M2 = R(C2), and
M4 = R(C3,C5). Let C1 be the most recent condition constructed
by a user. Then, the query represented by this ct-tree returns empty
result if any one of the following conditions is satisfied: (a) Sce-

nario 1: M1 = ∅; (b) Scenario 2: M1 , ∅, M2 , ∅, M3 , ∅, and
M1 ∩M2 ∩M4 = ∅. On the other hand, when the subtree root is an
or node, all vertex identifier sets associated with its leaf nodes have
to be empty to qualify as an empty result. These conditions for and
and or nodes of a cr-tree can be combined to determine whether a
query fragment returns an empty result.

6.4 iSERF on XBLEND
Algorithm 2 outlines the implementation of iserf on top of XBlend.

Since XBlend uses a path-based visual interface that leverages struc-
tural summaries, we assume that the path expression in each for-
mulated condition has at least one match in the xml document �.
Ro represents the set of vertex identifiers matching the output ex-
pression (generated by XBlend) which is specified in Step 1 during
query formulation (Section 2.1).

The variable A represents the query condition formulation ac-
tion in the Query Panel. When a user drags a new query condition
Cnew and drop it on an existing condition Ct (Line 7), Lines 7–14
are executed in two concurrent threads. In the first thread, the algo-
rithm invokes the prefetching technique of XBlend [27, 31] (Line
10) to materialize the vertex identifiers in Ro that satisfy Cnew in
a temporary relation Tnew. Details of this technique, which is or-
thogonal to this work, can be found in [27]. Next, it adds Cnew and
the vertex identifiers in Tnew into the cr-tree U (Line 12). Then,
the algorithm invokes the checkEmpty procedure which detects if

Algorithm 3: checkEmpty

Input: cr-tree U , boolean flags allCond, nullCond.
Output: nullCond, allCond, Condition set C∅.

1 (IdSet, nullCond)←U .traverse(Cnew, nullCond) ;
2 if IdSet = ∅ then

3 allCond = true;
4 Find conditions C∅ in U responsible for unsatisfiability;

5 return allCond, nullCond, C∅

Q1

for $entry in doc('UNIPROT.BIOXML')/uniprot/entry,
$interpro in doc('INTERPRO.BIOXML')/interprodb/interpro,
$cellCategory in doc('PDB.BIOXML')/PDBx:datablock/PDBx:cellCategory
where $intepro/pub_list/publication/year > �1950� {C2} and
$entry/keyword = �3D-structure�{C1} and
$interpro/@id = $entry/dbReference/@id {J2}
and $PDBx:cellCategory/PDBx:cell/@entry_id = $entry/dbReference/@id {J3}
return $entry/name;

Id Queries

8

Result

Size

for $entry in doc('UNIPROT.BIOXML')/uniprot/entry,
$interpro in doc('INTERPRO.BIOXML')/interprodb/interpro,
$publication in $entry/pub_list/publication
where $publication/journal = �Structure� {C3} and
$publication/year = �2002� {C4} and
$entry/@created[contains(., �2001�)] {C1} and
$entry/organism/name = "Human" {C2}
and $interpro/@id = $entry/dbReference/@id {J3}
return $entry/name;

23Q2

Q3

$interpro in doc('INTERPRO.BIOXML')/interprodb
where $interpro/name[contains(., "hydrolase")] {C1} and
$interpro/name[contains(., "subfamily")] {C2}
return $interpro/pub_list/publication/journal

35

Q4

for $entry in doc('UNIPROT.BIOXML')/uniprot/entry,
$interpro in doc('INTERPRO.BIOXML')/interprodb/interpro
where $interpro/abstract/reaction[contains(., "H2O")] {C2} and
$entry/keyword[contains(., "3D-structure")] {C1} and
$interpro/@id = $entry/dbReference/@id {J2}
return $entry/gene

5

Q5

for $entry in doc('UNIPROT.BIOXML')/uniprot/entry,
$interpro in doc('INTERPRO.BIOXML')/interprodb/interpro,
$classification in $interpro/class_list/classification
where $classification/category/category = �Molecular Function� {C2} and
$entry/keyword[contains (., �3D-structure�)] {C1} and
$classification/description[contains(., �binding�)] {C3}
$interpro/@id = $entry/dbReference/@id {J2}
return $entry/gene;

2776

Figure 4: Query set.

the query fragment returns an empty result. Concurrently, in the
second thread Lines 1–21 of Algorithm 1 are executed to deter-
mine the breakpoint for notifications. If the query result is empty
(Line 16), then Lines 22–26 of Algorithm 1 are executed to deliver
interruption-sensitive notification at an opportune time.

checkEmpty procedure. This procedure (Algorithm 3) encapsu-
lates the checking of Scenarios 1 and 2. Note that our goal is to
check both these scenarios efficiently so that for practical cases Tont

satisfies the bounds in Equation 1. Hence, we take several opti-
mization strategies towards this goal. We first check if Rnew in U is
empty (before traversing to other nodes) and it is not connected by
the or operator with other existing conditions. If it is then Scenario
1 is satisfied. Consequently, nullCond is set to true, C∅ is set to
Cnew, and the algorithm terminates early (all these steps are encap-
sulated in Line 1). Otherwise, an empty result is only possible due
to Scenario 2. Hence, it traverses U in a depth-first fashion. If an
internal node is an “AND” node, then the vertex identifier sets as-
sociated with its child nodes are intersected to determine if some
vertices are shared by all, indicating a non-empty result for the
constructed query fragment. Otherwise, the vertex identifiers are
combined (union). We use the adaptive set-intersection algorithm
in [11] which aims to use a number of comparisons as close as pos-
sible to the minimum number of comparisons ideally required to
establish the intersection. After traversing U , the set of vertex iden-
tifiers idSet that are shared by Mnew and rest of the identifier sets is
returned. Lastly, allCond is set to true if Scenario 2 is satisfied
(Lines 2-3). Additionally, the conditions C∅ which are responsible
for an empty result are identified and returned as well.

6.5 Extensibility
A keen reader may observe the three notable features of the iserf

framework on xml. First, the interruption-sensitive empty-result
detection and notification scheme is orthogonal to the underlying
visual xml query processor. Hence, it can easily be built on top of

any xml query processor that supports such incremental query pro-

cessing paradigm. Second, the solution is not limited to the visual

xml query model in Section 6.1, but can be applied to richer variety
of xml queries. To elaborate further, reconsider the steps for visual
query formulation in Section 2.1. Now suppose that the visual in-
terface enables us to formulate richer variety of queries by enabling
specification of various XPath axis, qualifiers, order-by clause,
aggregation functions, etc. Then the visual construction of these
features in a query condition(s) will often take place during Steps
4 or 5 (after the selection of an attribute or element). For instance,
if a user wishes to specify a descendant axis then she may do it
on the dropped condition after Step 4 or in the Dialog Box that ap-
pears in Step 5. Once formulated, the time to detect an empty result

for such a query condition is still bounded by Equation 1. Hence,
as long as the underlying xml query processor is efficient to evalu-
ate these complex conditions, the iserf framework is amenable to
richer variety of queries. Third, the iserf framework can easily in-

corporate more advanced features related to the er problem such
as top-k query modification or relaxation suggestions [20,23] as the
latter is orthogonal to the framework. Note that such suggestions
also need to be delivered to the user (along with the empty results
problem) using intrusive notifications at opportune times.

7. PERFORMANCE STUDY
iserf is implemented in Java JDK 1.7. In this section, we investi-

gate its performance in the context of visual xml query formulation
using XBlend (Section 6). The experiments were conducted on an
Intel Core 2 Quad 2.66GHz processor and 3GB ram. The operat-
ing system was Windows XP Professional SP3. A Logitech Mouse
was used and its acceleration was set to its default settings (accel-
eration: 2/1). We compare iserf (denoted by isf) against XBlend
(denoted by xb), which is interruption-insensitive.

Specifically, we investigate the following issues. (a) Can the
empty-result check be efficiently realized in a visual querying frame-
work like XBlend? (b) Is the defer-to-breakpoint notification scheme
the most effective strategy for notification in iserf? (c) Can iserf

deliver notification at optimal breakpoints (Equation 1) in most
practical cases? (d) What is the impact of interruption-sensitive
notifications on the query formulation time?

7.1 Experimental Setup
Data and Query Sets. We use the xml representations of uniprot,

pdb, and interpro downloaded from their official websites. The
features of these datasets are given in Figure 2(b). We chose the
representative queries in Figure 4 that join up to three data sources.
Although our approach can support conditions which are connected
by and/or connectives, here we chose queries with and connectives
as they are more likely to generate empty answers. The numbers
with labels in curly braces in the where clause represent the de-
fault sequence of steps for formulation of conditions. Note that if a
join (denoted by Ji) and a non-join condition (denoted by Ck) have
same subscript then it means that the join condition is formulated
immediately after its non-join counterpart8. For instance, the join
condition J2 in Q1 and the non-join condition C2 share same sub-
script. That is, J2 is specified immediately after the formulation
of C2. Unless mentioned otherwise, we shall be using the default
query formulation sequence.

Observe that we did not choose XQuery queries that are too com-
plex as it is observed by Augurusa et al. that a visual XQuery inter-
face is useful when it serves the needs of the majority of the users
in expressing their queries, which are typically simple [1].

Furthermore, observe that the above queries return a non-empty
result. Hence, we create modified versions of these original queries

8They are evaluated together by XBlend to create a single temporary relation. XBlend
can automatically detect the need for a join condition across multiple data sources
during query formulation.

Q1[C1] $entry/keyword = �3-D structure�

Id Modifications

Q1[C2] $interpro/pub_list/publication/year >2050

Q2[C1] $entry/@created[contains(., �2050�)]

Q2[C2] $entry/organism/name = "Human being"

Q3[C1] $interpro/name[contains(., �lipoprotein�)]

Q3[C2] $interpro/name[contains(., �sub-family�)]

Q4[C1] $entry/keyword[contains(., "3-Dim-structure")]

Id Modifications

Q4[C2] $interpro/abstract/reaction[contains(., "H3O")]

Q5[C1] $entry/keyword[contains(., "luminiscence")]

Q5[C2] $classification/category/category = �Mol. Function�Q2[C3] $publication/journal = �Chemistry�

Figure 5: Modifications for creating empty-result queries.

to generate 11 empty-result queries. Each original query is modi-
fied one condition-at-a-time and is identified by Qi[C j] indicating
that it is created by modifying condition C j in Qi (e.g., Q1[C1]
means that the condition C1 of Q1 is modified to make Q1 return
an empty result). The set of actual modifications to the conditions
is given in Figure 5.

Participants Profile. Ten unpaid volunteers with varying de-
grees of familiarity with xml participated in the experiments to for-
mulate visual queries. At the start, participants were trained to use
the gui. For every query the participants were given some time to
determine the steps that are needed to formulate it visually. This is
to ensure that the effect of thinking time is minimized during query
formulation. Note that if a user quickly formulates a query, less
time is available for delivering notification at optimal breakpoints.
The participants were given one query at a time. If an error was
committed by a participant then that particular formulation effort is
ignored and he had to start afresh.

Query formulation by participants. The participants were asked
to formulate two categories of queries. (a) Empty-result queries:

Each participant first formulates the modified queries (Figure 5)
without being aware of the fact that these queries return empty re-
sult. For example, a participant constructs the modified condition
Q1[C1] instead of C1 while formulating Q1. Note that when he/she
formulates a condition that results in empty result (e.g., Q1[C1]),
the er problem is notified and suggestion to the participant is pro-
vided to modify the query by incorporating the original condition
(e.g., the condition C1 in Figure 4). The participant then modifies
the query and continues constructing remaining conditions in the
query until completion. (b) Nonempty-result queries: After for-
mulating all the modified queries, each participant formulates the
original queries in Figure 4. Each query was formulated five times
by each participant.

Values of Parameters a, b, m, n, and η . In order to empirically
determine the parameter values of Equations 2 and 3, the partici-
pants were tasked to formulate three queries (Q1, Q3, Q4) accord-
ing to the above setup. The movement and selection times (Tm and
Ts) were recorded for all participants and for all trials. Then, the
average movement time T m = 1071.2ms with σ = 7.17. Hence, we
use T m as movement time for the XBlend gui. We set η = 0.33
according to [2]. Then, we compute a and b that best fits this
movement time using Equation 2. It turns out that for a = −30
and b = 106, Tm = 1061.8ms. Similarly, the average selection time
T s = 1802ms with σ = 52.12. Note that high σ is expected as some
users may be unfamiliar with the structural summaries and might
expand and collapse the subtrees several times before selecting a
vertex. Using these values and Equation 3, m = 586 and n = 140
give us selection time that is closest to T s (Ts = 1846ms).

7.2 Experimental Results
Effect of Empty Result Check. Before we investigate the im-

pact of interruption-sensitive notification during query formulation,
we would like to investigate the cost of accommodating a query
feedback technique (in our case, empty-result check) in a visual
querying framework like XBlend. Specifically, we compare the
execution cost of Lines 10-11 (xb [27]) and Lines 10-13 (isf) in

Q1
0.26 (6123)

Query Step 1System

XB

ISF

1.39 (156172)

Step 2

0.38 (9)

Step 3 Step 4

0.36 1.47 0.46

Q2
0.32 (5850)XB

ISF

0.42 (9595) 7.21 (30294) 1.14 (4317)

0.39 0.5 7.29 1.23

Q3
0.08 (710)XB

ISF

0.11 (35)

0.15 0.19

Q4
0.22 (5601)XB

ISF

0.66 (166)

0.31 0.76

Q5
0.15 (5601)XB

ISF

1.21(130318) 1.01 (70327)

0.22 1.29 1.09

Figure 6: Effect of an empty-result check (in sec.).

Algorithm 2. Note that Line 13 is not executed if the visual query-
ing framework does not support the check for an empty-result (e.g.,

XBlend). Also, in this set of experiments Lines 14 and 16 are not
executed as we use the original queries in Figure 4. We shall study
the impact of the notification service later.

Figure 6 shows the execution times for prefetching (xb) and (ad-
ditionally) checking an empty result (isf). Each column labeled
Stepi represents the running time associated with corresponding
query condition Ci in a query. The values in parenthesis represent
the size of the materialized relations (vertex identifier set). Note
that here we do not report times taken by xb to retrieve the final
query results as it is orthogonal to the problem. It is evident that
the cost of accommodating an empty result check is sufficiently low
as execution time of each step is not significantly increased for all
queries. Also, it is robust to large size of intermediate results (e.g.,

Step 2 of Q1 and Q5) as isf only retrieves vertex identifiers. In other
words, the checkEmpty procedure is efficiently realized by isf.

Justification for Defer-to-Breakpoint Notification Scheme.

Next, we design a user study to justify the defer-to-breakpoint no-
tification scheme realized by isf and its impact on users. All par-
ticipants were tasked to formulate any four empty-result queries
(Figure 5). Measurements were taken on frustration level of the
participants at the timing of notification (interruption). The rat-
ing was made using a 7-point Likert scale, ranging from 1 being
very pleasing to 7 being very frustrating. Three types of notifica-
tion schemes were presented to participants to experience, namely,
“Immediate notification”, “Fixed duration notification” and our
proposed “Defer-to-breakpoint-based notification”. Note that the
“Immediate notification” scheme delivers notification as soon as a
query is detected to generate an empty result. In the “Fixed dura-

tion notification” scheme, the notification is triggered after a fixed 2
seconds delay. Figure 7(a) reports the results. Clearly, participants
find our proposed approach most effective. On the other hand, they
found the “Fixed duration notification” scheme most annoying.

Optimal Notification Time (ont). Given the superiority of defer-
to-breakpoint notification strategy, we now investigate whether no-
tifications can be delivered at optimal breakpoints (Equation 1).
Specifically, we study whether ont satisfies the upper bound in
Equation 1 in practice. In our experiments, Tm = 1061.8ms and
Ts = 1846ms (see Section 7.1). Hence, 0 < Tont < 2907.8.

Figure 7(b) reports the execution times for checking for an empty
result for Scenario 1 cases. We plot the execution times (Lines 10-
13 in Algorithm 2) of the original condition Ci in the nonempty-
result query Qi (denoted by isf) and the modified condition in the
empty-result query Qi[Ci]. Observe that the time taken to execute

these steps is less when the condition does not have a match in
the dataset. This is beneficial as necessity to deliver notification
at optimal breakpoints only arises when the query returns empty
answer. Note that the execution times include the prefetching times
for partial matches in xb.

Figure 7(c) reports the performance due to Scenario 2 for queries
Q3[C1] and Q5[C1]. Note that in both these modified queries each
condition has non-empty result matches (R(Ci) , ∅) but together
they return an empty result. For each modified query, we plot the

Figure 7: Performance results.

time for checking for an empty result after formulation of each con-
dition (denoted by isf-ci). For Q5[C1], we create two variants; one
with the original query formulation sequence C1-C2-C3 (denoted
by Q5[C1] − D) and the other following the sequence: C1-C3-C2
(denoted by Q5[C1]−M). Note that the former becomes empty af-
ter formulation of the three conditions whereas the latter becomes
empty after formulating the second condition C3. In all cases, the
empty-result check can be completed within a second or less.

Importantly, the time taken to prefetch partial results in xb (Line

10) and check for an empty result (Lines 11-13) is significantly less

than (Tm + Ts). This is highly desirable as notifications can be de-

livered at optimal breakpoints (FB1 and FB2 in Table 1). Note that
the movement and selection times may vary with different users,
i.e., users familiar with the gui and structural summary may move
their mouse faster than others. Observe that Tont < 0.5(Tm + Ts)
for all modified conditions. That is, even if a user moves twice as
fast as normal users, the notification will still be delivered at opti-
mal breakpoints. Only, when the speed of movement is less than
0.4(Tm+Ts), the notification has to be suspended until the construc-
tion of the next condition. However, such speed is highly unlikely
from typical end users as seen in Section 7.1.

Effect on Query Formulation Times. Lastly, we study the im-
pact of interruption-sensitive notifications on the query formulation

time (qft), which is the time taken to formulate each query. Each
query is formulated by all participants in its original and modified
forms. Specifically, the qft of a modified query includes time to

acknowledge the notification and continue formulation of all re-

maining conditions (if any). Figure 7(d) plots the average qft of
the original query (denoted by xb) and its modified versions (de-
noted by isf-ci for queries generated by modifying Ci). Obviously,
modified queries require higher qfts than the original ones due to
resumption lag (recall from Section 1.3). However, the increase is
very modest primarily due to the deferred notification scheme and
the time users take to acknowledge notifications. Since the notifica-
tions are delivered only at breakpoints, the participants react faster
to notifications as reported in several hci studies such as [15].

8. CONCLUSIONS
There is increasing interest in enhancing the usability of database

systems. This paper improves usability by contributing a novel
paradigm of interruption-sensitive visual query feedback. Specifi-
cally, we present a framework called iserf for detecting and schedul-
ing notifications of empty-result queries at breakpoints in a vi-
sual environment. A key feature of our framework is its multi-
disciplinary flavor, integrating principles from hci and cognitive
psychology with data management. First, we drew upon the litera-
ture in cognitive psychology to establish that iserf needs to con-
sider the structure of visual query formulation tasks and break-
points when reasoning about when to notify the user. Second, we
leveraged work in hci to quantitatively model the time available
to iserf to detect empty-result queries in order to ensure notifica-
tion delivery at optimal breakpoints that lower the interruption cost.
Lastly, we showed the usefulness and effectiveness of iserf in effi-
ciently checking for an empty result and delivering notification at
optimal breakpoints in a visual xml querying environment.

Acknowledgement: Sourav S Bhowmick is supported by the Singapore-
MOE AcRF Tier-1 Grant RG24/12. Byron Choi is partially sup-
ported by the Hong Kong RGC GRF12201315.

9. REFERENCES
[1] E. Augurusa, D. Braga, A. Campi, S. Ceri. Design and Implementation of a

Graphical Interface to XQuery. In ACM SAC, 2003.

[2] J. Accot, S. Zhai. Refining Fitts’ Law Models for Bivariate Pointing. In ACM

SIGCHI, 2003.

[3] P. D. Adamczyk, B. P. Bailey. If not now, when? The effects of interruptions at
different moments within task execution. In CHI, 2004.

[4] D. Ahlstrom. Modeling and Improving Selection in Cascading Pull-Down
Menus Using Fitt’s Law, the Steering Law, and Force Fields. In CHI, 2005.

[5] B. P. Bailey, J. A. Konstan. On the Need for Attention Aware Systems:
Measuring Effects of Interruption on Task Performance, Error Rate, and
Affective State. In Journal of Computers in Human Behavior, 22(4), 2006.

[6] S. S. Bhowmick, B. Choi, S. Zhou. VOGUE: Towards a Visual
Interaction-aware Graph Query Processing Framework. In CIDR, 2013.

[7] D. Braga, A. Campi, S. Ceri. XQBE (XQuery By Example): A Visual
Interface to the Standard XML Query Language. In TODS, 30(2), 2005.

[8] S. Chaudhuri. Generalization and a framework for query modification. In

ICDE, 1990.

[9] E. Cutrell, et al. Notification, Disruption, and Memory: Effects of Messaging
Interruptions on Memory and Performance. In IFIP Int Conf on HCI, 2001.

[10] S. Comai, E. Damiani, P. Fraternali. Computing Graphical Queries Over xml
Data. In ACM TOIS, 19(4): 371–430, 2001.

[11] E. D. Demaine, et al. Experiments on Adaptive Set Intersections for Text
Retrieval Systems. In ALENEX, 2001.

[12] T. Gillie, D. Broadbent. What makes Interruption Disruptive? A Study of
Length, Similarity and Complexity. Psychological Research, 50(4), 1989.

[13] R. Goldman, J. Widom. Dataguides: Enabling query formulation and
optimization in semistructured databases. In VLDB, 1997.

[14] S. T. Iqbal, B. P. Bailey. Understanding and Developing Models for Detecting
and Differentiating Breakpoints during Interactive Tasks. In CHI, 2007.

[15] S. T. Iqbal, B. P. Bailey. Effects of Intelligent Notification Management on
Users and Their Tasks. In CHI, 2008.

[16] S. T. Iqbal, B. P. Bailey. Investigating the effectiveness of mental workload as
a predictor of opportune moments for interruption. In CHI, 2005.

[17] G. Luo. Automatic Detection of Empty-result Queries. In VLDB, 2006.

[18] D. S. McCrickard, et al. Introduction: design and evaluation of notification
user interfaces. Int. J. Human-Computer Studies, 58, 2003.

[19] D. S. McCrickard, C. M. Chewar. Attuning notification design to user goals
and attention costs. CACM, 46(3), 2003.

[20] C. Mishra, N. Koudas. Interactive query refinement. In EDBT, 2009.

[21] C. A. Monk, D. A. Boehm-Davis, J. G. Trafton. The Attentional Costs of
Interrupting Task Performance at Various Stages. In Proc of the Human

Factors and Ergonomics Society, 2002.

[22] C. A. Monk, J. G. Trafton, D. A. Boehm-Davis. The effect of interruption
duration and demand on resuming suspended goals. J. of Experimental

Psychology: Applied, 14, 2008.

[23] D. Mottin, et al. A Probabilistic Optimization Framework for the
Empty-Answer Problem. In PVLDB, 6(14), 2013.

[24] D. Newtson. Attribution and the Unit of Perception of Ongoing Behavior. In J.

of Personality and Social Psychology, 28(1), 1973.

[25] P. Palanque, M. Winckler, et al. A Formal Approach Supporting the
Comparative Predictive Assessment of the Interruption-Tolerance of
Interactive Systems. In ACM EICS, 2009.

[26] D. D. Salvucci, P. Bogunovich. Multitasking and Monotasking: The Effects of
Mental Workload on Deferred Task Interruptions. In CHI, 2010.

[27] B. Q. Truong, et al. MustBlend: Blending Visual Multi-Source Twig Query
Formulation and Query Processing RDBMS. In DASFAA, 2013.

[28] M. H. Vastenburg, D. V. Keyson, H. de Ridder. Considerate home notification
systems: A user study of acceptability of notifications in a living-room
laboratory. In Int. J of Human Computer Studies, 67, 2009.

[29] X. Xie, et al. PIGEON: Progress Indicator for Subgraph Queries. ICDE, 2015.

[30] S. Yang, et al. SLQ: A User-friendly Graph Querying System. In SIGMOD,
2014.

[31] Y. Zhou, et al. Xblend: Visual xml Query Formulation Meets Query
Processing. In ICDE, 2009.

