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ABSTRACT
Estimation of path travel time provides great value to applications
like bus line designs and route plannings. Existing approaches are
mainly based on single-source trajectory datasets that are usually
large in size to ensure a satisfactory performance. This leads to two
limitations: 1) Large-scale data may not always be attainable, e.g.
city-scale public bus data is usually small compared to taxi data
due to relative fewer bus trips in a day. 2) Considering only single-
source trajectory data neglects the potential estimation-improving
insights of external data, e.g. trajectory dataset of other vehicle
sources obtained from the same geographical region. A challenge is
how to effectively utilize such other trajectory sources. Moreover,
existing work does not attend the important attributes of a trajec-
tory including vehicle ID, day of week, rainfall level etc., which are
important for estimating the path travel time. Motivated by these
and the recent successes of neural network models, we propose
Attribute-related Hybrid Trajectories Network (AtHy-TNet), a neu-
ral model that effectively utilizes the attribute correlations, as well
as the spatial and temporal relationships across hybrid trajectory
data. We apply this to a novel problem of estimating path travel
time of a type of vehicles using a hybrid trajectory dataset that in-
cludes trajectories from other vehicle types. We demonstrate in our
experiments the benefits of considering hybrid data for travel time
estimation, and show that AtHy-TNet significantly outperforms
state-of-the-art methods on real-world trajectory datasets.
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1 INTRODUCTION
The knowledge of the travel time of any path within a road network
is valuable to many. Through the lens of public transportation, this
information is useful for bus line designs and road traffic moni-
toring. From the perspectives of ride-hailing (e.g. Didi, Grab and
Uber) and courier delivery businesses, it improves user experience,
and enables cost (e.g. time and fuel) savings, respectively. Such
information also helps commuters in their trip-plannings.

With the growth in data collection technology, massive data is
increasingly available for use, and to date, there has been much
work which focuses on path travel time estimation using trajectory
data. Estimating path travel times has been challenging due to
multi-nature considerations. First, travel time is affected by spatial
factors, such as the road characteristics. For example, a vehicle
may travel faster along an expressway than within the residential
district. Second, it is also temporally dependent. For example, travel
times in the downtown area may be longer during peak hours due
to traffic congestions. Other factors that affect such estimations are
such as the vehicle type and weather conditions. For example, taxi
sedans tend to move faster than large public buses.

Existing work traditionally falls under two approaches. The first
is link-based methods, where the intuition is to first estimate the
travel time of every road-segment, before combining them to get the
path travel time [12, 19, 25, 28, 31]. These methods have a limitation
in that they do not consider traffic complexities outside the road-
segments, such as traffic lights. The second class ofmethods resolves
such issues to some extent; the main idea is that travel time can be
estimated by extracting the historical travel time of its sub-paths,
which implicitly contains certain travel costs unconsidered in the
link-based ones [5, 16, 30, 32]. More recently, deep learning has
demonstrated further success for this task, based on its ability for
powerful representation and implicitly modeling multi-natured
traffic complexities [26, 33].

However, existing work mostly leverages single-source trajec-
tory data that are usually also large in size. While having large-scale
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data benefits estimation since it usually also means larger road cov-
erage, data of such size is not always attainable. For example, public
bus trajectory data sizes in many cities of the world are small due
to the much fewer number of daily trips and the less extensive
coverage of the road network, as compared to other types of vehi-
cles like taxis. A newcomer to ride-sharing in a city also does not
have access to large data due to the low number of trips that it has
serviced initially. For the same reasons, the lack of large-scale data
exists for vehicles where accurate path travel time estimation is
valuable for highly-critical timely arrivals, e.g. ambulances. It is
also prevalent for vehicles that require such estimation for global
optimizations to meet business goals, e.g. logistics trucks.

Moreover, considering trajectory data from single sources ne-
glects the potential estimation-improving insights present in other
sources. To the best of our knowledge, there has yet to exist any
work that leverages hybrid trajectory dataset for travel time predic-
tion based on deep learning, e.g. using a mixture of bus trajectory
data and a massive taxi trajectory data within the same city for
bus travel time estimation. Estimating across hybrid trajectories,
however, is also a challenging task mainly due to differences in
trajectory characteristics. For example, buses tend to move slower
than taxis due to their larger sizes and passenger loads, and have to
stop at scheduled bus stops for pick-ups and drop-offs. As a result,
attributes that come along with these trajectories tend to be highly
crucial for such estimations, with some relatively more important
than others, e.g. vehicle ID that reveals the vehicle type. However,
existing work generally does not consider the relationships between
attributes, nor attend the important ones.

As such, we propose Attribute-related Hybrid Trajectories Net-
work (AtHy-TNet), the first end-to-end neural architecture for travel
time estimation using hybrid trajectory data, to tackle the issues
above. Its value lies in its applicability for use-cases when only
small training data is available to the transport operator, e.g. pub-
lic buses, shuttle buses, and urban logistics trucks. It also enables
small/medium transport operators to enhance their services by
leveraging massive trajectory data which are owned by giant op-
erators or government agencies. To this end, we have considered
various spatio-temporal and attributional treatments. The main
contributions of this paper are summarized as follows:

• For the first time, we propose a neural method that effec-
tively tackles the novel problem of estimating path travel
time using hybrid data sources. More importantly, AtHy-
TNet implicitly models the multi-nature factors affecting
path travel time, and their correlations across trajectories of
heterogeneous vehicle sources.

• We propose: i) an Attribute Correlation Module that models
path attributes correlations and attend to the more important
attributes, ii) a Sub-path Representation Module that utilizes
a Tri-CNN Encoder and on-road information to create a rep-
resentation for each sub-path, iii) a Sub-path Correlation
Module that models correlations across sub-paths, and uti-
lizes a Correlation component to learn the path-attribute
relationships, and iv) a Joint-Learning Prediction Module
that learns the path travel time estimation task with an aux-
iliary task of sub-path travel time estimation.

• We conduct extensive experiments on trajectory data ob-
tained in Singapore. We demonstrate the benefits of con-
sidering hybrid data for travel time estimation, and show
that AtHy-TNet significantly outperforms state-of-the-art
methods. We also show the robustness of its performance
across different conditions, e.g. different days of the week.

2 PRELIMINARIES
A trajectory of a vehicle within a road network is defined as a
sequence of GPS records, Tx = (x1,x2,x3...,xn ), where xi denotes
a record within the trajectory, and n denotes the total number
of records in this trajectory. Each record xi = (xi .lat ,xi .lnд,xi .t ,
xi .state,xi .id), where xi .lat , xi .lnд, xi .t , xi .state and xi .id denote
the latitude, the longitude, the timestamp, the vehicle state (e.g.
busy, stop etc.), and the map-matched road ID respectively. For
each trajectory, it is associated with Ta , a set of attributes which
can be categorized under four classes: vehicular, spatial, temporal,
and weather. Vehicular attributes provide information about the
vehicle that travels the trajectory, e.g. vehicle ID. The weather
attributes include information like rainfall level in the city. The
temporal attributes include periodic information like time of day
(at which Tx starts) and day of week. Finally, the spatial attributes
are geospatial information like the total distance (traveled by Tx ).
Note that a trajectory is obtainable from different vehicle types,
e.g. taxi and bus, and thus may exhibit different spatiotemporal
characteristics depending on its vehicular source. As such, the
vehicle ID of a trajectory acts as a unique identifier that also reveals
the vehicle type. More formally, we define a trajectory data instance,
which includes the trajectory and all its associated attributes, as
T = (Tx ,Ta ). In this work, we use a hybrid collection, i.e. a mixture,
of trajectories obtained from more than one vehicle type.

Our objective: Given the input of a hybrid trajectory dataset
built from a small trajectory dataset of one type of vehicles and
a massive trajectory dataset of another type, we want to train a
neural model that can estimate the travel time required by the small-
dataset vehicles to complete any path within the road network, at
any time of the day and on any day of the week.

3 ATTRIBUTE-RELATED HYBRID
TRAJECTORIES NETWORK

In this section, we present our proposed method. First, we highlight
the intuition of how our method is able to leverage hybrid trajec-
tories to improve travel time estimation. Second, we provide an
overview of our architecture along with the motivations behind the
constituting modules. Finally, we describe in details the functions
of each of these modules, the rationale behind their designs and
how these designs contribute to effective travel time estimation.

3.1 Intuition of AtHy-TNet
A small trajectory dataset usually implies that the coverage of
its vehicles is less extensive than vehicles of a massive dataset.
However, if both datasets are sampled from the same geographical
space, the much larger coverage of the latter may overlap with that
of the former. AtHy-TNet leverages these overlaps within the hybrid
dataset and the fact that vehicles within a dataset belong to the
same type. The intuition is to learn the characteristics of trajectories



 

Figure 1: A small map with trajectory overlays from two ve-
hicle types (best viewed in colour).

of both the small-dataset and big-dataset vehicles considered in
the hybrid dataset, and model the correlations at parts where they
overlap. The correlation learnt is then used to infer the travel time
of small-dataset trajectories untraveled before, yet whose paths
overlap with the big-dataset ones used during training.

For instance, Figure 1 shows a roadmap of a small district that is
overlaid with trajectories from two datasets, each obtained from
a different type of vehicles. Traces in green represent trajectories
generated from a small dataset A, while traces in red represent tra-
jectories obtained from a larger dataset B. Traces in blue highlight
the roads where the trajectories of the two datasets overlap. As
observed, trajectories from A also have a less-extensive coverage of
the road network than its larger counterpart. As such, if an operator
who possesses only A wishes to estimate travel time for paths in
regions outside its coverage, e.g. red regions, there may be large
errors since A does not consider the complexities there yet. In this
case, AtHy-TNet leverages the correlations between trajectories of
the two vehicle types at the blue regions and the larger coverage of
B at the red regions. Specifically, it first models the multi-natured
characteristics of the trajectories in both the green and red regions,
while learning the correlations of these characteristics at the blue
regions. This correlation can then be used to estimate the travel
time at the out-of-coverage red regions.

3.2 Overview of AtHy-TNet
The architecture of the proposed AtHy-TNet is shown in Figure 2.
It comprises of four modules: Attribute Correlation, Sub-path Rep-
resentation, Sub-path Correlation, and Joint Prediction. The input
to our model is a trajectory and its associated attributes. Path at-
tributes are very important when dealing with hybrid data due to
the different trajectory natures. However, existing work generally
does not consider the correlations across these attributes nor their
relative importance. As such, we design an Attribute Correlation
Module to model such relationships among trajectory attributes, e.g.
vehicle ID that differentiates a type of vehicles from another. We
support our main path travel time estimation task with an auxiliary
task of sub-path travel time estimation. The rationale is that by
accurately estimating the sub-path times in a path, the path travel
time can in turn be more accurately estimated. Furthermore, by
modeling sub-path characteristics, it enables the model to learn
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Figure 2: Architecture of AyHy-TNet Model

the trajectory differences across different vehicle types to a finer
detail. To this end, we first extract the abstract spatial features of
sub-paths by designing a Sub-path Representation Module. For the
first time, we consider a design that effectively utilizes on-road
information, e.g. map-matched road GPS coordinates. To model the
temporal relationships across the sub-paths, and the correlation
between each sub-path and the path attributes, we design a Sub-
path Correlation Module. Finally, we leverage the Joint Prediction
Module to combine the main and auxiliary task described earlier.

3.3 Attribute Correlation Module
Path travel time is largely affected by various external factors. We
are the first to utilize the relative importance of each of these at-
tributes through our proposed Attribute Correlation Module, as
depicted in Figure 3. Specifically, the input here isTa , a set of vehic-
ular, weather, temporal and spatial attributes, i.e. vehicle ID, rainfall,
day of week, time of day, and total distance. The Attribute Embed-
der embeds all of these attributes into higher-dimension vectors
via a linear layer. For all attributes other than distance, we denote
them as ac , ar , ad and at respectively.
Global Distance Representation. Path distance is an important
attribute in determining path travel time. Existing deep-learning
based work focuses mainly on coarse-grained great-circle distances
[26]. However, fine-grained distance data is able to reveal addi-
tional information about the path traveled. Hence, we integrate not
only coarse-grained, but also fine-grained distance in our model.
Specifically, we consider two attributes: a coarse-grained global
trip distance, and a fine-grained global trip distance derived from
on-road distance information. We convert each distance into a R16
vector, denoted as dc and df , via the Attribute Embedder. Then we
concatenate them and apply a linear transformation:

ag =Wd [dc ,df ] + bd , (1)

where aд is the global distance representation andWd and bd are
the parameters of this operation. The square brackets denote the
concatenate operator.
Attribute Attention. Certain attributes are relatively more impor-
tant than others on some occasions in revealing the travel time.
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Figure 3: Attribute Correlation Module. ac , ad , ar and at rep-
resent embedded vectors for vehicle ID, day-of-week, rain-
fall, and time-of-day respectively. dc (resp. df ) represent the
fine (resp. coarse) grained embedded distance vectors.

Vehicle ID is generally more important when dealing with hybrid
data because the trajectory of a type of vehicles may differ greatly
from the trajectory of another, e.g. public buses move much slower
than taxis. A vehicle traveling in the downtown during peak hours
will be slow, due to traffic congestion. In this case, the day and time
of the day are more important attributes. Since attention mecha-
nism is a powerful way to capture such correlations, we leverage it
here, as follows:

zi = aici (2)

αi =
exp(zi )∑
i ∈A exp(zi )

(3)

vattr =
∑
i ∈A

αiai , (4)

where αi is the weight for the attribute vector ai , A = {c,d, t , r ,д}.
Parameter ci is used to calculate an intermediate score zi . We char-
acterize our attention mechanism with {ai } and {ci }, and vattr
denotes the output of our attention mechanism and this module.

3.4 Sub-path Representation Module
The Sub-path Representation Module is the encoder for the input
trajectory. First, the Trajectory Point Embedder is used to embed the
trajectory point information to a higher-dimension representation.
Then, the Tri-CNNEncoder, which is an encoder with three-channel
output, is utilized to extract high-level abstract sub-path features
based on roads used in the trajectory. To attend to the important
channel of sub-path features, we design a Sub-path Attention mech-
anism, inspired by [1, 29]. Finally, we use a Local Distance Repre-
sentation encoder to create a more accurate representation for the
sub-path distance.
Trajectory Point Embedder. The input of this module is a se-
quence of trajectory points Tx . For each point xi in Tx , we map-
match it to a road using [23] and embed its road ID to a vector. Due
to the fact that there are often thousands of roads in large cities,
using traditional one-hot encoding results in a vector too large.
As such, we use the idea of condensed word vector from natural
language processing and convert it to R32 for an accurate represen-
tation while saving space. Since the GPS coordinates of each point
reveal fine-grained information of the vehicle, we seek to ensure
that their impact are not buried by the large embedded road ID

vector. This is achieved by converting a point’s latitude to R16, and
doing the same for its longitude. We embed the vehicle status to
R2. We then concatenate the embedded vectors and convert it to
R16 using a non-linear layer, as follows:

ua = tanh(Wcxi + bc ), (5)

whereWc and bc are the parameters of the embedder.
Tri-CNN Encoder. This encoder is used to extract high-level ab-
stract sub-path features, while mitigating the noise incurred during
the recording process. The rationale is that trajectory recording
is a noisy process that often results in imprecise GPS coordinates
recorded. Map-matching, on the other hand, is capable of estimat-
ing precisely the roads used during the trajectory. As such, by
integrating the GPS coordinates of its map-matched road, it helps
in extracting high-level abstract sub-path features in a more ac-
curate fashion. To this end, we create us and ue using the same
procedure as Equation 5. The difference is that instead of using the
xi .lat and xi .lnд as inputs during the creation of us (resp. ue ), the
latitude and longitude of the start (resp. end) point of the road xi
belongs to are used.

Inspired by DeepTTE [26], we then utilize a 1D convolutional
neural network (CNN) to create a spatial representation for the
sub-paths in ua . CNNs have been widely used in various image
recognition tasks [20, 22] for their power in capturing spatial and
temporal dependencies. For tasks where the input is a 1D-sequence,
e.g. sentence classification [14], the 1D-CNN is very effective in
extracting local subsequences of data instances and derive patterns
within each subsequence. As such, it is applicable to our context
of path travel time estimation, where the 1D input sequence (resp.
subsequence) is a trajectory (resp. sub-path) and each GPS point is
a data instance. In particular, 1D-CNN is effective in capturing finer-
grained information like turns at road junctions [26]. Typically, a
1D-CNN contains a filter of a fixed width that slides across the
data instances to capture patterns within each sub-sequence. In our
model, the formulation is as follows:

va = ELU(Wa ∗ ua ), (6)

whereWa ∈ Rk×d×16 is the parameter, ∗ is the convolution opera-
tion, k is the filter width and d is the output dimension. ELU is the
activation function [4], where ELU(x) = exp(x) − 1 for x ≤ 0 and x
for x > 0. We then use the same 1D-CNN to create another sub-path
spatial representation vs (resp. ve ) from us (resp. ue ) respectively.
Sub-path Attention. Different CNN outputs may have different
importance. If T is very noisy, a greater importance should be
assigned tovs orve , instead ofva . As such, we pass the output of the
Tri-CNN Encoder through our Sub-path Attention mechanism. This
attention mechanism is similar in spirit to the Attribute Attention
proposed in Section 3.3, with one exception. The formulation is as
follows:

yi =
n−k∑
j=1

vi, j fi (7)

βi =
exp(yi )∑
i ∈S exp(yi )

(8)

vm =
∑
i ∈S

βivi , (9)



where βi is the weight for vi , S = {s,a, e}, and
∑
i ∈S βi = 1. To

learn βi , we use a parameter vector fi . Note that unlike Attribute
Attention, the intermediate attention score yi is calculated by the
sum of the inner product between vi, j and fi across all j, where
vi, j denotes the j-th sub-path vector of vi .
Local Distance Representation. The sub-path distance is an im-
portant information. As mentioned in Section 3.3, supporting it by
the integration of fine-grained distance may create a more accurate
representation of the distance traveled. To this end, we consider two
inputs, the coarse-grained local distance of the sub-paths and its
fine-grained version. We denote these by lc , lf ∈ Rn−k respectively.
Similar to Section 3.3, we convert each of lc and lf into R(n−k )×16
using a linear layer. Then, we perform a concatenation on lc and
lf , and convert it to R(n−k )×16 using another linear layer. Finally,
we concatenate this vector with vm of the Spatial Representation
Attention. We denote the final output of this module asm.

3.5 Sub-path Correlation Module
Correlation Component. Travel time is highly dependent on
the path attributes, as mentioned earlier. To capture the inter-
dependencies between the attributes and the sub-paths, we design
a Correlation component where vattr is first concatenated with the
representation of each sub-path in m, before passing through a
linear layer, as follows:

si =Ws [mi ,vattr] + bs , (10)

wheremi is the representation of the i-th sub-path, 1 ≤ i ≤ n − k ,
andWs and bs are the parameters of this operation.
LSTMLayer. To further capture the temporal dependencies among
sub-paths, we feed the results into long short-term memory (LSTM)
network, a type of recurrent neural network (RNN). Generally,
RNNs enable the processing at every step of a sequential input to
leverage information from the previous steps. In particular, LSTM
is capable of learning longer-term dependencies by using a memory
cell, and resolving the issue of vanishing and exploding gradient in
standard RNNs. Briefly speaking, the hidden state ht and memory
cell ct are function of ht−1 and ct−1 from the previous step, and
input vector st , or formally:

ct ,ht = LSTM(ct−1,ht−1, st ), (11)

LSTM uses an input and a forget gate to control the information
flow within the recursive operation. We also use two stacked LSTM
to allow greater model complexity. For more details about LSTM,
we refer to [10]. We denote the output of this layer as hsub.

3.6 Joint Prediction Module
This module jointly learns the main task of path travel time esti-
mation, with an auxiliary task of sub-path travel time estimation,
inspired by [2, 26]. The intuition is that the travel time of a path
is essentially made up of the sum of its sub-path travel times. By
accurately estimating the sub-path times, the path travel time can
be more accurately predicted, vice versa.
Sub-path Aggregation. Due to length variability of hsub, we con-
vert it to a fixed-length vector via pooling. While mean-pooling
treats all sub-paths equally, attention-pooling gives more attention
to critical sub-paths, e.g. many traffic lights or road segments [26].

As such, we utilize an attention mechanism that is similar in struc-
ture as Attribute Attention of Section 3.3. However, instead of an
arbitrary parameter vector, we convert vattr via a linear layer to a
vector that is similar in size as a vector in hsub, and use it as the
parameter. The output of the aggregation is denoted by rpath.
Main and Auxiliary Task Learning. To generate the estimated
path travel time, we use deep residual learning. Deep residual learn-
ing is a technique for training of very deep neural networks and has
shown superior performance across multiple recognition [9] and
certain geo-spatial tasks [34]. The intuition is that each residual
unit focuses on fine-tuning the output from the previous unit by
only learning an added "residual". This is achieved through shortcut
connections across the units. Such designs mitigate the degradation
issue of deep neural networks where adding more layers results
in lower accuracies, and makes it very effective to train deep net-
works for maximal representation power. Specifically, we pass the
concatenated vector [rpath,vattr] through a linear layer, followed
by a series of residual units. The formulation of a residual unit is:

rl = rl−1 + ReLU(Wr rl−1), (12)

where rl−1 denotes the output from the (l −1)-th residual unit. Also,
1 ≤ l ≤ L, where L is the total number of residual units. ReLU is the
activation [6].Wl is the learnable parameters of this unit. Finally,
we pass rL through a linear layer to get the estimated path travel
time tpath ∈ R1. The training objective for this task is:

Cpath =

����� tpath − дpath

дpath

����� , (13)

where дpath is the ground-truth path travel time.
To get the estimated travel time t ∈ R(n−k )×1 for the sub-paths,

we simply pass hsub through several fully-connected linear layers.
The objective for this task is:

Csub =
1

n − k

n−k∑
i=1

���� ti − дi
дi

���� , (14)

where ti (resp. дi ) denotes the estimated (resp. ground-truth) value
for the i-th sub-path.

For optimization during training, we use the following loss func-
tion:

Cjoin = ζCpath + (1 − ζ )Csub, (15)

where ζ is a weighing factor that considers the relative importance
of the error of each task.

4 EXPERIMENTS
To ascertain the effectiveness of our proposed method, we conduct
experiments on real-world datasets. Specifically, we focus on the
application of estimating public bus travel time using a hybrid
dataset of public bus and taxi trajectories.

4.1 Experimental Set-up
This section describes the datasets used, the baselines we consider
for comparisons, and the evaluation metrics.
Datasets. For a fair validation process and to construct a hybrid
trajectory dataset, we require datasets obtained from the same
geographical space. As such, we make use of the following datasets:



• Singapore Smart Card Dataset: This dataset contains pas-
senger trip records obtained from CEPAS card records from
Singapore’s public bus network. After pre-processing, there
are 204,000 trajectories in all. We explain the preprocessing
steps below.

• Singapore Taxi Dataset:We use a dataset that has 11.2M
taxi trajectories. Each point within the trajectory contains
the GPS coordinates, the time instance at which it was sam-
pled, and the status of the taxi (i.e. busy, idle, stop, on-call,
or hired) at that time instance. Each trajectory also includes
the following information: a vehicle ID, time of day, and day
of week. The longest trajectory has 128 points.

We further collect city-scale rainfall records; a total of 5 distinct
levels, from Singapore. All the above datasets are obtained over an
overlapping time period in March 2016.
Pre-procesing: Bus Trajectory Derivation from Smart Card
Dataset. A passenger trip record in the smart card dataset consists
of the following features: origin stop, destination stop, bus number,
tap-in time, and tap-out time. Specifically, tap-in (resp. tap-out) time
refers to the time at which the passenger boards (resp. alights) the
bus at origin (resp. destination) stop by tapping in (resp. out) at the
on-bus fare gantry. A bus journey starts from a bus terminal, passes
a series of scheduled bus stops, and ends at a bus terminal. Unlike
taxis, public buses generally follow scheduled routes. Through basic
sorting and processing, we derive a trajectory for each bus journey
in the dataset, where each point within the trajectory contains the
GPS coordinates of the bus stop, as well as the timestamp of the
first tap-in at that stop during the journey. We obtain the exact
on-road distance between any two consecutive stops traveled by
the bus from the publicly accessible bus schedules. As such, we can
further derive the on-road distance between any two consecutive
GPS points of the trajectory, as well as the total on-road journey
distance. Since the date and time of the journey are recorded, we can
get the following attributes required by our model: day of week, and
time of day. Finally, instead of using the vehicle states of taxis, we
assign a constant bus state to each GPS point of the bus trajectory
to further differentiate bus trajectories from taxi ones.
Data Characteristics. Table 1 shows some statistics of the trajec-
tory datasets. Observe that the typical bus data is vastly different
from the taxi data. The mean, 25%-ile and 75%-ile travel times show
that the total trip duration of a bus trajectory is typically several
times that of a taxi’s. Bus travel time also has a larger variance,
and the time-gaps between consecutive trajectory points are larger.
Moreover, the points in a taxi trajectory are sampled at a regular
frequency, but the points in a bus trajectory are sampled when the
bus is at the bus stops.
Training, Validation and Testing Sets.We create a bus training
set Bus-Training by sampling 70% of the bus lines in Singapore
Bus Dataset and collecting all the trajectories of these lines. Sim-
ilarly, we sample 10% (resp. 20%) of the remaining bus lines for
the validation (resp. testing) data, denoted as Bus-Validation (resp.
Bus-Testing). We also create a taxi training set Taxi-Training, by
randomly sampling from the Singapore Taxi Dataset a number of
trajectories that is 5 times that of the number of trajectories in
Bus-Training. Finally, we create a hybrid dataset Hybrid-Training

Table 1: Trajectory Data Characteristics

Statistical Index Bus Taxi

Travel Time Mean (s) 3,245 692
25%ile Travel Time (s) 1,841 283
75%ile Travel Time (s) 4,192 933
Travel Time Std (s) 1,756 573
Time Gap Mean (s) 204 34
Sampling Interval (s) - 30

by combining Bus-Training and Taxi-Training. This is done by sim-
ply putting the bus and taxi trajectories in a common dataset. For
example, if Bus-Training = {T1,T2} and Taxi-Training = {T3,T4,T5},
where each Ti , 1 ≤ i ≤ 5 denotes a trajectory instance, Hybrid-
Training = {T1,T2,T3,T4,T5}. We repeat the above steps for 5 times
to get 5 different sets of data.
Evaluation Metrics. For our experiments, we adopt the following
evaluation metrics: mean absolute percentage error (MAPE), mean
average error (MAE), and root mean square error (RMSE).
ImplementationDetails andParameter Setting.We implement
our model on Pytorch 0.4.1. Our model training/evaluation is done
on Nvidia Tesla M40 GPU, and Linux machine with an Intel Xeon
2.6GHz CPU and 64GB RAM. We use Adam optimization algorithm
to fine-tune the parameters. The learning rate we use is 0.001 and
we train our model in batches of 400 over 100 epochs. For hyper-
parameters settings, we set k = 3 and c = 32 in the Sub-path
Representation Module. The embedding size of the attributes or
inputs are chosen based on empirical testings. In the LSTM layer
of our Sub-path Correlation Module, we use the hidden vector size
of 128. In the Correlation component, we use an output size that
is the same as the input. In the Joint Learning Module, we set the
number of residual units used as 3; the size for each unit is 128. We
also set the number of fully-connected layers used in the auxiliary
task prediction as 1. Finally, we set ζ as 0.7, for a stronger focus
on the main task loss function. To provide sufficient clout for the
relatively smaller bus trajectory sets, we also associate a constant
vehicle ID for all the bus trajectories.
Baselines. We consider several baselines in our experiment. Each
baseline has a superscript ∗, † or ‡, which denote that the model
uses Bus-Training, Taxi-Training, Hybrid-Training for training re-
spectively. In all cases, Bus-Validation and Bus-Testing are used for
validation and testing. The baselines are as follows:

• DeepTTE∗ As there is no prior work on hybrid-trajectory-
based estimation, we compare with the state of the art single-
source method. DeepTTE [26] is chosen as it is the best-
performing one to date, yet is also modifiable to support
hybrid trajectories. Specifically, instead of considering the
driver ID feature in this baseline, we use vehicle ID to dif-
ferentiate bus trajectories from taxi ones. Instead of using
the weather feature that is required in DeepTTE, we replace
that feature with the rainfall level present in our datasets. In
this baseline, only Bus-Training is used for model training
to demonstrate the effectiveness when only a single-source
small trajectory dataset is available.



Table 2: MAPE, MAE, and RMSE on AtHy-TNet and the base-
lines. Best results are in bold face and second best under-
lined.

Method MAPE (%) MAE (s) RMSE

DeepTTE∗ 15.16 367.16 374.51
DeepTTE† 41.93 1244.69 1433.67
DeepTTE‡ 13.15 350.60 358.26
LightGBM‡ 14.60 393.83 544.25
HyMLP‡ 17.40 497.70 608.60
HyLSTM‡ 14.81 388.70 406.70
AtHy-TNet∗ 13.66 329.45 342.0
AtHy-TNet-a‡ 10.91 288.32 295.73
AtHy-TNet‡ 10.24 264.21 273.12

• DeepTTE† This baseline is similar to DeepTTE∗ except that
Taxi-Training is used for training. It is chosen to explore the
effectiveness of solely utilizing a larger trajectory dataset,
but of different characteristics.

• DeepTTE‡ This baseline is similar to the previous two, ex-
cept that Hybrid-Training is used for training. This baseline
serves to show how estimation changes when the training
dataset uses not only a small single-source dataset, but also
a larger one obtained from the same geographical space.

• LightGBM‡ LightGBM is one of the most efficient and high-
performing gradient boost decision tree method [13]. The
trajectory input for this baseline is the same as AtHy-TNet.
Apart from the total path distance, the attributes of the tra-
jectory are specified as categorical features in the program.

• HyMLP‡ This baseline is a simple 5-layer fully-connected
network with ReLU activation. The input is the same as
AtHy-TNet and each categorical attribute in the input is
embedded to a low-dimensional vector.

• HyLSTM‡ This baseline uses a 2-stacked LSTM. The in-
put is the same as AtHy-TNet, except that neither sub-path
representation nor attribute correlation is considered. Simi-
lar to HyMLP‡, each categorical attribute is embedded to a
low-dimensional vector, before feeding into the LSTM. The
estimation is obtained by mean-pooling the LSTM output
and passing through residual fully-connected layers.

• AtHy-TNet∗ This baseline uses AtHy-TNet on Bus-Training
instead of Hybrid-Training. The purpose is to demonstrate
the raw improvements brought about by our model when a
single-source small dataset is used.

• AtHy-TNet-a‡ This baseline is a simplified model of AtHy-
TNet. Instead of using the Sub-path Representation Module,
AtHy-TNet-a‡ uses the Geo-Conv Layer proposed in [26].

4.2 Evaluation Results
We conduct experiments on the five sets of {Bus-Training, Taxi-
Training, Hybrid-Training, Bus-Validation, Bus-Testing} described
earlier, and record the average testing results on Bus-Testing in
Table 2. As observed, methods that utilize hybrid trajectories per-
form better than their single-source versions. For example, the

performance of DeepTTE‡ is at least 2% stronger than DeepTTE∗
and DeepTTE †. Despite the fact that Taxi-Training is much larger
than Bus-Training and supposedly not as affected by data sparsity,
performance of DeepTTE † is significantly worse than DeepTTE∗.
This shows that simply replacing a dataset with another results
in large errors, due to the vast differences across different sources.
AtHy-TNet-a‡ shows a stronger performance than all other hybrid-
data methods by at least 2%. This demonstrates effectiveness of our
model in estimating across hybrid trajectories, and by considering
correlations of the relevant attributes. The performance of AtHy-
TNet‡ is a further improvement from AtHy-TNet-a‡ by around 0.7%.
This demonstrates the benefits of extracting high level sub-paths
spatial features through fine-grained road-based information. As
such, our experiment results show that the effectiveness of our
model in learning multi-nature correlations of hybrid trajectory
data. Note that AtHy-TNet∗ demonstrates a performance stronger
than DeepTTE∗ by 1.5%, which shows that our method is effective
even when single-source training data is used.
Comparison with Google Maps. We also compare AtHy-TNet
with Google Maps API [7]. Adopting the treatment in [27], we
query Google Maps Directions API at the same time and weekday
as the starting time of each trip, by assuming a strong weekly
periodicity. Since the API does not support the querying of past
trips, all the queries correspond to the current or future time. As
arbitrary public bus routes outside of the existing bus lines are
unsupported in the query, the travel mode is set as Driving. Due
to credit limits, 30k trips within a set of Bus-Testing are randomly
chosen for comparison. The MAPE, MAE, and RMSE are 20.9%, 491,
and 647 respectively. In contrast, the errors are 11.24%, 237, and
241.3 respectively when the same trips are estimated using AtHy-
TNet. A reason why Google Maps does not perform as well may be
that the data sources for its estimations in the Driving mode are
largely based on non-public-bus vehicles. Since the travel time of
arbitrary public bus routes are unsupported in online map services,
it further highlights the necessity of a solution for vehicles with
small trajectory datasets.
Effect of Varying Taxi and Bus Data Size in Hybrid-Training.
Next, we keep the bus trajectories in Hybrid-Training constant
and vary the concentration of taxi trajectories. Specifically, we
consider taxi data that is K times the size of the bus data. We
evaluate the performance of AtHy-TNet‡ over different values of
K , using Bus-Validation and Bus-Testing. The results are shown
in Figure 4. As observed, the performance is significantly worse
when no taxi trajectories are used in the hybrid training data, but
improves rapidly when they are introduced. As early as K = 1, the
decrease in error is more than 2%. The performance strengthens
with increasing K and settles at its peak from K = 4 onward. The
maximum achievable improvement is nearly 4%. This demonstrates
benefits of hybrid data, and capacity of AtHy-TNet‡ to effectively
utilize hybrid data, even when the external data used is small. Error
tends to be larger whenK is small, since a smaller external taxi data
often implies a smaller extended area coverage. As such, estimation
does not improve as much as when larger taxi data/coverage is
considered in the hybrid data.

We also vary the concentration of bus trajectories while keeping
the taxi trajectories in Hybrid-Training constant. The results are
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shown in Figure 5. As observed, the accuracy improves as the bus
trajectory data size increases. The reason is that when the bus data
is small, the area coverage of buses that can be used for correlation-
learning with taxis tends to be small too. As such, the error is larger
as compared to when more bus data is available for correlation-
learning. Nonetheless, AtHy-TNet‡ demonstrates a satisfactory
accuracy using bus data sizes even as small as 20k and 40k. This
shows that our method is capable of leveraging external data for
estimation to address the inaccuracy brought about by a single-
source small dataset. Moreover, in both cases, AtHy-TNet‡ shows a
stronger performance and a steeper descent over increasing data
size than DeepTTE‡. This shows the suitability of our model over
prior art in effectively modeling across hybrid trajectories.
Performance across Different ζ in the Joint Learning Mod-
ule. Figure 6 shows how the performance of AtHy-TNet varies
across different values of ζ , from 0.01 to 1.0. As observed, the per-
formance is satisfactory in general across all values. Although the
performance remains around a constant level in the middle of the
range, the errors are slightly larger at the ends, i.e. 0 and 1.0. This
demonstrates the benefits of learning the main task of path travel
time estimation with an auxiliary one and considering the errors
of both during training.
Performance acrossDifferent TripTravel Times. Figure 7 com-
pares the model performance across trajectories of different trip
durations. Generally, AtHy-TNet consistently shows a stronger per-
formance than DeepTTE and LightGBM across all trip durations.
It is interesting to note that the error tends to decrease as trip du-
ration increases for all methods. The reason may be that unlike a
short trip, a long trip usually has more constituting sub-paths. Since
each sub-path provides valuable information that is useful for esti-
mation, having more sub-paths means the longer trips have more
information usable by the methods. This results in the travel time
of these trips to be estimated more effectively than the shorter ones.
Furthermore, the rate of error-decrease for AtHy-TNet is the fastest

 Figure 7: Performance over different travel times

as compared to other methods. Specifically, error decreases from
16% to around 11% when the trip duration increases from 0-1000s to
1000-2000s, stays constant at 2000-3000s, before further decreasing
to around 8% for durations within 3000-5000s. In contrast, the errors
of DeepTTE stay nearly constant during the shorter trips and only
starts to decrease towards the longer ones (3000-5000s).
Performance acrossDifferentDays of theWeek. Figure 8 shows
the performance of AtHy-TNet and baselines across the different
days of the week where 1 represents Monday and 7 represents Sun-
day. As observed, AtHy-TNet out-performs DeepTTE and Light-
GBM across all days. It is interesting to know that the trend of
errors’ variation across the week is similar across all three methods.
Specifically, error increases almost linearly fromMonday to Sunday,
with dips on Wednesday and Friday. Estimation errors are higher
on weekends than weekdays since the travel patterns of passengers
are less regular. It may also be because the number of trajecto-
ries collected on weekends is generally smaller as there are fewer
weekend days in a week. The rate of increase for AtHy-TNet, as
shown by the gradient of the slope, is slow as compared to the other
two methods. Furthermore, its errors fall within the satisfactory
performance range of 9-11%. This demonstrates the performance
robustness of AtHy-TNet across different days of the week.
Performance across Different Times of the Day.We also eval-
uate the estimation performance across different times of the day.
We conduct the test separately for weekdays and weekends, since
the travel characteristics of weekdays and weekends are largely
different. The results are shown in Figure 9 and 10 respectively,
based on the 24-hour clock. As observed, AtHy-TNet out-performs
the baselines across all times of the day for both cases. The errors
of AtHy-TNet also show a smaller variance in both cases. Similar to
Figure 8, the MAPEs during the weekends are mostly higher than
during the weekdays. For both weekdays and weekends, errors
remain relatively constant for all methods during the later parts of
the day, i.e. 9 hrs onwards. Note that the error of the earliest period,
i.e. 0-3 hrs, of weekdays is higher than that of the later periods. In
contrast, the error over the same time period during weekends is
lower than the later ones. The reason for such discrepancy may be
because there are fewer bus services that run at that period. As such,
there are much fewer trajectories available for training and testing,
and this results in a large variance in errors between weekdays and
weekends. Furthermore, specific to AtHy-TNet, the error during
the 6-9 hrs of weekdays is the highest as compared to the rest of the
day. This is reasonable since the 6-9 hrs period is the morning peak
hours when traffic congestions are rampant, due to people going
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to a common set of places. As a result, the difficulty of estimation
is higher. Compared to the baselines, this observation also shows
that our model manages to reveal such temporal-dependencies in
the datasets.
Attribute/Feature Importance Evaluation. We study the effect
of each of the attributes used in AtHy-TNet, by evaluating the
performance of AtHy-TNet when only that attribute is excluded
from the model. When the day-of-week attribute is excluded, the
MAPE worsens by 0.46%. When time-of-day attribute is excluded,
the MAPE worsens by 0.99%. This is aligned to our intuition that
traffic complexities, e.g. traffic congestions, are different in different
times of the day/week. As such, temporal attributes are important
to model such differences. When the rainfall attribute is excluded,
MAPE increases by 0.43%. This is coherent with the well-studied
fact that vehicles tend to move slower on rainy days. To study the
effect of differentiating bus trajectories from taxi ones, we exclude
vehicle ID. Recall that the bus states used are generally different
from the taxi ones. As such, we also exclude the vehicle state of
each GPS point. As a result, the MAPE worsens by 0.96%. This
highlights the importance of differentiation of vehicle types when
dealing with hybrid trajectories, since vehicles of different types
may have distinct travel behaviours.
Predicting Time. The predicting time of AtHy-TNet is fast, in
spite of its slower training time. The time taken to estimate a batch
of 400 trajectories is around 0.023s.

4.3 Transfer Applications and Limitations.
AtHy-TNet is the first work that demonstrates the benefit of using
hybrid dataset for a task. A possible transfer application of the
method is to use it for the trajectory classification problem of a
vehicle type that has a small dataset, e.g. classify bus trajectories
based on the degree of in-bus crowdedness. Due to privacy and
legal concerns, it is often hard for one operator, e.g. taxi company,

to share its data with another, e.g. bus company. As such, another
potential extension is the use of federated learning for the training
process. For example, instead of training on a hybrid dataset, the
model may first train on the taxi dataset, before fine-tuning by
training another time on the bus dataset. In this case, only the
model needs to be shared among the companies while the datasets
are kept private.

A limitation of AtHy-TNet is that it is a preliminary attempt at
demonstrating the effectiveness of using hybrid-trajectory data. As
such, the model can be improved in several ways, like include finer-
grained road information such as regulated speed limits, and if the
road has electronic road tolls installed. Furthermore, AtHy-TNet
deals with the estimation of a single type of vehicles when the single-
source dataset is small. An extended exploration on leveraging
hybrid datasets for multi-modal path travel time estimation may be
useful, to public organizations for traffic studies, and to commuters
for multi-modal trip planning.

5 RELATEDWORK
Travel time estimation using trajectory data are generally classified
into two categories: 1) Link-based, and 2) Sub-path-based methods.

For the link-based methods, travel time estimation is carried
out for the individual road segments [12, 18, 19, 25, 28, 31], before
these times are combined to form the travel time of the whole path.
Yang et al. utilize spatio-temporal Markov models to model traffic
behaviours and forecast the travel time at all the road segments [31].
In [25], Wang et al. make use of regression tree and probabilistic
graphical methods based on some correlations observed from the
traffic data. In [28], the authors propose a deep learning framework
that predicts traffic speed of road segments using spatio-temporal
information of contiguous road segments. Rahmania et al. propose a
fixed point formulation that simultaneously infers route choice and
travel time [19]. Jenelius et al. [12] use a multivariate probabilistic
principal component analysismodel that is able tomodel correlation
patterns between days. One limitation about such methods is that
they do not consider certain travel complexities on the path level,
such as traffic lights, and turn costs.

Sub-path-based methods mitigate this limitation to some extent
[5, 16, 30, 32]. The key idea is that path travel times can be esti-
mated by considering historical path/sub-path travel times, which
implicitly consider costs that are not modeled in the link-based
methods. In [32], Yuan et al. propose a time-dependent landmark
graph to model the time-varying traffic patterns, and techniques to
compute the fastest path based on this graph and the experience of
drivers. In [30], the authors utilize a tensor decomposition approach
to resolve the issue of data sparsity, and a dynamic programming
method to find the optimal concatenation of trajectories for path
travel time estimation. Dai et al. propose the hybrid graph para-
digm and techniques to address the issue of non-standard travel
time distribution, data sparseness and the dependencies among
roads travelled during a path [5]. Li et al. further consider scenarios
where only a small number of probe vehicles is used to collect the
data and travel times of the same path may have large variances
[16]. More recently, deep learning has shown further success for
this task. Wang et al. propose DeepTTE, which models the path
travel time of taxis in an end-to-end fashion, while considering



the spatio-temporal and attribute characteristics [26]. Zhang et al.
partition the road network into grids, and consider various short
and long-term features [33].

On the broader scale, there also exists work that estimates travel
time given the input of an origin-destination (OD) pair [11, 15].
However, while these methods are advantageous in faster compu-
tations, they have a limited consideration in terms of the vehicle
path choice variabilities between the origin and destination, which
the travel time of a vehicle is highly dependent on. Furthermore,
deep learning has been used in various spatio-temporal problems,
such as crowd-flow prediction [34], transportation mode prediction
[21] and trajectory predictions for road agents [3, 8, 17, 24, 35]. In
general, utilizing deep learning for path travel time estimation is a
new field, and there has not been any work which seeks to perform
this task across hybrid trajectories.

6 CONCLUSION
In this paper, we propose an Attribute-related Hybrid Trajectories
Network capable of estimating path travel times by effectively uti-
lizing hybrid trajectory data. This method implicitly models the
correlations across hybrid trajectories, something largely ignored
in existing work. It also extracts the correlations of attributes that
affect path travel time and leverage on-road information to extract
sub-path features. Through experiments, we demonstrate the supe-
rior performance of our method over the state of the art methods.
For future work, we will explore how path travel time estimation
can be used in identifying real-time traffic conditions.
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