
R. Meersman and Z. Tari (Eds.): OTM 2008, Part I, LNCS 5331, pp. 484–493, 2008.
© Springer-Verlag Berlin Heidelberg 2008

XML Data Integration Based on Content and Structure
Similarity Using Keys

Waraporn Viyanon1, Sanjay K. Madria1, and Sourav S. Bhowmick2

1 Department of Computer Science, Missouri University of Science and Technology
Rolla, Missouri, USA

2 School of Computer Engineering, Nanyang Technological University, Singapore
wvz7b@mst.edu, madrias@mst.edu, assourav@ntu.edu.sg

Abstract. This paper proposes a technique for approximately matching XML
data based on the content and structure by detecting the similarity of subtrees
clustered semantically using leaf-node parents. The leaf-node parents are con-
sidered as a root of a subtree which is then recursively traversed bottom-up for
matching. First, we take advantage of the “key” for matching subtrees which
reduces the number of comparisons dramatically. Second, we measure the simi-
larity degree based on data and structures of the two XML documents. The re-
sults show that our approach finds much more accurate matches with or without
the presence of keys in XML subtrees. Other approaches experience problems
with similarity matching thresholds as they either ignore semantic information
available or have problems in handling complex XML data.

Keywords: XML, Similarity, keys, clustering.

1 Introduction

Data such as ACM SIGMOD Record [9] and DBLP [10] are published and shared
using XML. However, these sources have similar contents but described using differ-
ent tag names and structures. There are several methods [1, 4, 5, 6] for measuring
XML content or structure similarity. They consist of extracting several features or
keywords of each document and store them into an XML tree. Then, the similarity
between XML documents is calculated by computing the edit distances between two
trees which is a time-consuming task [1]. Similar arguments also hold for [4] which
uses Brute-Force algorithm for comparing path similarity degree. On the other hand,
some approaches like LAX [5] and SLAX [6] are based on XML document’s charac-
teristics in terms of its depth and number of instances contained to cluster the docu-
ment into subtrees which are used to calculate the similarity. Though they outperform
edit distance based-schemes, they ignore semantic information available such as
“keys”; rather they rely on finding subtrees or “clustering point” which does not work
for all XML data.

The concept of key [2] has been introduced for XML documents. In this paper, we
propose a new approach called XML Document Integration or XdoI in short which
considers both the data structure and the content for approximately matching XML
documents to integrate XML data sources together. More specifically, our approach

 XML Data Integration Based on Content and Structure Similarity Using Keys 485

detects the similarity of two subtrees clustered semantically from two XML docu-
ments taking advantage of XML keys for subtree matching in bottom-up fashion. This
reduces the number of comparisons dramatically. After we match the subtrees based
on keys, the remaining unmatched subtrees are processed for finding similarities in
both its content and structure to select the best matched subtrees. We outperform
LAX and SLAX schemes in terms of false positives during the best matching subtrees
as well as in terms of result quality and execution time of finding similarity matches
using keys.

2 Related Work

David Buttler [3] summarized three approaches on structure similarity: (1) Tag simi-
larity, (2) Tree Edit Distance (TED), and (3) Fourier Transform Similarity. Tag simi-
larity algorithm is not satisfactory in terms of accuracy as the pages conforming to the
same schema, such as HTML, have only a limited number of different tags; one page
may contain a large number of a particular tag, while the comparison page may con-
tain relatively few occurrences of the tag. In Fourier Transform Similarity [7], the
basic idea is to remove all the information from a document except for its start and
end tags, leaving a skeleton that represents the structure. This algorithm is proved in
[3] to be the least accurate of any of approximation algorithm, while also being the
slowest. Path similarity [3] measures are expensive to compute as there are n! map-
pings between the paths of two trees.

3 Motivation and Problem Statement

LAX approach [5]divides XML trees into subtrees by considering a clustering point from
the height (distance from the furthest child) and the number of link branches of XML
trees. A link branch is a link between two candidate elements which have at least two
children or the distance to its furthest child is at least three. The subtree can be generated
by deleting the link branch below the clustering point. The clustering point is calculated
from the maximum weighting factor of the multiplication between the height level and
the number of link branches (ex. tinyDB (2,3) has weight of 6 in Figure 1) .

publisher ISBN

fname lname

author

DBLP (2,6)

articles(2,5) proceeding

article(1,4) article(1,4)

authors(4,3)title

 Link branch
 Segmented subtree

fname lname

author

fname lname

author

fname lname

author

article

author number volumetitle

tinyDB (2,3)

publisher

author

authors(2,3)title

fname lname

author

fname lname

ISBN

volume

article

title author number

LEFT RIGHT

Fig. 1. Example of LAX clustering on two different XML structures: DBLP tree has two arti-
cle elements, part A is the left article and part B is the right article

486 W. Viyanon, S.K. Madria, and S.S. Bhowmick

Figure 1 shows LAX clustering on two different XML documents with dissimilar
structures. The clustering points on the tinyDB tree are the link branches under the
candidate element tinyDB(2,3) because of the maximum weight = 2*3 = 6. Therefore,
the tinyDB tree is clustered into two subtrees rooted by the article nodes but the
DBLP tree is clustered into four subtrees rooted by the author nodes for the first arti-
cle since the maximum weight is from the element authors(1,3). It shows clearly that
the resulting subtrees in both documents are different in terms of semantics. The first
tree is cut into a set of articles but the second tree in Figure 1 (part A) is chopped into
a set of authors. The results of clustering affect next steps such as subtree matching
because it compares different types of objects. In addition, the leaf-nodes “title”,
“publisher” and “ISBN” of the first article on the second tree are not considered in
any subtree.

Consider the second article on the second XML tree in Figure 1 (part B). The
whole article is clustered into one subtree since the maximum weight is 2*5 = 10 from
the element article(2,5). This example shows that we may get different kinds of sub-
trees in the XML document and therefore, similarity scores will vary. Missing ele-
ments such as “title”, “publisher” and “ISBN” from the first article also occur after
the clustering.

The authors of [6] found that when LAX is applied after fragmenting documents,
the hit subtrees selected from the output pair of fragment documents that have large
tree similarity degrees might not be the proper subtrees to be integrated. SLAX [6] is
therefore an improved LAX to solve this problem. SLAX divides XML documents
into smaller portions by parsing XML documents into K document trees. In each
document tree, SLAX applies the weighting factor from LAX to find points for sub-
tree clustering. This way they try to solve the issue of matching right subtrees but the
problem with LAX clustering discussed above still occurs in divided trees. We elabo-
rate this problem further in Section 5.

In this paper, we show how to address the drawbacks of the clustering discussed
above by using leaf-node parents as a clustering point using bottom-up approach
while exploiting keys and recursively matching subtrees bottom-up.

4 Our Approach

XDoI approach is split into three phases for simplicity and understanding. In Phase I,
we cluster the base XML tree and target XML tree by considering leaf-node parents
as clustering points. The clustered subtrees in the base XML tree are considered inde-
pendent items that will be matched with clustered subtrees in the target XML tree in
Phase II. The best matched subtrees are integrated in the first XML tree as a resulting
XML tree in Phase III.

4.1 Basic Definitions

Definition 1: XML Document Tree - An XML document tree T is an ordered la-
beled tree parsed from an XML document. Let bT and tT be two XML document
trees, where b denotes the base tree and t denotes the target tree. The bT and tT are
clustered into subtrees later.

 XML Data Integration Based on Content and Structure Similarity Using Keys 487

Definition 2: Leaf-node parent - A leaf-node parent is a node that has at least a child
as a leaf node. This node is considered as a root of a subtree in the clustering process.

Definition 3: Clustering point - The clustering point is the link above the leaf-node
parent. The clustering point indicates the place for clustering an XML tree into subtree(s).

Definition 4: Simple subtree – A simple subtree is a clustered tree with only a root
and leaf nodes.

Definition 5: Complex subtree – A complex subtree is a clustered subtree with at
least one simple subtree, a root and one or more of leaf nodes.

4.2 Preprocessing

We do pre-processing on the XML documents by parsing and storing XML docu-
ments in relational tables based on their tree structure using XRel [8]. Storing XML
data in a relational model for similarity findings addresses the issues of scalability
which affects all other schemes. XRel uses four relations (Element, Attribute, Text
and Path) to store the data and structure of the XML documents and a document rela-
tion to store the complete XML document as shown in Table 1.

In this paper, we find a leaf-node value match for all unique node values with the
same path using the SQL statement shown in Table 2. The unique leaf node is consid-
ered as the key which can identify the subtree. It is possible that XML documents
may not contain a key in some subtrees or an item in either base or target XML tree
has a key but the same item may not appear in the other XML tree. So, we need to
continue to find the best matching for this case by comparing rest of the subtrees.

 Table 1. XRel relational schema and subtree table Table 2. Finding key(s)

Element(docid, pathid, start, end, index, re-index)
Attribute(docid, pathid, start, end, value)
Text(docid, pathid, start, end, value)
Path(pathid, pathexp)
Document(docid, document)

Subtree(docid, subtreeid, pathid, start, end, key, value)

SELECT docid, pathid, value
FROM subtree
GROUP BY docid,
PathID,Value
HAVING Count(Value) = 1

4.3 Phase I: Clustering XML Tree into Subtrees

An XML tree can be parsed into small independent items by clustering it into more
meaningful subtrees. Each clustered subtree represents independent items. A well-
clustered subtree requires as in [5] (1) each subtree to represent one independent item,
(2) each independent item is clustered into one subtree and (3) the leaf nodes belong-
ing to that item should be included in the subtree.

For our approach, the way of clustering an XML tree into an independent item is to
use leaf-node parents as clustering points discussed in Definitions 2 and 3. The leaf-
node parents are considered as a root of each subtree. The clustered subtrees are cate-
gorized into two types, simple subtree and complex subtree, defined in Definitions 4
and 5. They are stored in the subtree table shown in Table 1 and will be used in sub-
tree matching later.

488 W. Viyanon, S.K. Madria, and S.S. Bhowmick

4.4 Phase II: Matching Subtrees

The keys in the base subtrees found in the pre-processing step are used to match with
the keys in the target subtrees. Matching the keys of base XML tree and target XML
tree will reduce the number of unnecessary subtree matching. It is possible that one to
multiple matching occurs in this step. The number of one to multiple matching will be
reduced after finding the similarity degree using Definitions 6.1 & 6.2. The non-
matched subtrees will be also needed to find subtree similarity degree for each pair.

To find the correct matched subtree, we consider both the content and the structure
of the base and target XML trees by comparing PCDATA value and signatures to
decide which subtrees are the right matched pair. First, we define the Subtree Simi-
larity Degree (SSD) of each subtree in the definition below.

Definition 6.1: Subtree Similarity Degree (measure1) -- Let bit be the base subtree
and tjt be the target subtree. Assume n is the number of leaf nodes having the same
PCDATA value. Let bin represents the number of leaf nodes in bit and tjn represents
the number of leaf node in tjt . For score rule each common node is assigned 1 point
and a common node defined as a key is assigned 2.

%100),(
1

×=
bin

n
tjtbits (1)

Definition 6.2: Subtree Similarity Degree (measure2) – This is the ratio of common
matched leafnode values between the base and target subtrees.

%100
2

),(
2

×
+

×
=

tj
nbin

n
tjtbits (2)

SSD (measure2) is used to eliminate the number of one to multiple matches in case of
having the maximum SSD (measure1) with overlap target subtrees.

Definition 7: Matched Subtree - The matched pair of subtrees bit and tjt is the pair
that has the maximum subtree similarity degree from Definitions 6.1 and 6.2. The
maximum subtree similarity degree is considered as a matched subtree.

)),((][
1 tjtbitsMaxiSM = (3)

Definition 8: Path Similarity Degree (PSD) -- PSD is a best matched subtree by
comparing the number of nodes in the base path on the matched leaves that have the
same labels excluding leaf nodes. This is applied in case of having the same maxi-
mum similarity degree with target subtrees from Definition 7.

%100)(×=
biN

N
iPSD (4)

N denotes the number of nodes in the base path that have the same labels with those in
the target path, Nbi denotes the total number of nodes in the base path, and i is the total
number of matched leaf node paths in the base subtree between 1 to k paths.

Definition 9: Path Subtree Similarity Degree (PSSD) -- After PSD calculation in
Definition 8, the PSSD is determined by the following equation.

%100),(
1

1
)(

),(tjtbits
k

k

i
iPSD

tjtbitPSSD ×
∑
==

(5)

 XML Data Integration Based on Content and Structure Similarity Using Keys 489

4.5 Phase III: Join Algorithm

Let bS and tS be two XML data sources and each XML document bb Sd ∈
and tt Sd ∈ be clustered into XML document trees bT and tT . bT and tT are clus-
tered into subtrees, bit and tjt where subscript i denotes number of subtrees in the
base document tree and j denotes number of subtrees in the target document tree.
The steps in joining two XML documents consist of (1) Finding the similarity degree
of each pair of subtrees. If there are more than one matched subtrees, find the maxi-
mum similarity degree among them, (2) Calculate the tree similarity degree from
mean value of similarity degrees of matched subtrees and (3) If the tree similarity
degree is greater than a given threshold τ , where 10 ≤≤ τ , the two documents can be
integrated at the clustering point.

4.6 Algorithm

Our approach can be written in a pseudocode as follows. This algorithm is processed
after XML documents are parsed into a relational database. There are four main modules:

Algorithm XDoI: Input: XML documents db and dt and Output: Set of matched subtrees pairs (tbi, ttj)
 //Module1 Identifying key(s)

Define key(); //*** Table 2: Finding key(s) ***
//Module 2: Clustering the XML trees
 Find_leafnode_parent(); //***Sub Module

ClusterXMLTree(); //***Sub Module - Using leaf-node parent
 //Module 3: Matching subtrees
 Match_with_key(); //***Table 3 (Query 3)***
 // Subtree Similarity degree computation
 for (every tbi in db) { //Subtrees from the based document

MaxSim[i] = 0;
for (ttj in dt){
 CalSimilarity S(tbi ,ttj) //***Definition 6.1&2 ***
 MaxSim[i] = Max(MaxSim[i], S(tbi ,ttj)); //***Definition 7 ***
}
StoreMSSD(tbi, ttj, MaxSim[i]); //Store MSSD in a temp table

} // Path Subtree Similarity degree computation

 for (every tbi in MSSD, such that Count MaxSim() >1 and MaxSim > τ) {

 MaxPath[i] = 0 //Match subtree more than one pair
for (j = 1 to kt) {
 CalPathSimilarity P(tbi ,ttj) //***Definition 8 ***
 MaxPath[i] = Max(MaxPath[i], P(tbi ,ttj)); //***Definition 9 ***
}
StorePSSD(tbi, ttj, MaxPath[i]); //Store MSSD in a temp table

 }
 //Module4: Integration
 for (every tbi in PSSD, such that MaxPath > τ){ // similarity degree > the threshold

di = integrate(Sb, St) //*** Section 4.5 ***
return (di);

 }
 }
Sub Modules:
Find_leafnode_parent(){

 for every pi from the PATH table
 { if lastpathsection(pi) is not attribute {
 lnp = Remove the last path section from (pi);
 store_lnp(lnp); //store a leafnode parent into a temporary table
 }
 }
ClusterXMLTree() {
 for (i in all_lnp){
 regioni = Retrieve leafnode parent info //***Table 3 (Query 1)***
 ti = find_subtree(regioni); //***Table 3 (Query 2)***
 store_subtree(ti)
 }
 }

Fig. 2. XDoI Algorithm

490 W. Viyanon, S.K. Madria, and S.S. Bhowmick

Table 3. SQL—Subtree clustering and match with key

Query1: Retrieve leafnode parent information:
Select distinct e.docid, e.pathid, e.st, e.ed
From tmp_leafnode_parent p , element e Where p.docid = e.docid and p.ppathid = e.pathid
Query2: Find subtrees:
Select docid, pathid, st, ed, ++subtreeid, value
From txt Where st >= region.st and ed <= region.ed
Query 3: Match subtrees with keys:
Select s1.subtreeid, s2.subtreeid
From subtree s1, subtree s2 Where s1.docid = 1 and s2.docid = 2 and s1.key = ‘Y’ and s2.key = ‘Y’ and s1.value = s2.value

(1) Preprocessing, (2) Clustering, (3) Matching subtrees and (4) Integrating matched
subtrees. In matching subtree phase, we first match subtrees with keys according to
Query 3 in Table 3. The first unmatched subtree in the first XML document is compared
with all the subtrees in the second XML document and this procedure is recursively done
for all the subtrees in the first XML document. The best match can be calculated by fol-
lowing the algorithm steps in Figure 2.

5 Performance Evaluation

In this section we conduct experiments to observe the efficiency and effectiveness of
our algorithm comparing with algorithms LAX and SLAX [5, 6]. We used Intel Pen-
tium 4 CPU 2.80GHz with 1GB of RAM running on Window XP Professional with
Sun JDK 1.6.0_02 and Oracle Database 10g Standard Edition. We used available
bibliography datasets, SIGMOD Record [9], 482 KB as the base document and three
segmented documents of DBLP.xml [10], 700 KB each as the target documents. We
also used some synthetic XML datasets classified according to keys, types of structure
(shallow and deep) and file sizes.

5.1 Experimental Results

First we evaluate the variation of clustered subtrees among the algorithms, XDoI,
LAX and SLAX. We compare the clustering points (subtree roots) and the number of
subtrees using SigmodRecord and DBLP. Table 4 shows the difference of the clus-
tered subtree from the three approaches. XDoI clustered subtrees by leafnode parents
which cover all leafnode values on XML documents. This guarantees that the associ-
ated values are not missed while clustering. The clustering of LAX and SLAX is done
according to the weighting factor w discussed in Section 3. The clustered subtrees
from SLAX rely on K value mentioned in Section 3. From the result of clustering
SigmodRecord, we got different segmented subtrees at three different levels “issue”,
“article” and “author” which can be integrated with different kind of bibliography
documents. On the other hand, LAX got only “issue” level which affects the similar-
ity scores when we compared the LAX’s clustered subtrees with clustered subtrees
rooted at “article” level from the DBLP dataset. SLAX clusters XML documents
depending on the selected K value, however, the right K value required for clustering
across different XML documents is not clear [6] as no obvious procedure was pro-
vided to select the appropriate value of K. This also causes the loss of some meaning-
ful information such as “issue volume” and “issue number” when K > 4 for

 XML Data Integration Based on Content and Structure Similarity Using Keys 491

Table 4. Clustered point and number of subtrees from different approaches

XDoI LAX SLAXXML document
subtree-root

element
Number

of
subtrees

subtree-root
element

Number
of

subtrees

K subtree-root
element

Number
of

subtrees
k 4 issue 67SigmodRecord issue

article
authors

67
1504
1504

Issue 67
k>4 article 1504

DBLP(dblp01.xml) inproceedings 769 Inproceedings 769 Any k inproceedings 769

SigmodRecord. Similarly, K has different values for different documents as shown in
Table 4. Therefore, the LAX’s and SLAX’s clustering can affect the results of subtree
similarity degree substantially and therefore, can integrate mismatched subtrees.

Next we evaluate the execution time of clustering subtrees, finding key(s), comput-
ing the subtree similarity degrees and the path subtree similarity degrees of three pairs
of SigmodRecord and three selected fragments of DBLP. We call these pairs as 1st
pair, 2nd pair and 3rd pair in our experiments. We ran the experiments using τ = 0.5 as
a user-defined “threshold value”. We used the three pairs of a dataset from Sig-
modRecord and DBLP which do not have key(s) defined so that the finding keys
module is required. On the other hand if we integrate two XML documents with pre-
defined keys such as XML documents generated from RDBMS, the finding keys
module is not necessary. In case of hybrid XML documents with only some portions
in the documents having key(s) identified and some parts do not, the execution time
for the finding keys module will take less time for documents with non-predefined
keys. In the experiments, our approach though requires two more modules, finding
keys and mapping with key, the execution time in total is less than SLAX’s. This is
because SLAX clusters the XML documents into subtrees using the weighting factor
so most of the execution time is used to calculate the factor and the key mapping
module in XDoI reduces the number of subtrees needed to calculate SSD and PSSD.

In the experiments, we also compared our approach using keys with non-keys to
observe the margin of improvements using keys in terms of the overall execution
time. The numbers in parentheses in Table 5 are execution time of XDoI with non-
keys. Obviously it takes more time than the one with keys because it has to calculate
SSD for each subtree pair. The comparison for each module against other approaches
is shown in Figure 3.

Table 5. Execution time (in seconds) for clustering & key generation in SigmodRecord and
DBLP Data

XdoI SLAX Module
1st pair 2nd pair 3rd pair 1st pair 2nd pair 3rd pair

Clustering 17625 20070 22344 233482 281576 258624
Finding keys 156811 154796 184983 - - -
Mapping with keys 217358 209748 89484 - - -
SSD 15975258

(37149128)
17697580

(45629554)
53201074

(59464448)
17775897 20445114 36746179

PSSD 162200
(185655)

32063
(40594)

890605
(1082337)

962885 935901 1385309

Total Time 16529252
(37352408)

18114257
(45690218)

54388490
(60569129)

18972264

21662591 38390112

492 W. Viyanon, S.K. Madria, and S.S. Bhowmick

Execution time for XDoI and SLAX

1

10

100

1000

10000

100000

Clustering Finding
Keys

Mapping
with keys

SSD PSD Time in total

T
im

e
in

 s
ec

o
n

d
s

XDoI with non-keys XDoI with keys SLAX

Fig. 3. Average execution time for XDoI and SLAX

Table 6. Matched subtrees of SigmodRecord and DBLP

XDoI with keys SLAX Threshold
1st pair 2nd pair 3rd pair 1st pair 2nd pair 3rd pair

50% 361(339,22)
FP = 6.09%

336(322,14)
FP = 4.17%

93(67,26)
FP=27.96%

314(273,
41)

FP=13.06%

286(225,61)
FP=

21.33%

102(55,47)
FP=46.08%

We tested the effectiveness of the two approaches by measuring the false positives
in the number of matched pairs. Table 6 shows the number of matched subtrees from
our experiments and the values in parentheses indicate the number of correctly
matched subtrees and the number of incorrectly matched subtrees respectively. From
the results, we observe that all the incorrect matched pairs are simple subtrees rooted
by the “authors” element overlapped with a complex subtree rooted by the “article”
element. They are matched with a target subtree because the subtrees have the same
authors in both base and target subtrees but they are from different articles. The false
positive rates from the experiments show that our approach with keys has a much
lower false positives compared to SLAX. Therefore, our approach can precisely de-
tect the proper matched subtrees for integrating XML documents than SLAX.

5.2 Result Quality

In this section, we observe and compare the result quality of the similarity degrees
generated by our approach and SLAX for different types of XML files. We define the
result quality of subtree matching as Q = Sn/An, where Sn is the number of matched
subtrees by a given approach and An is the number of actual matched subtrees. Fig-
ures 4 (a) and (b) show the result quality for XML documents of file sizes ranging
from 1KB to 71KB. The results show that our approach and SLAX have similar per-
formance for shallow and semi-shallow XML documents but for large and deep XML
documents XDoI has much better result quality compared to SLAX. The perform-
ance of SLAX drops from 100% to 0% since it does not cluster the complex XML
documents into proper subtrees like the problem discussed in Section 3.

 XML Data Integration Based on Content and Structure Similarity Using Keys 493

Result Quality

0%
20%
40%
60%
80%

100%
120%

1 KB 2 KB 10KB 45KB 71KB

R
at

io
 (Q

)

XDoI
SLAX

Result Quality

0%
20%
40%
60%
80%

100%
120%

shallow semi-shallow deep

R
at

io
 (Q

)

XDoI
SLAX

Fig. 4. (a) and (b): Result quality for different file sizes and file types

6 Conclusions

In this paper, we presented a data-centric approach to cluster XML documents into
subtrees by using leaf-node parents and keys to reduce the number of subtrees match-
ing and improve the similarity degree by reducing false positives. From performance
evaluation, we have shown that the keys are very efficient in finding more appropriate
subtrees matching among XML documents. Our approach performs better than SLAX
and LAX for complex XML documents as we address the drawbacks of these
schemes using “keys” and an efficient bottom-up matching algorithm.

References

1. Bille, P.: Tree Edit Distance, Alignment Distance and Inclusion, ISBN 87-7949-032-8
2. Buneman, P., Davidson, S., Fan, W., Hara, C., Tan, W.: Keys for XML. Computer Net-

works 39(5), 473–487 (2002)
3. Buttler, D.: A Short Survey of Document Structure Similarity Algorithms. In: International

Conference on Internet Computing 2004, pp. 3–9 (2004)
4. Liang, W., Yokota, H.: A Path-sequence Based Discrimination for Subtree Matching in

Approximate XML Joins. In: Proceedings of the 22nd International Conference on Data
Engineering Workshops (ICDEW 2006), pp. 23–28. IEEE, Los Alamitos (2006)

5. Liang, W., Yokota, H.: LAX: An Efficient Approximate XML Join Based on Clustered
Leaf Nodes for XML Data Integration. In: Jackson, M., Nelson, D., Stirk, S. (eds.)
BNCOD 2005. LNCS, vol. 3567, pp. 82–97. Springer, Heidelberg (2005)

6. Liang, W., Yokota, H.: SLAX: An Improved Leaf-Clustering Based Approximate XML
Join Algorithm for Integrating XML Data at Subtree Classes. In: Proceedings of DBWeb
2005, IPSJ Symposium Series (16), pp. 41–48 (2005)

7. Rafiei, D.: Fourier-Transform Based Techniques in Efficient Retrieval of Similar Time
Sequences. Thesis of University of Toronto (1999)

8. Yoshikawa, M., Amagasa, T.: XRel: A Path-based Approach to Storage and Retrieval of
XML Documents. In: Proceedings of the 19th IEEE International Conference of Data En-
gineering (ICDE), India, pp. 519–530 (2003)

9. ACM SIGMOD Record in XML, http://www.acm.org/sigmod/record/xml
10. XML Version of DBLP, http://dblp.uni-trier.de/xml/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

