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Abstract. Recently, several approaches that mine frequent XML query
patterns and cache their results have been proposed to improve query
response time. However, frequent XML query patterns mined by these
approaches ignore the temporal sequence between user queries. In this
paper, we take into account the temporal features of user queries to dis-
cover association rules, which indicate that when a user inquires some
information from the XML document, she/he will probably inquire some
other information subsequently. We cluster XML queries according to
their semantics first and then mine association rules between the clus-
ters. Moreover, not only positive but also negative association rules are
discovered to design the appropriate cache replacement strategy. The ex-
perimental results showed that our approach considerably improved the
caching performance by significantly reducing the query response time.

1 Introduction
Extensible Markup Language (XML) has emerged as a standard for data
representation and exchange on the World Wide Web. With the rapid
growth of XML applications, there is a pressing need to swiftly retrieve
information from remote XML sources. Consequently, issues related to
efficient processing of XML queries have received considerable attentions.

Recently, caching XML queries has been recognized as an orthogonal
approach to improve the performance of XML query engines [3] [11].
Three basic issues are involved in XML query caching: 1) Containment
Relationship: When a new XML query is issued, decisions should be made
whether it is contained by any cached queries so that answers to it can
be retrieved from the local cache. 2) Query Rewriting : If the new XML
query is contained by or overlapping with some cached queries, it should
be rewritten with respect to these cached ones. 3) Replacement Strategy :
A value function should be applied to each query region. When additional
space is required in the cache, regions with the lowest values will be the
victims. In this paper, we focus on the third problem.

1.1 Motivation
As the cache space is a limited resource, appropriate replacement strategy
should be designed to discard data to free space for new data while keep-
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Fig. 1. DTD and Queries

ing the cache performance. FastXMiner [11] mined frequent XML query
patterns from the user queries. Once the cache is full, query regions of
infrequent query patterns will be purged first. However, frequent query
patterns may not always be reliable in predicting the subsequent queries,
as the frequent query pattern-based technique in [11] ignores the tempo-
ral feature of user queries. Consider the XML DTD tree in Figure 1 (a)
and two sequential queries of five users (expressed as XPath query for
ease of exposition) at time points T1 and T2 in Figure 1 (b). Applying
FastXMiner [11] here will result in the following two cases.

– If we apply FastXMiner at T1, then we consider the queries in the
second column of the table in Figure 1 (b). Suppose the minimum
support is 0.4. We discover that book/title is a frequent query pattern.
Unfortunately, caching answers to book/title cannot benefit the pro-
cessing of queries at T2, as none of the users inquires the information
of book/title.

– If we apply FastXminer at T2, then we consider all the queries in
the second and third columns of the table in Figure 1 (b). Suppose
the minimum support is 0.2. We discover that book/title, book/author,
book/author/ln and book/section are all frequent query patterns. How-
ever, if the cache space is not enough to accommodate all these fre-
quent queries, FastXMiner cannot break ties to improve the cache
performance.

Hence, in this paper, we consider the sequence between user queries to
discover association rules. We use the association rules to predict the
subsequent user queries and the confidence of the rules to break ties.

However, few users issue the exactly same queries sequentially. For
example, consider the queries in Figure 1 (b) again. If only the exactly
same queries are considered, then no association rule will be discovered
as no two rows are same. Hence, rather than mining association rules
between exactly same queries, we mine association rules between seman-



tically related queries. The intuition is that although users may not issue
the exactly same queries sequentially, it is possible that they inquire the
similar information in sequence. For example, the first and the forth rows
in Figure 1 (b) are different in the queries at time T2. One is book/author
and the other is book/author/ln. Since the two queries are semantically
related, we can cluster them into a group representing the queries about
the information of book author. Then, an association rule between queries
about book title and queries about book author may be discovered from
the table in Figure 1 (b). According to this rule, we can predict that users
will probably query the information of book author subsequently if they
queried the information of book title. Then we can delay the eviction of
the information of book author if they are cached before.

1.2 Overview and Contributions

Firstly, we cluster user queries so that queries about similar informa-
tion are grouped together. Next, we mine association rules between the
clusters. Particularly, we mine association rules between singular query
clusters. That is, there is only one cluster on both sides of our associa-
tion rules. This restriction frees us from maintaining too many historical
queries of a user to predict his subsequent query, and significantly reduce
the complexity of the mining process. In addition to positive association
rules, we also mine negative association rules, which indicate when a user
issue some query, she/he probably will not issue some other query subse-
quently. Finally, we design an appropriate replacement strategy based on
the knowledge obtained from the discovered rules.

The main contributions of this paper are summarized as follows.
– We proposed to mine association rules from user queries for XML

caching, which is the first that captures the temporal features of user
queries to discover knowledge for optimizing caching strategy.

– We designed a novel method to cluster XML queries based on their
semantics.

– We implemented our approach and conducted various experiments.
Experimental results showed that the replacement strategy incorpo-
rated with discovered association rules had better performance than
existing approaches.

The rest of the paper is organized as follows. Section 2 briefly discuss
some related work of XML query caching in the literature. Sections 3 and
4 present our approach in two stages, clustering user queries based on their
semantics and mining association rules. Section 5 shows the experimental
results and the comparison with other algorithms. We conclude the paper
and outline future directions of research in Section 6.
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2 Related Work

Due to its flexibility, semantic caching was popular in XML query caching
[6] [3]. Hristidis and Petropoulos [6] proposed a compact structure, mod-
ified incomplete tree (MIT), to represent the semantic regions of XML
queries. ACE-XQ [3] is a holistic XQuery-based semantic caching system.
The authors discussed how to judge whether a new query is contained by
any cached query and how to rewrite the new query with respect to the
cached queries. However, this work did not consider using the knowledge
mined from historical user queries to design the replacement function.

Recently, intelligence has been incorporated into Web/XML query
caching by constructing predictive models of user requests with the knowl-
edge mined from historical queries [7] [2] [11]. Lan et al. [7] mined associa-
tion rules from Web user access patterns. Then they prefetched Web docu-
ments based on discovered associations and current requested documents.
They focused on the placement strategy (fetching and prefetching) while
we focused on the replacement strategy. Bonchi et al. [2] mined associa-
tion rules from Web log data to extend the traditional LRU replacement
strategy. However, their work cannot be applied in XML query caching
directly because answers to XML query do not have explicit identifiers
such as URL. Hence, our work is different from this one in that we mine
association rules between query groups in which queries are semantically
close. Furthermore, we also use negative association rules to demote the
replacement values of corresponding query regions.

3 Query Clustering

Due to the intuition that few users issue the exactly same queries sequen-
tially while many users may inquire similar information consecutively, we
cluster the queries based on their semantics before mining association
rules. In this section, we discuss our clustering method.

3.1 Clustering Criterion
An XML query can be represented as a node labeled tree. For example,
consider the query Q1 expressed in XQuery syntax in Figure 2 (a). The
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semantics of query Q1 are composed of two essential parts: the predicate
part (for -where clauses) and the result part (return clause). Both parts
can be represented as a tree and the query tree can be constructed by
combining the two trees. For example, the query tree of Q1 in Figure 2
(a) is shown in Figure 2 (b).

After representing each XML query as a query tree, the semantics of
the query is captured by its query tree structure. For example, the query
tree of Q1 in Figure 2 (b) indicates that Q1 inquires the information of
the title, author, section and price of the book. Hence, for the purpose
of clustering queries based on their semantics, we can cluster them based
on their tree structures.

Existing approaches of clustering tree structures usually employ the
agglomerative clustering technique [8] [4]. They are different in defin-
ing the similarity between two trees or clusters. Basically, the definitions
of the similarity can be divided into the following two categories: node-
based [4] and edge-based [8]. In order to achieve better accuracy in clus-
tering trees, in this paper, we base our similarity measure on considering
the common rooted subtrees between XML query trees. Intuitively, query
trees sharing larger common rooted subtree should be semantically closer.

3.2 Clustering Method
Now, we discuss the clustering method. Basically, we cluster query trees
by using a “cluster-centered” method [9] [5] rather than an agglomera-
tive method. We employ such a clustering strategy here as it is revealed
in [5] that the “cluster-centered” method can distinguish the documents
of different semantics better and achieve higher clustering accuracy.
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In order to employ such a clustering method, we should discover the
frequent rooted subtrees before clustering user queries. We borrow the
algorithm FastXMiner [11] to discover frequent rooted subtrees from XML
queries.
Example 3.1 Consider the ten queries in Figure 1 (b), whose query
tree structures are redrawn in the upper part of Figure 3. Suppose the
minimum support δ is 0.2. Four rooted subtrees, book/title, book/author,
book/author/ln and book/section, are frequent as shown in the lower part
of Figure 3.

After discovering frequent rooted subtrees from the collection of query
trees, our method constructs clusters in the following three steps: initial-
izing clusters, disjointing clusters and pruning clusters.

Initializing Clusters In this step, we construct the initial clusters. We
use the frequent rooted subtrees as the labels of the initial clusters. A
query tree will be assigned to an initial cluster if the label of the cluster
is the maximal frequent rooted subtree included by the query tree1. For
example, consider the query T8 in Figure 3. Two frequent rooted subtree
are included by it, RT2 and RT3. We assign T8 to the initial cluster of
RT3 since RT2 is not the maximal frequent rooted subtree included by
T8. If a query tree does not contain any frequent rooted subtree, such as
T4, the semantic of the query is not significant in the collection of queries
and the query tree will be treated as an outlier. Initial clusters may not
be disjoint because a query tree may contain more than one maximal
frequent rooted subtrees, such as T9. Thus, T9 is assigned to the two
corresponding initial clusters.

Disjointing Clusters We make the initial clusters disjoint in this step.
For each query tree, we identify the best initial cluster and keep the
1 A frequent rooted subtree is not maximal w.r.t. a query tree if it is included by any

other frequent rooted subtree included by the query tree.
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query only in the best cluster. We define the goodness of a cluster for
a query tree based on the intra-cluster dissimilarity. We measure the
intra-cluster dissimilarity based on the number of infrequent edges in the
cluster. That is, we merge all query trees in a cluster into a tree structure.
For the merged tree, each edge e is associated with a support, denoted
as supp(e), which is the fraction of query trees containing it. Given a
minimum cluster support ξ, an edge in the merged tree is infrequent if its
support is less than ξ. Then, we define the intra-cluster dissimilarity as
follows.

Intra(Ci) =
|{e ∈ Mi|supp(e) < ξ}|

|{e ∈ Mi}|
where Mi is the merged tree of all query trees in cluster Ci. The value of
Intra(Ci) ranges from 0 to 1. The higher the Intra(Ci), the more dissimilar
the query trees in cluster Ci. We assign a query tree to a cluster such that
the intra-cluster dissimilarities are exacerbated least. That is, a query tree
Ti is kept in cluster Cj if

Cj = argminCj∈C,Ti∈CjIntra(Cj)

Example 3.2 For example, T9 is assigned to both initial clusters C1 and
C3. The merged trees for the two clusters are shown in Figure 4. Let
the minimum cluster support ξ be 0.6. Grouping T9 in C1 generates the
Intra(C1) = 0.75, whereas grouping T9 in C3 results in the Intra(C3) =
0.66. Hence, we remove T9 from cluster C1. After this step, the initial
clusters in Figure 3 are adjusted as shown in Figure 5, where each cluster
is represented as a merged tree of all query trees in it.

Pruning Clusters If the minimum support δ is small, many frequent
rooted subtrees will be mined from the user queries. Then there may be
many clusters while only some of them are semantically close. Hence, in
this step, we perform cluster pruning to merge close clusters.

We measure the inter-cluster similarity based on the number of fre-
quent edges the clusters share. Given a minimum cluster support ξ, the
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set of frequent edges of cluster Ci, denoted as FCi , are the edges in the
merged tree of Ci with their support no less than ξ. That is, FCi = {e|e
∈ Mi ∧ supp(e)≥ ξ}, where Mi is the merged tree structure of cluster Ci.
Then, we define the inter-cluster similarity as follows.

Inter(Ci → Cj) =
|{e|e ∈ FCi , e ∈ FCj}| − |{e|e ∈ FCi , e /∈ FCj}|

|{e|e ∈ FCi}|
That is, the more overlap in their frequent edges, the closer the two
clusters. The value of Inter(Ci→Cj) ranges from -1 to 1. If Inter(Ci→Cj)
is greater than 0, cluster Ci is semantically close to cluster Cj . We merge
two clusters Ci and Cj if not only Inter(Ci→Cj) but also Inter(Cj→Ci)
are greater than 0. Furthermore, we select the cluster label of Cj as the
label of the merged cluster if Inter(Ci→Cj) > Inter(Cj→Ci).
Example 3.3 Consider the clusters C2 and C3 in Figure 5 again. Let
ξ=0.6. Then, FC2 ={(book, author)} and FC3 ={(book, author), (author,
ln)}. Thus, Inter(C2→C3) = (1-0)/1 = 1 because the frequent edge in C2

is frequent as well in C3. Whereas, Inter(C3→C2) = (2-1)/2 =0.5 because
the frequent edge (author, ln) in C3 is infrequent in C2. Hence, we merge
C2 and C3 and use book/author/ln as the cluster label of the new cluster.

The final clustering result of the ten queries in Figure 1 (b) is shown
in Figure 6 (a). The semantics of the queries in a cluster can be approxi-
mately represented by the cluster label.

4 Association Rule Mining
In this section, we discuss the second stage of our approach: mining posi-
tive and negative association rules between the clusters. The input of this
stage is the set of 2 -cluster sequences, which is generated by replacing
the queries with the corresponding clusters created in the first stage. For
example, using the final clustering results as in Figure 6 (a), the initial
XML queries in Figure 1 (b) is transformed to a set of five 2 -cluster se-
quences as shown in Figure 6 (b). Note that, outlier queries, such as query
Q4, are replaced with NULL.

In this paper, we employed the metric interest on top of the support-
confidence framework as in [10] to define positive and negative associ-



Algorithm 1 Positive and Negative Association Rule Generation
Input: D, min supp, min conf, min interest
Output: PR: A set of positive association rules, NR: A set of negative association rules
Description:
1: scan D to find frequent 1-sequence (F1) /*supp(<Ci,>) or supp(<,Ci>)≥min supp*/
2: P2 = F1./F1 /*candidate frequent 2-cluster sequence*/
3: for each <Ci, Cj> ∈ P2 do
4: if supp(<Ci, Cj>)≥min supp then
5: if (confidence(Ci ⇒ Cj) ≥min conf )&& (Interest(Ci ⇒ Cj)≥ min interest) then
6: PR = PR ∪ {Ci ⇒ Cj}
7: end if
8: else
9: if supp(<Ci, ¬Cj>)≥min supp then

10: if (confidence(Ci ⇒ ¬Cj) ≥min conf )&& (Interest(Ci ⇒ ¬Cj)≥ min interest)
then

11: NR = NR ∪ {Ci ⇒ ¬Cj}
12: end if
13: end if
14: end if

15: end for

ation rules. We represent 1 -cluster sequences as <Ci, > or < ,Ci> to
distinguish the different positions of cluster Ci. A sequence of clusters
<Ci, Cj> supports two 1 -cluster sequences <Ci, > and < ,Cj>, and
one 2 -cluster sequence <Ci, Cj>. Let D be a database of sequences of
2-cluster over C= {C1, ..., Ck}. Let supp(<Ci, Cj>) be the fraction of
sequences in D that support it, conf (<Ci, Cj>) = supp(<Ci,Cj>)

supp(<Ci,>) , inter-

est(<Ci, Cj>)= supp(<Ci,Cj>)
supp(<Ci,>)supp(<,Cj>) . Given the user defined minimum

support α, minimum confidence β and minimum interest γ, Ci⇒Cj is a
positive association rule if 1) supp(<Ci, Cj>)≥α; 2) conf(<Ci, Cj>)≥β;
3) interest(<Ci ,Cj>))> γ. A negative association ruleCi ⇒ ¬Cj can be
defined similarly. Instead of discovering frequent 2 -cluster sequences first
and then deriving possible rules as commonly done by traditional associa-
tion rule mining algorithm, we discover positive and negative association
rules directly. The algorithm is presented in Algorithm 1.

Finally, we discuss how to design the replacement strategy with dis-
covered association rules. Without loss of generality, we assume that “the
most recent value for clusters”, Vtop, is incremented by one, each time a
new query Qi is issued. Suppose Qi is semantically contained by or close to
an existing cluster Ci, a positive association rule Ci ⇒ Cj with confidence
σ was discovered, and the current replacement value of Cj isVj . Then,
we calculate a new replacement value for Cj as Vj’ = Vj+(Vtop-Vj)×σ.
Since Vj ≤ Vj’ ≤ Vtop, we delayed the eviction of queries in cluster Cj

based on the rule. It is similar for negative association rules. For example,



Table 1. Parameter List & Clustering Accuracy

N Number of query trees 1K-10K
L Number of potential frequent rooted subtrees 8
P Maximum overlap between frequent rooted subtrees 0.5
O The ratio of outliers 0.05
D Average depth of query trees 4
F Average fanout of query trees 4

(a)

N DS IS

1K 0.026 0.082
2K 0.022 0.080
4K 0.047 0.096
6K 0.038 0.112
8K 0.051 0.128

(b)

with a negative rule Ci ⇒ ¬Cj , we update Vj’ = Vj+(Vj-Vtop)×σ. As
Vj’<Vj , we actually hasten the the purge of queries in cluster Cj .

5 Performance Study
In this section, we evaluate the performance of our approach with some
preliminary experimental results. We implemented our approach in Java.
Experiments are carried out on a Pentium IV 2.8GHz PC with 512 MB
memory. The operating system is Windows 2000 professional.

5.1 Performance of Query Clustering

Firstly, we investigate the performance of our query clustering method.
Given a DTD file, We generate synthetic query trees in the following steps:
1) A set of potential frequent rooted subtrees is generated by controlling
the overlap between them. 2)We also create some infrequent rooted sub-
trees as outliers. 3) Finally, we generate the query trees based on the
rooted subtrees produced in the first two steps. The parameters we used
in the data set generation process are summarized in Table 1 (a), where
the third column shows the default values.

We conducted experiments to evaluate the accuracy, efficiency and
scalability of our clustering method respectively by varying different pa-
rameters.
– Accuracy Study. We evaluate the accuracy of our clustering method by

varying the number of query trees from 1,000 to 8,000. The minimum
global support is set as 5% and the minimum cluster support is set as
25%. Table 1 (b) shows the average intra-cluster dissimilarity (DS) and
the average inter-cluster similarity (IS) of the resulting clusters. We
observed that our clustering method can achieve small intra-cluster
dissimilarity and small inter-cluster similarity.

– Efficiency Study. We evaluated the efficiency of the clustering method
by showing the time cost of different phases in Figure 7 (a) except the
cost of initialization step which is very trivial. The main cost of our
clustering method is the disjointing step as it recursively optimizes
the intra-cluster dissimilarity.
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Fig. 7. Performance of Clustering

– Scalability Study. We evaluate the scalability of the clustering method
by duplicating the query trees until we get 100K query trees. Figure 7
(b) shows that our clustering algorithm scales well with respect to the
number of query trees.

5.2 Performance of Replacement Strategy
We then show the effectiveness of our replacement strategy with discov-
ered association rules. We used a simple XQuery processor [1] that process
queries directly from the source XML file. In our experiment, we gener-
ated a fragment of DBLP data as the source XML document. The file size
is 10.5M and there are totally 248,215 nodes. We first generate a training
data set of 2 -cluster sequences to discover positive and negative associa-
tion rules. Then, we generate a testing data set of 2 -cluster sequences to
evaluate the performance of caching.

Two sets of experiments were carried out to investigate the effect
of varying the number of queries and varying the size of cache respec-
tively. We compared our association rule based LRU replacement strat-
egy (LRU AR) with another two strategies, LRU and LRU with frequent
query patterns mined by [11] (LRU FQPT). We use the Average Re-
sponse Time, which is the ratio of total execution time for answering a
set of queries to the total number of queries in this set, as the metric.
– Variation of Query Numbers. Because of the limited power of the

query processor, we vary the number of queries from 100 to 500 and



the cache size is fixed at 2.5MB. As we can see from Figure 7 (c), when
the number of queries is large, the average response time of LRU AR
surpasses the other two strategies.

– Variation of Cache Size. We vary the size of cache from 1.5M to 5.5M,
and the number of queries is fixed at 300. As shown in Figure 7 (d),
the more limited the cache size, the greater gap in average response
time between LRU AR and the other two competitors.

6 Conclusions
In this paper, we presented an approach that mines association rules from
XML queries for caching. Since our association rules address the tempo-
ral sequence between user queries, it is more reliable in predicting future
queries than the approaches that address the frequency or recency only.
Due to the intuition that few users issue the exactly same queries sequen-
tially, we cluster queries based on their semantics first and then discover
the positive and negative associations between them. The knowledge ob-
tained from the discovered rules are incorporated in designing appropriate
replacement strategies. As verified by the experimental results, our ap-
proach improved the cache performance significantly.
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