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Abstract. Previous works in change detection on XML documents are
not suitable for detecting the changes to large XML documents as it
requires a lot of memory to keep the two versions of XML documents
in the memory. In this paper, we take a more conservative yet novel
approach of using traditional relational database engines for detecting
the changes to large unordered XML documents. We elaborate how we
detect the changes on unordered XML documents by using relational
database. To this end, we have implemented a prototype system called
Xandy that converts XML documents into relational tuples and detects
the changes from these tuples by using SQL queries. Our experimental
results show that the relational approach has better scalability compared
to published algorithms like X-Diff. The result quality of our approach
is comparable to the one of X-Diff.

1 Introduction

Detecting changes to XML data is an important research problem. Cobena et
al. [3] proposed an algorithm, called XyDiff, for detecting changes on ordered
XML documents by using the signature and weight of nodes. XMLTreeDiff [2]
is also proposed for solving the problem of detecting changes for ordered XML
documents by using DOMHash. In [10], the authors presented X-Diff, an algo-
rithm for detecting the changes on unordered XML documents. In this paper,
we focus on detecting the changes on the unordered XML documents.

The changes on unordered XML documents can be classified into two types:
changes to the internal nodes and changes to the leaf nodes. An internal node
does not contain textual data. For example, consider the two versions of an XML
document in Figure 1. Nodes 2 and 7 in Figure 1(a) are the internal nodes. The
changes that occur in the internal nodes are called as structural changes as they
modify the structure but do not change the textual data content. There are two
types of structural changes for unordered XML documents: insertion of internal
nodes, and deletion of internal nodes. For instance, node 102 in Figure 1(b)
is an example of internal nodes insertion. A leaf node is the node/attribute
which contains textual data. For example, node 3 is a leaf node which has name
“category” and textual content “Memory”. The changes in the leaf nodes are
called content changes as they modify the textual data content. There are three
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types of content changes for unordered XML documents: insertion of leaf nodes,
deletions of leaf nodes, and content update of a leaf nodes. For example, a leaf
node 5 is a deleted leaf node. In this paper, we present a novel technique for
detecting the content and structural changes in unordered XML using RDBMS.

The main-memory-based approaches have some limitations as far as change
detection is concerned. First, they require the entire trees (i.e., DOM trees)
of both versions of an XML document to be memory resident. This problem is
exacerbated by the fact that these trees are typically much larger than their XML
documents. Thus, the scheme is not scalable for very large XML documents. In
fact, the scheme is inefficient. We need to parse an XML document multiple times
whenever we want to compare it with more than one document at different times.

The above limitations coupled with the recent success in storing XML data
in relational databases [4, 8, 7] force us to ask whether we can address these prob-
lems by using relational techniques to detect the changes on XML documents. In
our preliminary effort in [5, 1], we have demonstrated that it is indeed possible
to use the relational database to detect the changes to ordered XML data. In [5,
1], we present relational approaches for detecting the content changes on ordered
XML documents. However, the underlying relational schema of [1] is simplistic
and is not efficient for path expressions query processing. Ideally, a change de-
tection system build on top of a relational database should also support efficient
insertion and extraction of XML documents and efficient execution of path ex-
pression queries. Hence, our approach in [5] uses SUCXENT schema that enables
us to insert, extract, and query XML data efficiently [7].

In this paper, we present a novel relational approach for detecting the changes
on unordered XML documents called Xandy (Xml enAbled chaNge Detection
sYstem). Our approach differs from our previous efforts in two ways. First, we
focus on unordered XML documents. To the best of our knowledge, currently,
there is no published approach for detecting the change on unordered XML
documents by using relational database. Detecting changes on unordered trees
are substantially harder than that on ordered trees [10]. Second, we detect both
content and structural changes.

2 Background
In this section, we present the relational database scheme used for storing two
versions of XML documents. We have extended the relational schema of our XML
storage system called SUCXENT (Schema UnConcious XML ENabled SysTem)
[7]. We chose SUCXENT because we have shown in [7] that our approach out-
performs significantly the current state-of-the-art model mapping approaches
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like XParent [4] as far as storage size, insertion time, extraction time, and
path expression queries are concerned 1. The SUCXENT schema is shown in Fig-
ure 2(a). We use the Document table for storing the names of the documents
in the database. This allows us to store multiple versions of XML documents.
The Path table is used to record the all paths from the root to the leaf nodes.
It maintains the path ids and the relative path expressions as instances of the
PathID and PathExp attributes respectively.

The LeafValue table is used for storing the information of the leaf nodes. The
DocID attribute indicates which XML document a particular leaf node belongs
to. The PathID attribute maintains the id of the path of a particular leaf node
stored in the Path table. The LeafOrder attribute is used to record the node
order of the leaf nodes in an XML tree. For example, consider the XML tree in
Figure 1(a). When we parse the XML document, we will find the leaf node “cat-
egory” with value “Memory” as the first leaf node in the document. Hence, we
assign the LeafOrder equal to “1” for this leaf node. The LeafOrder of the next
leaf node (node “name” with value “V-GEN 2700/256”) is equal to “2”. Two leaf
nodes have the same SiblingOrder if they share the same parent. For example,
the leaf nodes with LeafOrder equal to “1”, “2”, “3”, and “4” shall have the
same SiblingOrder (equal to “1”) since they share the same parent node (node
2). The dotted boxes in Figure 1 indicate the leaf nodes that have the same
SiblingOrder. The LeftSibIxnLevel (Left Sibling Intersection Level) is the
level at which the leaf nodes belonging to a particular sibling order intersect the
leaf nodes belonging to the sibling order that comes immediately before. For ex-
ample, consider the leaf nodes with SiblingOrder equal to “2” in the XML tree.
These leaf nodes shall intersect with the leaf nodes having SiblingOrder equal to
“1” at the node “products” (id=1) which is at level 1. The LeafValue stores the
textual content of the leaf nodes. Note that the attribute LeftSibIxnLevel in
this table is only useful for constructing the XML documents from the relational
database [7]. We use the AncestorInfo table for storing the information of the
internal nodes. The DocID attribute indicates which XML document a particular
ancestor node belongs to. We record the names and the level of ancestor nodes
in the NodeName and NodeLevel attributes respectively. The MinSibOrder and

1 Jiang et al. has shown in [4] that XParent outperforms various existing model map-
ping approaches.



MaxSibOrder store the minimum and maximum sibling orders of the leaf nodes
under a particular ancestor node respectively. For example, the node “products”
(id=1) in Figure 1(a) has MinSibOrder and MaxSibOrder equal to “1” and “3”
respectively. Node “product” (id=7) has MinSibOrder and MaxSibOrder equal
to “2” and “2” respectively.

For detecting the changes in unordered XML documents, we need to modify
the SUCXENT schema. We add the attribute Level in the LeafValue table to
store the level of the leaf nodes. The modified SUCXENT schema is depicted in
Figure 2(b). Figure 2(c) shows the tables containing the two shredded XML
documents in Figure 1 (partial view only).

3 Phase 1: Finding The Best Matching Subtrees
Suppose we have two versions of an XML tree, T1 and T2. The objective of this
phase is to find the most similar subtrees in T1 and T2. First, the algorithm
determines the matching leaf nodes in in T1 and T2 by issuing a SQL query
against the database. Then it starts to match the ancestor nodes of the matching
leaf nodes up to the root nodes. Note that the algorithm issues several SQL
queries to match the subtrees. The most similar subtrees are considered as the
best matching subtrees. This first phase results a set of best matching internal
nodes at which the best matching subtrees are rooted. We use the information
of the best matching subtrees to determine the minimum delta. In this section,
we shall elaborate this phase further.

Definition 1. [Matching Leaf Nodes] Let L(T1) and L(T2) be two sets of the
leaf nodes in T1 and T2 respectively. Let name(`), level(`), and value(`) be the
node name, node level, and textual content of a leaf node ` respectively. Then `1
and `2 are matching leaf nodes (denoted as `1 ↔ `2) if name(`1) = name(`2),
level(`1) = level(`2), and value(`1) = value(`2), where `1 ∈ L(T1) and `2 ∈ L(T2).

Next, we define the notion of matching sibling orders. A set of leaf nodes
that have the same parent node will have the same sibling order. The matching
sibling orders can summarize the information of matching leaf nodes. Hence, the
storage space needed for storing the matching information is reduced.

Definition 2. [Matching Sibling Orders] Let so1 and so2 be two sibling or-
ders in T1 and T2 respectively. Let P = {p1, p2, ..., px} and Q = {q1, q2, ...,
qy} be two sets of leaf nodes, where ∀pi ∈ P have the same sibling order so1,
and ∀qj ∈ Q have the same sibling order so2. Then so1 and so2 are the match-
ing sibling orders (denoted by so1 ⇔ so2) if ∃pi ∃qj such that pi ↔ qj where
pi ∈ P and qj ∈ Q.

After determining the matching sibling orders, we are able to find the possible
matching internal nodes at which the possible matching subtrees are rooted.
Informally, the possible matching subtrees are the subtrees in which they have
at least one matching sibling orders. Note that the subtrees in T1 are possible
to be matched to more than one subtrees in T2.

Definition 3. [Possible Matching Subtrees] Let I(T1) and I(T2) be two sets
of the internal nodes in T1 and T2 respectively. Let S1 and S2 be two subtrees



Input:
  did1 : document id of first
         version of document
  did2 : document id of second
         version of document
  theta : similarity threshold
Output:
  the MATCHING table

1  if (!isRootNodeMatched(did1, did2)) {
2     return;
3  }
4  findPossibleMatchingSiblingOrder(did1, did2);
5  maxLevel = getInternalNodeMaxLevel(did1, did2);
   // the level of root node is equal to 1
6  for (curLevel=maxLevel; curLevel>=1;
        curLevel--) {
7     findPMatchingIntNodes(did1,did2,curLevel);
8     maximizeSimilarityScore(did1,did2,curLevel);
9     deleteUnMacthingNodes(did1, did2,
                            curLevel, theta);
10 }

1  SELECT
2     D.LEVEL, D.SO1, D.SO2, D.COUNTER*2 AS COUNTER,
3     V1.TOTAL+V2.TOTAL AS TOTAL
4  FROM
5    (SELECT T.LEVEL, T.SO1, T.SO2, COUNT(T.SO1) AS COUNTER
6     FROM
7       (SELECT
8          L1.LEVEL, L1.LEAFORDER AS LO1, L2.LEAFORDER AS LO2,
9          L1.PATH_ID, L1.LEAFVALUE,
10         L1.SIBLINGORDER AS SO1, L2.SIBLINGORDER AS SO2
11       FROM
12         LEAFVALUE AS L1, LEAFVALUE AS L2
13       WHERE
14         L1.DOC_ID = did1 AND L2.DOC_ID = did2 AND
15         L1.PATH_ID = L2.PATH_ID AND
16         L1.LEAFVALUE = L2.LEAFVALUE ) AS T
17    GROUP BY T.LEVEL, T.SO1, T.SO2 ) AS D,
18   (SELECT L1.LEVEL, L1.SIBLINGORDER,
19           COUNT(L1.LEAFORDER) AS TOTAL
20    FROM LEAFVALUE AS L1 WHERE L1.DOC_ID = did1
21    GROUP BY L1.LEVEL, L1.SIBLINGORDER) AS V1,
22   (SELECT L1.LEVEL, L1.SIBLINGORDER,
23           COUNT(L1.LEAFORDER) AS TOTAL
24    FROM LEAFVALUE AS L1 WHERE L1.DOC_ID = did2
25    GROUP BY L1.LEVEL, L1.SIBLINGORDER) AS V2
26 WHERE
27    V1.LEVEL = D.LEVEL AND V2.LEVEL = D.LEVEL AND
28    V1.SIBLINGORDER = D.SO1 AND V2.SIBLINGORDER = D.SO2

(b) Finding Matching SiblingOrder

(a) Algorithm findBestMatchingSubtree

1  SELECT
2     A1.NODELEVEL,
3     A1.MINSIBORDER AS MINSO1,
4     A1.MAXSIBORDER AS MAXSO1,
5     A2.MINSIBORDER AS MINSO2,
6     A2.MAXSIBORDER AS MAXSO2,
7     SUM(T.COUNTER) AS COUNTER,
8     SUM(T.TOTAL) AS TOTAL
9  FROM
10    ANCESTORINFO AS A1,
11    ANCESTORINFO AS A2, TEMPSO AS T
12 WHERE
13    A1.DOC_ID = did1 AND
14    A2.DOC_ID = did2 AND
15    T.SO1 BETWEEN A1.MINSIBORDER AND
         A1.MAXSIBORDER AND
16    T.SO2 BETWEEN A2.MINSIBORDER AND
         A2.MAXSIBORDER AND
17    A1.NODELEVEL = A2.NODELEVEL AND
18    A1.NODENAME = A2.NODENAME AND
19    A1.NODELEVEL = level
20 GROUP BY
21   A1.NODELEVEL, A1.MINSIBORDER,
22   A1.MAXSIBORDER, A2.MINSIBORDER,
23   A2.MAXSIBORDER

(c) Finding Possible Matching Internal Node

Fig. 3. Algorithm findBestMatchingSubtree and SQL Queries.

rooted at nodes i1 ∈ I(T1) and i2 ∈ I(T2) respectively. Let name(i) and level(i)
be the node name and node level of an internal node i respectively. S1 and S2

are the possible matching subtrees if the following conditions are satisfied: 1)
name(i1) = name(i2), 2) level(i1) = level(i2), and 3) ∃P ∃Q such that P ⇔ Q
where P ∈ S1 and Q ∈ S2.

We only consider matching subtrees in the same level for the same reason as
in [10]. Next, we determine the best matching subtrees from a set of possible
matching subtrees. Consequently, we have to measure how similar two possible
matching subtrees are. Formally, similarity score can be defined as follows.

Definition 4. [Similarity Score] The similarity score < of two subtrees t1 and
t2 as follows: <(t1, t2) = 2|t1∩t2|

|t1∪t2| where |t1 ∪ t2| is the total number of nodes of
subtrees t1 and t2, and |t1 ∩ t2| is number of matching nodes.

The similarity score will be between 0 and 1. Based on the similarity score, we are
able to classify the matching subtree into three types: 1)Isomorphic Subtrees
(<(t1, t2) = 1). We say two subtrees are isomorphic if they are identical except
for the orders among siblings. 2)Unmatching Subtrees (<(t1, t2) = 0). We say
two subtrees are unmatching if they are totally different. 3)Matching Subtrees
(0 < <(t1, t2) < 1). The matching subtrees have some parts in the trees that are
corresponded each other.

After we are able to determine how similar the possible matching subtrees
are, the best matching subtrees can be determined. The formal definition of the
best matching subtrees is as follows.

Definition 5. [Best Matching Subtrees] Let t ∈ T1 be a subtree in T1 and
P ⊆ T2 be a set of subtrees in T2. Also t and ti ∈ P are possible matching
subtrees ∀ 0 < i ≤ |P |. Then t and ti are the best matching subtrees (denoted
by t m ti) iff (<(t, ti) > <(t, tj)) ∀ 0 < j ≤ |P | and i 6= j.

The algorithm for determining the best matching subtrees is depicted in Fig-
ure 3(a). Given two XML trees T1 and T2 shredded in a relational database as
shown in Figure 2 and the similarity score threshold (say θ=0.25), the findBest-
MatchingSubtree algorithm starts finding the matching best subtrees by checking
the root nodes of T1 and T2 (lines 1-3, Figure 3(a)). If they have different names,



Level

TempSO (Level, SO1, SO2, Counter, Total)

SO1 SO2 Counter Total

3 1 3 4 7
3 2 2 4 7

Matching (DID1, DID2, MinSO1, MaxSO1,
                 MinSO2, MaxSO2, Level,
                 Counter, Total, Score)

Level
Min
SO1

Max
SO1

Counter Total

1 1 3 8 14
2 2 2 4 7

Min
SO2

Max
SO2

1 3
2 2

2 1 1 2 71 1

DID1 DID2

1 3
2 2
3 3

(a) Attributes of The TempSO and
Matching Tables

(b) TempSO Table

(c) Matching Table

2 1 1 4 73 33 3

ID1

1
7
2
2

ID2

1
106
102
111

3 1 1 2 7

Score

0.5714
0.5714
0.2857
0.5714

(d) Tables and Attributes (e) Description of Attributes

DID1
DID2

NAME
LEVEL
MINSO
MAXSO

SIBLINGORDER
PATH_ID
VALUE

SO1
SO2

VALUE1
VALUE2

Attribute

DEL_INT (DID1, DID2, NAME, LEVEL, MINSO, MAXSO)
INS_INT (DID1, DID2, NAME, LEVEL, MINSO, MAXSO)
DEL_LEAF (DID1, DID2, LEVEL, SIBLINGORDER, PATH_ID, VALUE)
INS_LEAF (DID1, DID2, LEVEL, SIBLINGORDER, PATH_ID, VALUE)
UPD_LEAF (DID1, DID2, LEVEL, SO1, SO2, PATH_ID, VALUE1, VALUE2)

The document id of the first document
The document id of the second document
The internal node's name
The node's level
The minimum sibling order of a internal node
The maximum sibling order of a internal node
The sibling order of a leaf node
The path id of a leaf node
The leaf node's value
The sibling order of an updated leaf node in the first version
The sibling order of an updated leaf node in the second version
The old value of an updated node
The new value of an updated node

Description

Fig. 4. The TempSO and Matching Tables, and Table Description.

then both XML documents are considered as different. Consequently, the delta
only consists of a deletion of T1 and an insertion of T2. Otherwise, the algo-
rithm finds the matching sibling orders (line 4, Figure 3(a)). The SQL query
for retrieving the matching sibling order is depicted in Figure 3(b). The results
are stored in the TempSO table (Figure 4(b)) whose attributes are depicted in
Figure 4(a).

Next, the findBestMatchingSubtree algorithm determines the deepest level
maxLevel of the root nodes of subtrees in T1 and T2 (line 5, Figure 3(a)). For each
level curLevel starting from level maxLevel to the level of the root nodes of the
trees (level=1), the algorithm starts by finding the best matching subtrees (lines
6-10, Figure 3(a)). First, the algorithm finds the possible matching internal nodes
(line 7, Figure 3(a)). The SQL query shown in Figure 3(c) is used to retrieve
the possible matching internal nodes. We store the results in the Matching table
whose attributes are depicted in Figure 4(a). The Matching table of T1 and T2

is depicted in Figure 4(c).
The next step is to maximize the similarity scores of the possible matching

internal nodes at level curLevel at which the possible matching subtrees are
rooted (line 8, Figure 3(a)) since we may have some subtrees and sibling orders
at (curLevel+1) in T1 that can be matched to more than one subtrees and sibling
orders in T2 respectively, and vice versa. The maximizeSimilarityScore algorithm
is similar to the Smith-Waterman algorithm [9] for sequence alignments. Due to
the space constraints, we do not present the maximizeSimilarityScore algorithm
here. It can be found in [6]. For instance, the score of possible matching subtrees
rooted at nodes 1 and 101 at level 1 is maximized if t2 m t111 and t7 m t106. The
The corresponding tuple of the possible matching subtrees which are not used
in maximizing the score are deleted (highlighted row, Figure 3(c)).

4 Phase 2: Detecting The Changes

In the second phase, first, we detect the inserted and deleted internal nodes.
Then we find the inserted and deleted leaf nodes. Finally, we detect the updated
leaf nodes from the inserted and deleted leaf nodes as they can be decomposed
into pairs of deleted and inserted leaf nodes. The formal definitions of types of
changes can be found in [6].
Insertion of Internal Nodes. Intuitively, the inserted internal nodes are the
internal nodes that are in the new version, but not in the old version. Hence,
they must be not the root nodes of the best matching subtrees as they are in
both versions. The SQL query depicted in Figure 5(a) (did1 and did2 refer to
the first and second versions of the document respectively) detects the set of
newly inserted internal nodes. Consider the example in Figure 1. We notice that



1  SELECT
2    did1, did2, A.NODENAME, A.NODELEVEL,
3    A.MINSIBORDER, A.MAXSIBORDER
4  FROM ANCESTORINFO AS A
5  WHERE
6   A.DOC_ID = did2 AND
7   (A.NODELEVEL,A.MINSIBORDER,

  A.MAXSIBORDER) NOT IN
8     (SELECT LEVEL, MINSO2, MAXSO2
9   FROM MATCHING
10     WHERE DID1 = did1 AND DID2 = did2 )

(a) Insertion of Internal Nodes

1  SELECT DISTINCT
2    did1, did2, L.LEVEL, L.SIBLINGORDER,

L.PATH_ID, L.LEAFVALUE
3  FROM LEAFVALUE AS L,
4  (SELECT DISTINCT
5      M.MINSO1, M.MAXSO1, M.MINSO2, M.MAXSO2,

  L.PATH_ID, L.LEAFVALUE
6    FROM MATCHING AS M, LEAFVALUE AS L
7    WHERE M.DID1 = did1 AND M.DID2 = did2 AND
8      L.DOC_ID = did2 AND
9      L.LEVEL = M.LEVEL+1 AND
10     L.SIBLINGORDER BETWEEN M.MINSO2 AND M.MAXSO2
11   EXCEPT ALL
12   SELECT DISTINCT
13     M.MINSO1, M.MAXSO1, M.MINSO2, M.MAXSO2,

  L.PATH_ID, L.LEAFVALUE
14   FROM MATCHING AS M, LEAFVALUE AS L
15   WHERE M.DID1 = did1 AND M.DID2 = did2 AND
16     L.DOC_ID = did1 AND
17     L.LEVEL = M.LEVEL+1 AND
18     L.SIBLINGORDER BETWEEN M.MINSO1 AND M.MAXSO1) AS D
19  WHERE
20   L.DOC_ID = did2 AND
21   L.SIBLINGORDER BETWEEN D.MINSO2 AND D.MAXSO2 AND
22   L.PATH_ID = D.PATH_ID AND L.LEAFVALUE = D.LEAFVALUE

(c) Insertion of Leaf Nodes (2)

1  SELECT DISTINCT
2     did1, did2, L.LEVEL,
3     L.SIBLINGORDER, L.PATH_ID,
4     L.LEAFVALUE
5  FROM LEAFVALUE AS L, INS_INT AS I
6  WHERE
7     L.DOC_ID = did2 AND
8     I.DID1 =  did1 AND
9     I.DID2 = did2 AND
10    L.SIBLINGORDER BETWEEN I.MINSO

               AND I.MAXSO AND
11    L.LEVEL = I.LEVEL+1

(b) Insertion of Leaf Nodes (1)

1  SELECT T.*
2  FROM MATCHING AS M,
3    (SELECT
4       D.DID1, D.DID2, D.LEVEL,
5       D.SIBLINGORDER AS SO1,
6       I.SIBLINGORDER AS SO2,
7       D.PATH_ID, D.VALUE AS VALUE1,
8       I.VALUE AS VALUE2
9     FROM DEL_LEAF AS D, INS_LEAF AS I
10    WHERE
11      D.DID1 = did1 AND
12      D.DID2 = did2 AND
13      I.DID1 = did1 AND
14      I.DID2 = did2 AND
15      D.PATH_ID = I.PATH_ID AND
16      D.VALUE != I.VALUE AND
17      D.LEVEL = I.LEVEL ) AS T
18 WHERE
19   M.DID1 = did1 AND
20   M.DID2 = did2 AND
21   T.SO1 BETWEEN M.MINSO1 AND M.MAXSO1 AND
22   T.SO2 BETWEEN M.MINSO2 AND M.MAXSO2 AND
23   T.LEVEL = M.LEVEL+1

(d) Updated Leaf Nodes

Fig. 5. SQL Queries for Detecting the Changes.

the subtree rooted at node 102 in T2 is inserted. The inserted internal nodes
are retrieved by the SQL query depicted in Figure 5(a) and are stored in the
INS INT table as shown in Figure 6(a).
Deletion of Internal Nodes. We can use the same intuition to find the deleted
internal nodes that are in T1, but not in T2. The deleted internal nodes can be
detected by slightly modifying the SQL query depicted in Figure 5(a). We re-
place the “did2” in line 6 with “did1”. The “MINSO2” and “MAXSO2” in line 8 are
replaced by “MINSO1” and “MAXSO1” respectively. In the example shown in Fig-
ure 1, we observe that the subtree rooted at node 11 in T1 is deleted. The deleted
internal nodes are retrieved by the SQL query depicted in Figure 5(a) (after some
modification) and are stored in the DEL INT table as shown in Figure 6(b).
Insertion of Leaf Nodes. The new leaf nodes are only available in the second
version of an XML tree. These new nodes should be either in the best matching
subtrees or in the newly inserted subtrees. Consider the Figure 1. The leaf nodes
103, 104, and 105 belong to the newly inserted subtree rooted at node 102.
The leaf node 109 is also inserted in the new version but it is contained in the
best matching subtree rooted at node 106. Note that this subtree is not newly
inserted one. We use two SQL queries to detect the two types of inserted leaf
nodes as depicted in Figures 5(b) and (c). The SQL query shown in Figure 5(b)
is used to detect the inserted leaf nodes that are in the newly inserted subtrees.
The inserted leaf nodes that are in the matching subtrees are detected by using
the SQL query shown in Figure 5(c). The result of the queries is stored in
the INS LEAF table as shown in Figure 6(c). Note that the highlighted tuples
in Figure 6(c) are actually updated leaf nodes. However, they are detected as
inserted nodes.
Deletion of Leaf Nodes. The deleted leaf nodes are only available in the first
version of an XML tree. These deleted nodes should also be either in the best
matching subtrees or in the deleted subtrees. Consider the Figure 1. The leaf
nodes 12, 13, 14, and 15 belong to the deleted subtree rooted at node 11. The
leaf node 5 is also deleted but it is contained in the best matching subtree rooted
at node 2. We also use two SQL queries for detecting these two types of deleted
leaf nodes. These SQL queries are generated by slightly modifying the queries
in the Figures 5(b) and (c). We replace “INS INT” in line 5 in Figure 5(b) with
“DEL INT”. We also replace the “did2” in line 7 in Figure 5(b) and in lines 8 and
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(a) Example

1  SELECT
2     U.SO1, U.SO2, U.PATH_ID,
3     U.VALUE1, U.VALUE2
4  FROM UPD_LEAF AS U,
5    (SELECT DID1, DID2, SO1,
6            SO2, PATH_ID,
7            VALUE1, COUNT(VALUE1)
8     FROM UPD_LEAF
9     WHERE DID1 = doc_id1 AND
10          DID2 = doc_id2
11    GROUP BY DID1, DID2, SO1, SO2,
12             PATH_ID, VALUE1
13    HAVING COUNT(VALUE1)>1) AS T
14 WHERE
15    U.DID1 = doc_id1 AND
16    U.DID2 = doc_id2 AND
17    U.SO1 = T.SO1 AND
18    U.SO2 = T.SO2 AND
19    U.PATH_ID = T.PATH_ID AND
20    U.VALUE1 = T.VALUE1
21 FETCH FIRST 1 ROWS ONLY
22 OPTIMIZE FOR 1 ROWS

Input: Table UPD_LEAF, doc_id1, doc_id2
Output: Corrected Table UPD_LEAF

1  Algorithm updateCorrector {
2    while (result R of query Q1 is not empty){
3      correctUpdateTable(R);
4    }
5    while (result R of query Q2 is not empty){
6      correctUpdateTable(R);
7    }
8  }

(d) SQL Query (1)

(c) Algorithm updateCorrector

1 DELETE FROM UPD_LEAF
2 WHERE
3   DID1 = doc_id1 AND  DID2 = doc_id2 AND
5   SO1 = R.SO1 AND SO2 = R.SO2 AND
6   PATH_ID = R.PATH_ID AND
7   ((VALUE1 = R.VALUE1 AND VALUE2 != R.VALUE2) OR
9    (VALUE1 != R.VALUE1 AND VALUE2 = R.VALUE2))

(e) SQL Query (2)

PATH_
ID

..

..

..

..

Dataset
Code

Sigmod-01
Sigmod-02
Sigmod-03
Sigmod-04
Sigmod-05
Sigmod-06
Sigmod-07
Sigmod-08
Sigmod-09
Sigmod-10

Nodes

331
554
890

1,826
2,718
4,717
8,794

18,866
37,725
89,323

(f) Sigmod Dataset

Filesiz
e (KB)

13
21
34
70

104
180
337
721

1,444
3,431

Fig. 7. Example Uncomplete Results of Update Query and Datasets.

20 in Figure 5(c) with “did1”. The “did1” in line 16 in Figure 5(c) is replaced by
“did2”. We also replace “MINSO2” and “MAXSO2” in lines 10 and 21 in Figure 5(c)
with “MINSO1” and “MAXSO1” respectively. The “MINSO1” and “MAXSO1” in line 18
in Figure 5(c) are replaced by “MINSO2” and “MAXSO2” respectively. Figure 6(d)
depicts the result of the queries which is stored in the DEL LEAF table. Note
that the highlighted rows are actually updated leaf nodes which are detected as
deleted leaf nodes.
Content Update of Leaf Nodes. Intuitively, an updated node is available in
the first and second versions, but its value is different. As the updated leaf nodes
are detected as pairs of deleted and inserted leaf nodes, we are able to find the
updated leaf nodes from two sets of leaf nodes: the inserted leaf nodes and the
deleted leaf nodes respectively. In addition, we also need the information of the
best matching subtrees in order to guarantee the updated leaf nodes are in the
best matching subtrees. Note that we only consider the update of the content of
the leaf nodes. Similar to [10], the modification of the name of an internal node
is detected as a pair of deletion and insertion. The SQL query for detecting the
updated leaf nodes is depicted in Figure 5(d) and the results are in the UPD LEAF
table. The updated leaf nodes of the example in Figure 1 are shown in Figure 6(e)
(the UPD LEAF table). We observe that the result of this SQL query may not be
correct result in some cases. Let us elaborate further. Suppose we have two trees
as depicted in Figure 7(a). The result of the SQL query depicted in Figure 5(f)
is shown in Figure 7(b) (partial view only). We notice that nodes B with values
“V2” and “V3” are detected as updated leaf nodes twice. This is because the
sub query in lines 3-17 in Figure 5(d) only finds the leaf nodes which have the
same paths, but different values. We use the updateCorrector algorithm that is
depicted in Figure 7(c) to correct the result by finding the incorrect tuples. A
tuple t is an incorrect tuple if one and only one of the following conditions is
satisfied: 1) the VALUE1 of tuple t is equal to VALUE1 of tuple R, 2) the VALUE2 of



(a) Finding Matching Subtree (3%) (b) Detecting The Changes (3%) (c) Overall Performance (3%)

(d) Finding Matching Subtree (12%) (e) Detecting The Changes (12%) (f) Overall Performance (12%)
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Fig. 8. Execution Time vs Number of Nodes (Logarithmic Scale)

tuple t is equal to VALUE2 of tuple R. The algorithm iteratively issues the SQL
queries depicted in Figures 7(d) and (e) until no incorrect tuple is found.

5 Performance Study

We have implemented Xandy entirely in Java. The Java implementation and the
database engine were run on a Microsoft Windows 2000 Professional machine
having Pentium 4 1.7 GHz processor with 512 MB of memory. The database
system was IBM DB2 UDB 8.1. Appropriate indexes on the relations are cre-
ated. We used a set of synthetic XML documents based on SIGMOD DTD (Fig-
ure 7(f)). Note that we focus on the number of nodes in the datasets as the higher
the number of nodes the database engine will join more number of tuples. The
experimental results that support this decision are available in [6]. We generated
the second version of each XML document by using our own change generator.
We distributed the percentage changes equally for each type of changes. We
compared the performance of Xandy to the Java version of X-Diff 2.
Execution Time vs Number of Nodes. In this set of experiments, we study
the performance of Xandy for different number of nodes. The percentages of
changes are set to “3%” and “12%” and the threshold θ is set to “0.0” which
shall give us the upper bound of the execution time. Figures 8(a) and (d) show
the performance of the first phase (Finding Best Matching) when we set the
percentages of changes to 3% and 12% respectively. For XML documents that
have less than 5000 nodes, the execution time of the first phase is less than 12

2
downloaded from www.cs.wisc.edu/∼yuanwang/xdiff.html
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Fig. 9. Execution Time vs Percentage of Changes and Result Quality

seconds. Figures 8(b) and (e) show the performance of the second phase (Detect-
ing the Changes) compared to X-Diff when we set the percentage of changes to
3% and 12% respectively. We observe that Xandy performs better than X-Diff
except for the smallest data set. Figure 8(g) depicts the performance comparison
between X-Diff and second phase of Xandy for “Sigmod-01” and “Sigmod-02”.
We observe that most of the execution time of the second phase is taken by
finding the updated leaf nodes, detecting the inserted leaf nodes, and detect-
ing the deleted leaf nodes. Even then, it is faster than X-Diff (for “Sigmod-02”
dataset). In this experiment, X-Diff is unable to detect the changes on the XML
documents that have number of nodes over 5000 nodes due to lack of the main
memory. Figures 8(c) and (f) show the overall performance of Xandy compared
to X-Diff when we set the percentages of changes to 3% and 12% respectively.
We notice that the difference of execution time between Xandy and X-Diff re-
duces as the number of nodes increases. Finally, Xandy becomes faster than
X-Diff after the number of nodes is greater than 1000 nodes. This is because the
query engine of the relational database is still able to process the data efficiently
as the increment of the size of data is not significant. Figure 8(h) depicts the
comparison between X-Diff and of Xandy for the third and fourth datasets. We
observe that the first phase takes up to 70% of the overall execution time in av-
erage. Xandy is able to detect the changes on XML documents with over 89,000
nodes. From these experiments, we conclude that Xandy has better scalability
than X-Diff. For small datasets, Xandy has comparable performance compared
to X-Diff. Xandy has better performance than X-Diff for the large datasets.

Execution Time vs Percentage of Changes. In this set of experiments, we
use the dataset “Sigmod-03” and the threshold θ is set to “0.0”. We vary the per-
centages of changes from “3%” to “60%”. Figure 9(a) depicts the execution time
of the first phase in Xandy. We observe that the percentage of changes influence
the execution time for finding the best matching subtrees. This is because there
will be more number of matching sibling orders when the documents are changed
slightly. On the other hand, when the documents are changed significantly, we
will have lesser number of matching sibling orders. Figure 9(b) depicts the exe-
cution time of the second phase in Xandy. We observe that Xandy outperforms



<SigmodRecord>
  <issue>
    <volume>12</volume>
    <number>1</number>
    <articles>
      <article>
        <title>Query Optimization

     Using Local Completeness
        </title>
        <initPage>11</initPage>
        <endPage>28</endPage>
        <authors>
          <author>R. Caballol</author>
          <author>Wolfgang Beitz</author>
        </authors>
      </article>
    </articles>
  </issue>
</SigmodRecord>

<SigmodRecord>
  <issue>
    <volume>12</volume>
    <number>1</number>
    <articles>
      <article>
        <title>XQuery Optimization

     Using Local Completeness
        </title>
        <initPage>21</initPage>
        <endPage>27</endPage>
        <authors>
          <author>Satoshi Aoki</author>
          <author>Brian Becker</author>
          <author>Sam Bayer</author>
        </authors>
      </article>
    </articles>
  </issue>
</SigmodRecord>

(a) First Version (b) Second Version

<SigmodRecord>
  <issue>
    <volume>12</volume>
    <number>1</number>
    <articles>
      <article>
        <title>
          XQuery Optimization Using Local Completeness
          <?UPDATE FROM "Query Optimization Using Local Completeness"?>
        </title>
        <initPage>21<?UPDATE FROM "11"?>
        </initPage>
        <endPage>27<?UPDATE FROM "28"?></endPage>
        <authors>
          <author>Satoshi Aoki<?UPDATE FROM "R. Caballol"?></author>
          <author>Brian Becker<?UPDATE FROM "Wolfgang Beitz"?></author>
          <author><?INSERT author?>Sam Bayer</author>
        </authors>
      </article>
    </articles>
  </issue>
</SigmodRecord>

(c) Delta of X-Diff+

Fig. 10. Example.

the X-Diff. We also notice that the execution times of Xandy and X-Diff are
affected by the percentage changes. Figure 9(c) shows the overall performance.
X-Diff is faster than Xandy for the percentage of changes less than around 20%.
As the percentage of changes is larger than 20%, Xandy becomes faster than
X-Diff. This is because the time for finding the best matching subtrees is reduced
as the percentage of changes is increased.
Result Quality. In the first experiment, we examine the effect of the percentage
of changes on the result quality by using “Sigmod-03” as the data set. A series of
new versions are generated by varying the percentage of the changes. Xandy, X-
Diff, and X-Diff+ 3 were run to detect the changes on these XML documents. The
number of nodes involved in the deltas is counted for each approach. We compare
the number of nodes in the deltas detected by Xandy to the one detected by
X-Diff, and X-Diff+. The ratios are plotted in Figure 9(d). We observed that
Xandy detects the same deltas as X-Diff+ until the percentage of the changes
reaches 15%. The quality ratios of X-Diff+ and Xandy are smaller than 1 when
the percentage of the changes is larger than 15%. This happens because X-Diff+
detects a deletion and insertion of subtrees as a set of update operations. For
example, we have two versions of an XML document as depicted in Figures 10(a)
and (b). Figure 10(c) depicts the delta detected by X-Diff+. Xandy detects
as a deletion of an article and an insertion of an article. We notice that the
quality ratios of X-Diff and Xandy are larger than 1 when the percentage of
the changes are larger than 30%. This is because X-Diff does not calculate the
minimum editing distance. Consequently, X-Diff may detect as a deletion of a
subtree if it is changed significantly. Note that this does not happen on X-Diff+
as it calculates the minimum editing distance.

In the second experiment, we study the effect of the similarity threshold θ in
our approach on the result quality by using “Sigmod-04” data set. Then a series
of new versions are generated by setting the percentages of the changes to 6%,
18%, 30%, and 60%. For each percentage of changes, Xandy was run by varying
threshold θ. The number of nodes involved in the deltas is counted for each
threshold θ. We compare the number of nodes in the deltas detected by Xandy
with θ = 0.0 to the one detected by Xandy with 0.10 ≤ θ ≤ 0.50. The ratios are
plotted in Figure 9(e). We observe that the threshold θ may not affect the result
quality if the documents are changed slightly. On the other hand, the result
3

We activate the option “-o” of X-Diff so it calculates the minimum editing distance in finding the
matchings.



quality is affected by the threshold θ if the documents are changed significantly.
When the percentage of changes is set to 60%, the result quality becomes worse
as the threshold θ ≥ 0.25. We conclude that the result quality of the deltas
detected by Xandy is influenced by the percentage of changes, the distribution
of the changes, and the threshold θ. The distribution of the changes influences
the result quality in the following way. Suppose we have a subtree t1 in which the
changes are concentrated. t2 is the matching subtree of t1. The similarity score
<(t1,t2) will be reduced as t1 and t2 have less common nodes. Consequently, t1
and t2 may be considered as unmatching subtrees if <(t1,t2)< θ.

6 Conclusions

The relational approach for unordered XML change detection system in this
paper is motivated by the scalability problem of existing main memory-based
approaches. We have shown that the relational approach is able to handle XML
documents that are much larger than the ones detected by using main-memory
approaches. In summary, the number of nodes and the percentage of changes
influence the execution time of all approaches. Xandy is able to detect the
changes on XML documents with over 89,000 nodes, while X-Diff is only able to
detect the changes the XML documents with up to 5,000 nodes. We also show
that the execution of Xandy is faster than X-Diff for large data sets. This shows
that the powerful query engine of the relational database can be utilized for the
detecting the changes. The result quality of Xandy is comparable to the one of
X-Diff. In Xandy, the result quality depends on the threshold θ, the percentage
of changes, and the distribution of the changes.
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