
FASST Mining: Discovering Frequently
Changing Semantic Structure from

Versions of Unordered XML Documents

Qiankun Zhao and Sourav S Bhowmick

School of Computer Engineering
Nanyang Technological University, Singapore

{pg04327224, assourav}@ntu.edu.sg

Abstract. In this paper, we present a FASST mining approach to ex-
tract the frequently changing semantic structures (FASSTs), which are
a subset of semantic substructures that change frequently, from versions
of unordered XML documents. We propose a data structure, H-DOM+,
and a FASST mining algorithm, which incorporates the semantic issue
and takes the advantage of the related domain knowledge. The distinct
feature of this approach is that the FASST mining process is guided by
the user-defined concept hierarchy. Rather than mining all the frequent
changing structures, only these frequent changing structures that are
semantically meaningful are extracted. Our experimental results show
that the H-DOM+ structure is compact and the FASST algorithm is ef-
ficient with good scalability. We also design a declarative FASST query
language, FASSTQUEL, to make the FASST mining process interactive
and flexible.

1 Introduction
Frequent substructure mining [3, 5] is one of the most well researched
topics in the area of XML data mining. Current research on frequent
substructure mining is to extract substructures that occur frequently in
individual XML document or in collections of XML documents. However,
most of the existing research of frequent substructure mining focuses on
snapshot data collections, while XML data is dynamic in real life appli-
cations.

The dynamic nature of XML leads to two challenging problems. First,
is the maintenance of frequent substructures. For this problem, incremen-
tal data mining techniques [1] can be applied to maintain the mining re-
sults. Second, is the discovery of novel knowledge such as association rules
and frequent changing structures, which are hidden behind the historical
changes to XML data as described in [6]. The frequent changing struc-
ture (FCS) is defined as substructures in the XML versions that change
frequently and significantly in the history. In [6], we proposed a novel ap-
proach to discover the frequently changing structures from the sequence
of historical structural changes to unordered XML. The usefulness and
importance of such frequently changing structures, with corresponding

applications, have also been discussed. To make the structure discover-
ing process efficient, an expressive and compact data model, Historical-
Document Object Model (H-DOM), is proposed. Using this model, two
basic algorithms, which can discover all the frequently changing struc-
tures with only two scans of the XML version sequence, were designed
and implemented. We deal with unordered XML documents since the un-
ordered model of XML is more suitable for most database applications
[4]. Hereafter, whenever we say XML, we mean unordered XML.

However, discovering all the frequently changing structure is challeng-
ing due to the presence of exponential number of substructures, while
the mining results of our previous approach include any arbitrary sub-
structure that change frequently. We observed that not all the frequently
changing substructures are semantically significant and meaningful. Usu-
ally, in a specific domain, users are interested in only some specified
structures that corresponding to certain semantic concepts. To reduce
the number of structures in the mining results and keep all the mean-
ingful structures, we propose to incorporate the semantic constraints in
the form of user-defined concept hierarchy into the frequently changing
structure mining process.

In this paper, we defined a subset of frequently changing structures
as Frequently chAnging Semantic STructures (FASSTs) based on the dy-
namic metrics and concept hierarchy. Given a sequence of XML docu-
ments (which are different versions of the same XML document), the ob-
jective of FASST mining is to discover the frequently changing structures
according to the user specified semantic concepts.

2 The FASST Mining Problem

In this section, we present the preliminaries and problem statement for
the FASST mining problem. First, a set of dynamic metrics is proposed to
measure the changes to XML structural data. After that, the concept of
semantic structure is presented. Lastly, we formulate the FASST mining
problem. Details and examples of the definitions are available in [6], only
a brief introduction is presented here.

2.1 Dynamic Metrics
We model the structures of XML documents as unordered, labeled, rooted
trees. We denote the structure of an XML document as S = (N, E, r),
where N is the set of labeled nodes, E is the set of edges, r ∈ N is
the root. We do not distinguish between elements and attributes, both
of them are mapped to the set of labeled nodes. Each edge, e = (x, y)
is an ordered pair of nodes, where x is the parent of y. The size of the
structure S, denoted by |S|, is the number of nodes in N .

Definition 1 (Substructure). A structure s = (N ′, E′, r′) is a sub-
structure of S = (N, E, r), denoted as s ¹ S, provided i) N ′ ⊆ N , and
ii) e = (x, y) ∈ E′, if and only if x is the parent of y in E.

Definition 2 (Structural Delta). Let Si and Si+1 be the tree repre-
sentations of two XML documents Xi and Xi+1. The structural delta
from Xi to Xi+1 is represented as 4i, where 4i is a structural edit script
〈o1, o2, · · · , om〉 that transforms Si into Si+1, denoted as S1

o1→ s1
o2→ · · · om→

Si+1.

Definition 3 (Consolidate Structure). Given two structures Si and
Sj, where ri = rj. The consolidate structure of them is Si] Sj, where i)
Nsi]sj = Nsi ∪Nsj , ii) e = (x, y) ∈ Esi]sj , if and only if x is the parent
of y in Esi ∪ Esj .

We observed that different substructures of the XML document might
change in different ways at different frequencies. To evaluate their histor-
ical behaviors, we propose a set of dynamic metrics. The first metric is
called structure dynamic.
Definition 4 (Structure Dynamic). Let 〈Si, Si+1〉 be the tree repre-
sentations of XML documents 〈Xi, Xi+1〉. Suppose s ¹ Si. The structure
dynamic of s from document Xi to document Xi+1, denoted by Ni(s), is
defined as: Ni(s) = |4si |

|si]si+1| .

Here Ni(s) is the structure dynamic of s from version i to i + 1.
Ni(s) is the percentage of nodes that have changed from Xi to Xi+1 in s
against the number of nodes in its consolidation structure. A larger value
of structural dynamic implies that the more significantly the substructure
changed.
Definition 5 (Version Dynamic). Let 〈S1, S2, · · · , Sn〉 be the tree rep-
resentations of XML documents 〈X1, X2, · · ·Xn〉. Suppose s ¹ Sj. The
version dynamic of s, denoted as V (s), is defined as:

V (s) =
∑n−1

i=1 vi

n− 1
where vi =

{
1, if |4si | 6= 0;
0, if |4si | = 0;

Similarly, it can also be observed that the larger the value of version
dynamic is, the more frequently the substructure changed in the history.
Definition 6 (DoD). Let 〈S1, S2, · · · , Sn〉 be the tree representations of
XML documents 〈X1, X2, · · · , Xn〉. Suppose s ¹ Sj, Ni(s) and V (s) are
the values of structure dynamic and version dynamic of s; α is the pre-
defined threshold for structure dynamic. The DoD for s is defined as:

DoD(s, α) =
∑n

i=1 di

(n− 1) ∗ V (s)
where di =

{
1, if Ni ≥ α
0, if Ni < α

COMPANY

PRODUCT CLIENT ORDER

P-ID P-NAME C-ID C-NAME ADDRESS O-ID AMT PRICE

Fig. 1. An Example of Concept Hierarchy

The metric DoD is defined based on the threshold of structure dy-
namic. It represents the fraction of versions, where the structure dynamic
values for the substructure are no less than the predefined threshold α,
against the total number of version the substructure has changed over the
history. Extended from the structure dynamic, the value of DoD implies
the overall significance of the substructure, the larger the value is, the
more significant the changes are.
2.2 Semantic Structure

One of the distinctive features of XML is that XML is semantic. Tags
within the XML documents are self-describing. However, if we represent
an XML document as a tree structure, not all the substructures are se-
mantically significant to users. For example, users in the e-commerce
domain may be more interested in the substructures corresponding to
products and clients than other substructures such as Name. In this sec-
tion, we define the semantic structure to represent substructures that are
semantically meaningful.
Definition 7 (Semantic Structure). Given a concept C in a specific
domain, a structure s is a semantic structure of concept C, denoted as
s ' C, if s provides the required information of the concept C.

Based on the definition, it is obvious that the semantic structures are
based on the underlining concepts, which is domain dependent. There
are two approaches to obtain such concepts. The first approach is to
extract interesting concepts from ontology in the corresponding domain.
Another approach is to build the concepts based on DTDs (Document
Type Definitions) used in this domain. Recently, DTDs are widely used to
specify the legal building blocks in XML documents. Each legal building
block corresponds to a concept in ontology.

However, users may not be interested in all the semantic concepts/
structures while the number of concepts/structures can be huge. More-
over, even in the same domain, different users may have different interests.
For instance, in the e-commerce domain, the material control people may
be more interested in the semantic structure products than others; while
the marketing people may be more interested in the semantic structure
clients than others. Given a set of semantic concepts/structures, users
can specify the concepts they are interested in.

Our research focuses on extracting the frequently changing structures
that are semantically meaningful. The set of user-specified concepts is
used to guide the FASST mining process. Similar to [2], interested con-
cepts are represented in a hierarchy that specifies the relation among
them. Nodes of the hierarchical structure can be classified as primitive or
nonprimitive. The primitive concepts, which represent the basic elements
in a domain, reside in the lowest level in the hierarchy; all nonprimitive
concepts, which consist of a conglomeration of the primitive concepts,
reside in the higher level of the hierarchy. The higher the node’s level,
the more complex is the concepts it represents. Figure 1 shows an exam-
ple of concept hierarchy. The leaf nodes such as P-ID, and P-NAME are
primitive concepts; while internal nodes and root node such as CLIENT
and COMPANY are nonprimitive concepts. In our FASST mining, we
assume that the specified concept hierarchy is provided by users.

2.3 Problem Statement

In our previous work [6], we have defined the frequently changing struc-
tures (FCS) based on the dynamic metrics as substructure that have
version dynamic and degree of dynamic values no less than the user-
defined thresholds. Similarly, here we give a formal definition of Frequent
chAnging Semantic STructure (FASST).

Definition 8 (FASST). Let 〈 S1, S2, · · ·, Sn 〉 be the tree representa-
tions of XML documents 〈X1, X2, · · · , Xn〉; H is a concept hierarchy that
contains a set of concepts {c1, c2, · · ·, ci}; the thresholds for structure
dynamic, version dynamic and DoD are α, β, γ respectively. A struc-
ture s ¹ Sj is a FASST in this sequence if and only if i) V (s) ≥ β,
ii)DoD(s, α) ≥ γ, and iii) s ' cm, where 1 ≤ m ≤ i.

The FASST is defined based on the predefined thresholds of the dy-
namic metrics and a set of user-defined concepts. To be a FASST, it must
be a semantic structure (defined by H) and change at certain frequency
(defined by β) and corresponding changes must be significantly enough
(defined by α and γ). The FASST mining problem is to discover all the
FASSTs from a sequence of XML documents with the user-defined con-
cepts and thresholds for the dynamic metrics.

3 Algorithm

In this section, we present our FASST mining algorithm. First, we intro-
duce the H-DOM+ data structure to store and represent relevant histor-
ical structural information. After that, detail of the FASST algorithm is
presented.

3.1 The H-DOM+ Structure

The structure of an XML document can be represented and stored as a
tree such as the DOM tree proposed by W3C. In this section, we present
an H-DOM+ model to represent the history of changes to XML data.
The H-DOM+ is an extension of the DOM model with some historical
properties so that it can compress the history of changes to XML into a
single H-DOM+ tree. Formally, we define an H-DOM+ tree as follows:

Definition 9 (H-DOM+). An H-DOM+ tree is a 4-tuple H = (N, A,
v, r), where N is a set of object identifiers; A is a set of labelled, directed
arcs (p, l, c) where p, c ∈ N and l is a string; v is a function that maps
each node n ∈ N to a set of values (Cn, Cv), Cn is an integer and Cv is a
set of integers; r is a distinguished node in N called the root of the tree.

We now elaborate on the parameters Cn and Cv. The two parameters
are introduced to record the historical changes for each substructure. Cn

is an integer that records the number of versions that a substructure has
changed significantly enough (the structure dynamic is no less the corre-
sponding threshold). Cv is a set of integers that represents the versions
where the substructure has changed in the history. For instance, a value
of “ i ” denotes that the structure has changed from version i to version
i+1. Differ from the H-DOM model in [6], the types of changes are speci-
fied using integers with “ + ” and “ − ” in H-DOM+. Such knowledge will
be used in our proposed FASST query language, FASSTQUEL, to mine
different types of FASSTs. A value of “ −i ” in Cv means the structure
is “deleted” in version i+1 while a value of “ +i ” means the structure
is “inserted”. In the H-DOM+ tree, the Cv value for each structure is fi-
nally updated by using the formula: Cv(s) = Cv(s1)∪Cv(s2)∪· · ·∪Cv(sj),
where s1, s2, · · · , sj are the substructures of s. In the updating process,
insertion and deletion of a structure is determined by the majority of the
changes to its substructures (if the number of insertions among its sub-
structures is no less than deletions, then we consider it as an “insertion”
in that version. Otherwise, it is considered as a “deletion”).

With Cv and Cn, the values of structure dynamic, version dynamic,
and DoD can be calculated based on this model as follows.

– Ni(s) = 1
|si]si+1|

∑
Cv(sj)[i], where sj is the list of substructures of s,

Cv(sj)[i] is 1 if any of ±i is in Cv(sj), otherwise it is 0.
– V (s) = 1

n−1

∑n−1
i=1 Cv[i], where Cv(s)[i] is 1 if any of ±i is in Cv(s),

otherwise it is 0; n is the total number of XML documents.
– DoD(s) = Cn(

∑n−1
i=1 Cv[i])

−1, where Cv(s)[i] is 1 if any of ±i is in
Cv(s), otherwise it is 0; n is the total number of XML documents.

Algorithm 1 H-DOM+ Construction

Input:
〈X1, X2, · · · , Xn〉: A sequence of XML
S(D): Tree representation of the DTD

Output:

H: H-DOM+ Tree

Description:
1: H ← (S(X1) ∩ S(D2))

2: for (k = 2; k ≤ n; k + +) do

3: 4 = SX-Diff(Xk, Xk−1)

4: H = Mapping(H,4)

5: end for
6: Return(H)

Home

ProductsServices
… Clients About

…

P8
...

C9
…

(1, {2})

(1, {2})

(0, { })

(1, {1})

(2, {1, 2})

(2, {1, 2})

(0, { })

(a) H-DOM+ construction (b) Part of an H-DOM+ Tree

Figure 2.

3.2 FASST Mining

There are three major phases in our FASST mining. The H-DOM+ con-
struction phase, the FASST extraction phase, and the visualization phase.
Since the visualization phase is straightforward, we discuss the first two
phases in turn.

The H-DOM+ Construction Phase: Figure 2 (a) describes the phase
of H-DOM+ construction. Given a sequence of historical XML documents,
the H-DOM+ tree is initialized as the structure of the first version. After
that, the algorithm iterates over all the other versions by extracting the
structural changes and mapping them into the H-DOM+ tree. The SX-
Diff function is a modification of the X-Diff [4] algorithm that generates
only the structural change from two different versions of a document.
The structural changes are mapped into the H-DOM+ tree according
to mapping rules described in Figure 2 (a). The SX-Diff function and
the mapping phase iterate until no more XML document is left in the
sequence. Finally, the H-DOM+ tree is returned as the output of this
phase. Figure 2 (b) is an example of an H-DOM+ tree.

Given an XML document and the corresponding DTD, according to
the DTD, it is possible to know that some of the elements (attributes)
cannot be changed individually. For example, in a DTD, some elements
(attributes) may be defined as required with exactly one occurrence. Such
nodes cannot be inserted or deleted individually, which means they can
only change with the insertion or deletion of their parent nodes. Based
on this observation, elements (attributes) in the XML documents can be
classified into two groups. Elements (attributes) that cannot be inserted
or deleted individually are classified into group 1, others are in group 2.
In the initialize process, rather than store the entire structure of the first
version, we only map nodes that belong to group 2. Nodes in group 1 are
ignored.

Algorithm 2 Mapping Algorithm 3 FASST Extraction
Input:

H: H-DOM+ Tree
α: Threshold of structure dynamic
4: Structural delta

Output:

H: The updated H-DOM+ tree

Description:
1: for all ni ∈ 4 do

2: if ni /∈ H then

3: update Cn(ni)

4: end if
5: if Ni(ni) ≥ α then

6: update Cv(ni)

7: ni = ni.parent(H)

8: end if
9: end for
10: Return(H)

Input:

H: H-DOM+ Tree
T : User specified concept hierarchy
β, γ: Threshold of version dynamic and DoD

Output:
F : A set of nodes where FASSTs are rooted

Description:
1: for all nj=Bottom-upTrav(H)6= null do

2: while Ti=Bottom-upTrav(T)6= null

3: if S(nj) ' Ti , then

4: for all s ¹ S(nj) do

5: if Cn < γ × V (s), {nj = nj .next, break}
6: if V (nj) ≥ β & DoD(nj) ≥ γ, {F = F ∪nj}
7: end for
8: break; end if
9: end for
10: Return(F)

(a) Mapping Algorithm (b) FASST Extraction Algorithm
Figure 3.

Algorithm 2 in Figure 2 (a) describes the mapping function. Given
the H-DOM+ tree and the structural changes, this function is to map
the structural changes into the H-DOM+ tree and return the updated H-
DOM+ tree. The idea is to update the corresponding values of the nodes
in the H-DOM+ tree. The values are updated according to following rules:

i) If the node does not exist in the H-DOM+ tree, then the node is
inserted. The value of ±i is inserted into Cv where i is the version number
of the structural delta. In addition, the Ni value is calculated. If Ni ≥ α,
then Cn is set to 1 and the Cn values of its parent nodes are incremented
by 1 until Ni is less than α. Otherwise, Cn is set to 0 and the process
terminates.

ii) For nodes that exist in the H-DOM+, the value of Cv is updated
by inserting the value ±i into Cv if ±i is not in Cv. The value of Cn is also
updated based on Ni and α. Similarly, If Ni ≥ α, then Cn is incremented
by 1 and the Cn values of its parent nodes are updated based on the
same rule until Ni is less than α. Otherwise, Cn does not change and the
process terminates.

The FASST Extraction Phase: In this phase, given the H-DOM+

tree, the FASSTs are extracted based on the user-defined concept hierar-
chy. First the substructures are compared with the user-specified concept
hierarchy as shown in line 3 in Figure 3 (b). If the structures are in-
stances of the concepts in the hierarchy, then the values of the required
parameters (version dynamic, and DoD) for each node are calculated and
compared against the predefined thresholds as shown in lines 5 and 6.
Since for a FASST, both its version dynamic and DoD should be no less
than the thresholds, we first calculate only one of the parameters and
determine whether it is necessary to calculate the other parameter. In

our algorithm, the version dynamic for a node is checked against the cor-
responding threshold first. If it is no less than the threshold, then we
check its DoD. Considering the traversal strategy of the H-DOM+ tree,
we use the bottom-up method since the set of interesting concepts is rep-
resented in a hierarchical manner with primitive concepts in the lower
level. Guided by the concept hierarchy, the FASST extraction phase can
be more efficient.
Lemma 1. Let S1 and S2 be any two structures, S2 ¹ S1. Given the
threshold for DoD as γ, the necessary condition for structure S1 to be a
FASST is that Cn(S1) ≥ γ × V (S2).

From the above lemma, we observed that it is not necessary to traverse
the entire H-DOM+ tree. We can skip checking some structures that
cannot be FASSTs. Based on this lemma, for any nodes, rather than
calculate its version dynamic value, the Cn value of the node is checked
against the value of γ × V (Si), where Si is any of its substructures. If
Cn < γ×V (Si), then it is not necessary to calculate the version dynamic
and DoD for this structure since it cannot be a FASST. This pruning
technique is shown in Figure 3 (b) in lines 5 and 6.

4 FASSTQUEL: Query Language for FASST

To make the FASST mining process interactive, we design a FASST query
language called FASSTQUEL. In this section, we discuss the syntax of
the language and how it is useful.

The FASST query language consists of the specifications of four major
parameters in FASST extraction from a sequence of XML documents.
They are types of FASST, relevant source, a hierarchy of concepts, and
threshold values. The syntax for the FASST query language is defined
in a simplified BNF grammar (words in type writer font represents
keywords) as shown in Figure 5 (i):

– “EXTRACT 〈structure type〉” specifies that the FASSTs to be discovered
are of type “〈 structure type 〉”. The following types of FASSTs are
supported in our query language:
• Insertion-based (Only insertions are considered as changes)
〈structure type〉 :: = Ins FASST

• Deletion-based (Only deletions are considered as changes)
〈structure type〉 :: = Del FASST

• FASST (Both insertions and deletions are considered as changes)
〈structure type〉 :: = All

– “FOR 〈concepts〉” specifies that the concept hierarchy to be used to
guide the FASST mining. The concept hierarchy can be stored in an
XML document.

– “FROM 〈source〉” specifies on which dataset the FASST extraction
should be performed. It can the entire sequence or from version i
to version j, which are specified as All and [i, j] respectively.

– “WHERE THRESHOLD = 〈N, V, DoD〉” specifies the thresholds for struc-
ture dynamic, version dynamic, and DoD. If the any of the threshold
values is not specified by the user, then a default value is used.

For example, given a hierarchy of concepts H, to extract all types of
FASSTs from a sequence of n XML documents with the thresholds for
structure dynamic, version dynamic and DoD are specified as 0.3, 0.4,
and 0.75 respectively. The FASST query can be formulated as shown in
Figure 5(j). The FASST query language is proposed for interactive FASST
mining. That is users may not be able to get their desired knowledge at the
first hit. Based on the mining results, users can specify and modify their
requirements explicitly using this query language. Moreover, the FASST
query language makes the interactive mining process more efficient.
5 Performance Evaluation

Experiments are conducted on a P4, 1.7GHz PC with 256M RAM, run-
ning Microsoft Windows 2000 Professional. The algorithm is implemented
in Java. In the following experiments, the real data, SIGMOD XML doc-
ument, is downloaded from UW XML repository 1. Based on this XML
document, sequences of synthetic XML versions are generated using our
synthetic XML delta generator. Similar to the experiments in [6], we vary
the characteristics and the parameters for the algorithm to evaluate the
performance of FASST mining. All the datasets are generated based on
the basic dataset generated from the SIGMOD XML. The basic dataset,
D1 in Figure 4 (i), consists of 40 versions of XML documents, with an av-
erage number of 2500 nodes. The average percentage of changes between
any consecutive versions is 18% in the basic dataset, which consists of 9%
of insertion and 9% of deletion.

Figure 4 (a) shows how the running time changes by varying the total
number of nodes in the XML sequence. There are two ways of increasing
the total number of nodes in the sequence. One way is to increase the
number of versions (NoV) in the XML sequence, another way is to in-
crease the average number of nodes (NoN) in each version. Datasets D2

and D3 are used in the following experiments. The threshold values for
structure dynamic, version dynamic, and DoD are fixed to 0.2, 0.2, and
0.2 respectively. Both results show good scalability with the total num-
ber of nodes, while the running time is more sensitive to the number of
versions in the XML sequence than the average number of nodes in each
1 http://www.cs.washington.edu/research/xmldatasets

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6

Total number of nodes (100K)

R
un

ni
ng

 ti
m

e
 (S

)

NoN NoV

0

10

20

30

40

50

60

4 8 12
Number of nodes (100K)

P
e

rc
en

ta
g

e
 o

f c
o

st
 (

%
)

SX-Diff Mapping FASST extraction

25

26

27

28

29

30

31

32

0 0.2 0.4 0.6 0.8 1
Total number of nodes (100K)

R
u

nn
in

g
 ti

m
e

 (S
)

Structure dynamic Version Dynamic DoD

0

100000

200000

300000

400000

500000

600000

700000

1 2 3 4
Dataset

S
iz

e
(k

b
)

Original XML sequence H-DOM+

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6
Total number of nodes (100K)

R
u

n
n

in
g

tim
e

 (S
)

FCS FASST

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6

Total number of nodes (100K)

N
u

m
be

r
o

f s
tr

u
ct

u
re

s
(K

)

FCS FASST

0

10

20

30

40

50

60

70

80

90

6 12 18 24 36
Percentage of changes

C
o

m
p

re
ss

io
n

 r
at

io

Dataset NoV NoN PoC

D1

D2

D3

D4

40 2500 18%

2500 18%

40

2500

18%

40

varying

varying

varying

(a) (b) (c)

(d) (e) (f)

(g)

(h)

������������ � �

���������������������������� � �	
 � �

 � � � �
 � � � �

� � �� � �� � �� � � � �
 � �
 � �
 �

� �� 	� �� 	� �� 	� �� 	 � �	 � � �
 � �

 � ���� �� ��
 � � � �
 � ���� �� ��
 � � � �
 � ���� �� ��
 � � � �
 � ���� �� ��
 � � � � � � � �� � � � � � � � � � ��

(i)
���������������������������� � � 	

 �

� � �� � �� � �� � � � �

� �� 	� �� 	� �� 	� �� 	 � 	

 � ���� �� ��
 � � � �
 � ���� �� ��
 � � � �
 � ���� �� ��
 � � � �
 � ���� �� ��
 � � � � � � � �� � � � � � � � � � � � � � ��

(j)

Figure 4. Experiment Results
version. This is due to the fact that the change detection process is the
major cost for FASST mining, as we can see from Figure 4 (b). The first
three datasets in Figure 4 (i) are used. As shown in Figure 4 (b), among
three processes: SX-Diff, Mapping, and FASST Extraction, we observed
that the SX-Diff process is the most expensive process that takes more
than half of the running time.

Figure 4 (c) shows how the running time changes by varying the
thresholds for the dynamic metrics. The D1 dataset is used. In the three
experiments, we vary one of the thresholds and fixed the thresholds for
the other two to 0.2. It can be observed that the running time does not
change significantly when the thresholds of dynamic metrics change. This
is due to the fact that the most expensive process, SX-Diff, is independent
on the thresholds.

Figure 4 (d) shows the size of the H-DOM+ tree comparing with the
original size of the XML sequence in previous experiments. From the re-
sult it can be concluded that our H-DOM+ model is very compact (around
50% of the original XML sequence). By varying the characteristics of the
datasets, we find out that the compactness of the H-DOM+ structure

is sensitive to the percentage of changes in the dataset, while the num-
ber of versions and the average number of nodes in each version do not
affect the compactness. As shown in Figure 4 (e), when the percentage
of changes increases the compactness of the H-DOM+ structure will de-
crease. It is because that when the percentage of changes increases, the
overlap among the XML sequence will decrease. Consequently, the space
saved by H-DOM+ structure will decreases. The dataset D4 is used in
this experiment. Although the compactness of the H-DOM+ data struc-
ture depends on the datasets, but it is guaranteed that the size of the
H-DOM+ is no larger than the original datasets in the worst case.

Figures 4 (f) and (g) show the performance comparison of FCS and
FASST. Figure 4 (f) shows the comparison of the running time. The two
set of experiments are conducted with the same threshold values for the
dynamic metrics using the D1 dataset. It can be observed that the running
time of FASST has been improved significantly. Figure 4 (g) shows the
number of structures in the mining results with the same thresholds for
the dynamic metrics. It shows that the number of structures in FASST
mining result is reduced by almost 40% from the FCS mining result. This
two results shows that the object of our FASST mining has been achieved
successfully.

6 Conclusions

In this paper, we propose an approach to extract the FASSTs from a se-
quence of historical XML documents. We propose an H-DOM+ to store
and represent the historical structural information of the XML docu-
ments sequence. Using the H-DOM+, an algorithm is proposed to mine
the FASSTs. Experimental results show that FASST has good scalability
and efficiency. We also propose a declarative FASST query language to
make the mining process interactive.

References

1. V. Ganti, J. Gehrke, and R. Ramakrishnan. DEMON: Mining and monitoring evolving
data. In Proc. IEEE ICDE, pages 439–448, 2000.

2. J. Han and Y. Fu. Dynamic generation and refinement of concept hierarchies for knowledge
discovery in databases. In Proc. KDD Workshop, pages 157–168, 1994.

3. A. Inokuchi, T. Washio, and H. Motoda. An apriori based algorithm for mining frequent
substructures from graph data. In Proc. PKDD, pages 13–23, 2000.

4. Y. Wang, D. J. DeWitt, and J.-Y. Cai. X-diff: An effective change detection algorithm
for XML documents. In Proc. ICDE, pages 519–530, 2003.

5. M. J. Zaki. Efficiently mining frequent trees in a forest. In Proc. ACM SIGKDD, pages
71–80, 2002.

6. Q. Zhao, S. S. Bhowmick, M. Mohania, and Y. Kambayashi. Discovering frequently

changing structures from historical structural deltas of unordered XML. In Proc. ACM

CIKM, pages 188–198, 2004.

