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Abstract. Warehousing heterogeneous, dynamic biological data is a key tech-
nique for biological data integration as it greatly improves performance. However,
it requires complex maintenance procedures to update the warehouse in light of
the changes to the sources. Consequently, a key issue to address is how to detect
changes to the underlying biological data sources. In this paper, we present an
algorithm called BIODIFF for detecting exact changes to biological annotations.
In our approach we transform heterogeneous biological data to XML format and
then detect changes between two versions of XML representation of biological
data. Our algorithm extends X-Diff, a published XML change detection algo-
rithm. X-Diff, being designed for any type of XML data, does not exploit the
semantics of biological data to reduce the data set of bipartite mapping. We have
implemented BIODIFF in Java. We have conducted an extensive performance
study using data from EMBL, GenBank, SwissProt and PDB. Our experimental
results show that BIODIFF runs 1.5 to 6 times faster than X-Diff.

1 Introduction

Technological advances in high throughput screening coupled with the genomic revo-
lution resulted in a large amount of life sciences data that are often stored in geograph-
ically distributed databases. Some of the key features of these databases are as follows
[6]. (1) Many data sources are typically centered on one primary class of objects, such
as genes, proteins, or DNA sequences. (2) The primary objects are furthered described
by a set of nested fields, called annotations. Many of the annotations are text fields, such
as description, functional annotation, source of biomaterial etc. (3) Databases heavily
cross-reference each other. (4) Databases overlap in the objects they represent, stor-
ing sometimes redundant and sometimes conflicting data. As valuable information is
scattered around over literally hundreds of these databases, a data integration system
that can handle heterogeneous, complex, and geographically dispersed biological data
sources is a key area of research in bioinformatics[8].

Biological data integration approaches can be broadly categorized into three types.
The first approach provides a uniform Web interface to various databases and analysis
tools[12]. These systems usually use CGI scripts or Java servlets to execute queries
against databases, to call analysis programs, or to search file-based data repositories.
The second approach focuses on formulating complex declarative queries that span
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(a) EMBL interface. (b) Change detection.

Fig. 1. Change detection in EMBL

multiple heterogenous databases[3]. These two approaches have several disadvantages.
First, efficiency of the application may be choked by the slowest external data source or
by communication latency in the execution of queries and programs. Second, we may
not be able to run our applications at a time we wish because a needed external source
is unavailable. Third, there is always the risk of unintended “denial of service” attacks
on the original sources. Finally, as many biological sources have large number of errors,
there is always the risk of running remote applications that are sensitive to certain errors
that cannot be detected nor corrected on-the-fly.

The third approach addresses the above limitations by taking a warehousing ap-
proach [1,3,7]. The first step in this approach is to develop a unified data model that
can accommodate all the information that is contained in the various source databases.
The next step is to develop a mechanism that will fetch the data from the source data-
bases, transform them to match the unified data model and then load them into the
warehouse. The warehouse then can be used for answering any of the questions that
the source databases can handle, as well as those that require integrated knowledge that
the individual sources do not have.

The warehouse approach greatly improves performance [3]. However, as biological
data is highly dynamic, it requires complex maintenance procedures to update the ware-
house in light of the changes to the sources. This raises a number of practical problems
[3]: (1) How can we detect that the underlying data sources have changed and what are
these changes? (2) How can we automate the refresh process? (3) How can we track the
origins or “provenance” of data? In this paper, we focus on the first issue.

An important aspect of any change detection problem is finding out exactly how the
underlying data source has changed. In the case of biological databases, this is compli-
cated by the fact that updates are typically propagated in one of the three ways [3,5]:
(1) Producing periodic new versions that can be downloaded by the user community
(2) Timestamping data entries so that users can infer what changes have occurred since
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Fig. 2. XML representation of biological data (partial)

they last accessed the data (3) Keeping a list of additions and corrections; each element
of this list is a complete entry. The list of additions can be downloaded by the user
community. However, to the best of our knowledge, none of these methods precisely
describe the minimal changes that have been made to the data. We illustrate this with
an example.

Suppose that a warehouse stores a portion of EMBL data including data related to
SARS (Severe Acute Respiratory Syndrome) virus. The EMBL data bank timestamps
the data entries (Figure 1(a)) so that the warehouse maintainer can infer the latest ver-
sion of the entry. The web site also provides a tool to compare the differences between
two versions of SARS data by clicking the “Compare Selected” button in Figure 1(a).
The differencing tool then highlights the changes by color coding the lines that are in-
serted, deleted, or remained unchanged during the transition as shown in Figure 1(b).
The main drawback of this tool is that it does not exactly say how the entry has changed.
The actual change may be very small. For example, consider the ID attribute in EMBL
data. The general format of an ID line in EMBL is: ID entryname dataclass;
molecule; division; sequencelength BP. From Figure 1(b) it is clear that
only the sequence length is modified from “28920” to “29725”. Values of the remaining
attributes of the ID line are unchanged. However, the differencing tool in Figure 1(a)
does not try to identify the exact change in the ID line. Rather, it represents the change
as deletion and insertion of the ID line. Observe that the differencing tool represents
an update of a line as a combination of deletion of the line followed by insertion of a
new line (first two lines in Figure 1(b)). Assuming that the warehouse uses a relational
database to store data, finding the exact change is important as it reduces the number
of tables or tuples needed to be updated in the warehouse [3].

In this paper, we present an algorithm BIODIFF that can identify exact changes to
the annotations associated with primary biological objects1. In the rest of the paper,

1 A preliminary and shorter version of this paper appeared as a poster in [9].
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we use the genomic and proteomic data sources as running examples to illustrate our
change detection technique. However, as we shall see later, our approach is generic
and can be applied to any biological annotations. Note that we do not discuss detect-
ing changes to primary objects (e.g., protein sequences, nucleotide sequences) as the
differences between two primary objects (say nucleotide sequences) can be computed
using a modified sequence comparison algorithm instead of the matching algorithm
used in BIODIFF for annotations. As there is a significant body of work on sequence
comparison techniques, we do not focus our discussion on detecting changes to primary
objects here.

In our approach, we first transform data (e.g., flat files) from various biological data
sources to XML format using Bio2X [10]. Then, we can address the problem of detect-
ing changes to biological data in the context of such XML documents. Consequently,
BIODIFF takes as input two versions of XML representation of biological data and com-
pute the changes. Since there are several recent efforts in the XML research community
to develop change detection algorithm for XML documents [2,11], an obvious issue is
the justification for designing a separate algorithm for detecting changes to the XML
representation of biological data. In fact according to [3,5], XML change detection al-
gorithms can be directly used to detect changes to XML representation of biological
data. We argue that although such algorithms will clearly work for annotation data,
they are not efficient as they do not exploit the semantics of biological data. For in-
stance, the min-cost max-flow algorithm for computing the bipartite mapping between
two XML trees is the most time consuming part in X-Diff [11]. Hence, it is desirable to
reduce the size of data set during mapping. However, X-Diff fails to do so for biological
data as it ignores the semantics of the XML elements. BIODIFF is developed to address
this issue by extending X-Diff[11]. As we shall see later, it exploits the semantics of
the XML elements to further reduce the data size for bipartite mapping. Consequently,
our experimental results (Section 3) show that BIODIFF runs 1.5 to 6 times faster than
X-Diff on genomic and proteomic annotations.

2 Algorithm

We have designed and implemented a wrapper called Bio2X that converts flat files into
hierarchical XML form based on extraction rules[10]. We have observed that XML
representation of data from many major biological sources can be considered as un-
ordered. For example, consider the XML tree representation of two versions of EMBL
data in Figure 2. Assume that the nodes <class>Coronavirus</class> and <class>
Nidovirales</class> swap their positions in Figure 2. However, this change is not sig-
nificant since the order does not influence the semantics of the biological data entry.
Hence, in this paper we assume that an unordered XML model is more appropriate for
representing biological data.

The pseudocode of BIODIFF algorithm is given in Figure 3(a) and can be best de-
scribed by the following five phases: the identifier checking phase, the type classifi-
cation phase, the parsing and hashing phase, the matching phase, and the edit script
generation phase. The identifier checking phase takes as input two XML documents,
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Input:  XML documents D1 and D2, DTD K
Output: Edit script E

/* Identifier checking phase */
(1) Set id1=identifier of D1; 
(2) Set id2=identifier of D2; 
(3) if (id1==id2) return E=no_change; 

/* Type classification phase */
(4)  if (TypeContainer C is empty)  C = ChooseType(K);

/* Parsing and hashing phase */
(5)   parse D1 to XTree tree1; 
(6)   XHash(T1); 
(7)   parse D2 to XTree tree2; 
(8)  XHash(T1);

/* Matching & edit script generation phase */
(9)  for each node node1 in first-level elements of tree1 { 
(10)   set name=tree1.GetName(node1); 
(11)   set node2=tree2.GetNode(name1); 
(12)   if (node2 == null) 
(13)     add Delete(node1, tree1) to E; 
(14)   else {
(15)     if type1(node1) 

E=OneToOne(node1, node2, E); /* Figure 3(c) */
(16)     else if type2(node1) 

E=IdenElemComp(node1, node2, E); /* Figure 4(a) */
(17)     else if type3(node1) 

E=IdenSignature(node1, node2, E); /* Figure 4(b) */
(18)     else E=bipartite(node1, node2, E); 
(19)   } 
(20) } 
(21) for each node2 in tree2 but not in tree1 
(22)   add Insert(node2, tree2) to E; 
(23) return E;

(a) Main algorithm.

Input:  DTD K rooted at E
Output: TypeContainer C

(1)  if no sub-element of E
(2) C={type_1};
(3)  for each sub-elements S of E {
(4)    add ChooseType(S) to C;
(5)    store <name, attributes> pair of S into M;
(6)  }
(7)  if M is not empty {
(8)    if each has distinct name
(9)    add type_1 into C;
(10) else {
(11)   if none has any attributes
(12)     add type_2 into C;
(13)   else if all has the same attributes
(14)     add type_2 into C;
(15)   else {
(16)     if the attribute is not an id
(17)       add type_3 into C;
(18)     else
(19)       add type_4 into C;
(20)     }
(21)   } 
(22) }
(23) return C;

(b) Algorithm ChooseType.

Fig. 3. BIODIFF algorithm

new and old versions (denoted as D1 and D2), and determines whether they are iden-
tical. The equality of two XML representation of biological data can be concluded
without parsing the entire XML documents. For instance, for genomic data sources,
each biological data record has a version identifier. Whenever the data is changed, a
new identifier will be assigned. So the identifiers of two data files can be extracted and
compared first to determine whether the data files are identical. Similar identifiers can
be identified for most of the important biological data sources. If the identifier checking
phase detects that the two entries are not identical, then BIODIFF will parse the schema
information of the documents (DTD/XML Schema) to classify the XML elements into
four types depending on their structure. Such type classification information shall be
used in the matching phase to minimize bipartite matching of the dataset. Note that
if the DTD information is not available then it can be automatically generated from
the XML documents using XTRACT[4]. We shall elaborate on this phase further later.
Next, D1 and D2 are parsed into DOM Trees tree1 and tree2 in the parsing and hash-
ing phase. The steps are similar to X-Diff[11] except for one key difference. Unlike
X-Diff, when we parse the XML file, we encode the elements in the XML document
with appropriate type of matching techniques based on the type information generated
from the preceding phase. Note that if D1 and D2 contain primary objects (protein or
nucleotide sequence) then they are excluded from parsing into nodes in the DOM trees.
The goal of the matching phase is to compute the minimum cost matching between the
DOM trees tree1 and tree2. We elaborate on this step later. In the edit script generation
phase, we generate a minimum-cost edit script for changes to annotation data based on
the minimum cost matching found in the matching phase. This step is similar to the one
in X-Diff.
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Input:  XTree tree1, XTree tree2, edit script E
Output: the edit script E

(1)  if hashcode(tree1)==hashcode(tree2) return E;
(2)   store the signatures of first-level elements of

    tree1 in HashMap1;
(3)  store the signatures of first-level elements of

    tree2 in HashMap2;
(4)  for each element in HashMap1 {
(5)     if (existing mapping element in HashMap2) {
(6)         if (it is an element node) {
(7) if type1(node1)

        E=OneToOne(node1, node2, E);
(8) else if type2(node1)

        E=IdenElemComp(node1, node2, E);
(9) else if type3(node1)

        E=IdenSignature(node1, node2, E);
(10) else E=bipartite(node1, node2, E);
(11)   }
(12)         else {
(13)            compare their values;
(14)           if different
(15)              add Update(element1, element2) to E;
(16)   }
(17)     }
(18)     else
(19)        add Delete(element, tree1) to E;
(20)  }
(21)  for each element in HashMap2 {
(22)     if (no mapping element in HashMap1)
(23)        add Insert(element, tree2) to E;
(24)  }
(25)  return E;

(a) Function OneToOne.

Input: XTree tree1, XTree tree2, edit script E
Output: the edit script E

(1)  if hashcode(tree1)==hashcode(tree2) return E;
(2)  store the values of sub-elements of tree1

   in Vector1;
(3)  store the values of sub-elements of tree2
        in Vector2;
(4)  for each element value in Vector1 {
(5)     if (contained in Vector2)
(6)      mark unchanged;
(7)  }
(8)  for each element value in Vector2 {
(9)     if (changed) {
(10)      choose the next changed element in Vector1;
(11)      if (exist)
(12)         add Update(element1, element2) to E;
(13)      else
(14)         add Insert(element2, tree2) E;
(15)    }
(16) }
(17) for each element leaf in Vector1
(18)   add Delete(element1, tree1) to E;
(19) return E;

(b) Function IdenElemComp.

Fig. 4. BIODIFF algorithm (contd.)

2.1 Type Classification Phase

The min-cost max-flow algorithm for computing the bipartite mapping between two
XML trees is the most time consuming part in X-Diff. Hence, a key goal of BIODIFF

is to minimize bipartite mapping computation by exploiting the semantic relationship
between various nodes in the XML tree. For example, the data element in Figure 2
contains only attribute values, whereas the organism species element contains a list of
subtree elements. Such differences in the structure of the subtrees are exploited in our
approach to achieve this goal.

In this phase, we classify the XML elements into four different types based on their
structures (we shall elaborate on these types later) by analyzing the DTD (or XML
schema). As we shall see in the matching phase, instead of applying expensive bipar-
tite matching for all cases, we apply four different matching techniques to the XML
elements based on the types they belong to. Three of these matching techniques run in
linear time in contrast to polynomial time complexity of bipartite matching.

The algorithm to classify the elements in the DTD to different types is shown in
Figure 3(b). It takes as input the DTD of the XML representation of biological data
and returns as output the TypeContainer C which contains information about different
XML elements and corresponding types. The ChooseType function is invoked for each
element in the DTD recursively and at each level, the names and attributes of all the
subelements are examined to choose the type of the current element. Let us illustrate
this with a simple example. Consider the subtree structure rooted at organism species
in Figure 2. ChooseType is first invoked for its subelement organism in the DTD, which
is determined to be of Type 1 since it has no subelements. ChooseType is then invoked
for taxonomy and it is classified as Type 2 since it contains a list of subelements having
identical names (class). Finally, as the organism species contains two distinct subele-
ments, Type 1 is chosen for this element.
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Input:  XTree tree1, XTree tree2, edit script E
Output: the edit script E

(1)  set attrname=the names of key attributes;
(2)  for each first-level elements in tree1 and tree2
        include values of attrname into signature;
(3)  ta1=subtree containing nodes with distinct
         signatures in tree1;
(4)  ta2=subtree containing nodes with distinct
         signatures in tree2;
(5)  E=OneToOne(tb1, tb2, E);
(6)  tb1=subtree containing nodes without attributes
         in tree1;
(7)  tb2=subtree containing nodes with attributes
         in tree2;
(8)  E=IdenElemComp(tb1, tb2, E);
(9)  for each signature common to multiple elements {
(10)    tc1=subtree containing nodes with this
            signatures in tree1;
(11)    tc2=subtree containing nodes with this
            signatures in tree2;
(12)    E=IdenElemComp(tc1, tc2, E);
(13) }
(14) return E;

(a) Function IdenSignature.

<?xml version=”1.0” encoding=”UTF-8”?>
........

<coordinate section>
<atom serial no=”1” name=”N” residue name=”VAL”
chain id=”A” seq num=”1” x-coord=”-38.199”
y-coord=”-40.257” z-coord=”97.510” occupancy=”1.00”
temp factor=”22.53” />
<atom serial no=”2” name=”CA” residue name=”VAL”
chain id=”A” seq num=”1” x-coord=”-38.816”
y-coord=”-41.316” z-coord=”96.669” occupancy=”1.00”
temp factor=”18.15” />

</coordinate section>
...............

(b) Element coordinate section of PDB.

Fig. 5. BIODIFF algorithm (contd.)

2.2 Matching Phase

We now discuss the matching process in BIODIFF. Unless specified otherwise, in our
following discussion we use the notion of signature as introduced by [11]. Observe
that the first level element nodes (elements for brevity) in the tree representation of
XML version of biological data have distinct structures (Figure 2). Each node has a
unique name and hierarchy. Each node in the first level appears only once and mapping
occurs only between nodes with the same signature. So the whole XML tree can be
divided into a set of smaller subtrees rooted at each first-level node. Each smaller tree
will be compared with another smaller tree from the second XML tree having the node
with same name. For example, the subtree rooted at node labeled organism species
in Figure 2(i) will be compared with the subtree in Figure 2(ii) whose root is in the
first level and has the same label. Note that this computation is independent from the
remaining subtrees.

The above step alone does not provide performance improvement compared to X-
Diff. X-Diff also achieves this with its signature definition. However, this step makes
it possible to use different types of matching for different subtrees. Hence, we cate-
gorize the matching techniques into four basic types for both minimum-cost distance
computation and minimum cost edit script generation. We discuss these techniques in
detail now. Note that each subtree is treated independently for further matching. So any
distance computation will be localized within each subtree.

Type 1: One-to-One Comparison. An element in the XML representation of biologi-
cal data can be composed of a number of attributes, subelements or textual data. Some
elements may exhibit unique signature within its subtree scope. For example, consider
the organism element in Figure 2. Only one organism element can exist in the subtree
rooted at organism species element. So there will be at most one candidate-matching
element in the newer version of the subtree. Hence, one-to-one comparison can be con-
ducted between these two elements. Lines 1-2 in Figure 3(b) identifies these types while
parsing the DTD.
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Case 1: The element contains only text value: The corresponding element pair from
the older and newer versions can be matched directly using one-to-one comparison. For
example, the version number element shown in Figure 2 contains only a string value
representing the accession number and version number. So the two version number
elements in Figure 2 can be compared directly.

Case 2: The element contains distinct attributes: Each attribute should have a distinct
name (signature). Each attribute can be matched with only a single attribute of the other
XML file. The entire attribute list pair is then matched on a one-to-one basis. Take
the data element in Figure 2(i) as an example. It contains the attributes id, data class,
molecule, division, and length. After obtaining the first attribute id in Figure 2(b)(i), the
algorithm searches for attribute id in Figure 2(ii) in the element node data and compares
their content. This is repeated for each attribute of data.

Case 3: The element contains a list of subelements with distinct names: One-to-one
comparison is also sufficient to match the two lists. For example, consider the dates el-
ement in Figures 2(i) and 2(ii). Each dates element consists of two subelements: created
and updated. These two subelements will appear at most once in this subtree rooted at
dates. So given an element created in the older version of the subtree, there will be
at the most one candidate-matching element in the newer version of the subtree. After
matching the two created nodes, for example, further matching between the two sub-
trees of created is then computed recursively. The type of matching technique to be
applied on the subelements depends on the specific structure again.

The pseudocode for one-to-one comparison is shown in Figure 4(a). It can be seen
that with the utilization of a HashMap structure for storing elements, linear time com-
plexity O(|T1| + |T2|) is achieved, where |T1| and |T2| are the numbers of nodes in
the subtrees T1 and T2 respectively. Note that although X-Diff only performs min-cost
max-flow computation between the elements with the same signature, for a subtree with
all unique signature subelements, the complexity will not reduce to O(|T1| + |T2|). It
still needs to enumerate all the pairs first to select the nodes with the same signature as
it cannot know ahead of time that only one matching candidate actually exists.

Type 2: Identical Subelement Comparison. The first case discussed above is suit-
able for an element with a list of distinct subelements or attributes where each element
or attribute must have a unique name within the scope of its subtree. Conversely, an
element may contain a list of subelements having identical names. In this case, by fol-
lowing the X-Diff convention, if all the subelements have the same signature, then they
will be compared using min-cost max-flow algorithm. However, as bipartite matching
is an expensive procedure, we resolve this program by transforming a bipartite match-
ing problem into linear-time matching whenever possible. Lines 10-14 in Figure 3(b)
identifies the cases below while parsing the DTD.

Case 1: Elements without attributes: For example, the taxonomy element has a list of
subelements with the same name class. Each of the class element does not contain any
attribute. A class can be deleted, inserted, or updated. In our approach, we first find
all the unchanged class pairs and then we assign all the unmatched class elements in
the second subtree to unmatched elements in the first subtree sequentially and record
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that they are changed. If a class element of the second subtree is left unpaired, then it
is considered as newly inserted. Similarly, if a class element of the first subtree is left
unpaired, then it is considered as deleted.

Case 2: Elements having identical attributes: Each element with identical name may
have identical nonempty set of attribute name-value pairs. Consequently, this becomes
identical to Case 1 where the elements are just identical by examining the titles of the
nodes. Hence the same comparison technique will be applied to them.

Case 3: Elements of cases 1 and 2 containing subtree structures: The sequential match-
ing becomes no longer valid since the matching pairs have to be computed by analyzing
the entire hierarchy of the subtrees. A min-cost max-flow bipartite matching has to be
carried out. However, such structure does not exist in our XML data formats generated
by Bio2X [10]. Any element, which is not unique within the current scope and contains
a subtree structure, will have at least one distinct attribute associated with it. Hence,
such situation can be ignored.

The algorithm is shown in Figure 4(b). The complexity of this procedure is also
linear in O(|T1| + |T2|).

Type 3: Extended Signature Comparison. We now consider the case when identical
subelements have different attributes (name or value). They can be text-value, attribute-
value elements, or contain subelements. These two cases are defined by the Lines 16-17
in Figure 3(b).

Case 1: Each identical-name element has a distinct attribute: We can differentiate
these elements by utilizing the attributes as identifiers. By incorporating the attribute
name and value into the original signature, we generate unique signatures for each el-
ement within the current subtree. Hence, the matching problem will be reduced to a
one-to-one comparison again as described earlier. For instance, the qualifier elements
(Figure 2(i)) has a signature entry/features/sequence feature/qualifier/element as de-
fined by X-Diff. Observe that three of them have an attribute labeled type. Hence
they can have the following distinguishable signatures: entry/features/sequence feature/
qualifier/ element/mol type, entry/features/sequence feature/ qualifier/element/isolate,
and entry/features/sequence feature/ qualifier/element/organism. Consequently, the
problem of matching an element in two versions of XML documents transforms into
locating an element with the same refined signature. This is basically the one-to-one
comparison algorithm described earlier. One qualifier element in Figure 2(i) has no type
attribute. It will be matched with the other qualifier element without type (Figure 2(ii)).
Multiple qualifier elements without attributes can exist in one subtree. Then they will be
extracted and matched using the Type 2 technique. Also, if multiple qualifier elements
have identical attributes, then they are also matched using Type 2 technique.

Case 2: Each identical-name element has multiple different attributes: The technique
stated above is easily extensible to an element having multiple attributes. In this case,
either any one of the attribute acts as the identifier or some of the attributes can be com-
bined to act as the identifier. The attribute names are predefined for each XML element ap-
plying this matching algorithm. For example, consider the element <database reference
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db=”EMBL” primary id=”L09112” secondary id=”AAA96323.1” />, which has three
difference attributes. The value of attribute primary id or secondary id is always unique
within a database. Hence, attribute primary id with db can be used as the identifier for this
element. We do not choose secondary id because it is an optional attribute. The choice of
the key attribute or a combination of attributes depends on the biological context of the
data, which is predefined in the biological databases.

The complete matching algorithm is outlined in Figure 5(a). After extending the
signature, the elements will be matched using either Type 1 or 2 technique. Note that
the complexity of the for loop (line (9) to (13)) is linear to number of nodes matched by
Type 2 technique, which are subsets of T1 and T2. Hence, this matching technique also
runs in linear time complexity: O(|T1| + |T2|).

Type 4: Bipartite matching. The min-cost max-flow algorithm as used in X-Diff is
used for elements that cannot be matched using the above three methods or a com-
bination of them. This may occur when the attribute(s) is only an index for num-
bering the elements and the element pair with the same index may not match at all.
For example, the coordinate section of PDB database contains a list of atom elements
(Figure 5(b)). The atom list records the names, locations and the atomic coordinates
for standard residues. Each atom is identified by a serial number, and the sequence of
atom elements is determined by the order of the corresponding residue. Suppose in the
newer version, an extra atom element is added for a newly inserted residue. The atom
may be inserted in the middle of the atom list. When we compare the old and new
version of atom list, the atom newly inserted will be matched to some atom in the old
version, which is not correct. Hence, the alignment between the atom list of the old
and new versions cannot be carried out reliably by matching the atom elements with
the same serial number (signature). Consequently, the only option left is to use min-
cost max-flow bipartite matching. Note that this procedure requires O(|T1| × |T2|×
max{deg(T1),deg(T2)}×log2(max{deg(T1), deg(T2)})) complexity[11].

2.3 Complexity Analysis

Let |T1| and |T2| be the numbers of nodes in the two XML trees T1 and T2 respectively.
Let n1 and n2 be the numbers of nodes requiring a min-cost max-flow matching al-
gorithm. In the equality checking phase, the equality of two documents is determined
by checking their identifier values. The time complexity to locate identifiers from two
documents is O(L1 + L2), where L1 and L2 are the numbers of nodes ahead of the
identifiers. In the parsing and hashing phase, the time complexity to parse two docu-
ments and construct trees is O(|T1|+ |T2|). Hashing is performed during parsing. Since
we need to sort child node XHash values before computing parent node XHash val-
ues, the upper bound of the complexity is O(|T1| × log |T1| + |T2| × log |T2|)[11].
In the matching phase different matching algorithm is applied to each subtree rooted
at first-level node according to its node type. For Type 4 matching the time com-
plexity is O(n1 × n2× max{deg(n1),deg(n2)}×log2(max{deg(n1), deg(n2)})). The
time complexity for Type 1 to 3 matching techniques is O(|T1| + |T2|). So the over-
all time complexity of the matching phase is O(|T1| − n1 + |T2| − n2 + n1 × n2×
max{deg(n1),deg(n2)}×log2(max{deg(n1), deg(n2)})). It shows that the performance
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Fig. 6. Performance study using genomic and proteomic data

primarily depends on the number of nodes in the files and the percentage of nodes that
require Type 4 matching. When the changes between the two versions are not reflected
in |T2| or n2, the percentage of changes does not affect the performance as well, which
is consistent with the experiments conducted in X-Diff[11]. Finally, for the minimum
cost edit script generation phase, the minimum cost edit script is generated by traversing
all nodes in the two trees. Hence, the complexity is O(|T1| + |T2|).

Let us compare the time complexity of the matching process for nonsequence data in
BIODIFF with X-Diff. As X-Diff requires aboutO(|T1|×|T2|×max{deg(T1),deg(T2)}×
log2(max{deg(T1), deg(T2)})) to match, the improvement of nonsequence element
matching inBIODIFF over X-Diff can be estimated asO(|T1| × |T2|× max{deg(T1),
deg(T2)}×log2(max{deg(T1),deg(T2)})/(|T1|+|T2|−n1−n2+n1×n2×max{deg(n1),
deg(n2)}×log2(max{deg(n1), deg(n2)}))). Assuming n1 = n2 = n, |T1| = |T2| = t,
and max{deg(T1),deg(T2)}×log2(max{deg(T1), deg(T2)}=x, the complexity compar-
isonbecomes O(xt2/(t − n + xn2)). For certain value of t, this percentage of speed up
depends on the value of n. If n = 0 or n = 1, then the speed up is around O(xt), which is
the best-case performance. Ifn = t, then the speed up is equal to 1, which is the worst-case
performance. If n > 1 and n < t, then the speed up is between 1 and O(xt). In conclusion,
the change detection performance of BIODIFF algorithm on annotations is always faster
than X-Diff. However, the speed up depends on the percentage of elements utilizing the
linear time matching methods.

3 Performance Study

BIODIFF is implemented in Java using J2SDK 1.4.0. Particularly, we investigate the im-
pact of file size on response time of BIODIFF and X-Diff. We ran the experiments on a
Pentium III 900MHz PC with 256 MB memory under MS Windows 2000 Professional.
X-Diff is downloaded from http://www.cs.wisc.edu/�yuanwan/xdiff.html.

The testing is done for GenBank, EMBL, Swiss-Prot, and PDB data separately. The
size of the documents excluding the primary object (sequence data) ranges from 5 KB to
1 MB. As sequences occupy major chunk of space in the documents, we believe that 1
MB is large enough to represent annotations associated with primary biological objects.
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Note that the execution time of X-Diff and BIODIFF algorithms only consists of the
change detection time between the two XML trees. The preprocessing time, including
the type generation and parsing of XML documents is not included in the performance
evaluation. Note that preprocessing time depends only on the document and schema size
and is not influenced by the algorithm efficiency. According to the complexity analy-
sis, the proportion of nodes requiring Type 4 matching also affects the performance of
matching phase. Hence, we choose data files with different proportion of tree structures
that need Type 4 matching technique for each file size. The performance recorded is
averaged from the testing results for each file size. For example, when testing BIODIFF

on EMBL, Genbank, and SwissProt data, we took 10 files for each sample file size, with
references elements occupying 1-10% of the entire file size. For PDB, we assumed 30-
80% elements involved in Type 4 matching. Note that percentage of elements involved
in Type 4 matching is chosen based on real life examples.

Figure 6 shows the results. We do not show the results on Genbank separately as its
performance is similar to EMBL. It can be seen that BIODIFF outperforms X-Diff for
all the four databases. As seen from the figures, X-Diff exhibits similar performance for
different databases as it is a generic algorithm for all types of XML documents. Hence,
its performance mainly depends on the number of nodes. BIODIFF, on the other hand,
has different performance for each database since each database has different tree struc-
tures. If a database has more nodes that require min-cost max-flow matching algorithm,
the improvement of BioDiff compared to X-Diff is less. For example, for Genbank,
EMBL, and SwissProt, only the references element requires bipartite matching. Con-
sequently, BIODIFF outperforms X-Diff 2 to 3 times for documents of size less than
100 KB. This increases to 6 times as the size of the documents increase to 1 MB. For
PDB, reference, coordinate section, and secondary structure elements require bipartite
matching. As number of nodes that requires min-cost max-flow matching algorithm
for change detection is larger in PDB compared to Genbank, EMBL, and SwissProt,
the execution time of BIODIFF on PDB is larger than the time taken for Genbank,
EMBL, and SwissProt. Even then BIODIFF is almost 1.5 times faster than X-Diff for
PDB dataset.

4 Conclusions

In this paper, we present an algorithm called BIODIFF for detecting exact changes to
biological annotations. In our approach we transform heterogeneous biological data to
XML format using Bio2X and then detect changes between two versions of XML rep-
resentation of biological annotations. Our algorithm extends X-Diff [11], a published
change detection algorithm for unordered XML. The min-cost max-flow algorithm for
computing the bipartite mapping between two XML trees is the most time consuming
part in X-Diff. BIODIFF addresses this limitation by exploiting the semantic relation-
ship between various nodes in a subtree, attribute usage, presence or absence of optional
elements, etc. Our experimental results show that BIODIFF runs 1.5 to 6 times faster
than X-Diff.
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