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Abstract. In this paper, we present a novel ordered XPATH evaluation in tree-
unaware RDBMS. The novelties of our approach lies in the followings. (a) We
propose a novel XML storage scheme which comprises only leaf nodes, their cor-
responding data values, order encodings and their root-to-leaf paths. (b) We pro-
pose an algorithm for mapping ordered XPATH queries into SQL queries over
the storage scheme. (c) We propose an optimization technique that enforces all
mapped SQL queries to be evaluated in a “left-to-right” join order. By employ-
ing these techniques, we show, through a comprehensive experiment, that our
approach not only scales well but also performs better than some representative
tree-unaware approaches on more than 65% of our benchmark queries with the
highest observed gain factor being 1939. In addition, our approach reduces sig-
nificantly the performance gap between tree-aware and tree-unaware approaches
and even outperforms a state-of-the-art tree-aware approach for certain bench-
mark queries.

1 Introduction

Current approaches for evaluating XPATH expressions in relational databases can be
arguably categorized into two representative types. They either resort to encoding XML

data as tables and translating XML queries into relational queries [1,2,3,4,6,8,11] or
store XML data as a rich data type and process XML queries by enhancing the relational
infrastructure [5]. The former approach can further be classified into two representative
types. Firstly, a host of work on processing XPATH queries on tree-unaware relational
databases has been reported [3,6,8] – these approaches do not modify the database
kernels. Secondly, there have been several efforts on enabling relational databases to
be tree-aware by invading the database kernel to implement XML support [1,2,4,11]. It
has been shown that the latter approaches appear scalable and, in particular, perform
orders of magnitude faster than some tree-unaware approaches [1,4].

In this paper, we focus on supporting ordered XPATH evaluation in a tree-unaware
relational environment. There is a considerable benefit in such an approach with respect
to portability and ease of implementation on top of an off-the-shelf RDBMS. Although
a diverse set of strategies for evaluating XML queries in tree-unaware relational envi-
ronment have been recently proposed, few have undertaken a comprehensive study on
evaluating ordered XPATH queries. Tatarinov et al. [9] is the first to show that it is in-
deed possible to support ordered XPATH queries in relational databases. However, this
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approach does not scale well with large XML documents. In fact, as we shall show in
Section 7, the GLOBAL-ORDER approach in [9] failed to return results for 20% of our
benchmark queries on 1GB dataset in 60 minutes. Furthermore, this approach resorts to
manual tuning of the relational optimizer when it failed to produce good query plans.
Although such a manual tuning approach works, it is a cumbersome solution.

In this paper, we address the above limitations by proposing a novel scheme for or-
dered XPATH query processing. Our storage strategy is built on top of SUCXENT++ [6],
by extending it to support efficient processing of ordered axes and predicates. SUCX-
ENT++ is designed primarily for query-mostly workloads. We exploit SUCXENT++’s
strategy to store leaf nodes, their corresponding data values, auxiliary encodings and
root-to-leaf paths. In contrast, some approaches, e.g., [4,11], explicitly store information
for all nodes of an XML document. Specifically, the followings remark the novelties of
our storage scheme. (1) For each level of an XML document, we store an attribute called
RValue which is an enhancement of the original RValue, proposed in [6], for process-
ing recursive XPATH queries. (2) For each leaf node we store three additional attributes
namely BranchOrder, DeweyOrderSum and SiblingSum. These attributes are the founda-
tion for our ordered XPATH processing. The key features of these attributes are that they
enable us (a) to compare the order between non-leaf nodes by comparing the order be-
tween their first descendant leaf nodes only; and (b) to determine the nearest common
ancestor of two leaf nodes efficiently. As a result, it is not necessary to store the order
information of non-leaf nodes. Furthermore, given any pair of nodes, these attributes
enable us to evaluate position-based predicates efficiently.

As highlighted in [9], relational optimizers may sometimes produce poor query plans
for processing XPATH queries. In this paper, we undertake a novel strategy to address
this issue. As opposed to manual tuning efforts, we propose an automatic approach to
enforce the optimizer to replace previously generated poor plans with probably bet-
ter query plans, as verified by our experiments. Unlike tree-aware schemes, our tech-
nique is non-invasive in nature. That is, it can easily be incorporated without modifying
the internals of relational optimizers. Specifically, we enforce a relational optimizer
to follow a “left-to-right” join order and enforce the relational engine to evaluate the
mapped SQL queries according to the XPATH steps specified in the query. The good
news is that this technique can select better plans for the majority of our benchmark
queries across all benchmark datasets. As we shall see in Section 7, the performance
of previously-inefficient queries in SUCXENT++ is significantly improved. The high-
est observed gain factor is 59. Furthermore, queries that failed to finish in 60 minutes
were able to do so now, in the presence of such a join-order enforcement. This is indeed
stimulating as it shows that some sophisticated internals of relational optimizers not
only are irrelevant to XPATH processing but also often confuse XPATH query optimiza-
tion in relational databases. Overall a “join-order conscious” SUCXENT++ significantly
outperforms both GLOBAL-ORDER and SHARED-INLINING[8] in at least 65% of the
benchmark queries with the highest observed gain factors being 1939 and 880, respec-
tively. To the best of our knowledge, this is the first effort on exploiting a non-invasive
automatic technique to improve query performance in the context of XPATH evaluation
in relational environment.
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Recently, [1] showed that MONETDB is among the most efficient and scalable tree-
aware relational-based XQuery processor and outperforms the current generation of
XQuery systems significantly. Consequently, we investigated how our proposed tech-
nique compared to MONETDB. Our study revealed some interesting results. First, al-
though MONETDB is 11-164 and 3-74 times faster than GLOBAL-ORDER and SHARED-
INLINING, respectively, for the majority of the benchmark queries, this performance
gap is significantly reduced when MONETDB is compared to SUCXENT++. Our re-
sults show that not only MONETDB is now 1.3-16 times faster than SUCXENT++ with
join-order enforcement but surprisingly our approach is faster than MONETDB for 33%
of benchmark queries! Additionally, MONETDB (Win32 builds) failed to shred 1GB
dataset as it is vulnerable to the virtual memory fragmentation in Windows environ-
ment. This is in contrary to the results in [1] where MONETDB was built on top of Linux
2.6.11 operating system (8GB RAM), using a 64-bit address space, and was able to
efficiently shred 11GB dataset.

2 Related Work

Most of the previous tree-unaware approaches, except [9], focused on proposing efficient
evaluation forchildren anddescendant-or-self axes and positional predicates
in XPATH queries. In this paper, the main focus is on the evaluation for following,
preceding, following-sibling, and preceding-sibling axes as well as
position-based and range predicates. All previous approaches, reported query perfor-
mance on small/medium XML documents – smaller than 500 MB. We investigate query
performance on large synthetic and real datasets. This gives insights on the scalability of
the state-of-the-art tree-unaware approaches for ordered XML processing.

Compared to the tree-aware schemes [1,2,4,11], our technique is tree-unaware in
the sense that it can be built on top of any commercial RDBMS without modifying the
database kernel. The approaches in [2,11] do not provide a systematic and compre-
hensive effort for processing ordered XPATH queries. Although the scheme presented
in [1,2,4] can support ordered axes, no comprehensive performance study has demon-
strated with a variety of ordered XPATH queries. Furthermore, these approaches did not
exploit the “left-to-right” join order technique to improve query plan selection.

In [9], Tatarinov et al. proposed the first solution for supporting ordered XML query
processing in a relational database. A modified EDGE table [3] was the underlying stor-
age scheme. They described three order encoding methods: global, local, and dewey en-
codings. The best query performance was achieved with the global encoding for query-
mostly workloads and with dewey encoding for a mix of queries and updates. Our focus
differs from the above approach in the following ways. First, we focus on query-mostly
workloads. Second, we consider a novel order-conscious storage scheme that is more
space- and query-efficient and scalable when compared to the global encoding.

3 Background on SUCXENT++

Our approach for ordered XPATH processing relies on the SUCXENT++ approach [6].
We begin our discussion by briefly reviewing the storage scheme of SUCXENT++.
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(a) Original Schema of SUCXENT++

Document (DocId, Name)

Path (PathId, PathExp)

PathValue(DocId, PathId, LeafOrder, 

  BranchOrder, BranchOrderSum, 

  LeafValue)

DocumentRValue (DocId, Level, RValue)

(b) Modified Schema of SUCXENT++

Document (DocId, Name)

Path (PathId, PathExp)

PathValue(DocId, DeweyOrderSum,

   PathId, BranchOrder, LeafOrder, 

   SiblingSum, LeafValue)

Attribute (DocId, LeafOrder, PathId, 

   LeafValue)

DocumentRValue (DocId, Level, RValue)

Catalog

Book

Title Chapter

Para Para

Chapter

Book

Chapter

Para

Chapter

Book

1

1

1 2 3

1 2

2

1 2

1

3*

D1 = 0

D2 = 3 D3 = 4

D4 = 6

D5 = 19

D6 = 22

D7 = 38

* - number representing local order of the node
Di = DeweyOrderSum

(c) XML Data

descendant-or-selfpreceding following

A The context node A The leaf node that represents the context node

@id @id @id

Level     M   RVal Mod
RVal

  1         6     10     19

  2         3       2       3

  3         1       1       1

  4         0       0       0

Fig. 1. Example of XML data and SUCXENT++ schema

Foremost, in the rest of the paper, we always assume document order in our discussions.
The SUCXENT++ schema is shown in Figure 1(a). Document stores the document iden-
tifier DocId and the name Name of a given input XML document T . We associate each
distinct (root-to-leaf) path appearing in T , namely PathExp, with an identifier PathId and
store this information in Path table. For each leaf node n in T , we shall create a tuple
in the PathValue table. We now elaborate the meaning of the attributes of this relation.

Given two leaf nodes n1 and n2, n1.LeafOrder < n2.LeafOrder iff n1 precedes n2.
LeafOrder of the first leaf node in T is 1 and n2.LeafOrder = n1.LeafOrder+1 iff n1 is a
leaf node immediately preceding n2. Given two leaf nodes n1 and n2 where
n1.LeafOrder+1 = n2.LeafOrder, n2.BranchOrder is the level of the nearest common an-
cestor of n1 and n2. That is, n1 and n2 intersect at the BranchOrder level. The data value
of n is stored in n.LeafValue.

To discuss BranchOrderSum and RValue, we introduce some auxiliary definitions.
Consider a sequence of leaf nodes C: 〈n1, n2, n3, . . . , nr〉 in T . Then, C is a k-con-
secutive leaf nodes of T iff (a) ni.BranchOrder ≥ k for all i ∈ [1,r]; (b) If n1.LeafOrder

> 1, then n0.BranchOrder < k where n0.LeafOrder+1 = n1.LeafOrder; and (c) If nr

is not the last leaf node in T , then nr+1.BranchOrder < k where nr.LeafOrder+1 =
nr+1.LeafOrder. A sequence C is called a maximal k-consecutive leaf nodes of T , de-
noted as Mk, if there does not exist a k-consecutive leaf nodes C′ and |C|<|C′|.

Let Lmax be the largest level of T . Then, RValue of level �, denoted as R�, is 1 if
� = Lmax. Otherwise, R� = R�+1 × |M�+1| + 1. Now we are ready to define the
BranchOrderSum attribute. Let N to be the set of leaf nodes preceding a leaf node n.
n.BranchOrderSum is 0 if n.LeafOrder = 1 and

∑
m∈N Rm.BranchOrder otherwise.

Based on the definitions above, Prakash et al. [6] defined Property 1 (below) which
is essential to determine ancestor-descendant relationships efficiently.

Property 1. Given two leaf nodesn1 and n2, |n1.BranchOrderSum - n2.BranchOrderSum|
< R� implies the nearest common ancestor of n1 and n2 is at a level greater than �. �

4 Extensions of SUCXENT++

To support ordered XML queries, the order information of nodes must be captured in the
XML storage scheme. Unfortunately the LeafOrder and BranchOrderSum attributes only
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encode the global order of all leaf nodes. Since (order) information of non-leaf nodes
is not explicitly stored, it must be derived from the attributes of leaf nodes. We now
present how the original SUCXENT++ schema is extended to process ordered XPath
queries efficiently. The modified schema is shown in Figure 1(b).

4.1 Attribute Table

The PathValue table originally stored information related to both element and attribute
nodes. However, to avoid mixing the order of element and attribute nodes, we separate
the attribute nodes into Attribute table. The Attribute table consists of the following
columns: DocId, LeafOrder, PathId, LeafValue. As we shall see later, a non-leaf node
can be represented by the first descendant leaf nodes. Therefore, an attribute node is
identified by DocId and LeafOrder of its parent node and its PathId.

4.2 Modified RValue Attribute

Conceptually, RValue is used to encode the level of the nearest common ancestor of
any pairs of leaf nodes. To ensure a property like Property 1 holds after modifications,
intuitively, we “magnify” the gap between RValues, as shown in Definition 1. Relative
order information is then captured in these gaps.

Definition 1 [ModifiedRValue]. Let Lmax be the largest level of an XML tree T . Mod-
ifiedRValue of level �, denoted as R′

�, is defined as follows: (i) If � = Lmax − 1 then
R′

� = 1 and |M�| = 1; (ii) If 0 < � < Lmax − 1 then R′
� = 2R′

�+1 × |M�+1| + 1. �

To ensure the evaluation of queries other than ordered XPATH queries is not affected

by the above modifications, the RValue attribute in DocumentRValue stores R′
�−1
2 + 1

instead of R′
�.

4.3 DeweyOrderSum and SiblingSum Attributes

Next, we define the first attribute related to ordered XPATH processing. Consider the
path query /catalog/book[1]/chapter[1] and Figure 1(c). Since only leaf
nodes are stored in the PathValue table, the new attribute DeweyOrderSum of leaf nodes
captures order information of the non-leaf nodes. At first glance, a simple representa-
tion of the order information could be a Dewey path. For instance, the Dewey path
of the first chapter node of the first book node is “1.1.2”. However, using such
Dewey paths has two major drawbacks. Firstly, string matching of Dewey paths can
be computationally expensive. Secondly, simple lexicographical comparisons of two
Dewey paths may not always be accurate [9]. Hence, we define DeweyOrderSum for this
purpose:

Definition 2 [DeweyOrderSum]. Consider an XML document T and a leaf node n
at level � in T . Ord(n, k) = i iff a is either an ancestor of n or n itself; k is the level
of a; and a is the i-th child of its parent. DeweyOrderSum of n, n.DeweyOrderSum, is
defined as

∑�
j=2 Φ(j) where Φ(j)=[Ord(n, j)-1]×R′

j−1. �
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For example, consider the rightmost chapter node in Figure 1(c) which has a Dewey
path “1.2.2”. DeweyOrderSum of this node is: n.DeweyOrderSum = (Ord(n, 2) −
1) × R′

1 + (Ord(n, 3) − 1) × R′
2 = 1 × 19 + 1 × 3 = 22. Note that DeweyOrderSum

is not sufficient to compute position-based predicates with QName name tests, e.g.,
chapter[2]. Hence, the SiblingSum attribute is introduced to the PathValue table.

Definition 3 [SiblingSum]. Consider an XML document T and a leaf node n at level
� in T . Sibling(n, k) = i iff a is either an ancestor of n or n itself; k is the level of a; and
the i-th τ -child of its parent (τ is the tag name of a). SiblingSum of n, n.SiblingSum, is
∑�

j=2 Ψ(j) where Ψ(j) = [Sibling(n, j)-1]×Rj−1. �

SiblingSum encodes the local order of nodes which are with the same tag name of n,
namely same-tag-sibling order. For example, consider the children of the first book
element in Figure 1(c). The local orders of title and the first and second chapter
nodes are 1, 2 and 3, respectively. On the other hand, the same-tag-sibling order of these
nodes are 1, 1 and 2, respectively.

4.4 Preservation of SUCXENT++’s Features

The above modifications do not adversely affect the document reconstruction process
and efficient evaluation of non-ordered XPATH queries, as discussed in [6]. Recall that
given a pair of leaf nodes, Property 1 was used in [6] to efficiently determine the nearest
common ancestor of the nodes. Since we have modified the definition of RValue and
replaced the BranchOrderSum attribute with the DeweyOrderSum attribute, this property
is not applicable to the extended SUCXENT++ scheme. It is necessary to ensure that a
corresponding property holds in the extended system.

Theorem 1. Let n1 and n2 be two leaf nodes in an XML document. If
R′

�+1−1

2 + 1 < |n1.DeweyOrderSum - n2.DeweyOrderSum| <
R′

�−1
2 + 1 then the level

of the nearest common ancestor of n1 and n2 is � + 1. �

Due to space constraints, the proofs and examples of the theorems and propositions
discussed in this paper are given in [7].

5 Ordered XPath Processing

Our strategy for comparing the order of non-leaf nodes is based on the following ob-
servation. If node n0 precedes (resp. follows) another node n1, then descendants of n0

must also precede (resp. follow) the descendants of n1. Therefore, instead of comparing
the order between non-leaf nodes, we compare the order between their descendant leaf
nodes. For this reason, we define the representative leaf node of a non-leaf node n to
be its first descendant leaf node. Note that the BranchOrder attribute records the level
of the nearest common ancestor of two consecutive leaf nodes. Let C be the sequence
of descendant leaf nodes of n and n1 be the first node in C. We know that the nearest
common ancestor of any two consecutive nodes in C is also a descendant of node n.
This implies (1) except n1, BranchOrder of a node in C is at least the level of node n
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Di

DeweyOrderSum

Di+R’L-1
Di - ((R’L-2 - 1) / 2 + 1) Di + ((R’L-2 - 1) / 2 + 1)

preceding-sibling following-sibling

followingpreceding

descendant-or-selfDi : DeweyOrderSum of the context node

L : level of the context node

Fig. 2. Relationship between DeweyOrderSum and RValue

and (2) the nearest common ancestor of n1 and its immediately preceding leaf node is
not a descendant of node n. Therefore, BranchOrder of n1 is always smaller than the
level of n. We summarize this property in Property 2.

Property 2. Let n be a non-leaf node at level � and C = 〈n1, n2, n3, . . . , nr〉 be the
sequence of descendant leaf nodes of n in document order. Then, n1.BranchOrder < �
and ni.BranchOrder ≥ �, where i ∈ (1,r]. �

Definition 4 [DeweyOrderSum of non-leaf nodes]. Let S = 〈i1, i2, i3, . . . , ir1〉 be a
sequence of non-leaf sibling nodes of a non-leaf node i0 in document order. Let C =
〈n1, n2, . . . , nr2〉 be the sequence of leaf nodes of S and nj2 is denoted as the first
descendant leaf node of ij1 . Then, ij1 .DeweyOrderSum = nj2 .DeweyOrderSum. �

In the above definition, DeweyOrderSum of a leaf node is conceptually propagated to its
ancestor nodes. Consequently, the following proposition holds.

Proposition 1. Let C = 〈n1, n2, n3, . . . , nr〉 be a sequence of sibling nodes. Consider
ni where 1 < i ≤ r and the level of ni is �, where � > 1. Let m be ni or a descendant
of ni. Then, n1.DeweyOrderSum+ [Ord(ni) - Ord(n1)] ×R′

�−1 ≤ m.DeweyOrderSum <
n1.DeweyOrderSum+ [(Ord(ni) - Ord(n1))+1] ×R′

�−1 where Ord(ni) and Ord(n1) are
the local order of ni and n1, respectively. �

By using the above proposition, we can compare the order of two non-leaf nodes with-
out evaluating every sibling nodes in the sequence. Similar propositions for SiblingSum

can be established in a straightforward manner.

5.1 Support for Ordered XPath Queries

We now present how various types of ordered XPATH queries are supported by the mod-
ified SUCXENT++. Due to space constraints, we only focus on how DeweyOrderSum

and ModifiedRValue are used for query processing. Similar technique can be applied to
evaluations with SiblingSum.

Position predicates. Position-based predicates, i.e., predicates of the form position()=i,
select the node at the i-th position of the sequence of inner focus context nodes. We
propose to compute the i-th node without evaluating every node in the sequence by ap-
plying Proposition 1. For example, suppose n1 be the first book node of the sequence
of book nodes (the context nodes) in Figure 1(c). Observe that n1.DeweyOrderSum

= 0 as its representative leaf node is the first leaf node of the XML tree. We now em-
ploy the inequality in Proposition 1 to select a sibling node, e.g., the second book
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node n2. Here, Ord(n2) = 2, � = 2, R′
1 = 19, and n1.DeweyOrderSum = 0. Then,

0 + 1 × 19 ≤ n2.DeweyOrderSum < 0 + 2 × 19 ⇒ 19 ≤ ni.DeweyOrderSum < 38.
The nodes in this range are the descendant leaf nodes of n2. Such simple arithmetic
calculations can be efficiently implemented in a relational database.

The range operator, e.g., [position()=2 TO 10], can be easily handled in a
similar fashion. fn : last() can be computed by first determining all sibling nodes that
satisfy the specific path and then finding the node with the largest DeweyOrderSum.

Following and preceding axes. following axis selects all nodes which follow the
context node excluding the descendants of the context node. preceding axis, on
the other hand, selects all nodes which precede the context node excluding the an-
cestors of the context node. Similar to position predicates, we summarize a property
of DeweyOrderSum to facilitate efficient processing of these axes. Proofs and additional
examples are given in [7].

Proposition 2. Let na and nb be two nodes in the XML tree T and nb is a context node
at level �b where �b > 1. Then, the following statements hold:

1. na.DeweyOrderSum ≥ nb.DeweyOrderSum+R′
�b−1

if and only if na follows nb and
is not a descendant of nb;

2. Similarly, na.DeweyOrderSum < nb.DeweyOrderSum if and only if na precedes nb

and na is neither a descendant nor an ancestor of nb.
�

Following-sibling and preceding-sibling axes. following-sibling axis selects
the children of the context node’s parent that occur after the context node in doc-
ument order whereas preceding-sibling axis selects the children of the con-
text node’s parent that occur before the context node in document order. Support for
following-sibling (resp. preceding-sibling) axis can be achieved with
an additional constraint on the following (resp. preceding) axis – the selected
nodes must be siblings of the context node.

Proposition 3. Let na and nb be two nodes in the XML tree T and nb is the context
node at level �b where �b > 2. Then, the following statements hold:

1. nb.DeweyOrderSum +R′
�b−1 ≤ na.DeweyOrderSum < nb.DeweyOrderSum +

(R′
�b−2 − 1)/2 + 1 and if and only if na is a sibling of nb and na follows nb.

2. nb.DeweyOrderSum−(R′
�b−2−1)/2−1<na.DeweyOrderSum < nb.DeweyOrderSum

if and only if na is a sibling of nb and na precedes nb.
�

The above proposition can be illustrated with the following example. Suppose we eval-
uate the following-sibling axis on the first title node nt in Figure 1(c).
Here nt.DeweyOrderSum = 0, � = 3, R′

1 = 19, and R′
2 = 3. Denote N to be

the nodes reachable via the following-sibling axis from nt. Using Proposi-
tion 3, 0 + 3 ≤ nk.DeweyOrderSum < 0 + (19 − 1)/2 + 1 where nk ∈ N . That is,
3 ≤ nk.DeweyOrderSum < 10. Hence, the second (DeweyOrderSum = 3) and the third
(DeweyOrderSum = 6) chapters are in this range.

We illustrate Proposition 2 and Proposition 3 with Figure 2. An example can be
found in Figure 1(c).
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processPathExpr (XPath)

01 for every step in the XPath {
02   if (step.getAxis() == CHILD and 
              step.hasPredicate() == FALSE)
03     currentPath.add(nametest, step.getAxis())
04   else {
05     from_sql.add("PathValue as Vi")
06     if(currentPath.level() > 1) {
07       where_sql.add("Vi.pathid in currentPath.getPathId()")
08       where_sql.add("Vi.branchOrder < currentPath.level()")
09     }
10     processAxis(step, currentPath)
11     processPredicate(step, currentPath)
12   }
13   if (step.isLast() and currentPath.needUpdate()) {
14     from_sql.add("PathValue as Vi")
15     where_sql.add("Vi.pathid in currentPath.getPathId()")
16   }
17 }
18 select_sql.add("Vi.leafValue, Vi.leafOrder, ... ")
19 return select_sql + from_sql + where_sql + 
          where_sql.unionWithAttribute()

processAxis (step, currentPath)

01 switch (step.getAxis()){
02   child:
03     where_sql.add("Vi.DeweyOrderSum BETWEEN 
            Vi-1.DeweyOrderSum - RValue(currentPath.level() - 1) + 1 AND
            Vi-1.DeweyOrderSum + RValue(currentPath.level() - 1) - 1 ")
04   following:
05     where_sql.add("Vi.DeweyOrderSum >= 
            Vi-1.DeweyOrderSum + 2 * RValue(currentPath.level()) - 1 ")
06   preceding:
07     where_sql.add("Vi.DeweyOrderSum < Vi-1.DeweyOrderSum ")
08   following-sibling:
09     where_sql.add("Vi.DeweyOrderSum BETWEEN 
            Vi-1.DeweyOrderSum + 2 * RValue(currentPath.level()) - 1 AND
            Vi-1.DeweyOrderSum + RValue(currentPath.level() - 1) - 1 ")
10   preceding-sibling:
11     where_sql.add("Vi.DeweyOrderSum BETWEEN 
            Vi-1.DeweyOrderSum - RValue(currentPath.level() - 1) + 1 AND
            Vi-1.DeweyOrderSum - 1 ")
12 }
13 currentPath.add(nametest, step.getAxis())

(b)The processAxis Algorithm(a)The processPathExpr Algorithm

Fig. 3. Procedure processPathExpr and Procedure processAxis

processPredicate (step, currentPath)

01 switch (step.getAxis()) {
02   CHILD:
03      n_from = step.getPredicateFrom() - 1
04      n_to   = step.getPredicateTo()
05   FOLLOWING-SIBLING:
06      n_from = step.getPredicateFrom()
07      n_to   = step.getPredicateTo() + 1
08   PRECEDING-SIBLING:
09      n_from = - step.getPredicateFrom()
10      n_to   = - step.getPredicateTo() + 1
11 }
12 switch (step.getPredicateType()){
13   position based predicate without name test:
14      where_sql.add("Vi.DeweyOrderSum BETWEEN 
           Vi-1.DeweyOrderSum + n_from * 
           (2 * RValue(currentPath.level()) - 1) AND
           Vi-1.DeweyOrderSum + n_to * 
           (2 * RValue(currentPath.level()) - 1) - 1 ")
15   position based predicate with name test:
16      where_sql.add("Vi.SiblingSum BETWEEN 
           Vi-1.SiblingSum + n_from * 
           (2 * RValue(currentPath.level()) - 1) AND
           Vi-1.SiblingSum + n_to * 
           (2 * RValue(currentPath.level()) - 1) - 1 ")
17 }

01  WITH V (leafValue, pathID, branchOrder, DeweyOrderSum, 
            DocId, LeafOrder  ) AS ( 
02  SELECT DISTINCT V2.leafValue, V2.pathID, V2.branchOrder, 
                    V2.DeweyOrderSum, V2.DocId, V2.LeafOrder 
03    FROM PathValue V1, PathValue V2
04    WHERE V1.docId = 1
05    AND V1.pathid in (5,4,3,2)
06    AND V1.SiblingSum BETWEEN 
           0 + 1 * (2 * 10 - 1) AND

0 + 2 * (2 * 10 - 1) - 1 
07    AND V1.branchOrder < 2
08    AND V2.docId = V1.docId
09    AND V2.pathid in (5,4,3,2)
10    AND V2.DeweyOrderSum >= V1.DeweyOrderSum + 2 * 10 - 1
11    AND V2.DeweyOrderSum BETWEEN 
              V1.DeweyOrderSum + 1 * (2 * 10 - 1)  AND 
              V1.DeweyOrderSum + 2 * (2 * 10 - 1) - 1 
12  ) 
13  SELECT V.*, 1 AS Attr 
14    FROM V 
15  UNION ALL 
16  SELECT A.leafValue, A.pathID, V.branchOrder, V.DeweyOrderSum, 
           A.DocId, A.LeafOrder, 0 AS Attr 
17    FROM Attribute A, V 
18    WHERE A.DocId = V.DocId AND A.LeafOrder = V.LeafOrder 
19    AND A.PathId in (1) 
20  ORDER BY DocId, DeweyOrderSum, Attr 

(b) SQL Example(a)The processPredicate Algorithm

Fig. 4. Procedure processPredicate and SQL example

5.2 Ordered XPath Query Translation Algorithm

Based on the properties defined in the previous subsection, we present an algorithm,
shown in Figures 3 and 4, for generating SQL from ordered XPATH queries. Our al-
gorithm assumes an XPATH expression is represented as a sequence of steps where
a step may be associated with predicates. A SQL statement consists of three clauses:
select sql, from sql and where sql. We assume that a clause has an add() method
which encapsulates some simple string manipulations and simple SUCXENT++ joins
for constructing valid SQL statements. In addition to preprocessing PathId as mentioned
in [6], for a single XML document, we also preprocess RValue to reduce the number of
joins. The translation consists of three main procedures.
processPathExpr (Figure 3(a)): It analyzes the steps of an input XPATH ex-

pression (Line 01) and outputs a SQL statement. If the step consists of a child axis
only (Lines 02-03), then we simply maintain a global variable currentPath which
records the simple downward path from the root to the context nodes.1 Otherwise,
when the step involves ordered predicates/other axes, we add predicates which select
a superset of the next context nodes (Lines 05-09) and then call processAxis and
processPredicate (Lines 10-11) with currentPath to obtain the next context

1 The details for maintaining currentPath is simple but lengthy. For simplicity, we omitted
such discussions.
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nodes. We add predicates in Lines 08 to determine the representative nodes of the con-
text nodes. Finally, we collect the final results (Line 19).
processAxis (Figure 3(b)): This procedure translates a step, together with

currentPath, based on the step type (Line 01). Lines 02-03, 04-07 and 08-11 encode
Theorem 1, Proposition 2 and Proposition 3, respectively.
processPredicate (Figure 4(a)): This procedure mainly translates position

predicates. Lines 01-11 determine the range of position specified by the predicate.
Given these, Lines 12-17 implement Proposition 1.

We now illustrate the details of the translation algorithms with an example related to
the translation of position-based predicates. Please refer to [7] for more examples. Con-
sider the path expression /catalog/book[2]/following-sibling::*[1].
The translated SQL is shown in Figure 4(b). /catalog/book[2] is translated into
Lines 05-07. /following-sibling::* is translated into Lines 08-10, and *[1]
is translated into Line 11. Lines 13-14 and 16-19 are used to retrieve the resulting el-
ement nodes and their attribute nodes, respectively. The last line is to sort the result
nodes in document order.

6 Join Order Enforcement

Due to the tree-unaware nature of the underlying relational storage scheme as well as the
lack of appropriate XML statistics, relational optimizers may generate inefficient query
plans. In order to address this problem, some approaches have resorted to manual tuning
of query plans [9] while others invade the database kernel to make it tree-aware [1,2].
The former approach has not been scalable as it requires significant human intervention
whereas the later approach may require non-trivial modifications of the internals of a
RDBMS. In this section, we propose a simple yet effective technique to generate better
query plans automatically without invading the database kernel.

As discussed in Section 5.2, in order to evaluate an (ordered) XPATH query in
SUCXENT++, each XPATH axis is translated into a join between the PathValue table and
intermediate results (i.e., the context nodes). For example, in Figure 4(b), PathValue V1

returns the representative nodes of the context nodes to calculate PathValue V2. Due to
the lack of tree awareness, the relational optimizer is not capable of transforming the or-
der of joins intelligently. Consequently, it may generate poor join order that typically re-
quires caching large intermediate results in the database bufferpool. This is particularly
important to NL joins, where large and deep loops are prohibitive. For example, the first
few joins of a “right-to-left” join order may easily yield a large number of context nodes.
To respond to this, we propose to enforce a “left-to-right” join order on the translated
SQL query. Also, this evaluation order “naturally corresponds” to the order of XPATH

steps specified in the XPATH expression. By employing this technique, the relational op-
timizer does not explore the large number of permutations of join order. We apply join
order if the translated SQL query involves more than one PathValue relation. In addition,
if the PathValue table appears in the SQL query only once, we let the relational opti-
mizer to decide the plan for the join between the PathValue table and the Attribute table.

The above enforcement can easily be implemented by query hints in commercial
databases. Regarding our implementation, we use OPTION(FORCE ORDER) to



Efficient Support for Ordered XPath Processing 803

ID
Res. Card.

(10MB)
Res. Card.
(100MB)

Res. Card.
(1000MB)

Q1 66 119 74

Q2 66 119 74

Q3 104,272 626,812 627,200

Q4 65,161 392,930 393,350

Q5 30 34 34

Q6 7 7 7

Q7 21 37 54

Q8 19 35 52

Q9 250 2,500 25,000

Q10 249 2,499 24,499

Query

/catalog/item[1000]

/catalog/*[1000]

/catalog/item[position()=1000 to 10000]/
*[position()=2 to 7]

/catalog/item[position()=1000 to 10000]/authors/
author

/catalog/*[1500]/publisher/following-sibling::*

/catalog/*[1500]/publisher/following-sibling::*[5]

/catalog/*[1500]/publisher/preceding-sibling::*

/catalog/*[1500]/publisher/preceding-sibling::*[2]

/catalog/*[X]/following::title

/catalog/*[Y]/preceding::title

ID
Node Total

DC10 225,234 240,234

DC100 2,242,200 2,392,200

DC1000 22,442,612 23,942,612

DBLP 8,222,945 9,888,875

Size 
(MB)

10.3

103.3

1033.3

335

Max 
Depth

8

8

8

6

ID
Res. 
Card.

D1 2

D2 190,838

D3 6

D4 5

Query

/dblp/*[100000]/author

/dblp/article/author[2]

/dblp/*[600000]/pages/preceding-sibling::*

/dblp/*[600000]/pages/following-sibling::*

(a) Features of Dataset (c) Benchmark queries for DBLP

ID
Res. Card.

(10MB)
Res. Card.
(100MB)

Res. Card.
(1000MB)

Query

(b) Benchmark queries for DC10, DC100, and DC1000

Attribute

15,000

150,000

1,500,000

1,665,930

Total Number

X = 2250, 22500, 225000 for DC10, DC100, DC1000 respectively; Y = 250, 2500, 25000 for DC10, DC100, DC1000 respectively

Fig. 5. Dataset and Benchmark Queries

implement the above technique in SUCXENT++. The strength of this approach lies in
its simplicity in implementing on any commercial RDBMS that supports query hints.

7 Performance Study

In this section, we present the results of our performance evaluation on our proposed
approach, a tree-unaware schema-oblivious approach (GLOBAL-ORDER [9]), a tree-
unaware schema-conscious approach (SHARED-INLINING [8]), and a tree-aware ap-
proach (MonetDB [1]). Prototypes for modified SUCXENT++ (denoted as SX), SUCX-
ENT++ with join order enforcement (denoted as SX-JO), GLOBAL-ORDER (denoted as
GO) and SHARED-INLINING (denoted as SI) were implemented with JDK 1.5. We used
the Windows version of MONETDB/XQuery 0.12.0 (denoted as MXQ) downloaded from
http://monetdb.cwi.nl/XQuery/Download/index.html. The experiments were conducted
on an Intel Xeon 2GHz machine running on Windows XP with 1GB of RAM. The
RDBMS used was Microsoft SQL Server 2005 Developer Edition. Note that we did not
study the performance of XML support of SQL Server 2005 as it can only evaluate the
first two ordered queries in Figure 5(b).

Data and query sets. In our experiments, XBENCH [10] dataset was used for synthetic
data. Data-centric (DC) documents were considered with data sizes ranging from 10MB
to 1GB. In addition, we used a real dataset, namely DBLP XML [12]. Figure 5 (a) shows
the characteristics of the datasets used. Two sets of queries were designed to cover
different types of ordered XPATH queries. In additional, the cardinality of the results
was varied. Figures 5 (b) and 5 (c) show the benchmark queries on XBENCH and DBLP,
respectively. XPATH queries with descendant axes were not included as they had been
studied in [6].

Test methodology. The XPATH queries were executed in the reconstruct mode where
not only the non-leaf nodes, but also all their descendants, were selected. Appropriate
indexes were constructed for all approaches (except for MONETDB) through a careful
analysis on the benchmark queries. Prior to our experiments, we ensured that statistics
on relations were collected. The bufferpool of the RDBMS was cleared before each run.
Each query was executed 6 times and the results from the first run were always discarded.
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843.17

862.33

7,163.00

4,517.33

1,359.67

1,233.67

1,594.00

1,556.33

3,244.50

5,007.17

44.17

36.17

492.33

226.50

41.83

41.50

36.33

39.00

36.00

39.00

58.33

27.67

75,236.00

2,726.00

13.00

63.67

63.67

125.67

132.67

153.17

DC10

13,177.17

7,653.67

43,517.67

30,352.50

7,176.50

7,121.67

7,161.33

7,301.83

8,809.00

8,129.83

39,152.67

39,152.67

64,976.50

44,738.67

7,563.33

1,951.00

30,292.83

6,702.00

6,264.50

1,720.33

85,223.50

86,271.17

134,293.83

286,369.00

1,026.17

889.83

908.17

868.67

DNF

DNF

DC100 DC1000

80.50

114.67

3,023.67

1,364.33

85.83

88.67

81.17

85.83

174.67

177.17

ID

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Q10

1,042.33

1,041.17

4,935.33

3,138.83

385.33

41.17

708.67

688.17

91.00

72.50

5,967.00

5,967.00

31,229.50

17,574.33

1,740.67

437.67

4,223.33

3,522.17

804.83

511.00

58.33

27.67

5,885.00

2,726.00

28.17

72.83

78.50

35.67

137.83

137.50

47.67

60.33

47,664.17

14,266.33

209.00

248.50

208.20

222.83

668.67

702.33

47.67

60.33

DNF

14,266.33

5,133.67

339.00

5,236.20

365.83

650.83

680.17

61.67

44.50

368,666.00

56,665.17

1,036.67

925.67

1,000.50

1,144.17

7,992.17

8,456.50

61.67

44.50

DNF

56,665.17

49,795.33

54,927.67

50,419.83

54,610.83

42,872.00

42,925.17

6,264.17

12,596.67

82,539.00

81,575.00

1,927.80

2,803.00

2,143.60

2,859.20

55.00

DNF

46,827.50

46,820.50

D1

D2

D3

D4

24,975.17

39,912.00

32,829.17

32,795.00

55.00

32,605.83

2,008.83

1,886.83

(a) For DC10, DC100, and DC1000 (in msec)

(b) For DBLP (in msec)

GOMXQ SXID SI SX-JO GOMXQ SXID SI SX-JO

GOMXQ SX GO SI GOMXQSI SISX-JO SX-JOSX SX-JOSX

Fig. 6. Query Performance (in msec)

7.1 Query Evaluation Times

Figures 6(a) (resp. 6(b)) presents the query evaluation times for the approaches on DC
(resp. DBLP) dataset. Queries that Did Not Finish within 60 minutes were denoted as DNF.

Enforcement of Join Order. The SX and SX-JO columns in Figure 6 describes the
effect of enforcing join order in SUCXENT++. Note that we did not enforce the join
order for queries Q1, Q2, Q4, and D1 when the PathValue table appears in the translated
SQL queries only once.

We made three main observations from our results as follows. First, in almost all
cases the query performance improved significantly when join order is enabled. For in-
stance, for DBLP the performance of queries D3 and D4 were improved by factors of
23 and 25, respectively. In fact, 18 out of 24 queries in Figure 6 benefited from join
order enforcement. Second, the benefit of this technique increases as the dataset size
increases. For instance, for the 1GB dataset the performances of Q5 to Q8 improved by
47 to 59 times. Furthermore, queries that failed to return results previously in 60 min-
utes (Q3, D2) were now able to return results across all benchmark datasets. Without
being privy to optimizer internals, we observed from the query plans of Q3 and Q5-Q8
that the query plan trees consisted of essentially two subtrees. One depicted the plan for
computing the V table (lines 03-11 in Figure 4(b)) followed by joining it to the Attribute

table (Lines 16-19). The other subtree computed the V table and then returned all the
attributes of V (Lines 13-14 in Figure 4(b)). Interestingly, when join order was enforced,
the number of joins in the former subtree was reduced and the size of intermediate re-
sults were reduced in the later subtree. Consequently, this resulted in a better query plan.
For further details on the query plans please refer to [7]. Third, the penalty of join order
for most of the benchmark queries, if any, was low on all benchmark datasets. In fact,
the largest penalty on the query performance due to join order enforcement was 22ms.

Comparison with GLOBAL-ORDER and SHARED-INLINING. Overall SX-JO out-
performed both SI and GO in at least 65% of the benchmark queries with the highest
observed gain factors being 880 and 1939, respectively. GO showed non-monotonic be-
havior for Q5-Q8 and as a result the performance of SX-JO was comparable to GO for
these queries on DC1000. However, SX-JO significantly outperformed SI for Q5-Q8
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(up to 30 times). Note that for DC1000, GO failed to return results for queries Q9 and
Q10. Finally, for the DBLP dataset, SX-JO significantly outperformed GO and SI for
D1, D3, and D4, with the highest observed gain factor 454 and 114, respectively.

Comparison with MONETDB. Our study in the context of MONETDB revealed some
interesting results. First, MXQ was 11-164 and 3-74 times faster than GO and SI,
respectively, for the majority of the benchmark queries. However, this performance gap
was significantly reduced when it was compared against SX-JO. Our results showed
that MXQ was 1.3-16 times faster than SX-JO. Surprisingly our approach was faster
than MONETDB for 33% of benchmark queries! Specifically, SX-JO was faster than
MXQ for Q2, Q5, and Q8 on DC10 and Q1 and Q2 on DC100. Also, for the real dataset
(DBLP) SX-JO was faster than MXQ for D1, D3, and D4 with the highest observed fac-
tor being 35. Unfortunately, we could not report the results of MXQ for DC1000 be-
cause it failed to shred the document. The reason of this problem is that MXQ (Win32
builds) is currently vulnerable to the virtual memory fragmentation in Windows en-
vironment. MXQ also does not evaluate predicates applied after reverse axis in re-
verse document order, but in document order. Therefore, in Q8, it evaluated the second
preceding-sibling element in document order, not in reverse document order
(not in accordance to W3C XPath recommendation [13]).

8 Conclusions and Future Work

In this paper, we presented a scalable storage scheme for ordered XPATH evaluation
in relational environment. The mapped SQL queries were forced to execute a “left-
to-right” join order. We showed that this technique could improve query performance
notably. In addition, our results showed that our proposed approach outperforms other
representative tree-unaware approaches for the majority of the benchmark queries. Al-
though tree-aware approaches were often the best in terms of query performance [1],
the “join-order conscious” SUCXENT++ reduced the performance gap between tree-
aware and tree-unaware approaches significantly and could outperform a state-of-the-
art tree-aware approach (MONETDB) for certain benchmark queries. Importantly, unlike
tree-aware approaches, our approach did not require any invasion of the database ker-
nels to improve query performance and could easily be built on top of any off-the-shelf
commercial RDBMS. As part of our future work, we are studying the “join order” phe-
nomena encountered during our investigation. We are also exploring other non-invasive
mechanisms for improving XPATH query performance on a relational backend.
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