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Abstract. Achieving data security over cooperating web services is becoming
a reality, but existing XML access control architectures do not consider this fed-
erated service computing. In this paper, we consider a federated access control
model, in which Data Provider and Policy Enforcers are separated into different
organizations; the Data Provider is responsible for evaluating criticality of re-
quested XML documents based on co-occurrence of security objects, and issuing
security clearances. The Policy Enforcers enforce access control rules reflecting
their organization-specific policies. A user’s query is sent to the Data Provider
and she needs to obtain a permission from the Policy Enforcer in her organiza-
tion to read the results of her query. The Data Provider evaluates the query and
also evaluate criticality of the query, where evaluation of sensitiveness is carried
out by using clearance rules. In this setting, we present a novel approach, called
the DIFF approach, to evaluate security clearance by the Data Provider. Our tech-
nique is build on top of relational framework and utilizes pre-evaluated clearances
by taking the differences (or deltas) between query results.

1 Introduction

Increasingly, data and services over the Web are becoming decentralized in nature. For
example, the architecture of web services is becoming more decentralized; a number
of servers stretching over different locations/organizations are orchestrating together to
provide a unified service, sometimes referred to as cloud computing [5]. In this set-
ting, access control for protecting sensitive data in XML format should also be cross-
organizational, where a user, an access requester, and the Data Provider holding sen-
sitive data, belong to different organizations. Figure 1 shows a conceptual depiction of
such a federated access control model. The Data Providers and Policy Enforcers are
separated into different organizations; each Data Provider is responsible for evaluating
criticality of requested XML documents based on co-occurrence of security objects, and
issuing security clearances. The Policy Enforcers enforce access control rules which re-
flect their own organization-specific policies. We assume that these organizations have
agreed on global security policies for information exchange.

Let us illustrate the architecture with an example depicted in Figure 2(a) containing
a part of a travel plan produced by a travel agency. We assume that the travel agency
respond to request from clients and users using XML documents. These documents may



Fig. 1. Overview of federated access control.

Tour plan 11-Aug-2007

1. Tour participants           2. Participants requiring special 
                                              attention

Name Address

Jane Tokyo

Tom Kyoto

Alice Nagoya

Name Special Service

Jane Baby sitting

Tom Diabetic meal

objects label

{Jane, Tokyo} L2

{Tom, Kyoto, Diabetic meal} L3

(a) A Published Document (b) Clearance Rules

{Alice, Nagoya} L1

Fig. 2. Example.

contain sensitive information. Suppose that an XML document containing relevant re-
sults is requested by a user in an airline company providing flights for the tour. The user
needs to obtain a permission from the Policy Enforcer in his/her organization to read the
document. The user query is sent to the Data Provider (in this case, the travel agency).
The Data Provider evaluates the query and also evaluate criticality of the query, where
evaluation of sensitiveness is carried out by using clearance rules R. A clearance rule
r ∈ R is a 2-tuple [O, L], where O is a set of objects existing in XML documents and
L is a clearance label that defines necessary security clearance the user should have. In
this paper, we limit the scope of the objects to be text nodes of an XML tree. Note that
these objects can be results of a set of XPath queries. A rule r raises a security caution
defined by L iff O ⊆ B where B = {b1, b2, . . . , bn} is a bag of objects in a query
result q. Figure 2(b) illustrates a sample of clearance rules represented as a table. If we
apply the clearance rules to the document shown in Figure 2(a), we obtain the clear-
ance labels L1, L2, and L3. For instance, the objects Alice and Nagoya appear in
the document and matches the rule (Alice, Nagoya, L1). Likewise, Jane and
Tokyo appear in the document and matches the rule (Jane, Tokyo, L2). The
co-occurrence of Tom, Kyoto, Diabetic meal raises the label L3. A partial order
between labels (such as L1 < L2 < L3) can be introduced, where ‘A < B’ means
that B is superior or more cautious than A. A query may raise a set of clearance labels,
but if a priority order between labels is defined, a label that is dominated by another
superior label can be ignored.

Finally, the Policy Enforcer receives the clearance labels C, and decides whether the
user is eligible for the clearance by mapping the labels C to its local roles, and checking
whether the user is assigned to one of these roles. Observe that by issuing clearance, the
Data Provider can export the task of access authorization to the Policy Enforcer, thus
realizing federated access control.
Motivation and overview. There has been a number of efforts to realize federated ac-
cess control [1–3, 6, 8]. However, to the best of our knowledge, none of these efforts
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Fig. 3. Example of results evaluated by the Data Provider.

(a) SUCXENT Schema

Document (DocID, DocName)

Path (PathID, PathExp)

PathValue (DocID, LeafOrder, PathID,  

     SiblingOrder, IxSibLevel, LeafValue)

AncestorInfo (DocID, NodeLevel,  MinSibOrder, 

    MaxSibOrder,  NodeName)

Rules (RuleNo, ObjID, Object, Label, 

           TotalObjects)

FoundVRules (RuleNo, ObjID, Counter)

FirstFoundVRules (RuleNo, ObjID, Counter)

Del_Obj (Value, DelCounter)

Ins_Obj (Value, InsCounter)

(b) Additional Relations

Rule
No

Obj
ID

Object Label
Total

Objects

1 1 Alice L1 2

1 2 Nagoya L1 2

... ... ... ... ...

(c) The Rules Table (Partial view)

Fig. 4. Relational schemas.

have undertaken a systematic study of the security clearance technique supported by
the Data Provider in a dynamic environment where the underlying XML documents
may evolve with time. In this paper, we propose a database-driven, diff-based strat-
egy to address this issue. Our proposed technique compliments existing research on
federated access control strategies for XML documents.

Since the access control policies are realized through integration of the clearance
rules at the Data Provider and the local rules at Policy Enforcers, at first glance, it
may seem that we could take the strategy of pre-evaluating clearance rules at the Data
Provider as much as possible and cache obtained clearance labels. The advantage of
this strategy is that clearance evaluation for repeated queries can be avoided. However,
this approach is not a feasible strategy as illustrated by the following example. Consider
the documents q1 and q2 sent by the Data Provider to a Policy Enforcer in response to
a user’s queries at times t1 and t2, respectively, where t1 < t2. We assume that the
Data Provider represents the query results in XML format and the set of clearance rules
in Figure 2(b) must be satisfied by the documents. It is quite possible for q1 and q2 to
share some data objects due to the following reasons: (a) q1 and q2 are results of the
same query that is issued at times t1 and t2. The results may not be identical as the
underlying data have evolved during this time period; (b) q1 and q2 are results of two
different queries. However, some fragments of the underlying data may satisfy both the
queries. Consequently, only the second rule in Figure 2(b) is valid for q1. However, in
q2 this rule does not hold anymore. On the contrary, now the first and third rules are
valid for q2. In other words, updates to the underlying data invalidates caching of the
clearance rules of q1.

In this paper, we take a novel approach for evaluating security clearance by exploit-
ing the overlapping nature of query results. Specifically, we investigate taking differ-
ences (deltas) of XML representations of the query results, so that valid clearance labels
can be detected and reused. We compute the clearance labels of the first result (q1) by
scanning the entire result. Subsequently, labels of subsequent results are computed ef-
ficiently by analyzing the differences between the results. We refer to this strategy as
the DIFF approach. Since we store the clearance rules and XML results in a RDBMS, the
DIFF approach detects differences in the query results and clearance rules using a series



of SQL statements. In the next section, we elaborate on this approach. Note that due to
space constraints, the naı̈ve approach of scanning the entire resultset for every request
(referred to as the SCAN approach) is discussed in [7].

2 The DIFF Approach

Consider a set of query results Q = {q1, q2, . . . , qn} in XML format. We refer to these
results as versions in the sequel. Assume that the clearance labels for q1 are cached,
but no cache entry exists for the remaining results qi where i > 1. How can the Data
Provider evaluate clearance labels for the remaining (n− 1) versions efficiently? In the
DIFF approach, we take advantage of the significant overlaps between q1 and remaining
results by reusing cached clearance labels whenever possible, and re-evaluate the clear-
ance rules that are only affected by the changes (deltas) to the results. Note that often
the size of the deltas are typically smaller than the size of qi.

2.1 Relational Schema

We first present the relational schema that we use for storing results and clearance rules
in the database for both SCAN and DIFF approaches. As the results requested by a Policy
Enforcer are represented in an XML format, we can use any existing techniques for XML
storage built on top of a RDBMS [4] to store these results. We use the SUCXENT schema
[9] depicted in Figure 4(a) for storing the request results in a RDBMS. SUCXENT is a
tree-unaware approach for storing and querying XML documents in relational databases.
Particularly, in this paper, only the LeafValue attribute of the PathValue table is
used for security clearance evaluation. The PathValue table stores the textual content
of the leaf nodes of an XML tree in the LeafValue column. Hence, we do not elaborate
on the remaining attributes and tables in Figure 4(a).

The clearance rules are stored in the Rules table (Figure 4(b)). The RuleNo at-
tribute is used as an unique identifier of a rule. The TotalObjects attribute main-
tains the total number of sensitive objects in a rule r whose co-occurrences raise se-
curity cautions. The level of security caution is stored in the Label attribute. The
ObjID and Object attributes store the identifier and value of the text objects in the
query results, respectively. For example, Figure 4(c) depicts how the first rule (Alice,
Nagoya, L1) in Figure 2(b) is stored in the Rules table. The FoundVRules and
FirstFoundVRules tables are used to keep track of the number of sensitive objects
that appeared in the requested query results. The number of occurrences of k-th sensi-
tive object of a rule r is stored in the Counter attribute. The remaining tables shall be
elaborated in Section 2.3.

2.2 Effects of the Changes

Suppose we have two query results, namely q1 and q2, and a set of clearance rules C =
{c1, c2, . . . , cn}. After evaluating q1, let R = {r1, r2, . . . , rn} be the set of clearance
rules that match with q1 where R ⊆ C. Let Oq1 and Oq2 be the bags of objects in q1

and q2, respectively.
Let us now discuss the effects of the changes to the query results on the clearance

rules. In this paper, we focus on two types of change operations to the query results:



Input:
- Q is the PathValue table
- R is the Rules table

Output:
- Z is pairs of query id 

         and violated rules

01  initialize Z, C
02  for each qi in Q do
03    if q i  is the first 
            query result then
04      C = evaluateDoc(q i , R)
05      FR = C.clone()
06    else
07      C = FR.clone()
08      D = findChanges(q 1, q i )
09      C = evaluateDelta(D, R)
10    end if
11    V = findViolatedRules(C) 
12    Z.add(i, V)
13  end for
14  return Z

01  INSERT INTO FoundVRules
02  SELECT DISTINCT RuleNo, ObjID, 0 
03  FROM Rules

01  UPDATE FoundVRules
02  SET COUNTER = C.TOTAL 
03  FROM FoundVRules F, 
04     ( SELECT  C.RULENO, C.OBJID, 
                COUNT(*) AS TOTAL 
05      FROM RULES C, PATHVALUE L 
06      WHERE L.DOC_ID = did
07        AND CHARINDEX(
                ' ' + C.OBJECT + ' ', 

' ' + L.LEAFVALUE +' ') >0 
08      GROUP BY C.RULENO, C.OBJID) C 
09  WHERE C.RULENO = F.RULENO  
10 AND C.OBJID = F.OBJID 

(b) Initialize the FoundVRules Table

(c) Evaluate First Query Result(a) The DIFF Algorithm

01  SELECT L.LEAFVALUE, 
           COUNT(*) AS COUNTER
02  FROM 
03    ( SELECT L1.LEAFVALUE
04     FROM PATHVALUE L1
05     WHERE L1.DOC_ID = did1
06     EXCEPT ALL
07     SELECT L2.LEAFVALUE
08     FROM PATHVALUE L2
09     WHERE L2.DOC_ID = did2) L
10  GROUP BY L.LEAFVALUE

(e) Find the Changes

01  TRUNCATE TABLE FirstFoundVRules
02  INSERT INTO FirstFoundVRules
03  SELECT * FROM FoundVRules

(d) Clone Tables

Fig. 5. The DIFF algorithm and SQL queries.

deletion and insertion of text objects. Note that the update of a text object can be repre-
sented as a sequence of delete and insert operations. An object odel is a deleted object
iff odel ∈ Oq1 and odel 6∈ Oq2. Similarly, an object oins is an inserted object iff
oins 6∈ Oq1 and oins ∈ Oq2.

Property 1. A deletion of an object odel will cause the removal of clearance rule r ∈ R
iff co-occurrence odel with ok ∈ Oq1 forms the clearance rule r ∈ R, and there does
not exist ok′ ∈ Oq1 such that value(ok′) = value(odel) where value(o) is the text
value of object o.

Property 2. An insertion of an object oins1 will cause an addition of clearance rule r
into R if o-occurrence of oins1 with oj ∈ Oq1 forms a clearance rule r ∈ C, or co-
occurrence of oins1 with another inserted object oins2 forms a clearance rule r ∈ C.

2.3 The DIFF Algorithm

The DIFF algorithm is depicted in Figure 5(a). The input to the algorithm are two re-
lational tables, namely the PathValue table (denoted as Q in Figure 5(a)) and the
Rules table (denoted as R in Figure 5(a)). Note that the requested results are stored in
the PathValue table. The first step is to initialize the FoundVRules table (denoted
as C in Figure 5(a)) by invoking an SQL query depicted in Figure 5(b) and a list Z.
For each query result, the algorithm will do the followings (Lines 02–13). If the current
query result is the first one (q1), then it evaluates the occurrences of sensitive objects
in q1 (Lines 03–05). The evaluation is done by executing the SQL query depicted in
Figure 5(c). The objective of this query is to update the value of Counter attribute of
the FoundVRules tables to the number of occurrences of a sensitive object in a par-
ticular rule (Lines 04-08, Figure 5(c)). Next, the algorithm clones the FoundVRules
table into the FirstFoundVRules table. The FirstFoundVRules table stores
the results generated by evaluation of q1.

If the current requested query results is not the first one (denoted as qi where
i > 1), then the algorithm will do the followings (Lines 06–10). First, it clones the
FirstFoundVRules table into the FoundVRules table (Line 07) using the SQL



01  UPDATE FoundVRules SET COUNTER =  C.TOTAL 
02  FROM  FoundVRules F,
03    ( SELECT C.RULENO, C.OBJID, 
              F.COUNTER - COUNT(*) AS TOTAL 
04     FROM DEL_OBJ D, RULES C, FirstFoundVRules F 
05     WHERE CHARINDEX(' ' + C.OBJECT + ' ', 
                       ' ' + D.VALUE  +' ') >0 
06       AND C.RULENO = F.RULENO  
07       AND C.OBJID = F.OBJID 
08     GROUP BY C.RULENO, C.OBJID, F.COUNTER) C 
09  WHERE C.RULENO = F.RULENO  AND C.OBJID = F.OBJID

(a) Analyze the Changes

01  SELECT DISTINCT C.RULENO, C.CLABEL
02  FROM RULES C, 
03    ( SELECT F.RULENO, 

COUNT(F.OBJID) AS VOBJ
04     FROM FoundVRules F
05     WHERE F.COUNTER >0
06     GROUP BY F.RULENO) F
07  WHERE F.RULENO = C.RULENO 
08    AND F.VOBJ = C.TOTALOBJECT 

(b) Find Violated Rules

Fig. 6. SQL queries used in DIFF approach.
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Fig. 7. Dataset and clearance rules characteristics.

query depicted in Figure 5(d). This step is important as we want to evaluate clearance
for qi using the clearance of q1. Next, the algorithm determines the differences between
q1 and qi by executing two SQL queries. The first SQL query is used to find the deleted
objects (Figure 5(e)). Note that did1 and did2 will be replaced by the ids of q1 and qi,
respectively. The result of this SQL query is stored in the Del Obj table (Figure 4(b)).
The second SQL query is used to detect the inserted objects. We use the same SQL query
as shown in Figure 5(e); however, did1 and did2 will be replaced by the ids of qi and q1,
respectively. The results of this SQL query is kept in the Ins Obj table (Figure 4(b)).

Having found the differences between q1 and qi, the algorithm analyzes the deleted
and inserted objects based on the Property 1 and Property 2, respectively, in order to
determine the clearance of qi. The SQL query depicted in Figure 6(a) is executed to
analyze the set of deleted objects. Line 3 is used to decrease the number of appearances
of sensitive objects if the sensitive objects are deleted. Similarly, this query is slightly
modified to analyze the inserted objects. The modifications are as following. The “-” in
Line 3 is replaced by “+”. In Line 4, we replace “DEL OBJ” with “INS OBJ”.

The last step in evaluating each requested result qi is to find the rules that raise
security cautions by querying the FoundVRules table (denoted by V ). Figure 6(b)
presents the SQL query for determining such rules. Then, we add a pair of request ids i
and V into Z. Finally, the algorithm returns Z which may be analyzed further in order
to determine which requested results are safe for publication.

3 Experimental Results
In this section, we present the experiments conducted to evaluate the performance of our
proposed approach and report some of the results obtained. A more detailed results is
available in [7]. The experiments were conducted on a computer with Pentium 4 3GHz
processor and 1GB RAM. The operating system was Windows XP Professional. All the
approaches were implemented using Java JDK 1.6. We use Microsoft SQL Server 2005
Developer Edition as our backend database system.

We use synthetic XML documents that are generated based on the DTD of SIGMOD
Record XML. We assume that these documents represent results requested by the Policy
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25.78

41.75

67.91
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206.70
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Fig. 8. Experimental results: The DIFF approach (in seconds).

Enforcers. Each data set has three different versions. Figure 7(a) depicts the characteris-
tics of our data sets. The clearance rules are generated by randomly choosing the objects
that co-occur together. The numbers of clearance rules (denoted as R) are between 50
and 5,000 rules, and the number of objects in each rule (denoted as N ) are between 2
and 10. Hence, the total number of sensitive objects in the clearance rules is between
100 and 50,000 (Figure 7(b)).

The performance of the DIFF approach for R = {500, 5000} and N = {2, 10} is
depicted in Figure 8. The “A” and “B” columns denote the execution times of finding
the changes and of analyzing the changes, respectively. Observe that as the values of
N and R increase, the performance becomes slower. The performance of analyzing the
first document version is slower compared to the subsequent versions as the whole doc-
ument is analyzed for the clearance rules. The performance of analyzing the subsequent
versions is significantly faster as much lesser number of objects are evaluated.

4 Conclusions and Future Work

In this paper, we have presented a novel and sophisticated approach for automatically
evaluating sensitiveness of publishing a batch of XML documents in a federated XML
access control environment, and giving security clearance based on the sensitiveness.
We use the differences between requested query results for clearance evaluation in our
model. Our experimental results show that the proposed diff-based approach is efficient
in determining security clearance. As part of future work, we would like to extend our
framework to support clearance of security objects that are semantically related.
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