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Abstract. Graph-structured databases have numerous recent applica-
tions including the Semantic Web, biological databases and XML, among
many others. In this paper, we study the maintenance problem of a popu-
lar structural index, namely bisimulation, of a possibly cyclic data graph.
In comparison, previous work mainly focuses on acyclic graphs. In the
context of database applications, it is natural to compute minimal bisim-
ulation with merging algorithms. First, we propose a maintenance algo-
rithm for a minimal bisimulation of a cyclic graph, in the style of merging.
Second, to prune the computation on non-bisimilar SCCs, we propose a
feature-based optimization. The features are designed to be constructed
and used more efficiently than bisimulation minimization. Third, we con-
duct an experimental study that verifies the effectiveness and efficiency
of our algorithm. Our features-based optimization pruned 50% (on av-
erage) unnecessary bisimulation computation. Our experiment verifies
that we extend the current state-of-the-art with a capability on handling
cyclic graphs in maintenance of minimal bisimulation.

1 Introduction

Graph-structured databases have a wide range of recent applications, e.g., the
Semantic Web, biological databases, XML and network topologies. To optimize
the query evaluation in graph-structured databases, indexes have been proposed
to summarize the paths of a data graph. In particular, many indexing techniques,
e.g., [3,4,11,17,19,23], have been derived from the notion of bisimulation equiv-
alence. In addition to indexing, bisimulation has been adopted for selectivity
estimation [14, 20] and schemas for semi-structured data [2].

To illustrate the applications of bisimulation in graph-structured databases,
we present a simplified sketch of a popular graph used in XML research, shown
in the left hand side of Figure 1, namely XMark. XMark is a synthetic auction
dataset: open auction contains an author, a seller and a list of bidders, whose
information is stored in persons; person in turn watches a few open auctions. To
model the bidding and watching relationships, open auctions reference persons
and vice versa. The references are encoded by IDREFs and represented by the
dotted arrows in the figure. Two nodes in a data graph are bisimilar if they
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Fig. 1. Illustration – A sketch of XMark and its bisimulation

have the same set of incoming paths. A sketch of the bisimulation graph of
XMark is shown in the right hand side of Figure 1. In the bisimulation graph,
bisimilar data nodes are placed in a partition, denoted as Ii. Consider a query
q /site//open auction//seller that selects all sellers of open auctions. We can
evaluate q on the partitions and simply retrieve the data nodes in I3. Therefore,
it is crucial to minimize the bisimulation graph for efficient index to reduce I/O.

In practice, many data graphs are cyclic (e.g., [1]) and subject to updates.
Therefore, different from other applications of bisimulation, its maintenance
problem is much more important in database applications [12,21]. Furthermore,
previous work [12, 21] on maintenance of bisimulation of graphs mainly focuses
on directed acyclic graphs. In contrast, this paper focuses on the maintenance
problem of bisimulation of possibly cyclic graphs.

In this paper, we take the first step to systematically and comprehensively
investigate incremental maintenance of minimal bisimulation of cyclic graphs.
There are two key challenges in the maintenance problem. Firstly, merging algo-
rithms for bisimulation as opposed to partition refinement are more natural for
incremental maintenance of bisimulation. However, it is known [12] that merg-
ing algorithms fail to determine the minimum bisimulation of cyclic graphs. The
main reason is that nodes of SCCs must be considered together, which is not the
case in merging algorithms.

The first contribution is a maintenance algorithm for minimal bisimulation of
cyclic graphs (Section 5), in the style of merging algorithms. Our algorithm con-
sists of a split and a merge phase. In the split phase, we split and mark the index
updated nodes (i.e., the equivalence partitions) into a correct but non-minimal
bisimulation. In the merge phase, we apply a (partial) bisimulation minimization
algorithm on the marked index nodes. Our algorithm has an explicit handling
of bisimulation between SCCs, when compared to previous work. As such, our
algorithm always produces smaller (if not the same) bisimulation graphs when
compared to previous work. In case of acyclic graphs, our algorithm and the
previous work will produce the same bisimulation.

The second contribution is on a feature-based optimization for determining
bisimulation between two SCCs (Section 6). On one hand, the computation of
bisimulation between two SCCs can be costly. On the other hand, there may not
be many bisimilar SCCs, in practice. We aim at deriving structural features from
SCCs such that two SCCs are bisimilar only if they have the same or bisimilar
features. Specifically, we explore label- or edge-based, path-based, tree-based
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and circuit-based features. With these, the merging algorithm has a more global
information of SCCs and may prune computation on non-bisimilar SCCs early.

Third, we conduct an experimental study that verifies the effectiveness and
efficiency of our algorithm. In particular, our feature-based optimization prunes
an average of 50% unnecessary bisimulation computation. The results validate
the practical feasibility of extending the current state-of-the-art with a capability
of maintaining minimal bisimulation on cyclic graphs.

2 Related Work

Previous work on maintaining bisimulation can be categorized into two: merging
and partition-refinement algorithms. There have been two previous merging algo-
rithms [12,21] for incremental maintenance of bisimulation of cyclic graphs. The
algorithm proposed in [12] contains a split and a merge phase. Upon an update
on the data graph, the bisimulation graph is split to a correct but non-minimal
bisimulation of the updated graph. Next, the bisimulation graph is minimized
in the merge phase. For acyclic graphs, [12] produces the minimum bisimulation
of the updated graph. If the graph is cyclic, [12] returns a minimal bisimulation
only. Thus, to support cyclic graphs, the minimum bisimulation is occasionally
re-computed from scratch. [21] proposes a split-merge-split algorithm with a
rank flag for SCCs, which is originally proposed in [6]. [21] also returns a minimal
bisimulation in response to an update of a cyclic graph. However, there is neither
experimental evaluation [21] nor implementation for us to perform comparisons.
A difference between our work and the previous work is that we introduce explicit
handling of SCCs and propose features to optimize bisimulation maintenance.

A recent partition-refinement algorithm [10] can be considered as a variant of
Paige and Tarjan’s algorithm [18] – a construction algorithm for the minimum
bisimulation. The algorithm proposes its own split to handle edge changes. It
has been extended to support maintenance of k-bisimulation. Their experiment
shows that [10] produces a bisimulation that is always within 5% of the minimum
bisimulation. It is shown, through a later experiment, that [12] may produce even
smaller bisimulations, which we compared via experiments in Section 7.

Bisimulation (relation) [16] has its root at symbolic model checking, state
transition systems and concurrency theories. In a nutshell, two state transition
systems are bisimilar if and only if they behave the same from an observer’s
point of view. Bisimulation minimization has been extensively studied through
experiments in [7], in the context of modeling checking. A conclusion of [7] is
that minimization may not be worthwhile for model checking as it may easily be
more costly than checking invariance properties of systems. In comparison, when
bisimulation is used as an index structure for query processing, bisimulation
minimization and therefore its maintenance are far more important.

3 Background

This section presents the background and the notations of this paper.
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Definition 3.1. A graph-structured database (or data graph) is a rooted di-
rected labeled graph G(V , E, r, ρ, Σ), where V is a set of nodes and E: V × V
is a set of edges, r ∈ V is a root node and ρ : V → Σ is a function that maps a
vertex to a label, and Σ is a finite set of labels.

For clarity, we may often denote a data graph as G(V, E) when r, ρ and Σ are
irrelevant to our discussions. Since our work focuses on cyclic graphs, we recall
some relevant definitions below.

Cyclic graphs. A strongly connected component (SCC) in a graph G(V , E) is a
subgraph G′(V ′, E′) whose nodes are a subset of nodes V ′ ⊆ V where the nodes
in V ′ can reach each other. The SCCs of a graph can be determined by classical
graph contraction algorithms, e.g., Gabow’s algorithm, in O(|V |+|E|), where
each SCC is reduced to a supernode. The resulting graph is a directed acyclic
graph DAG, which is often called the reduced graph. In subsequent discussions, we
use SCCs to refer to non-trivial SCCs (SCCs with more than one node) only. In the
definition below, we highlight two special kinds of nodes in SCCs, namely, exit
and entry nodes.

Definition 3.2. A node n of an SCC G′(V ′, E′) of a graph G(V , E) is an exit
node if there exists an edge (n, n1) where n ∈ V ′ and n1 �∈ V ′. Similarly, n is
an entry node if there exists an edge (n0, n) where n0 �∈ V ′ and n ∈ V ′.

Bisimulation. Next, we recall the relevant definitions of bisimulation.

Definition 3.3. Given two graphs G1(V1, E1, r1, ρ1) and G2(V2, E2, r2, ρ2),
an upward bisimulation ∼ is a binary relation between V1 and V2:

∀ v1 ∈ V1, v2 ∈ V2 . v1 ∼ v2 →
∀ (v′

1, v1) ∈ E1 ∃ (v′
2, v2) ∈ E2 . v′

1 ∼ v′
2 ∧ ρ1(v

′
1) = ρ2(v

′
2) ∧

∀ (v′′
2 , v2) ∈ E2 ∃ (v′′

1 , v1) ∈ E1 . v′′
1 ∼ v′′

2 ∧ ρ1(v
′′
1 ) = ρ2(v

′′
2 ).

Two graphs G1 and G2 are upward bisimilar if an upward bisimulation ∼ can
be established between G1 and G2.

Examples of bisimilar nodes can be found in Figure 1, where the bisimilar nodes
are placed in the same rounded rectangle. Definition 3.3 presents upward bisim-
ulation in the sense that two nodes can be bisimilar only if their parents are
bisimilar. The definition can be paraphrased in terms of paths, which is often
convenient to simplify our discussions1 .

Proposition 3.1: Two nodes are upward bisimilar if and only if the incoming
path set of the two nodes are the same. ��
A set of bisimilar nodes is often referred to as an equivalence partition of nodes,
or simply partitions. Hence, a bisimulation of a graph can be described as a
partition graph. In the context of indexing, the partitions are sometimes referred

1 We should remark that there have been other notions of bisimulation, such as down-
ward bisimulation and k-bisimulation, that have been applied in indexing/selectivity
estimation but have not been the focus of this paper. Our techniques can be extended
to support them with minor modifications.
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Fig. 2. (a) A cyclic data graph; (b) the minimal bisimulation graph; (c) the split
bisimulation graph; and (d) an updated minimal bisimulation graph

to as index nodes, or simply Inodes, whereas the nodes of the data graph are
referred to as data nodes, or simply nodes.

In this work, we consider the notion of bisimulation minimality defined in
Definition 3.5. First, we recall the notion of stability.

Definition 3.4. Given two partitions of nodes X and I, X is stable with respect
to I if either (i) X is contained in the children of the nodes in the partition I
or (ii) X and the children of the nodes in I are disjoint.
Definition 3.5. Given a bisimulation B of a graph G, B is minimal if for any
two partitions I, J ∈ B, either (i) the nodes in I and J have different labels, or
(ii) merging I and J results in some partition K ∈ B unstable.
Definition 3.6. A bisimulation B of a graph G is the minimum bisimulation
if B contains the minimum number of partitions, among all bisimulations of G.
According to [12], the minimum bisimulation of a graph is unique.

Bisimulation minimization. Next, we illustrate the intuitions of merging al-
gorithm for bisimulation minimization with a brief example shown in Figure 2.
Assume the nodes of the data graph shown in Figure 2(a) have the same label.
The node id is shown next to each node. We use {} to denote an Inode. A merg-
ing algorithm initially places each node in a single partition. Assume that the
algorithm merges pairs of partitions top-down, which attempts to merge Nodes
2 and 7. However, the algorithm has not yet determined Nodes 5 and 10. Hence,
the algorithm terminates and fails to return the minimum bisimulation shown
in Figure 2(b), unless it memorizes the SCCs containing Nodes 2 and 7 together.

4 Bisimulation of Cyclic Graphs

This section presents a minimization algorithm for bisimulation of cyclic graphs,
shown in Figure 3, which is a component of the maintenance algorithm. We focus
on the logic of handling SCCs during the minimization.

The algorithm can be divided into two parts. First, Lines 01-06, if n1 and
n2 are not both in some SCCs, we compute bisimulation between n1 and n2 in
the style of any merging algorithm. We assume the existence of a procedure
next nodes top order(G) of a node n which returns the next n’s child in topo-
logical order in G. Then, we recursively invoke bisimilar cyclic.
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Procedure bisimilar cyclic

Input: Nodes n1 and n2 where ρ(n1) = ρ(n2); B, the current bisimulation
Output: An updated bisimulation relation B′

01 if n1 and n2 are not both in some SCC

02 if ∀p1 ∈ n1.parent ∃p2 ∈ n2.parent s.t. p1 ∼ p2 then
03 add (n1, n2) to B
04 for all c1 in n1.next nodes top order(G1)
05 for all c2 in n2.next nodes top order(G2)
06 B = bisimilar cyclic(c1, c2, B)

07 else /* check bisimulation of the two SCCs */
08 assume n1 and n2 are in SCCs S1 and S2, respectively

if feature pruning(S1, S2) return B /* Sec. 6*/

09 clone S1 to S′
1; create an artificial node n′

1 for n1

10 for all (n, n1) ∈ S′
1.E

11 replace (n, n1) with (n, n′
1) ∈ S′

1

12 clone S2 to S′
2; create an artificial node n′

2 for n2

13 for all (n, n2) ∈ S′
2.E

14 replace (n, n2) with (n, n′
2) ∈ S′

2

15 clone B to B′; add (n1, n2) to B′ /* assume n1 ∼ n2 */

16 for all c1 in n1.next nodes top order(S′
1)

17 for all c2 in n2.next nodes top order(S′
2)

18 B′ = bisimilar cyclic(c1, c2, B′)
19 if (n′

1, n′
2) in B′ then B = B ∪ B′ /* S1 ∼ S2 */

20 return B

Fig. 3. Bisimulation minimization of cyclic graphs

Second, if both n1 and n2 are in some SCCs, Lines 07-20 check if S1 and S2,
as opposed to simply n1 and n2, can be bisimilar. We prune non-bisimilar SCCs
by using the feature-based optimization presented in Section 6, in Line 08. For
presentation clarity, we assume that n1 and n2 are in two different SCCs. Then,
we break the SCCs and check bisimulation recursively, in Lines 09-15. The main
idea is illustrated with Figure 4. Specifically, we redirect the incoming edges
of n1 in SCC (Lines 09-11) to an artificial node n′

1. Similarly, we redirect the
incoming edges of n2 to n′

2 (Lines 12-14). We clone the current bisimulation
relation determined thus far (Line 15). Assuming that n1 and n2 are bisimilar,
we check the possible bisimulation between the children of n1 and n2 by call-
ing bisimilar cyclic recursively (Lines 16-18). If we can construct a possible
bisimulation between n′

1 and n′
2 (Line 19), then S1 and S2 are bisimilar.

The main idea of bisimilar cyclic on handling SCCs is that bisimilar
cyclic explicitly breaks a cycle, whereas previous work overlooks cycles.
bisimilar cyclic may be recursively called due to nested SCCs (Line 18).
Without breaking a cycle in each call, bisimilar cyclic may not terminate
and the feature-based optimization (Line 07) may always derive features of the
“topmost” SCC.
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Analysis. For presentation clarity, bisimilar cyclic did not incorporate with
classical indexing techniques. bisimilar cyclic runs in O(|E|2) due to the for
loops at Lines 04-06 and Lines 16-18, assuming that feature pruning can be
performed more efficiently than O(|E2|).

5 Maintenance of Bisimulation

In this section, we present the overall maintenance algorithm. For simplicity,
we present an edge insertion algorithm insert in Figure 5. Edge deletions are
discussed at the end of this section. Our algorithm consists of a split phase and
a merge phase. In the following, we focus on the split phase, as the merge phase
is essentially bisimilar cyclic.

The split phase. The split phase is presented in Lines 05-20. We maintain
two variables to record two kinds of nodes that are needed to be split. More
specifically, we use S to record the nodes of SCCs needed to be split and Q to
record the nodes that are not in any SCCs but needed to be split. In the split
phase, we mark the affected Inodes, which will be examined in the merge phase.

Suppose the insertion makes the Inode of n2 unstable. To initialize S (Line
03), we set S to the Inode of n2 and n2, i.e., {(In2 , n2)}, if n2 is in an SCC.
Otherwise, S is empty. Similarly, we initialize Q to In2 if n2 is not in any SCC
and Q is empty otherwise (Line 04). Next, we split the Inodes in S and Q
recursively until they are empty (Line 05).

(1) We process the nodes in S as follows (Lines 06-12): We select a node n from
S and retrieve its Inode In. We split n from In as the SCC of n is potentially
non-bisimilar to the SCC of other nodes in In (Line 09). We mark the split Inodes
so that they will be checked in the merge phase (Line 10). In Lines 11-12, we
insert the children of the split Inode to S and Q, similar to Lines 03-04.

(2) The handling of Q is shown in Lines 13-20. We select an Inode In from Q
(Line 14). If In is not stable, we split In into a set of stable Inodes I, as in the
pervious work [12] for acyclic graphs (Lines 15-16). We mark Inodes in I in Line
18. In Lines 19-20, we update the affected nodes S and Q, similar to Lines 03-04.

The split phase essentially traverses the bisimulation graph B and SCCs in the
data graph to spilt and collect the Inodes that are affected by the update. SCCs
themselves may be affected by an update. In Line 21, we call Gabow’s algorithm
to update SCC information of a graph, which is needed in the merge phase.

The merge phase. The merge phase can be done by applying the minimization
algorithm presented in Section 4 (Figure 3). An optimization is that we apply
merging on only the Inodes that are marked in the split phase.
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Procedure insert

Input: an insertion of an edge (n1, n2) to a graph G; its minimal bisimulation B
Output: An updated graph G′ and its updated minimal bisimulation B′

01 G′ = insert (n1, n2) into G
02 if n2 is new

then create a new Inode In2 ; insert In2 into B; mark In2

else if In2 is not stable
03 S = {(In2 , n2) | n2 is in an SCC}
04 Q = {In2 | n2 is not in any SCC}
05 while Q 	= ∅ or S 	= ∅
06 if S 	= ∅ then /* split the relevant SCC */
07 pick a node (In, n) from S ; remove (In, n) from S
08 while In is not stable or a singleton
09 split In into I1 = In - {n} and I2 = {n}
10 mark I1 and I2

11 S = S ∪ {(Ins ,ns) | ns is ni’s child, ni ∈ I2 and ns in the SCC of n}
12 Q = Q ∪ {Inq | nq is a child of ni, ni ∈ I2 and nq not in any SCCs}
13 if Q 	= ∅ then /* split nodes not related to SCCs */
14 pick a node In ∈ Q; remove In from Q
15 if In is not stable or a singleton
16 split In into a stable set I /* [12] */
17 for each I in I
18 mark I
19 S = S ∪ {(Ins ,ns) | ns is ni’s child, ni ∈ I and ns in the SCC of n}
20 Q = Q ∪ { Inq | nq ∈ child of ni, ni ∈ I and nq not in any SCCs}
21 Gabow(G′) /* update the SCC information in G′ */

22 (G′, B′) = bisimilar cyclic marked(G, B) /* merging the marked Inodes */
23 return (G′, B′)

Fig. 5. Insertion for minimal bisimulation of cyclic graphs

Example 5.1. We illustrate Algorithm insert with an example. Reconsider the
cyclic data graph that is shown in Figure 2(a). Its minimal bisimulation is shown
in Figure 2(b). Assume that we insert an edge (20,17) into the data graph.
Algorithm insert initially puts {12,17} into Q (Line 04). Then, in Line 16,
Node 17 is split from {12,17}. The split Inodes are marked, with a “*” sign in
the figure. The split phase proceeds recursively and finally produces the graph
in Figure 2(c). Then, we update the SCC information of the data graph. By
bisimilar cyclic marked, we obtain the bisimulation at Figure 2(d).

While the previous work [12] produces the same split graph (Figure 2(c)), it
returns the bisimulation in Figure 2(c), due to the lack of the handling on SCCs.
Subsequently, any subgraphs that are connected to the SCC (Nodes 17-20), e.g.,
Node 21, are not merged, as the SCCs are not merged.

Analysis. The recursive procedure in Lines 05-20 traverses the graph O(|E|).
With optimization in [18], stablizing a set can be done in O(log(|V |)). Hence.
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the split phase runs in O(|E|log(|V |). Gabow’s algorithm in Line 21 runs in
O(|V | + |E|). The merge phase with optimization runs in O(|E|2). Thus, the
overall runtime of Algorithm insert is O(|E|2).
Edge deletions. While our discussions focused on insertions, our technique can
be generalized to support edge deletions with the following modifications. (i) In
Line 01, we delete the edge from the data graph. (ii) If n2 is connected after the
deletion, we check the stability of In2 in Line 02, initialize S and Q and then
invoke the split phase as before.

6 Feature-Based Optimization

The maintenance algorithm presented in Section 5 involves splitting the up-
dated bisimulation into a non-minimal bisimulation followed by bisimulation
minimization. As discussed, determining if two SCCs are bisimilar can be com-
putationally costly, O(|E|2). In practice, SCCs may often be non-bisimilar. This
motivates us to optimize the minimization of cyclic graphs by proposing features
to prune computations on non-bisimilar SCCs. The main idea is to derive features
of SCCs such that two SCCs can be bisimilar only if their features are the same or
bisimilar. Ideally, the features are discriminative enough and can be efficiently
constructed and used. Furthermore, features may be efficiently maintainable so
that they are constructed once and maintained with the bisimulation.

6.1 Properties of Bisimulation of Cyclic Graphs

Prior to the discussions on features, we list some properties of bisimulation of
cyclic graphs. These properties show that a number of classic properties of graphs
are not suitable for our feature-based optimization. Due to space constraints, we
omitted the proofs, which are established by simple proof by contradictions [5].

Property 1. Two SCCs with the same cycle height may not be bisimilar. Two
SCCs with different cycle heights can be bisimilar.

Property 2. Two SCCs with the same number of simple cycles may not be bisim-
ilar. Two bisimilar SCCs may have different number of simple cycles.

Property 3. Two SCCs with different numbers of entry nodes can be bisimilar.

The design of features exploits the following proposition on bisimulation of SCCs.
The intuition is that as long as we find a node in a SCC that is not bisimilar to
any node in another SCC, the two SCCs will not be bisimilar.

Proposition 6.2: An SCC G1(V1, E1) is not bisimilar to another SCC G2(V2,
E2) if and only if there is a node v in V1 such that it is not bisimilar to any
node in V2. ��
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6.2 Features of SCCs

Merging algorithms for bisimulation minimization are iterative in nature. The
current merging step of a SCC may not have sufficient information for determining
bisimulation between SCCs. Hence, we propose some features that give merging
algorithms some “lookahead” of SCCs to check Proposition 6.2.

1. Label-based or edge-based features. We begin with the label-based and
edge-based features, which are straightforward, and have many alterative imple-
mentations. For example, we may use all label and edge types that appeared in
an SCC as an SCC feature. Two bisimilar graphs must contain the same type of
labels and edges. In our experiments, we found that the incoming label or edge
sets of an entry node are relatively concise and effective in distinguishing non-
bisimilar SCCs. For example, in Figure 1, the incoming label set of the entry node
open auction is {open auction, watch} and that of the entry node watches
is {person, bidder}. The construction and maintenance of such labels can be
efficiently supported by hashtables.

2. Path-based features. Regarding path-based features, one may be tempted
to use all simple paths in an SCC. However, determining all simple paths of a
cyclic graph is a problem in PSPACE [15].

Proposition 6.3: Two SCCs are bisimilar only if they have the same set of
simple path(s) from their entry node(s). ��
Next, the longest paths of a cyclic graph are not appropriate for our problem
either, as they cannot be determined in PTIME.

In this work, we propose to use the set of incoming paths with a length at
most k (or simply k-paths) as a feature of the entry nodes, where k is a user
parameter. The value of k may be increased when maintenance of bisimulation
spends substantial time on bisimulation computation. From Proposition 3.1,
two bisimilar graphs must have the same set of k-paths. Contrarily, two graphs
with different sets of k-paths are non-bisimilar. Hence, k-paths can be used
as a feature. It is straightforward that k-paths can be efficiently constructed.
However, since k-paths is local, k-paths may not contain a node that is not
bisimilar to any nodes in any other SCCs. Another simple remark is that a node
in an SCC may appear in a k-path set multiple times.

3. Feature of canonical spanning tree. We further explore more complex
structural features of SCCs. First, we define the weight used in determining the
canonical spanning tree. The weight of an edge (n1, n2) is directly proportional
to the count of (ρ(n1), ρ(n2))-edges in the graph. We exploit a popular trick to
perturb the edge’s weight such that each kind of edges has a unique weight.

Given the weight defined above, we can compute a minimum spanning tree, in
the style of a greedy breath first traversal in O(|V |+|E|). As the weight is defined
to be directly proportional to the edge count, a minimum spanning contains
more infrequent edge kinds of a graph. However, minimum spanning trees of
a directed graph are often difficult to maintain. In comparison, maintenance of
spanning trees of an undirected graph is much simpler, e.g., in amortized time
O(|V |1/3log(|V |)) [9]. Hence, we perform some simple tricks on the data graph
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Fig. 6. The construction of the canonical spanning tree from a simplified open auction

when constructing the spanning tree. First, we ignore the direction of the edges.
Second, we adopt Prim’s algorithm to construct the minimum spanning tree of
the undirected graph. From the root of the minimum spanning tree, we derive
the edge direction, which gives us the canonical spanning tree. Note that the edge
direction is simply needed for checking bisimulation between canonical spanning
trees and the direction of the edges in the canonical spanning tree may differ
from that of the edges in the original graph.

Proposition 6.4: Two SCCs are bisimilar only if their minimum canonical span-
ning trees returned by Prim’s algorithm are bisimilar. ��
It should be remarked that SCCs are often nested. In the worst case, the total size
of the spanning trees of all possible entry nodes of an SCC is O((|V |+ |E|)2). In
addition, computing bisimulation between large canonical spanning trees can be
costly. Therefore, we introduce a termination condition to the Prim’s algorithm
– we do not expand the spanning tree further from a node n when there is an
ancestor of n having the same label as n. The total size of the canonical spanning
trees is then O(|V | × |E|).
Example 6.2. We illustrate the construction of a canonical spanning discussed
above with an example shown in Figure 6. Figure 6(a) shows a simplified SCC of
open auction from XMark with a scaling factor 0.1. The count of each edge type
is shown on the edge. We perturb the weight to make each weight in the SCC
unique. We ignore the direction of the edges, shown in Figure 6(b). Then, it is
straightforward to compute the spanning tree (shown in Figure 6(c), where the
number on an edge shows the order of the edge returned by Prim’s algorithm).
Finally, the direction of the edges are derived from the root of the spanning tree
open auction.

4. Circuit-based features. While the time for checking bisimulation between
minimum spanning trees is very close to that between SCCs, one may be tempted
to explore structural features further. Here, we illustrate that complicated struc-
tural features can lead to inefficient maintenance. For example, circuit bases con-
tain much more structural information than spanning trees. It has been shown
that the minimum circuit bases of directed graphs is unique [8]. However, de-
termining the circuit bases is O(|V |3). It is therefore more efficient to simply
compute the bisimulation of two SCCs than using the feature of circuit bases.

Proposition 6.5: Two SCCs are bisimilar if their circuit bases are bisimilar. ��
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6.3 Offline versus Online Feature Construction

Since the proposed features can be constructed relatively efficiently, they may
be constructed and used during bisimulation computation, i.e., runtime. Then,
during runtime, we may incorporate the features with not only the labels but
also the partial bisimulation constructed so far. Specifically, some nodes in SCCs
have been associated with Inode. The ids of Inodes together with the labels, as
opposed to the labels alone, are used in online feature construction.

In comparison, the features may be built offline and maintained with each
update of the graph. However, given a cyclic graph, we may determine features
for each entry node, in the worst case, to build all possible features offline.
However, this size requirement may sometimes be prohibitive, in practice.

7 Experimental Evaluation

This section presents an experimental study that verifies the efficiency of our
algorithms. Our implementation is written in JDK building on top of Ke et
al. [12]. It is available at http://code.google.com/p/minimal-bisimulation-cyclic-
graphs/. The experiments were run on a laptop computer with a dual CPU at 2.0
GHz and 2GB RAM running Ubuntu hardy.

Datasets. We used both synthetic and real-life graph data to test various aspects
of our algorithms. (i) XMark is a synthetic XML dataset provided by the XMark
Benchmark Projects [22]. The cycles in XMark is essentially composed by IDREFs
of open auction to person and vice versa. We ran Gabow’s algorithm on XMark.
We note that there are few very large SCCs. It is easy to verify that very few,
or none, of the SCCs are bisimilar. Hence, we randomly decompose SCCs into
smaller SCCs as follows: We define a parameter s to set the average number
of open auction nodes and another parameter r to define the ratio between
open auction and person nodes in an SCC. For example, when s and r are set
to 10 and 1.2, respectively, an SCC contains approximately 10 open auctions
and 12 persons. In our experiment, the dataset generated directly from XMark
is referred to Large and the decomposed Large is refered to Cyclic.

In the experiment on Algorithm insert, we generated a dataset Base to test
the performance difference between insert and Ke et al. The performance differ-
ence can hardly be shown because Large only contains few large SCCs and Cyclic
contains numerous random non-bisimilar SCCs. Therefore, we constructed Base
by connecting two XMark graphs with the same scaling factor (s.f.) and remov-
ing a number of edges from the graph. When the edges are inserted by Algo-
rithm insert, the bisimilar SCCs will be recovered and merged.

We tested insert over real-life data Cite. Cite is a citation graph extracted
from papers on high energy physics [13]. It covers those papers in the period
from Jan. 1993 to Apr. 2003 and contains 35k papers in total. Cite represents
each paper as a data node and a citation in paper i to paper j as an edge. We
removed self-citing edges, for simplicity. Cite is highly cyclic. Similar to Cyclic,
we removed citation edges randomly and used them for insertions.
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Fig. 7. Performance results on bisimilar cyclic with and without feature optimiza-
tion on Large and Cyclic and insert performance on Base and Cite

Performance analysis. To test the runtime of bisimilar cyclicwith feature-
based optimization, we ran 100 random Large and Cyclic for each s.f. ranging
from 0.01 to 0.1 (i.e., 17k nodes to 168k nodes). Figures 7(a) and 7(b) show that
the runtimes are roughly linear to s.f.. At the same s.f., the runtimes for Large
are longer than those for Cyclic. The reason is that Cyclic contains are more
smaller random SCCs, which are often non-bisimilar, and bisimilar cyclic
identifies them relatively earlier. In comparison, bisimilar cyclic in Large
may spend more time in checking sub-SCCs inside a large SCC.

Next, we verified the effectiveness of the features by using each feature on 100
Cyclic graphs for each s.f.. The features were computed in runtime and k in the
path-based feature is 4. We skipped the edge-based feature as its performance
is similar to the label-based feature, in Cyclic. The pruning of each feature is
plotted in Figures 7(c), 7(d) and 7(e). The y-axis is the percentage of pruned
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non-bisimilar SCCs. In all, the label-based, path-based and canonical-tree feature
pruned (on average) 14%, 62% and 73%, respectively. Figure 7(f) shows the
runtime of bisimilar cyclic with all feature optimization. On average, it is
4% faster than the one without optimization (Figure 7(b)). We remark that on
average, 7.7% of the runtime was due to online feature construction.

Lastly, we conducted an experiment on Algorithm insert over Base and Cite.
The results are shown in Figures 7(g),(h) and (i). Figure 7(g) shows the size of
the minimal bisimulation produced by insert and Ke et al. [12]. We did not
show the minimum bisimulation as insert always produces a bisimulation that
is within 2% of the minimum. Initially, both insert and [12] are very close. After
some number of insertions, the two bisimilar SCCs in the Base were recovered.
We ran this experiment multiple times and found that the drop occurs randomly
between 100th and 120th insertion. As illustrated in Figure 7(g), the difference
in the size of bisimulation returned by insert and [12] depends on the number
and the size of bisimilar SCCs in a graph. In this particular graph, insert returns
a bisimulation graph that is 100% smaller than that by [12].

The accumulative runtime of insert over Base is shown in Figure 7(h). The
accumulative runtime increases as we insert more edges into Base. After some
insertions, insert ran slower because the two SCCs in Base became similar.
bisimilar cyclic checked many nodes before it declared the SCCs were not
bisimilar. The runtime of [12] is close to 0s as it does not process SCCs, as the
minimal bisimulation remains the same.

The accumulative runtime of insert over Cite is shown in Figure 7(i). As
expected, the runtime increases as more edges are inserted. Between the 30th
and 40th insertion, the largest SCC in Cite was involved and insert ran slower.
In most of the cases, the runtime of insert is close to 0s when it did not process
the SCCs. The average runtime for one insertion is around 10s. However, there is
no bisimilar SCCs in Cite and insert and [12] returned the same bisimulation.

8 Conclusions

In this paper, we studied the optimization in maintaining the minimal bisim-
ulation of cyclic graphs. Our first contribution is a bisimulation minimization
algorithm that explicitly handles SCCs and a maintenance algorithm for minimal
bisimulation of cyclic graphs. Second, we propose a feature-based optimization
to avoid computing non-bisimilar SCCs. Third, we presented an experiment to
verify the effectiveness and efficiency of our algorithms. Our experimental results
show that the features can prune unnecessary bisimulation computation and our
maintenance algorithm can return smaller bisimulation graphs than previous
work, depending on the size and number of bisimilar SCCs in the data graph. As
for future work, we plan to refine the selection of discriminative features to fur-
ther reduce the maintenance time. We are studying on maintenance algorithms
that can produce either the minimum bisimulation or one whose size is bounded
by a theoretical guarantee.
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