
Efficient Evaluation of NOT-Twig Queries in

Tree-Unaware Relational Databases

Kheng Hong Soh2 and Sourav S. Bhowmick1,2

1 Singapore-MIT Alliance, Nanyang Technological University, Singapore
2 School of Computer Engineering, Nanyang Technological University, Singapore

assourav@ntu.edu.sg

Abstract. Despite a large body of work on xml query processing in re-
lational environment, systematic study of not-twig queries has received
little attention in the literature. Such queries contain not-predicates and
are useful for many real-world applications. In this paper, we present an
efficient strategy to evaluate not-twig queries on top of a dewey-based
tree-unaware system called Sucxent++ [11]. We extend the encoding
scheme of Sucxent++ by adding two new labels, namely AncestorValue
and AncestorDeweyGroup, that enable us to directly filter out elements
satisfying a not-predicate by comparing their ancestor group identifiers.
In this approach, a set of elements under the same common ancestor at
a specific level in the xml tree is assigned same ancestor group identifier.
Based on this encoding scheme, we propose a novel sql translation al-
gorithm for not-twig query evaluation. Real and synthetic datasets are
employed to demonstrate the superiority of our approach over industrial-
strength rdbms and native xml databases.

1 Introduction

Querying xml data over relational framework has gained popularity due to its
stability, efficiency, expressiveness, and its wide spread usage in the commercial
world. On the one hand, there has been a host of work, c.f., [3], on enabling
relational databases to be tree-aware by invading the database kernel to support
xml. On the other hand, some completely jettison the invasive approach and
resort to a tree-unaware approach, c.f., [4, 7, 11, 13, 14], where the database
kernel is not modified to support xml queries.

Generally, the tree-unaware approach reuses existing code, has a lower cost
of implementation, and is more portable since it can be implemented on top
of off-the-shelf rdbmss. This has triggered recent efforts to explore how far we
can push the idea of using mature tree-unaware rdbms technology to design and
build a relational XQuery processor [4, 5, 7]. Particularly, a wealth of existing lit-
erature has extensively studied evaluation of various navigational axes in XPath
expressions and optimization techniques in a tree-unaware environment [4, 5,
7, 11, 13, 14]. However, to the best of our knowledge, no systematic study has
been carried out in efficiently evaluating not-twig queries in this relational en-
vironment. Such queries contain not-predicates and are useful for many real-
world applications. For example, the query /catalog/book[not(review) and

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 511–527, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

512 K.H. Soh and S.S. Bhowmick

(a) Examples of NOT-twig query (b) An xml document

Fig. 1. Examples of not-twig queries and xml document

Fig. 2. Data sets and query evaluation times (in msec.)

title] retrieves all books that have a title but no reviews (Figure 1(a)(i)).
Figures 1(b)(ii) and 1(c)(iii) show graphical representations of two more not-
twig queries.

At first glance, it may seem that such lack of study may be primarily due
to the fact that we can efficiently evaluate these not-twig queries by leverag-
ing on the xml query processor of an existing industrial-strength rdbms and
relying on its query optimization capabilities. However, our initial investiga-
tion showed that fast evaluation of not-twigs still remains a bottleneck in sev-
eral industrial-strength rdbmss. To get a better understanding of this problem,
we experimented with the XBench dcsd [15] and uniprot (downloaded from
www.expasy.ch/sprot/) data sets shown in Figures 2(a) and 2(b) and queries
Q1 – Q3 in Figure 2(c). We fix the result size of Q1 to be 500. Figures 2(d)
and 2(e) report the query evaluation times in two commercial-strength rdbmss.
Note that due to legal restrictions, these systems are anonymously identified as
XSysA and XSysB in the sequel. Observe that the evaluation cost can be ex-
pensive as it can take up to 208 seconds to evaluate these queries. Also, both
these commercial systems do not support processing of xml documents having
size greater than 2gb (u2843 data set). Is it possible to design a tree-unaware
scheme that can address this performance bottleneck? In this paper, we demon-
strate that novel techniques built on top of an industrial-strength rdbms can

Efficient Evaluation of NOT-Twig Queries 513

make up for a large part of the limitation. We show that the above queries can
be evaluated in a second or less on smaller data sets and less than 13s for Q2
on u284 data sets.

We built our proposed not-twig evaluation technique on top of dewey-based
Sucxent++ system [2, 11], a tree-unaware approach designed primarily for
read-mostly workloads. As Sucxent++ is designed primarily for fast evaluation
of normal path and twig queries, it does not support efficient evaluation of not-
twig queries. Hence, in Section 3 we extend Sucxent++ encoding scheme by
adding two new labels, namely AncestorValue and AncestorDeweyGroup, to each
level and leaf elements, respectively. These labels enable us to efficiently group a
set of elements under the same common ancestor at a specific level with the same
ancestor group identifier. As we shall see later, this will allow us to efficiently
filter out elements satisfying a not-predicate by comparing their ancestor group
identifiers.

Based on the extended encoding scheme, we propose a novel sql transla-
tion algorithm for not-twig evaluation (Section 4). In our approach, we use the
AncestorDeweyGroup and AncestorValue labels to evaluate all paths in a not-twig
query. In Section 5, we demonstrate with exhaustive experiments that the pro-
posed approach is significantly faster than xml supports of XSysA and XSysB
(highest observed factor being 40 times).

Our proposed approach differs from existing efforts in evaluating not-twigs
using structural join algorithms [1, 8, 10, 16] in the following ways. Firstly,
we take relational-based approach instead of native strategy used in aforemen-
tioned approaches. Secondly, our encoding scheme is different from the above
approaches. In [16], region encoding scheme is employed to label the elements
whereas a pair of (path-id, node id) [9] is used in [10]. In contrast, we use a
dewey-based scheme where only the leaf elements and the levels of the xml tree
are explicitly encoded. Thirdly, these existing approaches typically report query
performance on documents smaller than 150mb and containing at most 2.5 mil-
lion nodes. In contrast, we explore the scalability of our approach for larger xml
documents (2.8gb size) having more than 120 million nodes.

2 Preliminaries

XML Data Model. We model xml documents as ordered trees. In our model
we ignore comments, attributes, processing instructions, and namespaces. Queries
in xml query languages make use of twig patterns to match relevant portions of
data in an xml database. A twig pattern can be represented as a tree containing
all the nodes in the query. A node mi in the pattern may be an element tag, a
text value or a wildcard ”*”. We distinguish between query and data nodes by
using the term “node” to refer to a query node and the term “element” to refer
to a data element in a document. Each node mi and its parent (or ancestor) mj

are connected by an edge, denoted as edge(mi,mj).
A twig query contains a collection of rooted path patterns. A rooted path

pattern (rp) is a path from the root to a node in the twig. Each rooted path

514 K.H. Soh and S.S. Bhowmick

represents a sequence of nodes having parent-child (pc) or ancestor-descendant
(ad) edges. We classify the rooted paths into two types: root-to-leaf and root-
to-internal paths. A root-to-leaf path is a rp from the root to a leaf node in
the query. In contrast, a rp ending at a non-leaf node is called a root-to-internal
path. If the number of children of a node in the twig query is more than one,
then we call this node a nca (nearest common ancestor) node. Otherwise, when
the node has only one child, it is a non-nca node. The level of the nca node is
called nca-level.

In this paper, we focus on twig queries with not-predicates. We refer to such
queries as not-twig queries. The twig pattern edges of a not-twig query can be
classified into one of the following two types. (a) Positive edge: This corresponds
to an edge(mi,mj) without not-predicate in the query expression. It is repre-
sented as “|” or “||” in a twig pattern for pc or ad edges, respectively. Node mj

is called the positive pc (resp. ad) child of mi. A rooted path that contains only
positive children is called a normal rooted path. (b) Negative edge: This corre-
sponds to an edge(mi,mj) with not-predicate and is represented as “|¬” or “||¬”
in the twig for pc or ad edges, respectively. In this case, node mj is called the neg-
ative pc (resp. ad) child of mi. A rooted path pattern that contains a negative
child is called a negative rooted path. For example, consider the not-twig query
in Figure 1(a)(ii). edge(book,title) and edge(book,publisher) are positive
edges whereas edge(book,review) and edge(name,website) are negative edges.
Node book has three children, in which title and publisher are positive pc
children and node review is a negative pc child. The rp catalog/book/review
is a negative rp as it contains the negative pc child review. On the other hand,
catalog/book/title is a normal rp.

NOT-Twig Pattern Matching. Given a not-twig query Q, a query node n,
and an xml tree D, an element en (with the tag n) in D satisfies the subquery
rooted at n of Q iff: (1) n is a leaf node of Q; or (2) For each child node nc of
n in Q: (a) If nc is a positive pc (resp. ad) child of n, then there is an element
enc in D such that enc is a child (resp. descendant) element of en and satisfies
the sub-query rooted at nc in D. (b) If nc is a negative pc (resp. ad) child of n,
then there does not exists any element enc in D such that enc is a child (resp.
descendant) element of en and satisfies the sub-query rooted at nc in D.

3 Encoding Scheme

In this section, we first briefly describe the encoding scheme of Sucxent++ [2,
11] and highlight its limitations in efficiently processing not-twig queries. Then,
we present how it can be extended to efficiently support queries with not-
predicates.

3.1 SUCXENT++ Schema and Its Limitations

In Sucxent++, each level � of an xml tree is associated with an attribute called
RValue (denoted as R�). Each leaf element n is associated with four attributes,

Efficient Evaluation of NOT-Twig Queries 515

Fig. 3. Storage of a shredded xml document

namely LeafOrder, BranchOrder, DeweyOrderSum, and SiblingSum. Each non-leaf el-
ement n′ is implicitly assigned the DeweyOrderSum of the first descendant leaf
element. Here we briefly define the relevant attributes necessary to understand
this paper. The reader may refer to [2, 11] for details related to their roles in
xml query processing.

The schema of Sucxent++ [2, 11] is as follows: (a) Document(DocID, Name),
(b) Path(PathId, PathExp), (c) PathValue(DocID, DeweyOrderSum, PathId, BranchOrder,

LeafOrder, SiblingSum, LeafValue), and (d) DocumentRValue(DocID, Level, RValue).
Document stores the document identifier DocID and the name Name of a given
input xml document D. Each distinct root-to-leaf path appearing in D, namely
PathExp, is associated with an identifier PathId and stored in Path table. Essen-
tially each path is a concatenation of the labels of the elements in the path from
the root to the leaf. An example of the Path table containing the root-to-leaf
paths of Figure 1(b) is shown in Figure 3. Note that ‘#’ is used as a delimiter of
steps in the paths instead of ‘/’ for reasons described in [14].

For each leaf element n in D, a tuple in the PathValue table is created to
store the LeafOrder, BranchOrder, DeweyOrderSum, and SiblingSum values of n.
The data value of n is stored in LeafValue. Given two leaf elements n1 and n2,
n1.LeafOrder < n2.LeafOrder iff n1 precedes n2 in document order. LeafOrder of
the first leaf element in D is 1 and n2.LeafOrder = n1.LeafOrder+1 iff n1 is a
leaf element immediately preceding n2. For example, the superscript of each leaf
element in Figure 1(b) denotes its LeafOrder value.

Given two leaf elements n1 and n2 where n1.LeafOrder+1 = n2.LeafOrder,
n2.BranchOrder is the level of the nearest common ancestor (nca) of n1 and n2.
For example, the BranchOrder of the location leaf element with LeafOrder value 3
in Figure 1(b) is 2 as the nca of this element and the preceding price element is
at the second level. Note that the BranchOrder of the first leaf element is 0.

Next we define RValue. We begin by introducing the notion of maximal
k-consecutive leaf-node list. Consider a list of consecutive leaf element S:
[n1, n2, n3, . . . , nr] in D. Let k ∈ [1,Lmax] where Lmax is the largest level of D.
Then, S is called a k-consecutive leaf-node list of D iff ∀0 < i ≤ r ni.BranchOrder

≥ k. S is called a maximal k-consecutive leaf-node list, denoted as Mk, if there
does not exist a k-consecutive leaf-node list S′ such that |S|<|S′|. For example,
M2 in Figure 1(b) contains four leaf elements as |S| = 4 for M2.

516 K.H. Soh and S.S. Bhowmick

The RValue of level �, denoted as R�, is defined as follows: (i) If � = Lmax − 1
then R� = 1; (ii) If 0 < � < Lmax − 1 then R� = 2R�+1 × |M�+1| + 1. For
example, consider Figure 1(b). Here Lmax = 5. The values of |M2|, |M3|, and
|M4| are 4, 1, and 1, respectively. Then, R4 = 1, R3 = 2 × 1 × |M4| + 1 = 3,
R2 = 2 × 3 × |M3| + 1 = 7, and R1 = 2 × 7 × |M2| + 1 = 57. In order to
facilitate evaluation of XPath queries, the RValue attribute in DocumentRValue

stores R�−1
2 + 1 instead of R� (denoted as R′

�). For instance, in Figure 3 the
RValue of level 1 is stored as 29 instead of 57.

DeweyOrderSum is used to encode an element’s order information together with
its ancestors’ order information using a single value. Let parent(w) denote the
parent of an element w. Consider a leaf element n at level � in D. Then, for
1 < k ≤ �, Ord(n, k) = i iff (i) there exists an element a at level k which is either
an ancestor of n or n itself; and (ii) a is the i-th child of parent(a). For example,
consider the rightmost leaf element in Figure 1(b) (denoted as d). Ord(d, 2) = 3
as the rightmost book element in the second level is an ancestor of d as well as
the third child of the root. Similarly, Ord(d, 3) = 2.

Then DeweyOrderSum of n, n.DeweyOrderSum, is defined as
∑�

j=2 Φ(j) where
Φ(j)=[Ord(n, j)-1]×Rj−1. The DeweyOrderSum of the first leaf element is 0. Re-
consider the rightmost leaf element again. It has a Dewey path “1.3.2.1.1”.
DeweyOrderSum of this element is: n.DeweyOrderSum = (Ord(n, 2) − 1) × R1 +
(Ord(n, 3) − 1) ×R2 + (Ord(n, 4) − 1) ×R3 + (Ord(n, 5) − 1) ×R4 = 2 × 57 +
1× 7+0× 3+0×1 = 121. The DeweyOrderSum of remaining elements are shown
in the DeweyOrderSum attribute of the PathValue table in Figure 3.

Limitations of SUCXENT++. DeweyOrderSum and RValue attributes are de-
signed primarily to evaluate normal twig queries. Consequently, they are unable
to directly filter out elements satisfying negative rps without having to first eval-
uate the rooted paths as normal rps and then use the intermediate results to
filter out irrelevant elements (see details in [12]). For instance, for the query in
Figure 1(a)(i), DeweyOrderSum and RValue attributes fail to reveal those title
and review elements that do not share the same common book ancestors without
exhaustively comparing them. Furthermore, they do not always support efficient
evaluation of descendant (ancestor) axis. In the subsequent sections, we shall
present a novel technique that addresses these limitations.

3.2 AncestorValue Attribute

We now elaborate on the extension of the encoding scheme of Sucxent++.
Due to space constraints, the proofs of lemmas and theorem presented in the
sequel are given in [12]. Each level � of an xml tree is added an attribute called
AncestorValue along with its existing RValue. Each leaf element n is added an
attribute called AncestorDeweyGroup. These attributes are materialized in the
DocumentRValue and PathValue tables, respectively. As we shall see later, our
proposed strategy aims to group a set of leaf elements under the same common

Efficient Evaluation of NOT-Twig Queries 517

ancestor at level � with the same ancestor group identifier. AncestorDeweyGroup

and AncestorValue attributes will be used to compute these identifiers.
AncestorValue, similar to RValue, is used for encoding the level of the nca of

any pairs of leaf elements.

Definition 1. [AncestorValue] Let Lmax be the maximum level of an xml
tree. Then the AncestorValue of level � for 0 < � < Lmax, denoted as A�, is
defined as follows: (a) If � = Lmax − 1, then A� = 1; (b) If 0 < � < Lmax − 1,
then A� = A�+1 × (|M�+1| + 1).

For example, reconsider the xml tree in Figure 1(b). Here Lmax = 5, |M4| = 1,
|M3| = 1, and |M2| = 4. Hence, A4 = 1, A3 = 1×(1+1) = 2, A2 = 2×(1+1) = 4,
and A1 = 4 × (4 + 1) = 20.

Lemma 1. Let � be a level in an xml tree where 0 < � < Lmax. Then, A� is
divisible by all A�+m where 0 < m < (Lmax − �).

Consider the previous example. Let � = 2. Then, 0 < m < 3. Hence based on
the above lemma, A2/A3 = 4/2 = 2 and A2/A4 = 4/1 = 4. Note that existing
RValue do not have such divisibility property [12].

3.3 AncestorDeweyGroup Attribute

The AncestorDeweyGroup attribute, similar to DeweyOrderSum, is used to encode
an element’s order information using a single value. The only difference be-
tween AncestorDeweyGroup and DeweyOrderSum is that the former uses each level’s
AncestorValue whereas the latter uses the RValue of each level.

Definition 2. [AncestorDeweyGroup] Consider a leaf element n at level �
in an xml document. Then, for 1 < k ≤ �, Ord(n, k) = i iff (i) there exists an
element a at level k which is either an ancestor of n or n itself; and (ii) a is the i-
th child of parent(a). Then AncestorDeweyGroup of n, n.AncestorDeweyGroup,
is defined as

∑�
j=2 Ω(j) where Ω(j)=[Ord(n, j)-1]×Aj−1.

For example, reconsider the last leaf element in Figure 1(b) with Dewey value
“1.3.2.1.1”. AncestorDeweyGroup of this element is: n.AncestorDeweyGroup =
(Ord(n, 2)−1)×A1 +(Ord(n, 3)−1)×A2 +(Ord(n, 4)−1)×A3 +(Ord(n, 5)−
1) × A4 = 2 × 20 + 1 × 4 + 0 × 2 + 0 × 1 = 44. The AncestorDeweyGroup values
of remaining leaf elements in Figure 1(b) are (in document order): 0, 4, 8, 9, 20,
24, 28, 32, 34, and 40.

4 Ancestor Group-Based Approach

We begin by formally introducing the notion of ancestor group identifier. Then,
we present how such identifiers can be used for evaluating not-twig queries.

518 K.H. Soh and S.S. Bhowmick

4.1 Ancestor Group Identifier

Informally, given an internal element n at level � > 1 of an xml tree, a unique
ancestor group identifier with respect to � is assigned to all the descendant
leaf element(s) of n. It is computed using AncestorDeweyGroup values of the leaf
elements and the AncestorValue of level of n.

Definition 3. [Ancestor Group Identifier] Let ni be a leaf element in the
xml tree D. Let na be an ancestor element of ni at level � > 1. Then Ancestor

Group Identifier of ni w.r.t na at level � is defined as G�
i =

⌊
ni.AncestorDeweyGroup

A�−1

⌋
.

For example, consider the leaf elements n1, n2, n3, and n4 (we denote a leaf ele-
ment as ni where i is its LeafOrder value) in Figure 1(b). The AncestorDeweyGroup

values of these elements are 0, 4, 8, and 9, respectively. Also, A1 = 20 and A2 = 4.
If we consider the first book element at level 2 as the ancestor element of these
elements, then G2

1 =
⌊

0
A2−1

⌋
= 0, G2

2 =
⌊

4
A2−1

⌋
= 4/20 = 0, G2

3 =
⌊

8
20

⌋
= 0,

and G2
4 =

⌊
9
20

⌋
= 0. However, if we consider the publisher element at level 3 as

ancestor element, then G3
3 =

⌊
8
4

⌋
= 2, and G3

4 =
⌊

9
4

⌋
= 2. Note that we do not

define ancestor group identifier with respect to the root element (� = 1) because
it is a trivial case as all leaf elements in the document shall have same identifier
values.

Ancestor group identifiers of non-leaf elements: Observe that in the above
definition only the leaf elements have explicit ancestor group identifiers. We
assign the ancestor group identifiers to the internal elements implicitly. The
basic idea is as follows. Let nc be the nca at level � of two leaf elements ni

and nj with ancestor group identifiers equal to G�. Then, the ancestor group
identifiers of all non-leaf elements in the subtree rooted at nc is G�. For example,
reconsider the first book element at level 2 as the root of the subtree. Then,
the ancestor group identifiers of the publisher and name elements are 0. Note
that these identifiers are not stored explicitly as they can be computed from
AncestorDeweyGroup and AncestorValue values.

Role of ancestor group identifiers to evaluate descendant axis. Observe
that a key property of the ancestor group identifier is that all descendants of an
ancestor element at a specific level must have same identifiers. We can exploit
this feature to efficiently evaluate descendant axis. Given a query a//b, let na and
nb be elements of types a and b, respectively. Then, whether nb is a descendant
of na can be determined using the above definition as all descendants of na must
have same ancestor group identifiers. As we shall see later, this equality property
is also important for our not-twig evaluation strategy.

Remark. Due to the lack of divisibility property of RValue (Lemma 1), it cannot
be used along with the DeweyOrderSum to correctly compute the ancestor group
identifiers of elements. Consequently, they are not particularly suitable for effi-
cient evaluation of not-twig queries. Due to the space limitations, these issues
are elaborated in [12].

Efficient Evaluation of NOT-Twig Queries 519

4.2 Computation of Common Ancestors

Lemma 2. Let ni and nj be two leaf elements in D at level �1 and �2, respec-
tively. Let � < �1 and � < �2. (a) If G�

i �= G�
j then ni and nj do not have a

common ancestor at level �. (b) If G�
i = G�

j then ni and nj must have a common
ancestor at level �.

Example 1. Consider the leaf elements n1, n2, n5, and n6 in Figure 1(b). The
AncestorDeweyGroup values of these elements are 0, 4, 20, and 24, respectively.
Also, A1 = 20. Then, with respect to level 2 G2

1 =
⌊

0
20

⌋
= 0, G2

2 =
⌊

4
20

⌋
= 0,

G2
5 =

⌊
20
20

⌋
= 1, and G2

6 =
⌊

24
20

⌋
= 1. Based on Lemma 2, since G2

1 �= G2
5 then n1

and n5 does not have a common ancestor at level 2. Similarly, (n1, n6), (n2, n5),
and (n2, n6) do not have common ancestors at the second level.

Since G2
1 = G2

2 , n1 and n2 must have a common ancestor at level 2 (the first
book element in Figure 1(b)).

Observe that by using Lemma 2 we can filter out leaf elements that belong to
the same common ancestor directly for negative rooted paths.

Theorem 1. Let rk and rm be two rps in a query Q on D. Let Nk and Nm be
the sets of leaf elements that match rk and rm, respectively in D. Let ni ∈ Nk

and nj ∈ Nm. For � > 1, ni must have the same ancestor as nj at level � iff
G�

i = G�
j .

Note that Lemma 2 and Theorem 1 can also be used for internal elements since
ancestor group identifier of an internal element of a subtree rooted at the nca
is identical to that of any leaf element in the subtree (Section 4.1). Also, it
immediately follows from the above theorem that ni needs to be filtered out if
rm is a negative rp in Q. Note that we ignore the trivial case of � = 1 [12].

Example 2. Assume that the price and location elements in Figure 1(b) match
a normal and a negative rps, respectively in a not-twig query. Hence, we want
to filter out all leaf elements having the same ancestor as location at level 2. Let
ni ∈ Nprice and nj ∈ Nlocation where Nprice and Nlocation are sets of leaf elements
satisfying the normal and negative rps, respectively. Here Nprice = {n2, n6, n7},
Nlocation = {n3, n11}, and A2−1 = 20. The AncestorDeweyGroup values of n2, n6,
and n7 are 4, 24, and 28, respectively. Similarly, AncestorDeweyGroup values of
n3 and n11 are 8 and 44, respectively. Then, G2

2 = G2
3 = 0, G2

6 = G2
7 = 1, and

G2
11 = 2. Consequently, based on Theorem 1 n2 has to be filtered out as n2 share

the same ancestor as n3 (at level 2) which matches the negative rp.

4.3 Evaluation of NOT-Twig Queries

We now discuss in detail how ancestor group identifiers are exploited for evaluat-
ing not-twig queries. As our focus is on not-predicates, for simplicity we assume
that edge(mi,mj) in a query is pc edge. Note that the proposed technique can
easily support ad edges as discussed in Section 4.1.

520 K.H. Soh and S.S. Bhowmick

Fig. 4. Overview of NOT-twig evaluation

Consider the evaluation of the query Q in Figure 1(a)(ii) on the xml document
in Figure 1(b). Figure 4 depicts a step-by-step evaluation of Q. In this example,
we consider the fragment of the PathValue table in Figure 3 for illustration. Note
that for clarity, in Figure 4 we only show DeweyOrderSums and AncestorDeweyGroups
in the PathValue table. The DeweyOrderSum and AncestorDeweyGroup of each leaf el-
ement are denoted as Xi and Yi, respectively, where i is the LeafOrder value of the
element. First, Q is decomposed into the following normal rooted path patterns
(without not-predicates). These paths are extracted from Q in left-to-right order
and consists of all root-to-leaf paths in Q and the rightmost root-to-internal path
representing the path after removing all qualifiers (Qa: /catalog/book/review,
Qb: /catalog/book/title,Qc: /catalog/book/publisher/name/website,Qd:
/catalog/book/publisher/name).

Evaluation order of RPs. If rps are evaluated sequentially in left-to-right or-
der ignoring the presence of negative rps, then it will produce incorrect answers.
Hence, we follow the following order. If the rooted path (say r) being evaluated
is a negative rp then it is not evaluated immediately. On the other hand, if r
is a normal rp, then it is evaluated immediately. First, elements matching r is
evaluated with those that match the first preceding normal rp (if exists). Next,
the elements will be evaluated with previously encountered negative rps (if any)
to filter out irrelevant elements. For example, in the aforementioned query Qa is
not immediately evaluated as it is a negative rp. Next, the normal rp Qb is en-
countered. Since there does not exist any normal rp preceding Qb, it is evaluated
along with the negative rp Qa. Next, the evaluation of the negative rp Qc is
skipped and normal rp Qd is encountered. Since Qb is the first preceding normal
rp, Qd is evaluated along with Qb. Lastly, Qd is evaluated in conjunction with
the previously recorded negative rp Qc. Hence, the order of evaluation of the
above query is: Qa and Qb (results are represented as Da), Qd and Da (results
are represented as Db), and Db and Qc.

Efficient Evaluation of NOT-Twig Queries 521

Evaluation of RPs. In Step 1, the negative rp Qa and normal rp Qb are
evaluated. Note that the nca level of these rps is 2. Since Qa is a negative
rp, all elements that satisfy Qb but not Qa are required. Therefore, we can
directly select these elements using Theorem 1 for level 2. All elements in the
results of Qb that share same ancestor group identifiers with the results of Qa

are removed. Since G2
8 = G2

9 = G2
5 = 1, n5 will be removed. Therefore, this step

returns elements n1 and n10 (denoted as Da) as their ancestor group identifiers
are not equal to 1. In Step 2, we compute the ancestor group identifiers of all
elements satisfying Da and Qd and retrieve those elements that share the same
identifiers. This results in the leaf elements n3, n4, and n11 (Db). Finally, we
process the previous negative rp Qc. We now retrieve all leaf elements in Db

that are missing in Qc using Theorem 1. Here � = 4 (name element). Observe
that for Db, G4

3 = G4
4 = 4 and G4

11 = 22. For Qc, G4
4 = 4. Since ancestor

group identifier of n4 satisfying Qc is identical to those of n3 and n4, we remove
n3 and n4 from Db (Step 3). Since there are no more rooted paths, the final
result is n11.

4.4 SQL Translation Algorithm

The Query Decomposition Phase. First, given a not-twig query Q, the sql
translation algorithm decomposes Q into a list of normal and negative rooted
paths T . It extracts from Q the root-to-leaf paths and rightmost root-to-internal
path (in absence of qualifiers), and store them into a list T in the following order.
First, all root-to-leaf paths are inserted according to the left-to-right order of
Q. Next, the root-to-internal path is added in T . The list also stores predicate
information. We assume that T has a size method which returns the total number
of rps in T and a countNotPred method which returns the total number of
negative rps.

The SQL Generation Phase. This phase generates the sql query Snot for
retrieving elements that satisfy Q. This query only retrieves the LeafOrder values
of the matching elements. The algorithm is shown in Algorithm 1. Given a set of
rooted paths T of Q, the generateSQLforNot procedure outputs a sql statement
consisting of three clauses: select sql, from sql, and where sql. In the sequel we
assume that a clause has an add() method which encapsulates some simple string
manipulations and simple joins for constructing valid sql statements. Also, the
NCAlevel() function computes the level of an nca in Q. We preprocess the PathId

and RValue to reduce the number of joins.
For each rooted path ri ∈ T , the procedure first checks if it is a negative rp.

Recall that a negative rp is not evaluated immediately. Specifically, all consec-
utive negative rps are recorded (using the counter cntNotPred) until the next
normal rp is encountered (Lines 03–04). When a normal rp ri is encountered,
it checks if it is a root-to-leaf path (Line 08). If it is then the algorithm gener-
ates the sql fragment that retrieves the representative leaf elements by using
instances of ri’s PathId and BranchOrder values (Line 09). Next, the algorithm
generates statement for nca computation of normal rps in the following ways.

522 K.H. Soh and S.S. Bhowmick

Algorithm 1. Algorithm generateSQLforNot.

Input: A list of normal and negative rps T
Output: sql query Snot

Initialize cntNotPred = 0;1
for (i = 1 to T .size()) do2

if (rooted path ri is negative rp) then3
cntNotPred++;4

else5
from sql.add(“PathValue AS Vi”);6
where sql.add(“Vi.PathId IN ri.getPathId()”);7
if (i < T.size()) then8

where sql.add(“Vi.BranchOrder < ri.level()”);9

if (i > 1 and cntNotPred = 0) then10
where sql.add(“Vi.AncestorDeweyGroup/AncestorValue (ri−1.NCAlevel() - 1)11
= Vi−1.AncestorDeweyGroup/AncestorValue (ri−1.NCAlevel() - 1”);

else12
set x = cntNotPred;13
while (x > 0) do14

where sql.add(“Vi.AncestorDeweyGroup/ AncestorValue15
(ri−x.NCAlevel()-1) NOT IN (”);
where sql.add(select sql.add(“Vi−x.AncestorDeweyGroup/16
AncestorValue(ri−x.NCAlevel()-1)”));
where sql.add(from sql.add(“PathValue AS Vi−x”));17
where sql.add(where sql.add(“Vi−x.PathId IN ri−x.getPathId()))”);18
where sql.add(where sql.add(“Vi−x.BranchOrder <ri.level())”));19
x- - ;20

if (i − cntNotPred > 1) then21
where sql.add(“Vi.AncestorDeweyGroup/ AncestorValue22
(ri−cntNotPred−1.NCAlevel()-1) =
Vi−cntNotPred−1.AncestorDeweyGroup/
AncestorValue(ri−cntNotPred−1.NCAlevel()-1)”);

set cntNotPred = 0;23

select sql.add(“DISTINCT Vi.DocID, Vi.LeafOrder”);24
return Snot = select sql + from sql + where sql;25

– ri is the first rp in T : Let r1 (i = 1) be a normal rp in T (without not-
predicate). In this case, r1 does not have any preceding rp. Then, r1 will not
be evaluated immediately (conditions in Lines 10 and 21 are not satisfied)
as a pair of rps is required for nca evaluation (Theorem 1).

– ri is not the first rp in T and i > 1: In this case, the algorithm may have
encountered a normal rp rj earlier (j < i). Hence, if countNotPred = 0
it will execute Line 11 to generate the sql statement to retrieve pairs of
leaf elements that have nca at the specified nca level (based on Theo-
rem 1). Otherwise, if countNotPred > 0 then the condition in Line 21 is
true. Consequently, Line 22 will be used to generate the sql fragment for
nca evaluation.

For all consecutive negative rps, the procedure directly evaluates them using
ancestor group identifiers (Lines 14-20). Specifically, Line 16 returns the ancestor
group identifiers and Line 15 filters out elements based on Lemma 2. Note that
the counter cntNotPred will be reset to 0 whenever the procedure encounters a
normal rp (Line 23).

The Final SQL Generation Phase. Finally, in this phase the final sql query
S for retrieving entire subtrees that match Q is generated. This procedure is

Efficient Evaluation of NOT-Twig Queries 523

Algorithm 2. Algorithm finalSQLGen

Input: sql query Snot, number of rps x, number of negative rps y
Output: sql query S

order sql.add(“DocID, LeafOrder”) ;1
select sql.add(“Vx+1.LeafValue, . . . Vx+1.LeafOrder”);2
from sql.add(“(“ + Snot + ”) AS Vx INNER JOIN PathValue Vx+1 ON Vx+1.DocID = Vx.DocID3
AND Vx+1.LeafOrder = Vx.LeafOrder”);
where sql.add(“Vx+1.PathID IN rx.getPathID()”);4
if (x − y > 1) then5

option sql.add(“FORCE ORDER, ORDER GROUP”);6
else7

option sql.add(“ORDER GROUP”);8

return S = select sql + from sql + where sql + order sql + option sql;9

Fig. 5. Translated sql query

outlined in Algorithm 2 and contains five clauses: select sql, from sql,where sql,
order sql, and option sql. It includes an addition instance of PathValue Vx+1

which uses the same path in the PathValue table Vx representing the rightmost
root-to-internal path in Snot (Line 04). Vx+1 is joined on DocID and LeafOrder

attributes with Vx to retrieve entire subtrees of matched elements (Line 03).
Since the results must be in document order, the tuples are sorted according
to DocID and LeafOrder attributes using the order sql clause (Line 01). Lastly,
the option clause (option sql) is used to enforce the distinct and order by
operations to use sort operator using the ORDER GROUP query hint (Lines 05 - 08).
Also, if there exists at least one normal root-to-leaf path in Q then FORCE ORDER
hint is used to enforce a “left-to-right” join order on the translated sql query
(Line 06). The performance benefits of join order enforcement is highlighted in
[4, 7, 11]. Note that the translated sql has at least one instance of PathValue

table representing the normal root-to-internal path. Further, if all root-to-leaf
paths in Q are negative rps, then join order enforcement is discarded as these
paths will be evaluated by subqueries (generated by Lines 15–19 in Algorithm 1).

Reconsider the query Q in Section 4.3. The list of root-to-leaf and root-to-
internal paths T is: [r1 = Qa, r2 = Qb, r3 = Qc, r4 = Qd]. The translated sql
is shown in Figure 5. The reader may refer to [12] for details related to this
example.

5 Performance Study

In this section, we present the experiments conducted to evaluate the perfor-
mance of our proposed approach and report some of the results obtained. A

524 K.H. Soh and S.S. Bhowmick

Fig. 6. Query sets

more detailed results is available in [12]. Prototype for our ancestor group-based
approach (denoted by ag-sx) was implemented by extending Sucxent++ using
Java JDK 1.6. The experiments were conducted on an Intel Pentium IV 3GHz
machine running on Windows XP Service Pack 2 with 2gb ram. The rdbms
used was ms sql Server 2008 Developer Edition.

We are not aware of any existing tree-unaware approaches that have under-
taken a systematic study to evaluate not-twig queries. Hence, we compared
our approach to the native xml supports of XSysA and XSysB (Recall from
Section 1). For all these approaches appropriate indexes were created. Prior to
our experiments, we ensure that statistics had been collected. The bufferpool
of the rdbms was cleared before each run. The queries in ag-sx were executed
in the reconstruct mode [13] where not only the internal elements are selected,
but also all descendants of those elements. Each query was executed 6 times
and the results from the first run were always discarded. All rows were fetched
from the answer set; however, they were not sent to output. Note that we did
not select TwigStackList¬ [16] and NJoin [10] as we were unable to get the
implementation from the authors. However, an intuitive comparison with these
approaches is discussed later.

Datasets. We use XBench dcsd [15] shown in Figure 2(a) as synthetic data
set. We also modified the data set so that we can control the number of subtrees
(denoted as K) that matches a not-twig query and the number of instances
of the rooted paths in the xml document. We set K ∈ {100, 500}. We use
the uniprot dataset shown in Figure 2(b) as real-world data set. Since the
original uniprot data is 2.8gb in size (denoted as u2843), we also truncated
this document into smaller xml documents of sizes 28mb and 284mb (denoted
as u28 and u284, respectively) to study scalability of various systems.

Querysets. Figure 6 depicts the benchmark queries. As our primary objective
is to assess the performance of not-predicates evaluation, we choose two cate-
gories of queries. In the first category (Q1 − Q12 and UQ1 − UQ4), we fix the
XPath axis in the twigs to child and generate queries by varying the number of

Efficient Evaluation of NOT-Twig Queries 525

Fig. 7. Query evaluation times of AG-SX, XSysA, and XSysB (in msec.)

normal and negative rooted paths, number of nca nodes, and structure of twigs.
For instance, Q3 − Q5, Q8, Q11, Q12, UQ1, UQ3, and UQ4 are queries with
purely not-predicates while the remaining queries contain a mixture of normal
and negative rooted paths. The number of instances of root-to-leaf paths that
matches the query set varies between 150 and 2, 035, 889. In the second cate-
gory (UQ5-UQ9), we include different XPath axes (e.g., descendant, following,
preceding) in the not-twigs to study the performance of these queries in the
presence of such axes.

5.1 Query Evaluation Times

Figure 7 depicts the not-twig query evaluation times. As XSysA and XSysB
are unable to handle xml documents having size larger than 2gb, no query
evaluation times are reported for these approaches on u2843 data set. Also, as
ag-sx is orders of magnitude faster than the not-predicate evaluation approach
on the original Sucxent++ (see [12]), we only report query evaluation times
of ag-sx. The symbol ns in Figure 7 denotes that the query is not currently
supported in the current version of a particular system.

We observe that ag-sx significantly outperforms both XSysA and XSysB for
majority of the queries (highest observed factors being 37 and 40, respectively).
As the data size increases, the performance gap between ag-sx and these ap-
proaches increases. Particularly, we noticed that except for Q5, our proposed
approach is at least 9 times faster than XSysB for all values of K. For the
real-world data sets (u28 and u284), ag-sx is faster than XSysA and XSysB
for 90% and 80% of the benchmark queries, respectively. In summary, ag-sx
outperforms XSysA and XSysB primarily due to the effectiveness of the former
approach to generate a relatively simple sql statement, which exploits ancestor
group identifiers to efficiently evaluate common ancestors and not-predicates us-
ing the equality property (Theorem 1). Also, interestingly XSysA is less efficient
than XSysB for smaller data sets (dc10 and dc100). However, it is faster than
XSysB for dc1000.

Comparison with TwigStackList¬ [16] and NJoin [10]: Based on the
results reported in [10, 16] we can make the following observations. For a data

526 K.H. Soh and S.S. Bhowmick

set of size 100mb and less than 2.5 million nodes, the average running time of
benchmark not-twig queries using TwigStackList¬ is 15 − 30s [16] whereas
majority of our queries on similar data sets take less than a second to retrieve
results. In [10], it is shown that NJoin is 2-3 faster than TwigStackList¬
for simple not-twig queries. Based on this observation, we expect ag-sx to
outperform these approaches.

6 Conclusions and Future Work

In this paper, we present an efficient strategy to evaluate not-twig queries in
a tree-unaware relational environment. We extended the encoding scheme of
dewey-based Sucxent++ [11] by adding two new labels, namely AncestorValue

and AncestorDeweyGroup, that enable us to efficiently filter out elements satisfy-
ing a not-predicate by comparing their ancestor group identifiers. We proposed
a novel not-twig query evaluation algorithm that reduce useless structural com-
parisons by exploiting these labels. Our results showed that the our proposed
approach have superior performance compared to existing state-of-the-art tree-
unaware and native approaches. In future, we plan to investigate if some of the
optimization techniques proposed in [4] (e.g., choosing right join algorithms,
eliminating redundant ordering (if any)) are beneficial for evaluating not-twig
queries in our proposed framework.

References

1. Al-Khalifa, A., Jagadish, H.V.: Multi-level Operator Combination in XML Query
Processing. In: ACM CIKM (2002)

2. Bhowmick, S.S., Leonardi, E., Sun, H.: Efficient Evaluation of High-Selective xml
Twig Patterns with Parent Child Edges in Tree-Unaware RDBMS. In: ACM CIKM
(2007)

3. Boncz, P., Grust, T., et al.: MonetDB/XQuery: A Fast XQuery Processor Powered
by a Relational Engine. In: SIGMOD (2006)

4. Georgiadis, H., Vassalos, V.: Xpath on Steroids: Exploiting Relational Engines for
Xpath Performance. In: SIGMOD (2007)

5. Georgiadis, H., et al.: Cost-based Plan Selection for XPath. In: SIGMOD (2009)
6. Gou, G., Chirkova, R.: Efficiently Querying Large xml Data Repositories: A Sur-

vey. IEEE TKDE 19(10) (2007)
7. Grust, T., et al.: Why Off-the-Shelf RDBMSs are Better at XPath Than You Might

Expect. In: SIGMOD (2007)
8. Jiao, E., Ling, T.-W., Chan, C.-Y.: PathStack: A Holistic Path Join Algorithm

for Path Query with Not-Predicates on XML Data. In: Zhou, L.-z., Ooi, B.-C.,
Meng, X. (eds.) DASFAA 2005. LNCS, vol. 3453, pp. 113–124. Springer, Heidelberg
(2005)

9. Li, H., Li Lee, M., Hsu, W.: A Path-Based Labeling Scheme for Efficient Struc-
tural Join. In: Bressan, S., Ceri, S., Hunt, E., Ives, Z.G., Bellahsène, Z., Rys, M.,
Unland, R. (eds.) XSym 2005. LNCS, vol. 3671, pp. 34–48. Springer, Heidelberg
(2005)

Efficient Evaluation of NOT-Twig Queries 527

10. Li, H., Lee, M.-L., et al.: A Path-Based Approach for Efficient Structural
Join with Not-Predicates. In: Kotagiri, R., Radha Krishna, P., Mohania, M.,
Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 31–42. Springer,
Heidelberg (2007)

11. Seah, B.-S., Widjanarko, K.G., et al.: Efficient Support for Ordered XPath
Processing in Tree-Unaware Commercial Relational Databases. In: Kotagiri, R.,
Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007.
LNCS, vol. 4443, pp. 793–806. Springer, Heidelberg (2007)

12. Soh, K.-H., Bhowmick, S.S.: Efficient Evaluation of not-Twig Queries in A Tree-
Unaware RDBMS. Technical Report (December 2009), http://www.cais.ntu.

edu.sg/~assourav/TechReports/NotTwig-TR.pdf

13. Tatarinov, I., Viglas, S., et al.: Storing and Querying Ordered xml Using a Rela-
tional Database System. In: SIGMOD (2002)

14. Yoshikawa, M., et al.: XRel: A Path-based Approach to Storage and Retrieval of
xml documents Using Relational Databases. ACM TOIT 1(1) (2001)

15. Yao, B., Tamer Özsu, M., Khandelwal, N.: XBench: Benchmark and Performance
Testing of XML DBMSs. In: ICDE (2004)

16. Yu, T., Ling, T.-W., Lu, J.: TwigStackList¬: A Holistic Twig Join Algorithm
for Twig Query with Not-Predicates on XML Data. In: Li Lee, M., Tan, K.-L.,
Wuwongse, V. (eds.) DASFAA 2006. LNCS, vol. 3882, pp. 249–263. Springer,
Heidelberg (2006)

http://www.cais.ntu.edu.sg/~assourav/TechReports/NotTwig-TR.pdf
http://www.cais.ntu.edu.sg/~assourav/TechReports/NotTwig-TR.pdf

	Efficient Evaluation of NOT-Twig Queries in Tree-Unaware Relational Databases
	Introduction
	Preliminaries
	Encoding Scheme
	SUCXENT++ Schema and Its Limitations
	AncestorValue Attribute
	AncestorDeweyGroup Attribute

	Ancestor Group-Based Approach
	Ancestor Group Identifier
	Computation of Common Ancestors
	Evaluation of NOT-Twig Queries
	SQL Translation Algorithm

	Performance Study
	Query Evaluation Times

	Conclusions and Future Work
	References

