
Stars on Steroids: Fast Evaluation of Multi-source Star
Twig Queries in RDBMS

Erwin Leonardi1,2, Sourav S. Bhowmick1,2, and Fengrong Li3

1 Singapore-MIT Alliance, Nanyang Technological University, Singapore
2 School of Computer Engineering, Nanyang Technological University, Singapore

3 Japan Advanced Institute of Science and Technology, Japan
{lerwin,assourav}@ntu.edu.sg, lifr@nagoya-u.jp

Abstract. Despite a large body of work on XML twig query processing in rela-
tional environment, systematic study of XML join evaluation has received little
attention in the literature. In this paper, we propose a novel and non-traditional
technique for fast evaluation of multi-source star twig queries in a path materi-
alization-based RDBMS. A multi-source star twig joins different XML documents
on values in their nodes and the XQuery graph takes a star-shaped structure. Such
queries are prevalent in several domains such as life sciences. Rather than follow-
ing the conventional approach of generating one huge complex SQL query from a
twig query, we translate a star query into a list of SQL sub-queries that only mate-
rializes minimal information of underlying XML subtrees as intermediate results.
Experiments carried out confirm that our proposed approach build on top of an
off-the-shelf commercial RDBMS has excellent real-world performance.

1 Introduction

Efficient evaluation of XML queries that correlate (join) multiple input documents to
integrate data from different sources is highly important due to its several real-world ap-
plications. For example, querying biological data across multiple sources is a key activ-
ity for many biologists. If these sources represent data in XML format (e.g., INTERPRO

(www.ebi.ac.uk/interpro/), UNIPROT (www.expasy.ch/sprot/), PDB

(www.pdb.org), EMBL (www.ebi.ac.uk/embl/)), then XQuery can be used to
formulate meaningful queries over these data sources. Figure 1 shows three example
queries. Observe that Q1, Q2, and Q3 correlate four, three, and two data sources, re-
spectively. Also, in each query the join conditions share a common data source. For
instance, in Q1 UNIPROT is joined with INTERPRO, PDB, and EMBL. Similarly, in Q2

UNIPROT is joined with INTERPRO and EMBL. Consequently, each of these queries can
be represented as a star-shaped query graph where a node represents a data source and
an edge represents existence of a join expression between a pair of sources. We refer to
such queries as multi-source star twig queries (star queries for brevity). In this paper,
we focus on fast evaluation of this type of queries in a relational environment.

At first glance, it may seem that we can efficiently evaluate star queries by lever-
aging on an existing relational XQuery processor, c.f., [8, 12] and relying on its query
optimization capabilities. Specifically in an XQuery processor, an XQuery query is of-
ten rewritten to an equivalent, logically simpler XQuery and then translated to a sin-
gle, complex SQL query, c.f., [8]. Optimization of an XQuery query is achieved in two

S.-g. Lee et al. (Eds.): DASFAA 2012, Part I, LNCS 7238, pp. 110–125, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.ebi.ac.uk/interpro/
www.expasy.ch/sprot/
www.pdb.org
www.ebi.ac.uk/embl/

Stars on Steroids: Fast Evaluation of Multi-source Star Twig Queries in RDBMS 111

Q2

01 for $entry in fn:collection('UNIPROT')/uniprot/entry,
02 $interpro in fn:collection('INTERPRO')/interprodb/interpro,
03 $embl in fn:collection('EMBL')/EMBL_Services/entry
04 let $ref2EMBL := $entry/dbReference[@type="EMBL"]/@id
05 let $ref2InterPro := $entry/dbReference[@type="InterPro"]/@id
06 let $temp:=$embl/@created
07 where $entry/keyword = 'ATP-binding'
08 and $entry/organism/name = 'Human'
09 and $interpro/pub_list/publication/journal = 'Science'
10 and fn:starts-with(xs:string($temp), '1996')
11 and $interpro/@id = $ref2InterPro and $embl/@accession= $ref2EMBL
12 return $entry/name;

4

Q1

01 declare namespace PDBx = 'http://deposit.pdb.org/pdbML/pdbx.xsd';
02 for $entry in fn:collection('UNIPROT')/uniprot/entry,
03 $interpro in fn:collection('INTERPRO')/interprodb/interpro,
04 $embl in fn:collection('EMBL')/EMBL_Services/entry,
05 $pdb in fn:collection("PDB")/PDBx:datablock
06 let $ref2PDB := $entry/dbReference[@type="PDB"]/@id
07 let $ref2EMBL := $entry/dbReference[@type="EMBL"]/@id
08 let $ref2InterPro := $entry/dbReference[@type="InterPro"]/@id
09 let $temp:=$embl/@created
10 where $entry/keyword = 'ATP-binding'
11 and $entry/organism/name = 'Human'
12 and $interpro/pub_list/publication/journal = 'Science'
13 and fn:starts-with(xs:string($temp), '1996')
14 and $pdb/PDBx:citationCategory/PDBx:citation/PDBx:country = "US"
15 and $pdb/PDBx:citationCategory/PDBx:citation/PDBx:year = "1997"
16 and $pdb/PDBx:cellCategory/PDBx:cell/@entry_id = $ref2PDB
17 and $interpro/@id = $ref2InterPro
18 and $embl/@accession= $ref2EMBL
19 return $entry/reference/citation/title;

64

Q3 11

QID Query # of
Results

01 for $entry in fn:collection('UNIPROT')/uniprot/entry,
02 $embl in fn:collection('EMBL')/EMBL_Services/entry
03 let $ref2EMBL := $entry/dbReference[@type="EMBL"]/@id
04 let $temp:=$embl/@created
05 where $entry/keyword = 'ATP-binding'
06 and $entry/organism/name = 'Human'
07 and fn:starts-with(xs:string($temp), '1996')
08 and $embl/@accession= $ref2EMBL
09 return $entry/gene;

Fig. 1. Examples of star twig queries

stages. Logical query optimization (sometimes also called query rewrite) [8, 12, 13] re-
sults in rewrites of XQuery statements to avoid duplicate and full navigations. On the
other hand, physical query optimization depends on the storage method of the data be-
ing queried. For instance, we can store and query XML representations of INTERPRO,
UNIPROT, PDB, and EMBL using XML support provided by DB2.

Unfortunately, query performance still remains a bottleneck. To get a better under-
standing of this problem, we experimented with the datasets in Figure 2(a) and queries
Q1 – Q3. Figure 2(b) shows the query evaluation times in DB2. Observe that it can take
from 4 minutes to more than 20 minutes to evaluate these queries. Is it possible to design
a scheme that can address this performance bottleneck? In this paper, we demonstrate
that techniques build on top of an existing off-the-shelf RDBMS can make up for a large
part of the limitation. In particular, we show that the above queries can be evaluated in
less than a minute.

We take an alternative non-traditional strategy that bypasses logical XQuery opti-
mization and relies solely on the relational optimizer to achieve superior performance
for evaluating star queries. This approach is perhaps surprising because the design goals
of our strategy seem to be diametrically opposite to traditional relational XQuery pro-
cessors. Specifically, given a star queryQ, our proposed algorithm translates it into a list
of SQL queries without undertaking any logical query optimization over a path materi-
alization-based storage scheme [6]. First, SQL queries for materializing the identifiers of

112 E. Leonardi, S.S. Bhowmick, and F. Li

Source Size No. of
Files

No. of
Attributes

No. of
Nodes Level

UNIPROT 1.4 GB 1 38,380,645 28,247,711 6
INTERPRO 50 MB 1 944,564 754,607 5

PDB 613 MB 70 1,521,615 12,535,308 4
EMBL 1.28 GB 10 13,311,359 16,707,319 6

(a) Real World Data Sets

QID XDB2

Q1 1,421.16
Q2 238.73
Q3

(b) Query Evaluation
Time (in sec.)

259.83

Fig. 2. Dataset and query evaluation times in DB2

nodes or subtrees satisfying the expressions in the return clause are generated. Based
on these materialized identifiers, SQL queries for non-join expressions in the where
clause are generated followed by queries for join expressions. These queries are exe-
cuted in sequence and the results are materialized in temporary tables. The identifiers of
nodes (subtrees) satisfying Q are then computed from these materialized results. A key
feature of these materialized results is that we only store minimal information (iden-
tifiers of nodes) required for evaluating Q. This obviously has positive impact on the
storage and query processing costs of temporary tables as we can efficiently store large
intermediate result nodes for a given query. Finally, the last step of the algorithm is to
issue an SQL query to retrieve complete information from the base table(s) containing
XML documents by matching the identifiers of the result subtrees.

Our proposed approach has excellent performance. It is significantly faster than
XML support of DB2 v9.5 (highest observed factor being 158 times), which relies on
conventional XQuery optimization techniques. Somewhat unexpectedly, we shall also
show that the proposed technique outperforms one of the fastest XQuery processor
(MONETDB/XQuery [2]) for several queries (highest observed factor being 46 times)!

The rest of our paper is organized as follows. We compare our approach with re-
lated work in Section 2. Section 3 formally defines the notion of multi-source star twig
queries. Section 4 presents in detail the algorithm for evaluating star queries on top of
a path materialization-based relational storage. We evaluate and compare the perfor-
mance of our proposed technique through an extensive set of experiments in Section 5.
Section 6 concludes the paper and suggests future work.

2 Related Work

There is a wealth of work on evaluating XPath expressions in a tree-unaware RDBMS

[6, 7, 14] and tree-aware environment [2, 6]. However, these efforts mainly focus on
various XPath axes and not on XML join operation. In all these efforts, the SQL trans-
lation algorithms generate a single complex SQL whereas here we focus on generating
a sequence of SQL queries. Consequently, in this paper we materialize minimal sub-
tree information to reduce the size of the intermediate tables generated by the list of
SQL queries. Complete information related to subtrees that satisfy the query is only
retrieved during the final step of query execution. Such “lazy” approach to retrieve sub-
tree information is not necessary in approaches that are based on a single SQL query.
Also, in contrast to previous efforts, the proposed algorithm is sensitive to the order
of evaluation of different components (i.e., return clause, join expressions, non-join
expressions) of the star queries.

Stars on Steroids: Fast Evaluation of Multi-source Star Twig Queries in RDBMS 113

There has been efforts related to translating XML queries to SQL in XML publishing
environment [9]. In XPeranto [16], an XQuery query is transformed into an XML Query
Graph Model (XQGM) and composed with the view definition. Then it is translated
to a single “outer union” SQL query to be evaluated inside the relational engine. The
Agora [11] project uses local-as-view (LAV) approach to translate the XML query into
a SQL query over virtual relational schema and then rewriting this SQL query into a
query over the real relational schema. MARS [4] uses both local-as-view and global-as-
view (GAV) approaches. It first compiles the queries, views and constraints from XML

into the relational framework and then determines all minimal reformulations of the
relational queries under the relational integrity constraints using a cost-based approach.
In contrast, our approach is build on top of XML storage framework and translates a
specific type of XML query to a list of SQL queries instead of a single SQL query.

More germane to this work is efforts in the XML publishing environment that trans-
late an XML query to a list of SQL queries [5]. In [5], mapping from the relational
schema to the XML view is specified using a declarative query language RXL. In order
to create the XML view, optimal set of SQL queries are generated to extract and group
data from the underlying relational engine. In general, there are 2|E| possible transla-
tions of an RXL query into one or more queries, where |E| is the number of edges in the
query’s view tree (representation that makes it clear how to generate queries). In con-
trast, the number of SQL queries in our approach is linear to the number data sources to
be joined and the number of output expressions in the query.

3 Multi-source Star Twig Pattern

3.1 Multi-source Twig Pattern

Most XML processors, both native and relational, have overwhelmingly focused on
single-source twig queries modeled as a twig pattern tree [6]. A single-source twig
query is evaluated on a set of documents represented by a single XML schema or DTD.
However, as discussed in Section 1, related data in many real-world applications may
span across multiple data sources with different schemas. Consequently, our query
model should support queries over such multiple data sources using joins. We refer
to such twig queries as multi-source twig patterns.

A multi-source twig pattern Q is a graph with three types of nodes: location step
query node (QNode), logical-AND node (ANode), and return node (RNode). Each Q
has a single node of type RNode which represents the output node. While the label of
ANode is always “AND”, QNodes’ and RNodes’ labels are tags. An edge in Q can be
of two types, namely, axes edge and join edge. The former represents parent-child or
attribute relationship1 between a pair of nodes belonging to the same source whereas the
latter connects two nodes from two different sources. Specifically, a join edge (q1, q2)
asserts that q1 and q2 have equal value2. We distinguish the RNode by underlined tag;
and axes and join edges as direct and dashed edges, respectively.

1 We consider XPath navigation only along the child (/) and attribute (/@) axes. Exten-
sion to other navigation axis is orthogonal to the proposed technique.

2 We currently support equality join condition but inequality join condition can be supported
easily.

114 E. Leonardi, S.S. Bhowmick, and F. Li

Observe that a multi-source twig query can be represented by an XQuery query Q =
(F ,L,W ,R) where F is a set of for clause items, L is a set of expressions defined
using the let clause, W is a set of predicates in the where clause, and R is an output
expression specified in the return clause. Specifically, the syntax of Q is as follows.

FOR $x1 in p1, . . . , $xn in pn
LET $y := q1
LET . . .

WHERE b1 ∧ b2 ∧ . . . ∧ bk ∧ c1 ∧ c2 ∧ . . . ∧ cm
RETURN r

Note that there must be at least two for clause items in Q that are bound to two differ-
ent document sources. The let clause simply declares a variable and gives it a value.
We categorize the where-expressions in W into two types, namely join expressions
and non-join expressions. A join expression involves predicates that express join con-
ditions over two different document sources. On the other hand, a non-join expression
expresses a filtering condition on a single source. Note that a join expression can also
be expressed in a for clause using qualifier. In this paper, we ignore join expressions in
the for clause, which can always be reformulated away using where clause. Finally,
an output expression r in the return clause is of type RNode.

Definition 1. [XQuery Representation of Multi-source Twig] Let var be the name of
variable binding, exp be a path expression, op ∈ {=, �=, >,≥, <,≤} be an operator,
and val be a value. Given an expression exp, the function source(exp) maps exp to the
document source D over which exp is valid. Then, an XQuery query Q = (F ,L,W ,R)
is a multi-source twig query if the followings are true.

– F is a set of for clause items such that |F| ≥ 2. An item f ∈ F is a triple
(var, dsName, exp), where source(exp) = dsName. Furthermore, ∃ fi ∈ F ∧
fj ∈ F such that fi.dsName �= fj.dsName for i �= j and 1 < i, j ≤ |F|.

– L is a set of let clause items where l ∈ L is a 2-tuple (var, exp).
– Let S and T be path expressions containing var = f.var or var = l.var where

f ∈ F , l ∈ L. Then, W is a set of conjunctive predicates in the where clause
where W = J ∪ C and J ∩ C = ∅. J is a non-empty set of join expressions where
b ∈ J is of the form S op T . C is a set of non-join expressions where c ∈ C is of
the form S op val.

– R is the return clause containing output expression r, which is a 2-tuple (var,
exp) where var = f.var or var = l.var, f ∈ F , and l ∈ L. �

3.2 Star Twig Pattern

An XQuery representation of a multi-source twig query can be conveniently represented
using an XQuery graph. Similar to a query graph of an SQL query, an XQuery graph
is an undirected graph with nodes D1 . . . Dn. For every join expression between the
document sources Di and Dj , we add an edge between Di and Dj . This edge is labeled
by the join expression. The nodes are labeled with corresponding non-join expressions.

An XQuery graphs can have many different shapes such as chain queries, star queries,
tree queries, cyclic queries, clique queries, etc. Note that these classes are not disjoint

Stars on Steroids: Fast Evaluation of Multi-source Star Twig Queries in RDBMS 115

Algorithm 1: The StarTwig2SQL algorithm.
Input: Star twig query Q
Output: A list of SQL queries SQLList

1 Initialize SQLList = ∅;
2 (F ,W,R)← parseXQuery(Q) /* Phase 1*/;
3 SQLList.add(outputExp2SQL(R)) /* Phase 2 */;
4 (J , C)← distinguishExp(W) /* Phase 3 */;
5 SQLList.add(whereExp2SQL(F ,J , C,R));
6 SQLList.add(finalResultQueryGen(R)) /* Phase 4 */ ;
7 return SQLList

and that some classes are subsets of other classes. In this paper, we focus on star queries
joining different XML documents. Intuitively, in a multi-source star twig query all join
expressions share a common document source and hence forms a star-shaped query
graph. For example, queries in Figure 1 are examples of star twig queries. Formally, it
is defined as follows.

Definition 2. [Multi-source Star Twig Query] Let Q = (F ,L,W ,R) be a multi-source
XQuery query. Then Q is called a multi-source star twig query if any one of the follow-
ing conditions is true: (a) |J | = 1 and source(b.S) �= source(b.T) where b ∈ J . (b) If
|J | > 1 then ∀ i �= j source(bi.S) = source(bj .S) and source(bi.S) �= source(bi.T)
where bi ∈ J , bj ∈ J and 1 ≤ i, j ≤ |J |. �

4 Star Twig Query Evaluation

In this section, we shall elaborate on the algorithm for translating a star twig query to
a list of SQL queries over relational framework. State-of-the-art relational approaches
for XML storage can be broadly classified into four types, namely, node approach, edge
approach, path materialization (PM) approach, and DTD approach [6]. For the sake of
generality, in this paper we assume that the XML data are schemaless. Since the PM

approach has advantages over the rest when XML data are schemaless [6], our proposed
algorithm is built on top of this storage approach. Importantly, we present a generic
algorithm that is independent of any specific PM approach. We assume that paths, con-
tents of leaf nodes, and attributes associated with a XML tree are materialized in Paths,
PathsContent, and Attributes relations, respectively. The reader may refer to [10] for an
example of how various subroutines in the algorithm can be realized on a specific PM

approach.
The algorithm for SQL translation is shown in Algorithm 1. The algorithm consists

of four phases as discussed below.

Phase 1: XQuery Parsing. In the first phase, a multi-source star twig query Q is
parsed using XPath 2.0/XQuery 1.0 Parser Build [1] (Line 02). During the parsing pro-
cess, the algorithm identifies different components of Q based on the star twig query
model discussed in the preceding section. Also, the algorithm replaces the variable
references in Q with the expressions defined in the let clause (if any). The output

116 E. Leonardi, S.S. Bhowmick, and F. Li

Algorithm 2: The outputExp2SQL algorithm.
Input: An output expression r ∈ R
Output: An SQL query SQL

1 Initialize SQL =∞;
2 if (r is an attribute node) then
3 PathExp← pathExpOfParentNode(r);
4 else
5 PathExp← r.absExp;

6 PathIDs← getAllPathID(PathExp);
7 Level ← getNodeLevel(PathExp);
8 Source = r.dsName;
9 SQL.genSQL(PathIDs, Level, Source);

10 return SQL

Algorithm 3: The whereExp2SQL algorithm.
Input: F , J , C, r ∈ R
Output: A list of SQL queries SQLList

1 Initialize SQLList = ∅;
2 for (each f ∈ F) do
3 Cf ← getNonJoinExp(f.var, C);
4 if (f.var = r.var) then
5 SQL← translateWhereNonJoin(r, f , Cf);
6 else
7 SQL← translateWhereJoin(r, f , Cf , J);

8 SQL← INSERT INTO T “ +R+ “ ”+F .indexOf(f)+ “ ” +SQL;
9 SQLList.add(SQL);

10 return SQLList

of this phase are a set of for clause items F , a set of where-expressions W , and
the output expression r ∈ R. In addition, we also determine the absolute path ex-
pressions of r ∈ R, c ∈ C, and b ∈ J . The absolute path expression of r is de-
noted by r.absExp. For example, consider r = ($entry, “/name”) in Q2 (Figure 1).
Then r.absExp is “/uniprot/entry/name” as $entry is bound to the expression
“/uniprot/entry”.

Phase 2: OutputExp2SQL Translation. In this phase, the algorithm analyzes the out-
put expression r ∈ R and generates an SQL query for materializing the identifiers of
the XML subtrees that satisfy r (Line 03). An identifier of a node n in an XML tree D
(denoted by nId) is one or more attributes of n that can uniquely identify n in D. The
materialized identifiers of r are stored in a temporary relation PathU(DocId, nId). Note
that we materialize the identifiers instead of entire subtrees because it is more space-
efficient (the size of materialized identifier table is always smaller than or equal to the
table containing entire materialized subtrees). Also, we do not need to materialize the

Stars on Steroids: Fast Evaluation of Multi-source Star Twig Queries in RDBMS 117

Algorithm 4: The translateWhereNonJoin algorithm.
Input: An output expression r, a for clause item f , Cf
Output: An SQL query SQL

1 Initialize selectClause, fromClause, whereClause, optionClause;
2 dataS ← source(r.var);
3 for (i = 1 to |Cf |) do
4 c = Cf [i];
5 if (c is a condition on attribute) then
6 Generate SQL statements for fromClause and whereClause;
7 else
8 Add SQL statements to whereClause;

9 Add instance of PathsContent representing dataS to the fromClause;
10 if (i > 1) then
11 whereClause.add(evalTwig(c.absExp, Cf [i− 1].absExp));

12 Add instances of PathsContent to fromClause;
13 whereClause.add(evalTwig(r.absExp, c.absExp));
14 Add nId, docId to selectClause;
15 SQL = selectClause+ fromClause+ whereClause;
16 return SQL

level of r explicitly as it can be computed on-the-fly in a PM-based storage approach. It
is worth mentioning that the identifier scheme is not tightly coupled to any specific num-
bering scheme as any scheme that can uniquely identify nodes in an XML tree can be
used as an identifier. For instance, the preorder and dewey order values of nodes can be
used for region encoding and dewey number-based labeling schemes, respectively [6].

Given an output expression r ∈ R, the OutputExp2SQL algorithm depicted in Algo-
rithm 2 works as follows. First, the algorithm determines whether r involves an attribute
node (Line 02). If it does, then the algorithm retrieves the absolute path expression of its
parent node (Line 03). Otherwise, the absolute path expression of r is used (Line 05).
This expression is stored in the variable PathExp. Based on PathExp, a set of path ids is
retrieved from the Paths table (Line 06). Also, the algorithm computes the node level of
r using PathExp. Then the SQL query for materializing nodes satisfying r (PathU table)
is generated by exploiting the Paths, Attributes, and PathsContent relations.

Phase 3: WhereExp2SQL Translation. Here, we translate the where-expression into a
list of SQL queries. The result of each SQL query is stored in a temporary table that is an
instance of the relation TempTable(DocId, nId). This phase starts by distinguishing the
join and non-join expressions followed by invocation of the WhereExp2SQL algorithm
(Lines 04–05, Algorithm 1). Intuitively, for each pair of output expression r and an item
f of the for clause expressions it generates an SQL query. If r and f refer to the same
data source D then it generates a non-join query that evaluates the conditions specified
in the where-expression related to D. Otherwise, if r and f refer to different sources,
namely D1 and D2, respectively, then a join query is generated that satisfies the join
predicate(s) as well as non-join predicates on D2. For example, there are three pairs of

118 E. Leonardi, S.S. Bhowmick, and F. Li

Algorithm 5: The translateWhereJoin algorithm.
Input: An output node r, a for clause item f , Cf , J
Output: An SQL query SQL

1 Initialize selectClause, fromClause, whereClause, optionClause;
2 processExpressions(Cf);
3 i = |Cf |+ 1;
4 Jf ←J .getJoinExp(f);
5 Jr ←J .getJoinExp(r);
6 if (Jf ∩ Jr = ∅) then
7 processJoinExp(Jf .getS(), Jf .getT(), i, Cf [|Cf |].absExp);
8 processJoinExp(Jr .getS(), Jr .getT(), i, Cf [|Cf |].absExp);
9 else

10 Jx = Jf ∩ Jr;
11 processJoinExp(Jx.getS(), Jx.getT(), i, Cf [|Cf |].absExp);

12 i = i+ 1;
13 Add instances of PathsContent relation to fromClause;
14 whereClause.add(evalTwig(r.absExp, T.absExp));
15 Add nId, docId to selectClause;
16 SQL = selectClause+ fromClause+ whereClause;
17 return SQL

(r, f) in Q2, namely ($entry, $entry), ($entry, $interpro), and ($entry, $embl). Since
($entry, $entry) refers to the same data source (UNIPROT), the algorithm generates an
SQL query that retrieves those nodes in the PathU table (generated by Phase 2) that
satisfy the non-join predicates on UNIPROT. The results of this query is stored in an
instance of TempTable (denoted by T 1). On the other hand, data sources of ($entry,
$interpro) are not identical and hence a join query is generated that selects nodes from
PathU that satisfy the join predicate (Line 11 in Q2) and the conditions on INTERPRO

(Line 9). The results of this query is stored in the temporary table T 2.
The WhereExp2SQL algorithm is depicted in Algorithm 3. For each f ∈ F , first,

it retrieves Cf ⊆ C, where ∀c ∈ Cf c.var = f.var (Line 03). Then, it determines
whether r and f are bound to the same data source. If r.var = f.var, then join
across data sources is not necessary. In this case, the algorithm will invoke the trans-
lateWhereNonJoin algorithm (Line 05). Otherwise, it invokes the translateWhereJoin
algorithm (Line 07). The generated SQL query is stored in a variable called SQLList.
Lastly, an insert statement is appended to the generated SQL query so that the results
of the query can be directly stored in the temporary table. We now elaborate on the
translateWhereNonJoin and translateWhereJoin procedures.

The translateWhereNonJoin Algorithm. Given a pair of (r, f) representing the same
source, the translateWhereNonJoin algorithm (Algorithm 4) generates a non-join SQL

query. For each where-expression c ∈ Cf , the algorithm first checks whether c is spec-
ified on an attribute. If it is, then it will add SQL statements to the where and from
clauses of the translated SQL query by exploiting the Paths and Attributes relations
(Line 06). These statements retrieve path ids based on c.absExp satisfying the value

Stars on Steroids: Fast Evaluation of Multi-source Star Twig Queries in RDBMS 119

conditions on the attributes. If c is not specified on an attribute then these expressions
are added to the where clause (Line 08). If there are more than one conditions in Cf ,
then it represents a twig query pattern. Consequently, SQL statement for evaluating the
twig pattern is added using evalTwig procedure (Line 10). Next, the algorithm specifies
the condition between these expressions and r using evalTwig procedure (Line 11) as
we are interested in only those nodes that satisfy the output expression. The PathU table
is used for this purpose. The SQL query generated by the translateWhereExp algorithm
returns the identifiers of nodes satisfying r that satisfy expressions in Cf .

The translateWhereJoin Algorithm. Given a pair of (r, f) representing two different
sources, the translateWhereJoin algorithm (Algorithm 5) generates the join query. First,
the SQL fragment for evaluation of non-join conditions on the source represented by f
is generated as we are interested in those joinable nodes that satisfy the predicates on
this source. The steps for this are encapsulated in the processExpression function and
are same as the ones in Lines 03–11 of Algorithm 4. The next step is to general the
SQL fragment for the join expressions (Lines 04–11). First, the algorithm creates two
subsets of J , namely Jf and Jr, containing sets of join expressions involving the
sources of f and r, respectively (Lines 04–05). If (Jf ∩ Jr = ∅), then the algorithm
processes each of the join expressions by invoking the processJoinExp algorithm twice
(Lines 07–10). The functions getS and getT return the S and T components of a join
expression S op T , respectively (see Definition 1). Let us elaborate on this scenario
with an example. Consider a query Q that contains f.var ∈ {f1, f2, f3}. Let J in Q
contains two join expressions, namely S1 = T and S2 = T where S1, S2, and T are
path expressions representing three different data sources and contain f2.var, f3.var,
and f1.var, respectively. Let R = {r} where r.var = f3.var. Now consider the pair
(r, f2) in the context of Algorithm 5. Here Jf = {“S1 = T ”} and Jr = {“S2 = T ”}.
Since Jf ∩ Jr = ∅, Lines 07–08 are executed. In this case, the algorithm processes
the join between S1 and T first followed by the join between S2 and T . Note that there
is no join expression of the form “S1 = S2”. On the other hand, if (Jf ∩ Jr �= ∅),
then the algorithm will retrieve the common join expressions (denoted by Jx) between
Jf and Jr, and process them by invoking the processJoinExp procedure (Lines 11). To
elaborate further, consider the pair (r, f1) in the context of the above example. Here
Jf = Jr = {“S1 = T ”}. Hence, Line 11 is executed. The objective of processJoinExp
procedure is to generate the SQL fragments involving the join expressions. For each
join expression S op T , it checks the type of node (attribute or element) in S and
T and corresponding SQL fragments are added to where and from clauses. Lastly,
Algorithm 5 evaluates the twig fragment consisting of the join expression and the output
expression r using evaluateTwig procedure. Note that this procedure is similar to the
one discussed in the context of TranslateWhereNonJoin algorithm.

Phase 4: Final Results Generator. Finally, this phase generates a set of SQL queries
for retrieving the final results in two steps. The first step is to combine the results of SQL

queries generated in Phase 3 (Line 02). Note that the results of these queries can be com-
bined by performing intersection operation over them. The results of the SQL queries
generated in this step are sets of identifiers satisfying the output expression r stored
in the PathUFinal(DocId, nId) table. In the second step the algorithm retrieves complete

120 E. Leonardi, S.S. Bhowmick, and F. Li

QID Query

Q4

for $entry in fn:collection('UNIPROT')/uniprot/entry,
$interpro in fn:collection('INTERPRO')/interprodb/interpro

let $ref2Interpro := $entry/dbReference[@type="InterPro"]/@id
where $entry/keyword = 'Vision' and $entry/organism/name = 'Human'
and $interpro/pub_list/publication/journal = "Nature"
and $interpro/@id = $ref2Interpro

return $entry/gene;

Q6

declare namespace PDBx='http://deposit.pdb.org/pdbML/pdbx.xsd';
for $entry in fn:collection('UNIPROT')/uniprot/entry,

$pdb in fn:collection('PDB')/PDBx:datablock
let $ref2PDB := $entry/dbReference[@type="PDB"]/@id
where $entry/keyword = '3D-structure'
and $entry/organism/name = 'Human'
and $pdb/PDBx:citationCategory/PDBx:citation/PDBx:year = "2005"
and $pdb/PDBx:cellCategory/PDBx:cell/@entry_id = $ref2PDB

return $entry/sequence;

Q8

declare namespace PDBx='http://deposit.pdb.org/pdbML/pdbx.xsd';
for $entry in fn:collection('UNIPROT')/uniprot/entry,

$interpro in fn:collection('INTERPRO')/interprodb/interpro,
$pdb in fn:collection('PDB')/PDBx:datablock

let $ref2PDB := $entry/dbReference[@type="PDB"]/@id
let $ref2Interpro := $entry/dbReference[@type="InterPro"]/@id
where $entry/organism/name="Mouse"
and $interpro/pub_list/publication/journal = "Nature"
and $interpro/@id = $ref2Interpro
and $pdb/PDBx:citationCategory/PDBx:citation/PDBx:country = "US"
and $pdb/PDBx:cellCategory/PDBx:cell/@entry_id = $ref2PDB

return $entry;

Q5

for $entry in fn:collection('UNIPROT')/uniprot/entry,
$interpro in fn:collection('INTERPRO')/interprodb/interpro

let $ref2Interpro := $entry/dbReference[@type="InterPro"]/@id
where $entry/keyword = "Vision" and $entry/organism/name = "Human"
and $interpro/pub_list/publication/journal = "Nature"
and $interpro/pub_list/publication/year = "1990"
and $interpro/@id = $ref2Interpro

return $entry/gene;

Q7

declare namespace PDBx='http://deposit.pdb.org/pdbML/pdbx.xsd';
for $entry in fn:collection("UNIPROT")/uniprot/entry,

$interpro in fn:collection("INTERPRO")/interprodb/interpro,
$pdb in fn:collection("PDB")/PDBx:datablock

let $ref2PDB := $entry/dbReference[@type="PDB"]/@id
let $ref2Interpro := $entry/dbReference[@type="InterPro"]/@id
where $entry/organism/name="Human"
and $interpro/pub_list/publication/journal = "Nature"
and $interpro/pub_list/publication/year = "2000"
and $pdb/PDBx:citationCategory/PDBx:citation/PDBx:country = "UK"
and $pdb/PDBx:citationCategory/PDBx:citation/PDBx:year = "2002"
and $interpro/@id = $ref2Interpro
and $pdb/PDBx:cellCategory/PDBx:cell/@entry_id = $ref2PDB
return $entry/gene;

2

2

of
Results

31

1

13

QID Query # of
Results

Fig. 3. Query set

SX
XDB2

Q4
18.23

130.80

Q5
17.94

131.35

Q8
19.26

104.73

Q7
18.46

112.77

Q6
3.34

128.08

Q3
16.48

259.83

Q1
35.62

1,421.16

Q2
24.47

238.73

Fig. 4. Query evaluation times (in sec.)

information related to these nodes (remaining attributes in PathsContent) for generating
the final result. Specifically, it generates an SQL query by joining the PathUFinal and
PathsContent tables. The results are sorted in document order.

Theorem 1. Let Q = (F ,L,W ,R) be a multi-source star twig query involving n
different data sources. Then, the total number of SQL queries generated from Q is
(n + k) where (a) if the output expression r ∈ R does not contain attribute node then
k = 3; (b) Otherwise, k = 4. �

Due to space constraints, the proof is given in [10].

5 Experimental Results

Prototype for star query evaluation system was implemented on top of a PM-based XML

database system called SUCXENT++ [14] (denoted by SX) using Java JDK 1.6. The
experiments were conducted on an Intel machine with Core2 Duo E6550 2.33GHz pro-
cessor and 3.25GB RAM. The operating system was Windows XP Professional SP3. The
RDBMS used was MS SQL Server 2005 Developer Edition.

We compare our approach to the native XML support of IBM DB2 v9.5 (denoted by
XDB2). XML support of IBM DB2 is also used as performance benchmark in [7]. For SX

and XDB2, appropriate indexes were created [10]. Prior to our experiments, we ensure
that statistics had been collected. The bufferpool of the RDBMS was cleared before
each run. The queries in SX were executed in the reconstruct mode where not only the
internal nodes are selected, but also all descendants of those nodes. Each query was
executed 6 times and the results from the first run were always discarded. For XDB2,
we use the db2batch Benchmark Tool provided by the system. All rows were fetched
from the answer set; however, they were not sent to output.

Stars on Steroids: Fast Evaluation of Multi-source Star Twig Queries in RDBMS 121

QID

Z1

Query

for $entry in fn:collection('UNIPROT')/uniprot/entry, $interpro in fn:collection('INTERPRO')/interprodb/interpro
where $entry/keyword = ' ' and $entry/organism/lineage/taxon = ' '

and $interpro/pub_list/publication/journal = "The Journal"
and $interpro/@id = $entry/dbReference[@type="InterPro"]/@id

return $entry/name;

Z2

for $entry in fn:collection('UNIPROT')/uniprot/entry, $interpro in fn:collection('INTERPRO')/interprodb/interpro
where $entry/keyword = ' ' and $entry/organism/lineage/taxon = ' '

and $entry/gene/name= ' ' and $interpro/pub_list/publication/journal = "The Journal"
and $interpro/@id = $entry/dbReference[@type="InterPro"]/@id

return $entry/name;

Z3

for $entry in fn:collection('UNIPROT')/uniprot/entry, $interpro in fn:collection('INTERPRO')/interprodb/interpro
where $entry/keyword = ' ' and $entry/organism/lineage/taxon = ' '

and $entry/gene/name= ' ' and $entry/reference/citation/authorList/person/@name = ' '
and $interpro/pub_list/publication/journal = "The Journal"
and $interpro/@id = $entry/dbReference[@type="InterPro"]/@id

return $entry/name;

QID

Y1

Query

for $entry in fn:collection('UNIPROT')/uniprot/entry, $interpro in fn:collection('INTERPRO')/interprodb/interpro
where $interpro/@id = $entry/dbReference[@type="InterPro"]/@id

and $entry/organism/lineage/taxon = 'The Taxon'
and $interpro/pub_list/publication/journal = ' ' and $interpro/pub_list/publication/year = ' '

return $entry/name ;

Y2

for $entry in fn:collection('UNIPROT')/uniprot/entry, $interpro in fn:collection('INTERPRO')/interprodb/interpro
where $interpro/@id = $entry/dbReference[@type="InterPro"]/@id
and $entry/organism/lineage/taxon = 'The Taxon' and $interpro/pub_list/publication/journal = ' '
and $interpro/pub_list/publication/year = ' '
and $interpro/taxonomy_distribution/taxon_data/@name = ' '

return $entry/name ;

(b) Query Set 1 (d) Query Set 2

14MB 140MB 1.4GB
K 5 - 500 50 – 5,000 500 – 50,000

500KB 5MB 50MB
K 10 - 75 100 - 750 1,000 – 7,500

(a) Values of K (1) (c) Values of K (2)
TaxonKeyword

Keyword Taxon
Gene

Keyword Taxon
Gene Person

Year
Taxon

Journal

YearJournal

Fig. 5. Synthetic query sets and the K parameter

declare namespace PDBx='http://deposit.pdb.org/pdbML/pdbx.xsd';
for $entry in fn:collection('UNIPROT')/uniprot/entry,

$interpro in fn:collection('INTERPRO')/interprodb/interpro,
$pdb in fn:collection('PDB')/PDBx:datablock

where $entry/keyword = ' '
and $entry/organism/lineage/taxon = ' '
and $interpro/pub_list/publication/journal = "The Journal"
and $interpro/@id = $entry/dbReference[@type="InterPro"]/@id
and $pdb/PDBx:cellCategory/PDBx:cell/@entry_id = $entry/dbReference[@type="PDB"]/@id

return $entry/name;

QID

W1

Query

W2

declare namespace PDBx='http://deposit.pdb.org/pdbML/pdbx.xsd';
for $entry in fn:collection('UNIPROT')/uniprot/entry,

$interpro in fn:collection('INTERPRO')/interprodb/interpro,
$pdb in fn:collection('PDB')/PDBx:datablock

where $entry/keyword = ' '
and $entry/organism/lineage/taxon = ' '
and $entry/gene/name= ' '
and $interpro/pub_list/publication/journal = "The Journal"
and $interpro/@id = $entry/dbReference[@type="InterPro"]/@id
and $pdb/PDBx:cellCategory/PDBx:cell/@entry_id = $entry/dbReference[@type="PDB"]/@id

return $entry/name;

W3

declare namespace PDBx='http://deposit.pdb.org/pdbML/pdbx.xsd';
for $entry in fn:collection('UNIPROT')/uniprot/entry,

$interpro in fn:collection('INTERPRO')/interprodb/interpro,
$pdb in fn:collection('PDB')/PDBx:datablock

where $entry/keyword = ' '
and $entry/organism/lineage/taxon = ' '
and $entry/gene/name= ' '
and $entry/reference/citation/authorList/person/@name = ' '
and $interpro/pub_list/publication/journal = "The Journal"
and $interpro/@id = $entry/dbReference[@type="InterPro"]/@id
and $pdb/PDBx:cellCategory/PDBx:cell/@entry_id = $entry/dbReference[@type="PDB"]/@id

return $entry/name;

Keyword

Keyword
Taxon

Gene

Keyword
Taxon

Gene
Person

Taxon

declare namespace PDBx='http://deposit.pdb.org/pdbML/pdbx.xsd';
for $entry in fn:collection('UNIPROT')/uniprot/entry, $interpro in fn:collection('INTERPRO')/
interprodb/interpro, $pdb in fn:collection('PDB')/PDBx:datablock,

$embl in fn:collection('EMBL')/EMBL_Services/entry
where $entry/keyword = ' '

and $entry/organism/lineage/taxon = ' '
and $interpro/pub_list/publication/journal = "The Journal"
and $interpro/@id = $entry/dbReference[@type="InterPro"]/@id
and $pdb/PDBx:cellCategory/PDBx:cell/@entry_id = $entry/dbReference[@type="PDB"]/@id
and $embl/@accession = $entry/dbReference[@type="EMBL"]/@id

return $entry/name;

QID

V1

Query

V2

declare namespace PDBx='http://deposit.pdb.org/pdbML/pdbx.xsd';
for $entry in fn:collection('UNIPROT')/uniprot/entry,

$interpro in fn:collection('INTERPRO')/interprodb/interpro,
$pdb in fn:collection('PDB')/PDBx:datablock,
$embl in fn:collection('EMBL')/EMBL_Services/entry

where $entry/keyword = ' '
and $entry/organism/lineage/taxon = ' '
and $entry/gene/name= ' '
and $interpro/pub_list/publication/journal = "The Journal"
and $interpro/@id = $entry/dbReference[@type="InterPro"]/@id
and $pdb/PDBx:cellCategory/PDBx:cell/@entry_id = $entry/dbReference[@type="PDB"]/@id
and $embl/@accession = $entry/dbReference[@type="EMBL"]/@id

return $entry/name;

Keyword

Keyword
Taxon

Gene

Taxon

(a) Query Set 3

V3

declare namespace PDBx='http://deposit.pdb.org/pdbML/pdbx.xsd';
for $entry in fn:collection('UNIPROT')/uniprot/entry, $interpro in fn:collection('INTERPRO')/
interprodb/interpro, $pdb in fn:collection('PDB')/PDBx:datablock,

$embl in fn:collection('EMBL')/EMBL_Services/entry
where $entry/keyword = ' ' and $entry/organism/lineage/taxon = ' '

and $entry/gene/name= ' '
and $entry/reference/citation/authorList/person/@name = ' '
and $interpro/pub_list/publication/journal = "The Journal"
and $interpro/@id = $entry/dbReference[@type="InterPro"]/@id
and $pdb/PDBx:cellCategory/PDBx:cell/@entry_id = $entry/dbReference[@type="PDB"]/@id
and $embl/@accession = $entry/dbReference[@type="EMBL"]/@id

return $entry/name;

Keyword Taxon
Gene

Person

(b) Query Set 4

Fig. 6. Synthetic query sets

We would also like to observe how “far off” our approach is from one of the fastest
XQuery processor (MONETDB/XQuery [2]). Hence, we used the Windows version of
MONETDB/XQuery 0.24.0 (denoted as MX) downloaded from monetdb.cwi.nl/
XQuery/Download/index.html (Win32 builds) for our study.

5.1 Query Evaluation Times on Real Datasets

In our experiments, we used real datasets from life sciences domain as star twig queries
are prevalent in this domain. Specifically, we use the XML representations of UNIPROT,
PDB, INTERPRO, and EMBL downloaded from their official websites. The features of
these datasets are given in Figure 2(a). We chose eight multi-source star twig queries
as shown in Figures 1 and 3 that join up to four data sources, and have between three
to nine expressions in the where clause. We transform these queries to our model
(Section 3) if necessary. Observe that the queries are highly selective (small result size).

monetdb.cwi.nl/XQuery/Download/index.html
monetdb.cwi.nl/XQuery/Download/index.html

122 E. Leonardi, S.S. Bhowmick, and F. Li

K=5 K=50 K=250 K=500 K=5 K=50 K=250 K=500 K=5 K=50 K=250 K=500
SX 0.52 0.53 0.54 0.58 0.52 0.54 0.58 0.57 0.78 0.79 0.81 0.83
XDB2 1.95 1.75 2.71 3.03 1.51 1.63 2.33 2.61 2.54 2.75 3.44 3.72
MX 7.47 7.52 7.89 8.33 7.48 7.56 8.08 8.53 7.56 7.89 9.38 10.61
MX-R 0.06 0.09 0.11 1.39 0.06 0.08 0.09 1.30 0.13 0.11 0.14 0.16

Z1 Z2 Z3
K=50 K=500 K=2,500 K=5,000 K=50 K=500 K=2,500 K=5,000 K=50 K=500 K=2,500 K=5,000

SX 2.38 2.45 2.46 2.49 2.69 2.66 2.72 2.76 4.75 4.82 4.99 4.99
XDB2 13.92 18.59 201.98 393.95 12.92 16.79 40.38 67.18 40.10 45.51 56.00 72.37
MX
MX-R 0.25 11.25 59.39 114.50 0.27 11.53 59.45 114.66 0.27 11.69 61.00 117.17

GDKmallocmax Error

Z1 Z2 Z3

K=500 K=5,000 K=25,000 K=50,000 K=500 K=5,000 K=25,000 K=50,000 K=500 K=5,000 K=25,000 K=50,000
SX 27.96 28.20 46.76 47.90 19.17 18.97 19.99 40.04 45.06 45.99 63.45 65.94
XDB2 137.31 175.24 542.73 DNF 138.27 608.10 521.33 DNF 724.47 740.36 1,106.22 DNF

Z1 Z2 Z3

(a) UNIPROT (14 MB) (b) UNIPROT (140 MB)

(c) UNIPROT (1400 MB)

K=10 K=50 K=75 K=10 K=50 K=75
SX 1.87 1.86 1.87 1.88 1.90 1.91
XDB2 13.15 15.68 18.22 12.94 15.87 15.46
MX 0.80 0.78 0.78 0.80 0.80 0.80
MX-R 1.83 7.48 10.81 2.55 10.39 10.69

Y1 Y2

(d) INTERPRO (500KB)

K=100 K=500 K=750 K=100 K=500 K=750
SX 2.60 2.74 2.80 2.70 2.76 2.78
XDB2 19.82 48.77 62.89 19.47 48.50 49.84
MX 0.89 0.90 0.89 0.89 0.92 0.91
MX-R 18.25 22.20

Y1 Y2

GDKMallocmax ErrorGDKMallocmax Error

(e) INTERPRO (5MB)

K=1,000 K=5,000 K=7,500 K=1,000 K=5,000 K=7,500
SX 5.72 6.40 6.83 6.01 6.74 6.85
XDB2 87.77 381.34 564.97 87.20 383.47 462.89
MX 1.34 1.41 1.42 1.40 1.44 1.48
MX-R

Y1 Y2

GDKmallocmax Error

(f) INTERPRO (50MB)

Fig. 7. Query evaluation times (in sec.)

Figure 4 depicts the query evaluation times of SX and XDB2. Note that we did not show
any results of MX as it is vulnerable to the virtual memory fragmentation in Windows
environment. Consequently, it failed to shred UNIPROT XML (1.4GB in size). Observe
that SX significantly outperforms XDB2 for all queries.

5.2 Query Evaluation Times on Synthetic Datasets

The main objective here is to study the effects of the size of intermediate results on the
query evaluation times. In the sequel, the symbol DNF means that the query evaluation
did not finish in 30 mins. We compare SX, XDB2, and MX. Note that due to the GD-
Kmallocmax error in MX for some queries, we rewrote all queries in MX into sequential
ones3. In sequential queries, non-join expressions are specified as qualifiers in path ex-
pressions of for clause items instead of specifying them in the where clause. In the
sequel, we denote the MONETDB system with the rewritten queries as MX-R. We use
UNIPROT and INTERPRO datasets and modified them (discussed below) so that the size
of intermediate results can be controlled. We set UNIPROT as the output data source.

Varying Intermediate Results of UNIPROT. We vary the size of UNIPROT docu-
ments from 14MB to 1.4GB and fix the size of INTERPRO dataset to 50MB. We con-
trol the intermediate result size by varying the number of subtrees (denoted as K) that
matches a non-join twig query in the XML document(s). The variation of K for differ-
ent dataset sizes is depicted Figure 5(a). Figure 5(b) depicts the query set used in this
set of experiments. These queries are chosen by varying the number of predicates on
UNIPROT dataset from 2 to 4. We vary the result size of the highlighted predicates in
the where clause. For instance, in Z1 we vary the number of subtrees (K) returned
by the following non-join twig condition: $entry/keyword =‘Keyword’ and
$entry/organism/lineage/taxon =‘Taxon’.

Figures 7(a)–(c) show the query evaluation times. Note that we do not compare MX

and MX-R in Figure 7(c) as it is vulnerable to the virtual memory fragmentation. We
can make the following observations. Firstly, the cost of query evaluation increases

3 This error occurred because the system cannot allocate certain amount of memory specified in
the error message.

Stars on Steroids: Fast Evaluation of Multi-source Star Twig Queries in RDBMS 123

K=500 K=5,000 K=25,000 K=50,000 K=500 K=5,000 K=25,000 K=50,000 K=500 K=5,000 K=25,000 K=50,000

SX 26.62 26.92 27.19 27.67 27.42 27.86 28.83 30.67 57.10 57.41 59.05 60.20
XDB2 112.48 109.98 186.45 258.44 109.63 114.19 118.30 244.75 739.66 1,072.99 DNF 719.55

W1 W2 W3

(a) 3 Data Sources (UNIPROT, INTERPRO, and PDB)

(b) 4 Data Sources (UNIPROT, INTERPRO, PDB, and EMBL)

K=500 K=5,000 K=25,000 K=50,000 K=500 K=5,000 K=25,000 K=50,000 K=500 K=5,000 K=25,000 K=50,000

SX 34.85 35.23 35.73 35.99 35.63 35.84 36.57 37.94 65.70 65.41 67.85 68.65

XDB2 174.02 203.20 243.35 314.38 206.53 514.75 DNF 309.52 833.56 1,131.97 DNF 1,004.22

V1 V2 V3

Fig. 8. Query evaluation times (1.4GB UNIPROT (in sec.))

with the size of intermediate results for all approaches. Secondly, SX performs better
than XDB2 for all queries. For instance, SX is 158 times faster than XDB2 for Z1 when
K = 5, 000 (Figure 7(b)). Thirdly, for certain queries SX is faster than MONETDB! It
is faster than MX for all queries for 14MB dataset (highest observed factor being 14.8
times). On the other hand, MX-R is faster than SX for 13 out of 24 queries (highest
observed factor being 17.9 times). Interestingly, SX outperforms MX-R for remaining
queries (up to 46 times faster). We also observe that rewriting the queries to sequential
ones in MONETDB performs better than MX and it can evaluate queries that previously
cannot be evaluated by MX.

Varying Intermediate Results of INTERPRO. We now fix the UNIPROT dataset size to
140MB and vary the INTERPRO document sizes from 500KB to 50MB. The values of K
for this set of experiments are depicted Figure 5(c). Figure 5(d) presents the query set.
The numbers of predicates on INTERPRO dataset are set to 2 and 3 for Y1 and Y2, re-
spectively. Figures 7(d)–(f) depict the query evaluation times. Similar to above results,
SX is faster than XDB2 for all queries (highest observed factor being 82.7 times). How-
ever, MX performs better than SX for all queries (up to 4.8 times faster). Interestingly,
we observe that MX-R cannot evaluate 10 out of 18 queries because of GDKmallocmax
error. For the remaining queries, SX outperforms MX-R for 7 out of 8 queries (high-
est observed factor being 8.2 times). Hence, it is evident that rewriting XQueries to
sequential ones in MONETDB may not always be a beneficial strategy.

Varying Number of Data Sources. Next, we vary the number of data sources involved
in joins. Note that this also varies the number of sub-queries generated during the eval-
uation (Theorem 1). In addition, we also vary the intermediate result size of nodes
(subtrees) of UNIPROT satisfying output expressions as depicted in Figure 5(a). We
used query sets shown in Figures 6(a) and (b) joining three and four data sources, re-
spectively. Figure 8 shows the evaluation times of queries in Figures 6(a) and (b). Note
that we do not compare MX and MX-R in Figure 8 due to virtual memory fragmentation
problem. Notice that SX is faster than XDB2 for all queries. Furthermore, the number of
data sources involved in the join influences the query evaluation time in all approaches.

Evaluation Times of Sub-queries. The above results confirm the strengths of our ap-
proach. We now explore further the reasons behind such superior performance by in-
vestigating the contributions made by individual sub-queries to the execution costs of
the translated SQL queries. We chose Z2 and Y2 as our test queries. The translated SQL

query of Z2 and Y2 each consists of five sub-queries (denoted as SQ1 to SQ5). SQ1

124 E. Leonardi, S.S. Bhowmick, and F. Li

(a) Query Z2

K SQ1 SQ2 SQ3 SQ4 SQ5
5 56.52 226.58 330.18 55.60 42.80

50 72.52 222.68 321.56 55.42 45.84
250 71.34 256.18 319.34 83.48 55.64
500 64.12 237.80 325.14 67.68 46.14
50 156.28 520.82 1,742.60 88.56 60.30

500 164.00 584.10 1,757.82 80.56 57.34
2,500 173.24 605.90 1,758.32 89.94 58.66
5,000 165.24 689.78 1,808.28 105.12 87.34

500 875.16 4,056.80 13,853.94 268.02 95.22
5,000 869.68 4,315.80 13,910.64 312.50 123.16

25,000 919.72 5,025.02 13,967.08 416.80 261.66
50,000 881.08 7,167.38 13,836.18 434.72 16,405.90

14
MB

140
MB

1.4
GB

K SQ1 SQ2 SQ3 SQ4 SQ5
10 183.26 433.04 1,123.62 102.64 49.94
50 180.40 415.78 1,143.44 128.68 52.94
75 194.64 395.96 1,131.92 107.14 50.14

100 282.58 423.86 2,055.20 107.60 71.80
500 213.32 496.96 2,388.94 162.18 140.48
750 216.88 431.32 2,417.62 119.38 84.56

1,000 199.18 527.22 5,628.48 171.40 164.66
5,000 198.84 524.28 6,234.62 175.98 147.58
7,500 203.76 535.20 6,387.98 183.88 150.80

5
MB

50
MB

500
KB

(b) Query Y2

Fig. 9. Sub-queries evaluation times of Z2 and Y2 (in msec)

is used to fetch the identifiers of the output nodes (Phase 1). SQ2 and SQ3 materialize
the results for non-join and join expressions (Phase 3). The PathUFinal relation is gen-
erated by SQ4. SQ5 retrieves the complete subtrees including the necessary attributes
for reconstruction and all the descendant node if the output node is an internal node. We
evaluate the evaluation time of each sub-query using SX as shown in Figure 9. Observe
that relatively the most expensive query is SQ3 for both cases. However, the evaluation
time is still below 15s (significantly lower than the evaluation times of XDB2). On the
other hand, SQ1, SQ2, SQ4, and SQ5 are highly efficient for almost all cases. This
is primarily due to (a) efficient support of twig pattern evaluation in a PM-based XML

storage approach, (b) space-efficient storage of intermediate results of the queries, and
(c) small queries are less likely to stress the query optimizer.

6 Conclusions and Future Work

In this paper, we take a non-traditional approach in evaluating multi-source star twig
queries on top of a path-based tree-unaware XML database. Rather than generating one
huge complex SQL query, we translate a star query into a list of SQL queries. This is
surprising, because when only one SQL query is generated, it has the greatest potential
for optimization by the RDBMS. We showed that by materializing only minimal infor-
mation of underlying XML subtrees as intermediate results we can “turbo-charge” star
query processing. Though not elaborated in this paper, it is easy to see that our ap-
proach is also applicable to a host of XML databases using relational backend as well as
wide varieties of complex XML queries. Our results showed that our proposed technique
has excellent real-world performance, outperforming XML join support of DB2 for
many queries. Although MONETDB/XQuery [2] is one of the fastest XQuery processor,
surprisingly, our results show that our scheme outperforms it for several queries. As
part of future work, we would like to extend our approach to larger subset of XML

queries.

Stars on Steroids: Fast Evaluation of Multi-source Star Twig Queries in RDBMS 125

References

1. W3C. XQuery 1.0 Grammar Test Page (2005), http://www.w3.org/2005/
qt-applets/xqueryApplet.html

2. Boncz, P., Grust, T., et al.: MonetDB/XQuery: A Fast XQuery Processor Powered by a Re-
lational Engine. In: SIGMOD (2006)

3. Brantner, M., Kanne, C.-C., Moerkotte, G.: Let a Single FLWOR Bloom (to improve XQuery
plan generation). In: XSym Workshop (2007)

4. Deutsch, A., Tannen, V.: MARS: A System for Publishing XML from Mixed and Redundant
Storage. In: VLDB (2003)

5. Fernandez, M., Morishima, A., Suciu, D.: Efficient Evaluation of XML Middle-ware Queries.
In: SIGMOD (2001)

6. Gou, G., Chirkova, R.: Efficiently Querying Large XML Data Repositories: A Survey. IEEE
TKDE 19(10) (2007)

7. Grust, T., Rittinger, J., Teubner, J.: Why Off-the-Shelf RDBMSs are Better at XPath Than
You Might Expect. In: SIGMOD (2007)

8. Grust, T., Sakr, S., Teubner, J.: XQuery on SQL Hosts. In: VLDB (2004)
9. Krishnamurthy, R., Kaushik, R., Naughton, J.F.: Efficient XML-to-SQL Query Translation

Literature: State of the Art and Open Problems. In: XSym (2003)
10. Leonardi, E., Bhowmick, S.S., Li, F.: Fast Evaluation of Multi-source Star Twig Queries in a

Path Materialization-based xml Database. Technical Report (2010), http://www.cais.
ntu.edu.sg/˜assourav/TechReports/StarJoin-TR.pdf

11. Manolescu, I., Florescu, D., Kossmann, D.: Answering XML Queries over Heterogeneous
Data Sources. In: VLDB (2001)

12. O’Neal, P., O’Neal, E., Pal, S., et al.: ORDPATHs: Insert-Friendly XML Node Labels. In:
SIGMOD (2004)

13. Pal, S., Cseri, I., Seeliger, O., et al.: XQuery Implementation in a Relational Database Sys-
tem. In: VLDB (2005)

14. Seah, B.-S., Widjanarko, K.G., Bhowmick, S.S., Choi, B., Leonardi, E.: Efficient Support for
Ordered XPath Processing in Tree-Unaware Commercial Relational Databases. In: Kotagiri,
R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS,
vol. 4443, pp. 793–806. Springer, Heidelberg (2007)

15. Shanmugasundaram, J., Tufte, K., et al.: Relational Databases for Querying XML Documents:
Limitations and Opportunities. In: VLDB (1999)

16. Shanmugasundaram, J., Kiernan, J., et al.: Querying XML Views of Relational Data. In:
VLDB (2001)

http://www.w3.org/2005/qt-applets/xqueryApplet.html
http://www.w3.org/2005/qt-applets/xqueryApplet.html
http://www.cais.ntu.edu.sg/~assourav/TechReports/StarJoin-TR.pdf
http://www.cais.ntu.edu.sg/~assourav/TechReports/StarJoin-TR.pdf

	Stars on Steroids: Fast Evaluation of Multi-source Star Twig Queries in RDBMS
	Introduction
	Related Work
	Multi-source Star Twig Pattern
	Multi-source Twig Pattern
	Star Twig Pattern

	Star Twig Query Evaluation
	Experimental Results
	Query Evaluation Times on Real Datasets
	Query Evaluation Times on Synthetic Datasets

	Conclusions and Future Work

