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Abstract. Recently, in [3, 9] a novel XML query processing paradigm was pro-
posed, where instead of processing a visual XML query after its construction, it
interleaves query formulation and processing by exploiting the latency offered by
the GUI to filter irrelevant matches and prefetch partial query results. A key ben-
efit of this paradigm is significant improvement of the user waiting time (UWT),
which refers to the duration between the time a user presses the “Run” icon to the
time when the user gets the query results. However, the current state-of-the-art ap-
proach that realizes this paradigm suffers from key limitations such as inability to
correctly evaluate certain visual query conditions together when necessary, large
intermediate results space, and inability to handle visual query modifications,
limiting its usage in practical environment. In this paper, we present a RDBMS-
based single as well as multi-source XML twig query evaluation algorithm, called
MUSTBLEND (MUlti-Source Twig BLENDer), that addresses these limitations.
A key practical feature of MUSTBLEND is its portability as it does not employ
any special-purpose storage, indexing, and query cost estimation schemes. Exper-
iments on real-world datasets demonstrate its effectiveness and superiority over
existing methods based on the traditional paradigm.

1 Introduction

Formulating XML queries using XPath or XQuery languages often demand consider-
able cognitive effort from the end users and require “programming” skills that is at
least comparable to SQL [1, 7]. The traditional approach to address this challenge of
query formulation is to build an intuitive and user-friendly visual framework [4] on
top of a state-of-the-art XML database. Figure 1 depicts an example of such a visual
interface. Although query formulation now becomes significantly easier, evaluation of
XQuery queries (especially over multiple data sources) on existing XML supports pro-
vided by commercial RDBMSs is often slow. To get a better understanding of this prob-
lem, we experimented with the datasets and queries in Figure 21. Figure 2(c) shows the
query evaluation times on XML-extended relational engines of two popular commercial
RDBMS. Due to legal restrictions, these systems are anonymously identified as XSys-A
and XSys-B in the sequel. Observe that most queries either take more than 30 minutes
to evaluate (denoted by DNF in the paper) or are not supported by (denoted by NS) the
underlying RDBMS. Note that the query evaluation time in a visual querying framework

1 For the time being, the reader may ignore the bold underlined text and the identifiers in braces.
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Fig. 1. Visual interface of MUSTBLEND

is identical to the user waiting time (UWT), which refers to the duration between the
time a user clicks on the “Run” icon to the time when she gets the query results.

A Novel Visual Querying Paradigm. To resolve the issue of unusually long UWT of
many XML queries, in [3,9] we took the first step towards exploring a novel XML query
processing paradigm on top of a relational framework by blending the two tradition-
ally orthogonal steps, namely visual query formulation and query processing. Let us
illustrate this paradigm with an example. Consider the XML document in Figure 3(a).
Suppose a user wishes to retrieve the name elements of entries (entry/name) that are
related to the “human” organism (organism/name) and are created (@created) in
“2001”. Using the visual interface in Figure 1, one can formulate the query as follows.
(a) Step 1: Select the entry/name from Panel 1 to Panel 2 as output expression. Note
that Panel 1 depicts the structural summary of the XML data sources. (b) Step 2: Select
the created attribute from Panel 1, drag it to Panel 3, and add the value predicate
“2001”. (c) Step 3: Select the name of organism from Panel 1, drag it to Panel 3,
and add the predicate “human”. (d) Step 4: Click on the “Run” icon.

If we rely on traditional query processing paradigm, then the query evaluation is only
initiated after Step 4. Although the final query that a user intends to pose is revealed
gradually in a step-by-step manner during query construction (Steps 1 to 3), it is not
exploited by the query processor prior to clicking of the “Run” icon. In contrast, in
the new paradigm query construction and query processing are interleaved to prune
false results and prefetch partial query results by exploiting the latency offered by the
GUI-based query formulation (processing starts immediately after Step 1).

The key benefits of the new paradigm are as follows. First, since a complex XQuery
query is evaluated by a set of smaller queries (to retrieve partial results), this new
paradigm is less likely to stress the query optimizer compared to a single complex
XQuery in traditional paradigm. Second, it significantly improves the UWT for many
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Fig. 2. Query evaluation times of representative queries

queries. Since we initiate query processing during query construction, UWT is the time
taken to process a part of the query that is yet to be evaluated (if any).

Related Work and Motivation. Despite these appealing benefits of the new paradigm,
the approach presented in [3,9] suffers from the following limitations. Firstly, it was de-
signed only for queries in which every condition a user draws on the query canvas need
to be processed independently. For example, the conditions drawn in Steps 2 and 3 in
the above query can be independently matched against the database and the final query
results can be computed by identifying common nodes in the partial results of these two
conditions. However, this framework fail to correctly handle queries where conditions
may need to be evaluated together. Consider the XML document in Figure 3(b). Suppose
we wish to retrieve the names of proteins (interpro/name) that appear in the “Na-
ture” journal (journal element) in “2000” (year). Independent evaluation of these
two conditions as above will return the rightmost interpro/name element (“Car-
boxyl transferase”). However, it is associated with two different
publication elements instead of a single one containing “Nature” and “2000”.
Hence in order to retrieve correct results, these two conditions must be evaluated to-
gether. Secondly, [3, 9] retrieves and materializes entire subtrees satisfying matching
conditions drawn by users. However, this may adversely affect the overall prefetch-
ing performance in many cases due to the size of intermediate results. Thirdly, the
new paradigm should be efficient and robust even when modifications (e.g., deletion
or update of conditions) are committed by users during query formulation . Systematic
investigation of how it handle such query modifications was beyond the goal of the
aforementioned study. In this work, we seek to overcome these central limitations by
proposing a novel algorithm called MUSTBLEND on top of a relational framework.
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2 Visual Twig Query Model

We begin by introducing the twig query model which we support in this paper and the
visual interface to formulate such queries.

2.1 Multi-Source Twig (MUST) Pattern

Most XML processors, both native and relational, have overwhelmingly focused on
single-source AND-twig queries modeled as a twig pattern tree [6]. A single-source
twig query is evaluated on a set of documents represented by a single XML schema or
DTD. Jiang et al. [8] extended the notion of such AND-twig queries to process twigs
with both AND and OR operators. Hence, at the very least, our query model should
support such queries. Additionally, as discussed in Section 1, our query model should
support queries over multiple data sources using joins. We refer to such twig queries as
multi-source twig (MUST) patterns.

A MUST pattern Q is a graph with four types of nodes: location step query node
(QNode), logical-AND node (ANode), logical-OR node (ONode), and return node
(RNode). Each Q has a single node of type RNode which represents the output node.
While labels of ANode and ONode are always “AND” and “OR” respectively, QNodes’
and RNodes’ labels are tags. An edge in Q can be of two types, namely, axes edge
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and join edge. The former represents parent-child or attribute relationship 2 between a
pair of nodes belonging to the same source whereas the latter connects two nodes from
two different sources. Specifically, a join edge (q1, q2) asserts that q1 and q2 have equal
value3. For example, Figure 4(a) shows the MUST pattern representation of the query
Q2 in Figure 2(a). We denote the RNode by underlined tag (e.g., name); and axes and
join edges as direct and dashed lines, respectively.

Representing MUST Pattern Using XQuery. Observe that the aforementioned MUST

pattern can be represented as an XQuery query. A MUST queryQ is a 3-tuple (F ,W ,R)
where F is a set of for clause items, W is a set of predicates in DNF in the where
clause, and R contains the output expression specified in the return clause. Specifi-
cally, the syntax of Q is as follows.

FOR $x1 in p1, . . . , $xn in pn
WHERE (a1 ∧ a2 ∧ . . . ∧ ak) ∨ . . . ∨ (c1 ∧ c2 ∧ . . . ∧ cm)
RETURN r

We categorize the where-expressions in W into two types, namely join expressions and
non-join expressions. A join expression captures the join edge in a MUST pattern and
involves predicates expressing join conditions over two document sources. On the other
hand, a non-join expression expresses a filtering condition on a single document source.
In the sequel, we refer to each expression in W as condition. Finally, the return clause
has a single output expression r (RNode).

Extension of Query Model. The MUSTBLEND framework can easily support a variety
of XPath axis and qualifiers as long as the underlying XML engine can support their
evaluation. For instance, if a user visually specifies a path expression containing AD
and preceding axis at a particular formulation step, then this visual action will be
translated to a corresponding SQL statement by MUSTBLEND and forwarded to the
underlying query engine for execution. Having said this, we would like to stress that a
wide variety of XML queries are not easy to formulate even visually as it requires a deep
understanding of the language which many end-users do not possess. It is of paramount
importance to balance expressiveness and usability in MUSTBLEND as compromising
the latter will render it impractical to end-users in a wide variety of domains [7].

2.2 Visual Query Interface

Figure 1 depicts the screen dump of the current version of the path-based visual inter-
face of MUSTBLEND. The left panel (Panel 1) displays the XML structural summary
(discussed later) of different XML data sources. When the users drag a node from Panel
1, the path expression corresponding to this node is automatically built. To formulate
a query, the users first specify the output expression r (return node) by dragging that
path expression from Panel 1 and dropping it to Panel 2. The Visual Query Designer

2 We consider XPath navigation only along the child (/) and attribute (/@) axes. Exten-
sion to other navigation axis is orthogonal to the proposed technique.

3 MUSTBLEND only supports equality join condition but inequality join condition can be sup-
ported easily.
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panel (Panel 3) depicts the area for formulating query conditions. To build a non-join
condition, the users drop a path expression in this panel. A Condition Dialog will ap-
pear for users to fill in all remaining information (op, val). If the dropped expression’s
data source is different from the output expression’s data source, another dialog will
appear for users to build the join edge between the two data sources. The user may drop
a new condition on an existing condition in Panel 3 in order to indicate her intention to
consider these two conditions together. Otherwise, she may drop the new condition on a
blank space to indicate that it is independent of existing conditions. Two or more condi-
tions can be combined using AND/OR (default is AND) connectives. The circular nodes
in Figure 1 are color coded to represent AND (red) or OR (yellow) connectives. A satel-
lite view (Panel 4) is provided with zooming functionality for more user-friendliness.
The user can execute the query by clicking on the “Run” icon. The Results View (Panel
5) displays the query results.

3 Blending Visual Query Formulation and Processing

We now discuss how we can facilitate blending of query formulation and processing.
We assume that a user does not modify previously constructed query fragments during
formulation (no deletion or updates). In the next section, we shall relax this assumption.

Recall that MUSTBLEND GUI provides the flexibility to users to impose constraints
on a set of conditions together (e.g., conditions on journal and year elements).
However, this feature introduces two challenges. First, it is not always necessary that
the underlying query processor need to evaluate these conditions together (twig). Hence
we need a mechanism to detect automatically when a set of conditions should be eval-
uated together. Second, in order to facilitate evaluation of these conditions together it
is often necessary to identify a common ancestor node (e.g., publication element
for conditions on journal and year). It is unrealistic to assume that the end-users
should explicitly specify them as it requires understanding of the XML structure. We
introduce the notion of inner structure tree (IST) and user actions tree (UAT) to auto-
matically resolve these two issues. We begin by introducing some auxiliary concepts.

An XML document is modeled as ordered directed trees, denoted by D = (N ,S),
where N is a set of nodes (elements and attributes) and S is a set of edges (hierarchical
relationships). Given an XML tree D = (N ,S), a path of a node n ∈ N in D, denoted
as path(n), is a concatenation of dot-separated labels �1.�2 . . . �k, such that �i(1 ≤ i ≤
k− 1) is the label of n’s ancestor at level i. �1 is the label of the root node and �k is the
label of n itself.

We adopt the DataGuide [5] as our XML structural summary. Intuitively, a DataGuide
structural summary, denoted by S, is a tree representing all unique paths in D. That is,
each unique path p in D is represented in S by a node whose path from the root node
to this node is p. An edge may have a label "+" iff the target node of the edge has
cardinality "+" with respect to D. Further, every unique label path of D is described
exactly once, regardless of the number of times it appears in D. Figure 4(b) depicts the
structural summary of the XML document in Figure 3(b). Observe that the edges inci-
dent on interpro and publication nodes have label "+" as interprodb and
pub list nodes in Figure 3(b) have multiple occurrences of these child nodes, respec-
tively. A subtree of S is a Plus-tree (P-tree in short) if its root is the target node of an "+"
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edge. For example, in Figure 4(b) the subtree gpublication rooted at publication
node is a P-tree of S while the subtree gpub list rooted at pub list node is a subtree
but not a P-tree of S. We denote a set of all P-trees of S by ptree(S).

Inner Structure Tree (IST). Let g1, g2 ∈ ptree(S) and root(g1) �= root(g2). Then g1
is an inner structure tree (IST) of g2, denoted by g1 � g2, if and only if g1 is a subtree of
g2. Note that path(root(g2)) is a prefix of path(root(g1)). For example, in Figure 4(b),
gpublication � ginterpro (highlighted by dashed rectangles).

User Actions Tree (UAT). A user actions tree (UAT), denoted as U , describes how a
set of conditions that are connected by AND or OR connectives are to be processed by
MUSTBLEND to generate the final query results. Each internal node of U represents
an AND or OR connective. Each leaf node of U is a 2-tuple v = (Ca,M), where Ca is
a set of non-join conditions that are processed together and M is the temporary rela-
tion that stores the prefetched data satisfying Ca. For example, Figure 5(a) depicts two
UATs. Observe that M4 in Figure 5(a)(b) is generated by evaluating C3 and C5 together
whereas M2 is generated by processing C2 independently from rest of the conditions.
When do we process a set of conditions together? We elaborate on this now.

Given a condition C, let target(C.S.exp) refers to the target node (rightmost node)
in the path expression S of C. When the exp is obvious from the context, we denote
it as target(C). If target(C) is contained in g ∈ ptree(S) then we say that g in-
cludes C, denoted by C � g. For example, consider C3 in Q2. Here target(C3) is the
journal node that is contained in gpublication. Hence, C3 � gpublication. Given a set
of conditions Ca and g ∈ ptree(S), g minimally includes Ca, denoted by Ca �m g, iff
∀Ci ∈ Ca, Ci � g and there � g′ ∈ ptree(S) such that g′ � g, ∀Ci ∈ Ca, Ci � g′.

Let C be a set of conditions and r be the output expression on S. Then the conditions
in C are processed together iff (a) the label of the parent node of C in U is AND and
(b) g1 � g2 where (g1,g2) ∈ ptree(S), Ca �m g1 and (Ca ∪ {r}) �m g2. Note that the
root(g1) is the common ancestor satisfying all conditions of C. For example, consider
Figure 5(a). Suppose target(r.exp) is the name node. If we formulate two conjunctive
conditions on nodes journal and year, then they can be evaluated together to find
publication nodes satisfying these conditions. This is because gpublication is an IST

of ginterpro, gpublication minimally includes the conditions on journal and year,
and ginterpro minimally includes the conditions on journal, year, and name.
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Algorithm 1. The MUSTBLEND algorithm
Input: Actions on the user interface
Output: Query results M

1 Initialize M and user actions tree U ;
2 Initialize queue Q;
3 Mo ← fetchOutputExp(r);
4 A ← getGUIAction();
5 while (A �= “Run”) do
6 if (A == “Add”) then
7 Cadd is the new condition;
8 Ctarget is the drop target;
9 SQL← fetchCondMatch(r, C , Cadd, Ctarget);

10 U .insert(Cadd);
11 Q.insert( SQL);
12 else
13 if (A == “Delete”) then
14 Cdel is the deleted condition;
15 U ← deleteHandler(Cdel , U , Q);
16 else
17 if (A == “Update”) then
18 Cold and Cnew are old and new conditions;
19 Initialize upFlag = ∅;
20 U ← updateHandler(Cold , Cnew, upFlag, U , Q);

21 C.insert(Ci);
22 A ← getGUIAction();

23 if (Q �= ∅) then
24 Wait for materializing all partial results;
25 else
26 Modify U by removing unnecessary internal nodes;
27 M ← retrieveFinalResults(U ,r);

28 return M

3.1 Algorithm MUSTBLEND

We now present the Algorithm MUSTBLEND (Algorithm 1). Importantly, for the sake of
generality, we present a generic approach that is independent of any specific relational
approaches. The reader may refer to [11] for an example of how various subroutines
in the algorithm can be realized on a specific tree-unaware XML storage system. First,
when the output expression r is dragged into Panel 2, it materializes the identifiers of
the elements/attributes in the XML tree that satisfy r by invoking the fetchOutputExp
procedure (Line 03). It generates an SQL query for this task. An identifier of an element
n in an XML tree D is one or more attributes of n that can uniquely identify n in D.
Note that we materialize the identifiers instead of entire subtrees because it is more
space-efficient. It is worth mentioning that the identifier scheme is not tightly coupled
to any specific system as any numbering scheme (e.g., region encoding, dewey number-
based [6]) that can uniquely identify nodes in an XML tree can be used as an identifier.

Next, Lines 05–22 are executed repeatedly until the “Run” icon is clicked. When a
user drags a new query condition Cadd and drops it on an existing condition Ctarget,
Lines 07–11 are executed. The algorithm invokes the fetchCondMatch procedure to
materialize the identifiers in Mo that satisfy Cadd (Line 9). Then, it adds Cadd into
the UAT U (Line 10). Figure 5(b) depicts the UAT generated after the conditions in the
running query are visually formulated. MUSTBLEND detects that C3 and C5 need to
be processed together and identifies the common ancestor. Lines 13–20 are executed if
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the user modifies a portion of the query that have already been constructed. We shall
elaborate on these steps in Section 4. Note that the translated SQL queries generated by
these steps are inserted into a queue Q. These queries are then processed sequentially
in another process thread. The node identifiers retrieved by the above steps are materi-
alized in a set of relations where the schema of each relation contains only document
identifier and node identifier attributes.

Once all the conditions are visually formulated, the user may click on the “Run” icon
to retrieve the query results. Once the materialization of all partial results are completed,
the algorithm invokes the retrieveFinalResults (Line 27) which traverses U to retrieve
the query results from the temporary tables storing the partial results.

fetchCondMatch Procedure. Let S1 and S2 be the structural summaries of the data
sources of the output expression r and the new condition Ccur, respectively. First, this
procedure retrieves the P-trees g1 and g2 that minimally includes the two input condition
sets ({r, Ccur, Ctarget} �m g1, {Ccur, Ctarget} �m g2). Next, it determines if join
across data sources is needed by comparing the data sources of r and Ccur. If join is
not required (S1 = S2) then it first retrieves the set of conditions Ca that have already
been formulated by the user and C � g2 ∀C ∈ Ca and Ctarget ∈ Ca. If g2 � g1 then it
generates an SQL statement that processes the conditions in Ca and Ccur together due
to reasons discussed earlier. Otherwise, it first generates SQL statements to retrieve the
node identifiers satisfying Ccur and then it appends statements for determining subtrees
that contain these identifiers as well as satisfy r. Note that when the user dropsCcur on a
blank space, then Ctarget = ∅. In this case, g2 is set to S2. Consequently, the condition
g2 � g1 is not satisfied and the above step is followed to process the new condition
independently. When join across data sources is required, this procedure first updates
g1 where {Cj , Ccur, Ctarget} �m g1. Then an SQL query is generated for prefetching
portion of data satisfying Ccur using the join condition Cj . Due to space constraints,
the formal description of the algorithm is given in [11].

retrieveFinalResults Procedure. This procedure can be divided into two main steps: (a)
processing of the UAT and (b) retrieval of complete subtrees from the database satisfy-
ing the query [11]. The objective of the first step is to retrieve all identifiers of instances
of r that satisfy the set of conditions in the UAT. After that, the second step is used to
build an SQL query to extract all subtrees satisfying the identifiers extracted from the
first step. While the second step is straightforward, we propose a disk-based and main
memory-based strategies called DISKRETRIEVE and MEMRETRIEVE, respectively, to
realize the first step. The DISKRETRIEVE strategy processes U recursively and returns
an SQL query to retrieve the identifiers from the materialized relations. Given the node
root in U , the algorithm first identifies whether it is an “AND” node or an “OR” node.
If it is an “AND” node, then it adds the “INTERSECT” operator into the SQL statement.
Otherwise, the “UNION” operator is used. Then, it retrieves the child nodes of root and
processes them one by one. If the child node is a leaf node, then the algorithm adds
corresponding SQL statement. Otherwise, it recursively process the internal nodes and
finally returns an SQL query for execution. For example, reconsider the UAT in Fig-
ure 5(b). The SQL query generated by this procedure is as follows: select * from
M1 INTERSECT select * from M2 INTERSECT select * from M4.
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While the DISKRETRIEVE strategy requires the partial results to be materialized
in the database and retrieved the final results using SQL queries, the MEMRETRIEVE

approach reduces I/O cost by storing the identifiers in memory. In particular, it stores the
partial results in the main memory4 and use a similar procedure to the aforementioned
algorithm except that it retrieves the intermediate relations directly from the memory
instead of building SQL queries.

Remark. Observe that Algorithm MUSTBLEND does not exploit predicate selectivities
to optimize prefetching performance. Unfortunately, this strategy is ineffective here
as users can formulate low and high selective conditions in any arbitrary sequence of
actions. Consequently, it is not advantageous to speculate an end-user’s subsequent ac-
tions in order to take full advantage of selectivity estimates.

4 Visual Query Modifications

In this section, we address the issue of modification to a visual query. We consider
two types of modification, namely delete and update. Deletion enables a user to delete
a query condition Cdel ∈ C that has been constructed by him. The update operation
allows a user to update a previously formulated condition or change the default AND

connective to OR. Specifically, we allow the following updates types (a) Update of the
value of a condition. (b) Update of the operator of a condition. (c) Update of AND/OR

connectives. Note that the path expression of a condition is not allowed to be updated
visually as it often demands syntactic knowledge of XPath expressions from the users.
To modify the path expression, one must delete the condition and add a new one.

Handling Deletions. The deleteHandler procedure handles deletion of a conditionCdel

in the following way. First, it checks if the translated SQL query for Cdel is still in the
query queue Q. If it is, then it indicates that the query has not been executed yet. Hence,
the algorithm will remove it from Q. Otherwise, the results of Cdel have already been
materialized in a temporary table MC . Consequently, the algorithm will dropMC . Next,
it updates the UAT U by deleting Cdel from it. Finally, it checks if an internal node
of U has become a leaf node due to the deletion of Cdel and modify U accordingly
(packUAT procedure). For example, consider the UAT in Figure 5(a). Figure 5(b)(b)
depicts the structure of the UAT after deleting C3 and C4. Note that if Cdel ∈ Ca (where
1 ≤ i ≤ |Ca|) is deleted, then all conditions in (Ca − Cdel) shall be reevaluated. The
algorithms in Section 3.1 can be exploited for this purpose.

Handling Updates. We first discuss updates on conditions (leaf nodes in the UAT) and
then present the effect of updates on the internal nodes. Suppose that a user updates the
condition Cold ∈ C to Cnew. Let Mold and Mnew be the materialized tables satisfying
Cold and Cnew, respectively. There are four possible cases as follow for such update
operation. (a) Case 1: Mold ⊂ Mnew. In this case the results in Mold also satisfy Cnew .
However, not all nodes satisfying Cnew have been retrieved. Hence, it is necessary to
retrieve these additional nodes and merge them with Mold. (b) Case 2: Mold ⊃ Mnew.
Nodes satisfying Cnew are already in Mold; however Mold also contains nodes that do

4 The intermediate relations are implemented using HashMap.
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not match Cnew . Consequently, these nodes need to be deleted. (c) Case 3: (Mold ∩
Mnew) �= ∅ and (Mold �= Mnew). This case represents the scenario where some of the
nodes in Mold are part of the result matches for Cnew. Note that Mold also contains
nodes that are not relevant to Cnew . Hence, we need to delete non-matching nodes from
Mold and retrieving matching nodes that are not in Mold. (d) Case 4: (Mold∩Mnew) =
∅. We delete Mold and retrieve matching nodes for Mnew.

The updateHandler procedure first determines whether the update operation is on
a query condition or on an AND/OR node. If the former is true then it determines the
update code (1, 2, and 0 for Cases 1, 2, and 3 and 4, respectively) based on Cold and
Cnew only. In case, it is not possible to determine the code (e.g., the value of a condition
is a string) then by default it is considered as Case 4. If the update code is 0, then
it considers this modification as deletion of Cold and insertion of Cnew. Note that if
Cold ∈ Ca then we execute these two steps as well. If the update code is greater than
0, then the algorithm first checks if the SQL query for Cold is still in Q. If it is still in
Q, then Cnew will be translated into an SQL query by using the algorithms discussed in
the preceding section and it will replace the old query in Q with the new one. On the
other hand, if the SQL query for Cold has already been executed, then the algorithm will
generate an INSERT SQL statement (for Case 1) or a DELETE statement (for Case 2).
Note that the former statement retrieves additional nodes from the database that satisfy
Cnew and inserts them in Mold. Similarly, the latter statement deletes nodes in Mold

that do not satisfy Cnew .
Now consider the update of an AND node (recall that it is created by default) to an OR

node. If each child leaf node n of an updated AND node represents a single condition
C then there is no modification to the prefetching process during query formulation.
However, if at least one of the child node n contains two or more conditions (Ca) that
need to be processed together then n needs to be modified along with its prefetched
relation (if any). Consequently, the algorithm first removes unnecessary internal nodes
(if any) from U that may have resulted due to the update operation. If n is updated to
OR node, then it is decomposed into a set of leaf nodes where each node represents a
single query condition Ci ∈ Ca. The prefetched partial results (if any) associated with
n is deleted and SQL queries for each Ci where 1 < i ≤ |Ca| are generated to prefetch
partial results matching each of these conditions. Otherwise, if an OR node is restored
back to an AND node then the original leaf nodes are restored. Due to space constraints,
the formal description of updateHandler is reported in [11].

5 Performance Study

MUSTBLEND is implemented in Java on top of a recently proposed path materialization-
based (PM) [6] XPath processor5 on relational backend called ANDES [10]. We create
two variants of MUSTBLEND (see retrieveFinalResults procedure), namely one having
DISKRETRIEVE strategy (denoted by MB-H) and another MEMRETRIEVE strategy (de-
noted by MB-M). All experiments were conducted on an Intel Core 2 Quad 2.66GHz
processor and 3GB RAM. The operating system was Windows XP. The RDBMS used
was MS SQL Server 2008 Developer Edition.

5 PM approach has advantages over node-based approach when XML data are schemaless [6].
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Query MB-M MB-H

Q1 0.12 0.24
Q2 0.13 0.25
Q3 26.1 0.73

(a) User Waiting Times (in sec.)

Q4 134.4 0.83

XSys-A XSys-B

NS NS
DNF NS
DNF NS
68.6 269.9

Zorba

NS
1495.8
171.9
0.45

Q5 0.16 0.20
Q6 0.25 0.24
Q7 1.34 0.61
Q8 0.13 0.45

3.2 16.0
2.0 18.0

72.6 449.2
165.5 NS

0.45
0.64
0.47

145.8
Q9 2.16 0.51

Q10 0.16 0.86
DNF NS
NS NS

1400.6
NS

Query MB-M ANDES

Q1 2.14 DNF
Q2 9.39 18.3
Q3 2.18 DNF

(b) TPT vs complete query 
execution times (in sec.)

Q4 1.26 12.7
Q5 1.83 2.1
Q6 1.29 68.1
Q7 1.66 22.0
Q8 1.38 18.5
Q9 2.91 19.6

Q10 3.37 7.1

Fig. 6. Performance results (DNF – Did Not Finish in 30min; NS – Not Supported)

Query

Q1

Q2

Q4

Q6

Q9

Step Out

0.10 (179430)
-

0.09 (179430)
-

0.12 (179430)
-

0.03 (18093)
-

0.08 (171790)
-

Approach

MB-M
MB-H
MB-M
MB-H
MB-M
MB-H
MB-M
MB-H
MB-M
MB-H

Step 1

0.28 (6123)
-

0.32 (5850)
-

0.23 (7566)
-

0.18 (35)
-

0.15 (5601)
-

Step 2

0.32 (156172)
-

0.34 (9595)
-

0.13 (9595)
-

0.17 (12479)
-

1.14 (130318)
-

Step 3

0.24 (9)
-

7.28 (30294)
-

134.41
0.78

0.28 (18064)
-

0.96 (70327)
-

Step 4

0.09
0.20

1.14 (4317)
-
-
-

0.43 (682)
-

2.23
0.58

Step 5

-
-

0.10
0.22

-
-

0.21
0.20

-
-

TPT

2.03
2.14
9.27
9.39

134.89
1.26
1.30
1.29
4.56
2.91

Fig. 7. Running times of materialization of partial results (in sec.) for representative queries

We compare our ANDES-based MUSTBLEND implementation with two popular
commercial XML-extended relational engines, XSys-A and XSys-B (see Section 1), re-
alizing traditional query processing paradigm. Appropriate indexes were created for all
approaches and prior to our experiments, we ensure that statistics had been collected.
The bufferpool of the RDBMS was cleared before each run. We also compare Zorba
(try.zorba-xquery.org), an open-source XQuery processor written in C++ which
adopted latest optimization techniques [2]. We do not compare it with [9] as the latter
does not correctly support queries that require a set of conditions to be evaluated together
(e.g., Q2).

Experimental Setup. We use the XML representations of UNIPROT, PDB, and INTER-
PRO downloaded from their official websites. The features of these datasets are given
in Figure 2(b). Since Zorba fails to handle large datasets (UNIPROT), we reduce the
UNIPROT dataset by a factor of 50 (28MB) so that we can study its performance.

We chose ten single and multi-source twig queries that join up to three data sources.
Q1 to Q4 are shown in Figure 2(a) and the remaining queries are given in [11] (due
to space constraints). These queries are selected based of several features such as re-
sult size, number of conditions in the where clause, number of data sources, exis-
tence of ISTs with minimally inclusive conditions (highlighted in underlined bold), and
existence of AND/OR connectives. The subscripts of the labels in curly braces in the
where clause represent the default sequence of steps for formulation of conditions in
MUSTBLEND. Note that if a join and a non-join condition have same subscript then it
means that the join condition is formulated immediately after its non-join counterpart
and are evaluated together in MUSTBLEND. For example, the sequence of steps of Q1 is

try.zorba-xquery.org
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Query

Q5

Q3

Sequence

[C2, C1]

[C2, C1, C3, J3]
[C3, J3, C1, C2]

Time

0.09

0.18
0.81

Time

0.10

0.34
0.15

Time

-

0.82
0.34

Time

-

-
-

MB-M

0.14

26.5
26.5

MB-H

0.26

0.70
0.78

[C3, J3, C2, C1] 0.89 0.24 0.34 - 25.6 0.77

Q10 [C1, C2, J3, J4]
[C1, J3, J4, C2]

0.79
0.80

0.32
1.21

0.17
0.17

1.21
0.32

0.15
0.16

0.90
0.93

[C2, C1, J3, J4] 0.17 0.67 1.21 0.18 0.15 0.92

Fig. 8. Effect of query formulation sequence (in sec.)

depicted in Figure 2(a). Note that the join condition J2 and the non-join condition C2

share same subscript. That is, J2 is specified immediately after the formulation of C2

and are processed together in one step. Unless mentioned otherwise, we shall be using
the default sequence for formulating a query.

In order to formulate visual queries, fifteen unpaid volunteers with no prior knowl-
edge of XQuery query language participated in the experiments. Details related to par-
ticipants’ profile is given [11]. Each query was formulated six times by each participant
(using the default sequence unless specified otherwise) and reading of the first formula-
tion of each query was ignored. The average query formulation time (QFT) for a query
by all participants is shown in the right-most column in Figure 2(a).

Experimental Results. We now present performance results of MB-H and MB-M.
User Waiting Times (UWT). Figure 6(a) shows the average user waiting time (UWT)

of all approaches. It is computed by taking the average of the UWTs of all partici-
pants. In XSys-A, XSys-B, and Zorba, UWT refers to the query execution times. Clearly,
disk-based and memory-based variants of MUSTBLEND are significantly faster than
approaches based on traditional paradigm in most queries. In particular, MB-M and MB-
H are at least two orders of magnitude faster than XSys-A or XSys-B for queries that
join multiple data sources (Q1 − Q3, Q8 − Q10). Also, MB-H typically has superior
performance compared to MB-M especially for queries with larger result size (e.g., Q3,
Q4). Note that UWT of MB-H is less than a second for all queries. Lastly, although we
use a much smaller UNIPROT dataset for Zorba, surprisingly, MB-M and MB-H are still
significantly faster than Zorba.

Materialization of partial results. We now report the execution times for material-
ization of partial results of a set of conditions in a visual query. Figure 7 reports the
performance of five representative queries (results for all benchmark queries are avail-
able in [11]). Each column labeled Step i represents the running time associated with
the materialization of corresponding query condition(s) of i-th step (subscript in the
label inside curly braces) in the sequence. The last step in MB shown in bold refers
to retrieval of entire subtrees satisfying the complete query. The values in parenthesis
represent the size of the materialized relations. Step out refers to the output expression
selection step. In response to this action, MUSTBLEND retrieve all nodes (identifiers)
in the database satisfying the output expression. Notably, the only difference between
MB-M and MB-H is the last step where final results are retrieved (retrieveFinalResults
procedure). The preceding steps are identical in both approaches.

We can make the following observations. First, the large size of intermediate results
does not adversely affect the UWT. Additionally, retrieving all the node identifiers (can
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Id Original query

MQ1

for $entry in doc('UNIPROT.XML')/uniprot/entry
where ($entry/keyword = "3D-structure" {C1}
or $entry/keyword = "Calcium" {C2}) 
and ($entry/organism/name[contains (., "Cell")] {C3}
or $entry/organism/name = "Mouse" {C4})
return $entry/gene

MQ2

for $entry in doc('UNIPROT.XML')/uniprot/entry,
$interpro in doc('INTERPRO.XML')/interprodb/interpro

where $entry/organism/name[contains(., "Human")] {C1}
and $interpro/pub_list/publication/journal = “Structure”{C2}
and $interpro/pub_list/publication/year = “2002” {C3}
and $interpro/@id = $entry/dbReference/@id {J2}
return $entry/name

MQ3

for $entry in doc('UNIPROT.XML')/uniprot/entry,
$interpro in doc('INTERPRO.XML')/interprodb/interpro,
$cell in doc('PDB.XML')/datablock/cellCategory/cell

where $entry/keyword = "3D-structure" {C1}
and $entry/organism/name[contains(., "Human")] {C2}
and $interpro/@id = $entry/dbReference/@id {J3}
and $cell/@entry_id = $entry/dbReference/@id {J4}
return $entry/name

Modified query

for $entry in doc('UNIPROT.XML')/uniprot/entry,
$interpro in doc('INTERPRO.XML')/interprodb/interpro,
$publication in $interpro/pub_list/publication

where ($entry/organism/name[contains(., "Human")] {C1}
and $entry/protein/name[contains(., “protein”)]) {C4}
and ($interpro/pub_list/publication/journal = “Structure” {C2}
or $interpro/pub_list/publication/journal = “Cell” {C5}) 
and $publication/year > “1980” {C6}
and $publication/year <= “2000” {C7}
and $interpro/@id = $entry/dbReference/@id {J2}
return $entry/name

for $entry in doc('UNIPROT.XML')/uniprot/entry
where ($entry/keyword = "3D-structure" {C1}
or $entry/keyword = "Calcium") {C2}
and ($entry/organism/name[contains (.,"virus")] {C5}
or $entry/organism/name = "Human") {C6} and
$entry/feature/@description[contains(.,"protein")]{C7}
return $entry/gene

for $entry in doc('UNIPROT.XML')/uniprot/entry,
$interpro in doc('INTERPRO.XML')/interprodb/interpro,
$publication in $interpro/pub_list/publication,
$cell in doc('PDB.XML')/datablock/cellCategory/cell

where $entry/keyword = "3D-structure" {C1}
and $entry/organism/name[contains(., "Mouse")] {C5}
and $publication/year > “1956” {C6}
and $publication/year <= “2000” {C7}
and $interpro/@id = $entry/dbReference/@id {J3}
and $cell/@entry_id = $entry/dbReference/@id {J4}
return $entry/name

Fig. 9. Effect of query modifications

be large) satisfying an output expression is feasible as it does not affect the prefetching
operations and UWT adversely. Second, MB-M is faster than MB-H when the final result
set is small (e.g., Q1, Q2, Q10) whereas MB-H is faster when the final result set is
large (e.g., Q3, Q4). Finally, for the majority of the queries in MB, interestingly, the
total prefetching times (the total time taken for all prefetching operations, denoted by
TPT) are significantly less than the query execution times in XSys-A, XSys-B, and Zorba
(Figure 6(a)). This is due to benefits of the new paradigm mentioned in Section 1.

TPT vs complete query execution times. The aforementioned experiments do not
demonstrate whether the performance benefit of MUSTBLEND is due to the visual
querying paradigm instead of the efficiency of underlying storage scheme of ANDES.
In this experiment, we shall shed light on this issue. Specifically, we measure the TPT of
Q1−Q10 using MB-H and the execution time of each query in its entirety on ANDES.
Note that we did not undertake similar experiments on XSys-A, XSys-B, and Zorba as
these systems do not allow us to retrieve and materialize node identifiers as partial result
matches. Recall that in MUSTBLEND we only materialize node identifiers in order to
minimize intermediate results size. Figure 6(b) reports the performance results. Clearly,
in most cases the TPT is significantly lower than the cost of executing an entire query
on ANDES. Observe that the UWT (Figure 6(a)) is also significantly smaller than the
evaluation time of an entire query on ANDES.

Effect of query formulation sequence. A visual query can be formulated by following
different sequence of steps. We now assess the effect of these different sequences on the
UWT in MB. Figure 8 lists different formulation sequences for three representative queries
(results for all benchmark queries are available in [11]), average times (all participants)
to retrieve partial results, and the average UWT. Note that Q5, Q3 and Q10 are on one,
two and three data sources. Notably, there are hardly any significant changes in both the
prefetch times and the UWT. This is primarily due to the following reasons. Firstly, GUI

latency can always be exploited by MUSTBLEND at each step irrespective of the ordering
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Query

MQ1

MQ2

Sequence of Modifications

1. Update C4 to C6 (Case 4)

3. Insert $entry/protein/name = “Protein”
4. Delete $entry/protein/name = “Protein”

Prefetch Time

0.23

0.17
-

Avg. UWT

1.2

0.05
0.31

Result 
Size
1928

0
2135

2. Update C3 to C5 (Case 4) 0.13 1.46 2135

MQ3

Same sequence as IM
1. Update the value of C1 to “Mouse” (Case 4)

-
0.46

0.42
0.42

866
972

5. Insert C7 0.38 0.41 866

2. Update C3 to C6 (Case 1)
3. Insert C7

5. Insert C5
6. Update to OR node for C2 and C5

4. Update the value of C1 to “Human”

1. Insert C6

7. Insert C4

2. Insert C7

Type

IM

IM

IM

BM

BM

BM Same sequence as IM

Same sequence as IM

3. Update C2 to C5 (Case 4)

7.36

0.41
5.96

6.57

0.69
3.66

1653

1401
0

1.31 2.76 1638

0.60
-

0.97
0.98

1740
1740

7.92 8.35 2748

1.33 0.20 2

0.40
-

0.10
0.12

1
1

1.38 0.55 2

Fig. 10. Effect of query modification in MUSTBLEND (in sec.)

of the visual steps. Secondly, in any query formulation sequence, each visual step results
in evaluation of a simple XPath fragment, which is much faster to evaluate compared to
a large chunk of complex XQuery as the former stresses the underlying query processor
less.

Effect of query modifications. Figure 9 depicts three representative queries on one,
two, and three data sources before and after modifications (denoted by MQ1, MQ2,
and MQ3, respectively). In this figure, we highlight the changes in underlined bold. For
ease of reference, all unique conditions in the original and modified versions of a query
are given unique identifiers (e.g., C1). In order to simulate real-world scenario, we con-
sider two types of modification scenario, namely incremental and bulk modifications.
In incremental modification (denoted by IM), after each modification action we execute
the query by clicking on the “Run” icon. Hence, if there are n modifications performed
by a user then the query is evaluated n times. On the other hand, in bulk modification
(denoted by BM), all modifications to a query is first formulated before it is executed.
Hence a modified query is executed only once.

Figure 10 reports the performances of IM and BM in MB-M. Since deletion of a condi-
tion does not require retrieval of new matches, we mainly focus on updates. To simulate
real-world scenario, we mix update operations with insertion of new conditions. The
sequence of operations performed by a user for a query is recorded in the second col-
umn. As a user may insert/update a condition and restore it back later (this modification
will not appear in the final modified query) after realizing his mistake, we represent
this scenario by inserting (resp. updating) and deleting (resp. update back) query con-
ditions that do not appear in Figure 9 (e.g., the third and fourth modification actions
for MQ1, first and fourth updates for MQ2). We can make the following observations
from the results in Figure 10. First, all prefetching activities in IM due to the modifi-
cations are completed within few seconds. Second, the UWTs for both IM and BM are
significantly faster than traditional approaches. The modified MQ2 and MQ3 do not
return any results in 30 minutes or they are not supported by XSys-A and XSys-B. The
UWTs of MQ1 for XSys-A and XSys-B are 173.7s and 866.6s, respectively. Zorba takes
22.1s and 2957.7s for modified MQ1 and MQ2, respectively. However, it does not
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support MQ3. These results clearly demonstrate that MUSTBLEND’s performance is
not adversely affected by query modifications, highlighting again its strength.

6 Conclusions

Our research sought to understand and provide insights to a new XML query processing
paradigm where the latency offered by visual query formulation is utilized to prefetch
partial results. We have presented MUSTBLEND - an algorithm to realize this paradigm
over relational framework by addressing some of the central limitations of [3,9]. Specif-
ically, it can handle richer variety of queries and only stores synopsis of intermediate
results to make the overall process space-efficient. As MUSTBLEND does not employ
special-purpose storage, indexing, and cost estimation schemes to improve UWT, it can
easily be built on top of any off-the-shelf RDBMS. Further, the proposed algorithm en-
sures that the prefetching activities are completely transparent to the users and their
interaction behaviors are not affected by this paradigm. MUSTBLEND has excellent
performance for a wide variety of queries. It can also gracefully accommodate modifi-
cations to a query during construction. All these features are important for deployment
of MUSTBLEND in real-world environment.
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