
SCALE: An Efficient Framework for Secure Dynamic
Skyline Query Processing in the Cloud?

Weiguo Wang1, Hui Li1[0000−0003−2382−6289], Yanguo Peng2, Sourav S Bhowmick3,
Peng Chen1, Xiaofeng Chen1, and Jiangtao Cui2

1 School of Cyber Engineering, Xidian University, China
{wgwang,pchen97}@stu.xidian.edu.cn, {hli,xfchen}@xidian.edu.cn

2 School of Computer Science and Technology, Xidian University, China
{ygpeng,cuijt}@xidian.edu.cn

3 School of Computer Science and Engineering, Nanyang Technological University, Singapore
assourav@ntu.edu.sg

Abstract. It is now cost-effective to outsource large dataset and perform query
over the cloud. However, in this scenario, there exist serious security and privacy
issues that sensitive information contained in the dataset can be leaked. The most
effective way to address that is to encrypt the data before outsourcing. Never-
theless, it remains a grand challenge to process queries in ciphertext efficiently.
In this work, we shall focus on solving one representative query task, namely
dynamic skyline query, in a secure manner over the cloud. However, it is diffi-
cult to be performed on encrypted data as its dynamic domination criteria require
both subtraction and comparison, which cannot be directly supported by a sin-
gle encryption scheme efficiently. To this end, we present a novel framework
called SCALE. It works by transforming traditional dynamic skyline domination
into pure comparisons. The whole process can be completed in single-round in-
teraction between user and the cloud. We theoretically prove that the outsourced
database, query requests, and returned results are all kept secret under our model.
Empirical study over a series of datasets demonstrates that our framework im-
proves the efficiency of query processing by nearly three orders of magnitude
compared to the state-of-the-art.

Keywords: skyline, secure, cloud, query

1 Introduction

With the rapid expansion in data volumes, many individuals and organizations are in-
creasingly inclined to outsource their data to public cloud services since they provide
a cost-effective way to support large-scale data storage and query processing. As a
major type of query and fundamental building block for various applications, skyline
query [6] has become an important issue in database research for extracting interest-
ing objects from multi-dimensional datasets. The skyline query processing is widely
adopted in many applications that require multi-criteria decision making such as mar-
ket research [12], location based systems [14], web services study [2], etc. The skyline
? corresponding author: Hui Li, hli@xidian.edu.cn.

operator filters out a set of interesting points based on a group of evaluation criteria
from a large set of points. A point is considered as interesting, if there does not exist
a point that is at least as good in all criteria and better in at least one criteria. How-
ever, similar to other types of query, outsourcing skyline query workload to a public
cloud will inevitably raise privacy issues. Since a real-world database may often con-
tain sensitive information such as personal electronic mails, health records, financial
transactions, etc., a cloud service provider may illegally spy on the data and invade the
privacy of the data owner and users.

In this paper, we focus on the problem of secure skyline querying on the cloud aim-
ing to protect the security of outsourced data, query request and results. Secure query
processing on encrypted data has been extensively studied during recent years [17, 24].
For instance, fully homomorphic encryption schemes [13] ensure strong security while
enabling arbitrary computations on the encrypted data. Modular Order-preserving en-
cryption [4, 8] provides an intuitive security model which supports comparison over
the ciphertext without decryption. Despite the promising achievements in the area of
secure query processing, it remains a grand challenge for processing dynamic skyline
queries over ciphertext, where the skyline operator is executed with respect to some
query point [19] and is adopted in many applications [26]. The main reason for the prob-
lem is as follows. Given a query request, a dynamic skyline query requires performing
both comparison and distance evaluation online simultaneously. Unfortunately, accom-
plishing this task over ciphertext cannot be realized efficiently via existing encryption
schemes.

For instance, suppose that a medical institution wishes to outsource its electronic
diabetes records to some public cloud service. Naturally, the medical institution would
like to prevent any leak of the contents of the records to the cloud server. An electronic
diabetes record consists of a series of attributes, including ID, age, FBGL (fasting blood
glucose level), etc. Let P = {p1, . . . , pn} denote a set of electronic diabetes records.
When the medical institution receives a new record (i.e., patient) q, it expects the cloud
server to retrieve a similar record to enhance and personalize the treatment for the new
patient q. However, it is usually difficult or even impossible to uniformly assign weights
to all the attributes to return the nearest neighbor (e.g., p1 is the nearest if only age is
involved while p2 is the nearest if only FBGL is taken into account). In light of that,
dynamic skyline query provides all possible Pareto records that are not dominated by
any other ones. Given a query q, we can compute the difference between each attribute
for pi and q. Let ti be the difference tuple between pi and q, and ti[j] = |pi[j] − q[j]|
for each dimension j. An object ti dominates tj if it is better than tj in at least one
dimension and not worse in every other dimensions. If an object cannot be dominated
by any other object, this object is one of the skyline points that needs to be returned. As
shown in Fig. 1, there are five patient records p1, . . . , p5. Given a query record q, we
calculate t1, . . . , t5 and can easily identify the skyline points as t5 and t2. Therefore, p5
and p2 are the results for the dynamic skyline query w.r.t q.

Notably, in the above example, a dynamic skyline query requires performing both
subtraction and comparison online. As there is no practical encryption scheme support-
ing both operators over ciphertext, existing model employs secure multiparty computa-
tion over at least two third-party non-collusion clouds and processes the query with

Records Age FBGL

Projected

Age

(w.r.t. q)

Projected

FBGL

(w.r.t. q)

p1 29 7.2 35 11.4

p2 35 8.7 35 9.9

p3 21 8.1 3 10.5

p4 22 11.2 42 11.2

p5 30 12.7 34 12.7

q 32 9.3

(a) Original and projected samples (b) Dynamic skyline

Fig. 1: Dynamic Skyline Query Example.

multiple rounds of interactions. In this work, we present a novel framework called
SCALE (SeCure dynAmic skyLine quErying) by transforming traditional skyline dom-
ination criteria, which requires both subtraction and comparison, into comparison only.
In this way, we are able to present a new scheme that can support dynamic skyline
query over ciphertext without any help from a second cloud and can be completed in
a single-round interaction between a user and the cloud. We theoretically prove that
the outsourced database, query requests, and returned results are all kept secret under
our model. Empirical study over four datasets including both synthetic and real-world
ones demonstrate that our framework outperforms the state-of-the-art method by nearly
three orders of magnitude. Notably, as a special case of dynamic skyline query, sky-
line computation can also be processed securely and efficiently under our model (with
trivial modifications). In summary, this work makes the following contributions.

– We propose a new scheme to encrypt the outsourced database and query request.
Based on the scheme, dynamic skyline query can be answered without decrypting
the database or the query. Within the scheme, the cloud server and data user need
only one interaction during the query.

– We theoretically prove that our model is secure if the cloud is curious-but-honest.
– Empirical study over both synthetic and real-world datasets justify that our model

is superior to the state-of-the-art w.r.t the query response time.

The rest of this paper is organized as follows. In Section 2 we review related works.
In Section 3 we formally present the problem definition and system model for this
work. The detailed designs of encryption scheme and query framework are discussed in
Section 4. Empirical study and corresponding results are shown in Section 5. In Section
6, we conclude this work.

2 Related Work

The skyline query is particularly important for several applications involving multi-
criteria decision making. The computation of the skyline is equivalent to determining
the maximal vector problem in computational geometry [15, 23], or equivalently the
Pareto optimal set [23] problem. static skyline query has been extensively studied in the
database field [6, 11, 21, 27]. A dynamic skyline query is a variation of skyline com-
putation that was first introduced in [19, 20]. Instead of computing the skyline points

Table 1: Summary of notations

Notation Definition

Enc(q) (Enc(2q)) Ciphertext of the query (doubled query) tuple
P = {p1, . . . , pn} A database with n tuples
E(P) Ciphertexts of tuples for P
E(Φ) Ciphertexts of the pairwise sums for tuples in P
pi[j] The j − th attribute of pi
keys[·] The set of private keys

purely from the given dataset, dynamic skyline query returns series of points that are
not dominated by any others with respect to q. In another word, skyline computation
can be viewed as a special case of dynamic skyline query where q is fixed as origin
point and only the comparison (without distance evaluation) is required.

With the development of cryptography, Encryption technology is gradually applied
in the database field. Bothe et al. [7] presented an approach for skyline computation
over Encrypted Data. It provided efficiency analysis and empirical study for computing
skyline points and decrypting the results. However, it failed to provide any formal se-
curity guarantee. Another work [9] proposed three novel schemes that enable efficient
verification of skyline query results returned by an unauthentic cloud server. This work
focuses on the verification but not privacy issues, and does not work on ciphertext. It
is orthogonal to the scope of this paper. Liu et al. [17] proposed the first semantically
secure protocol for dynamic skyline query over the cloud platform. The scheme adopts
both Paillier cryptosystem [18] and Secure Multi-party Computation (SMP) as building
blocks. Although it is proved to be semantically secure, the protocol suffers from huge
computation cost and strict system model. In fact, as a query framework, the response
time is the most important issue for the success of the application, but the performance
of [17] is far from satisfactory in this aspect.

Order-Preserving Encryption (OPE) scheme [1], whose ciphertext preserve the orig-
inal ordering of the plaintexts, has been extensively applied in range query over en-
crypted databases. The ideal security goal for an order-preserving scheme, IND-OCPA [3],
is to reveal no additional information about the plaintext values besides their order. Fol-
lowing that, a series of schemes have been proposed in literature [5, 22]. Chenette et
al. [10] built efficiently implementable order-revealing encryption based on pseudoran-
dom functions. Lewi et al. [16] improved the above scheme. The ORE scheme in [16]
is adopted for this work. We will discuss it further in Section 4.

3 Problem Definition

In this section, we shall first introduce a group of key concepts for skyline query, then
describe the system and security models utilized in this paper. For ease of discussion,
the key notations used throughout this paper are summarized in Table 1.

3.1 Skyline Query Definition

In this part, we shall introduce a series of key concepts for skyline problem that is
important for our subsequent discussions.

Definition 1 (Dynamic Domination). Given two points pα, pβ and a query point q in
d-dimensional space, we say pα dynamically dominates pβ with respect to q (denoted
by pα ≺q pβ), if ∀i ∈ {1, . . . , d}, |pα[i] − q[i]| ≤ |pβ [i] − q[i]|, and ∃i ∈ {1, . . . , d},
|pα[i]− q[i]| < |pβ [i]− q[i]|.
Definition 2 (Dynamic Skyline Query). Given a dataset P = {p1, . . . , pn} and a
query q in d-dimensional space, dynamic skyline query returns the set S ⊆ P , such
that ∀p ∈ S, @p′ ∈ P such that p′ ≺q p (i.e., ∀p ∈ S, p′ ∈ P , p′ cannot dynamically
dominate p with respect to q).

A common algorithm (i.e., BNL [6]) for dynamic skyline query is shown in Algo-
rithm 1. It first calculates the differences (i.e., ti) between each tuple (i.e., pi) and the
query request (i.e., q) in every dimension (Lines 1-3). When a tuple pi is read from P ,
it is added to S if S is empty (Lines 5-6). Otherwise, we shall compare pi’s correspond-
ing difference tuple with respect to q, namely ti, with that of each tuple in S. In case
ti ≺ tj , where pj ∈ S, we shall delete pj from S. If there is no pj ∈ S such that tj ≺ ti,
we shall add pi to S (Lines 10-11, 16-18). The algorithm repeats this process for the
remaining tuples in P , and finally returns S (Line 21). We shall use this as the basis for
our secure skyline model. Notably, this is not the most efficient algorithm for plaintext
skyline query. We select this method as our building block for the following reasons.
Firstly, the state-of-the-art solution for secure dynamic skyline is [17], which adopts
BNL [6] as the basic building block. In line with [17] and to make a fair comparison,
our solution is constructed according to the same query framework. Secondly, BNL is a
common and popular iterative algorithm for answering dynamic skyline query in plain-
text. Thirdly, as discussed in Section 1, the key challenge in secure dynamic skyline
query lies in the solution for performing both subtraction and comparison over cipher-
text. A secure model building on any other (plaintext) dynamic skyline query algorithm
inevitably has to address that. In other words, although our solution in this work adopts
Algorithm 1 as the foundation, it can be easily adapted to other (plaintext) dynamic
skyline query algorithms.
3.2 System Model and Design Goals

Our system model involves three types of participants: a data owner, a cloud server and
a group of query users. The cloud server is assumed to have large storage and com-
putation ability, and provide outsourcing storage and computation services. As Fig. 2
shows, the data owner employs the cloud service to store his private database. To pre-
serve data privacy, the data owner will encrypt his dataset, and only outsource the en-
crypted dataset to the cloud. Every query user may submit a query point (i.e., q) to the
system. The query request may be locally encrypted before sending to the cloud server.
Then, the cloud server will perform dynamic skyline query over encrypted database
and query request without decryption. Afterwards, it returns the encrypted results to the
user. Finally, the user decrypts these results using his own private keys.
Security model. We parameterize the security model by a collection of leakage func-
tions L = (LEncrypt,LQuery,LInsert,LDelete). These functions describe what infor-
mation the protocol leaks to the adversary A. Our model ensures that the scheme does
not reveal any information beyond what can be inferred from the leakage functions.

We define two games GameR,A and GameS,A as follows. The adversary repeat-
edly encrypts data and queries skyline points, and receives the transcripts generated

Algorithm 1 Basic Skyline Query Algorithm
Require: The dataset P and a query tuple q
Ensure: The result set of skyline points S
1: for i in 1, . . . , n and j in 1, . . . , d do
2: let ti[j] = |pi[j]− q[j]|
3: end for
4: for i in 1, . . . , n do
5: if S is empty then
6: add pi to S
7: else
8: flag ← True
9: for each pj ∈ S do
10: if tj ≺ ti then
11: flag ← False
12: else if ti ≺ tj then
13: delete pj from S

14: end if
15: end for
16: if flag == True then
17: add pi to S
18: end if
19: end if
20: end for
21: return S

Dataset

Encrypted Dataset

Keys

Send Encrypted Dataset

Encrypted Dataset

Registration

Information
Keys

Query data Encrypted Query Data

Send Encrypted

Query Data

Encrypted Query Data
Skyline

Query

Return Encrypted

Skyline Points

Keys

Data Owner

Query Users

Cloud Server

Fig. 2: The system model of secure skyline query

from Encrypt() and Query() algorithms in the real game GameR,A or receives the
transcripts generated by the simulator S(LEncrypt) and S(LQuery) in the ideal game
GameS,A. Eventually, A outputs a bit 0 (GameR,A) or 1 (GameS,A).

Definition 3 (Adaptively secure). A scheme is L-adaptively-secure if for all proba-
bilistic polynomial-time algorithm A, there exists an efficient simulator S such that:∣∣Pr[GameR,A(λ) = 1]− Pr[GameS,A(λ) = 1]

∣∣ ≤ negl(λ).
Design goals. Our design goals contain both efficiency and privacy, including database
privacy, query privacy, and result privacy. The details are as follows.

– Data owners need to encrypt the database before it is sent to the cloud server. Mean-
while, the content in the database is not leaked to the cloud server.

– Query request, as well as the results, should not be revealed to the cloud server
throughout query processing.

– As a query processing framework, efficiency should be considered as one of the
most important issue for measuring its success. Although the entire query process-
ing is performed in ciphertext here, it should minimize the additional cost associ-
ated with it.

4 The SCALE Framework

As discussed above, processing dynamic skyline query given a query point q requires
performing both subtraction and comparison. Addressing both tasks in ciphertext form
is challenging as there is no practical encryption scheme that supports both operations
simultaneously. To address this challenge, we re-investigate the entire dynamic skyline
query workflow described in Definition 3.1 and Algorithm 1. Our investigation revealed
an important fact that may lead to an effective solution. Notably, to answer a dynamic
skyline query given a request q, quantifying the differences between each point pi and
q through all dimensions is not mandatory. Instead, what we need is the relative order
of such differences for a group of different pi.

Observation 1 In order to evaluate whether pα dynamically dominates pβ with respect
to q, we do not need to know the exact values for the difference vectors Tα and Tβ ,
where Ti[j] = |pi[j] − q[j]| for j ∈ [1, . . . , d]. In fact, what we really need to know
is whether Tα[j] ≤ Tβ [j] or Tα[j] < Tβ [j] for j ∈ [1, . . . , d]. For simplicity, for
an arbitrary dimension j, we need to know whether pα[j] or pβ [j] is close to q[j]. To
answer that, we have to consider two possible cases depending on whether q[j] falls in
the interval between pα[j] and pβ [j]. Fig. 3a and Fig. 3b depict the cases. In Fig. 3a,
the order between Tα[j] and Tβ [j] can be interpreted as the relationship between pα[j]
and pβ [j]. In the case of Fig. 3b, the order between Tα[j] and Tβ [j] can be interpreted
as the relationship between pα[j] + pβ [j] and q[j] + q[j].

In the aforementioned study, we notice that the multi-type-operation requirement
(i.e., with both subtraction and comparison) in dynamic skyline query can be trans-
formed to uni-type-operation involving only comparison. Inspired by this critical
point, current encryption schemes that support comparison over ciphertext can be adopted
in our framework to realize our design goals.

4.1 Database Encryption

In our scheme, we adopt a state-of-the-art encryption scheme that supports comparison,
namely order-revealing encryption [16]. We first present the formal definition of order-
revealing encryption.

Definition 4 (Order-Revealing Encryption). An order-revealing encryption (ORE)
scheme [16] is a tuple of three algorithms including Setup, Encrypt and Compare de-
fined over a well-ordered domain D with the following properties:

– Setup(1λ) → sk: On input a security parameter λ, the setup algorithm outputs a
secret key sk.

– Encrypt(sk,m)→ ct: On input a secret key sk and a messagem ∈ D, the encryp-
tion algorithm outputs a ciphertext ct.

q[j]

p [j] p [j]

(a) Case 1.

q[j]

p [j] p [j]

(b) Case 2.

Fig. 3: Cases for the relationship between q and (pα, pβ)

Algorithm 2 SecureCompare Algorithm
Require: The ORE ciphertext for Enc(pα[j]), Enc(pβ [j]), Enc(q[j]), as well as Enc(pα[j] + pβ [j]), Enc(2q[j]).
Ensure: The comparison result as−1, 0, 1 denoting that pα[j] is closer to (resp., equivalent with, farther from) q[j] than

pβ [j].
1: if ORE.Compare(Enc(pα[j]), Enc(pβ [j])) == 0 then
2: return 0
3: else if ORE.Compare(Enc(pα[j]), Enc(pβ [j])) == −1 then
4: if Enc(q[j]) falls outside the interval then
5: return ORE.Compare(Enc(q[j]), Enc(pα[j]))
6: else
7: return ORE.Compare(Enc(2q[j]), Enc(pα[j] + pβ [j]))

8: end if
9: else
10: ifEnc(q[j]) falls outside the interval then
11: return ORE.Compare(Enc(q[j]), Enc(pβ [j]))

12: else
13: return ORE.Compare(Enc(pα[j] + pβ [j]), Enc(2q[j]))

14: end if
15: end if

– Compare(ct1, ct2) → b: On input two ciphertexts ct1, ct2, the compare algorithm
outputs a bit b ∈ {−1, 0, 1}.
With the help of the ORE scheme, evaluating the dynamic domination relation be-

tween pα and pβ can be carried out securely in ciphertext form as outlined in Algorithm
2. For ease of subsequent discussion, we shall denote Enc(x) as the ORE ciphertext for
the original message x.
Minimizing the number of keys. Following Observation 1, a data owner needs to en-
crypt database P and the sum of any two tuples in P in each dimension, namely
pα[j] + pβ [j], where α 6= β, α, β ∈ [1, n], j ∈ [1, d]. The above two ciphertexts are
denoted as E(P) and E(Φ), respectively. In this step, if we use the same private key on
both E(P) and E(Φ), the sum of paired tuples in E(Φ), although encrypted, will leak
more message about plaintext beyond the order.

For example, assume that P contains five tuples, whose values in a particular di-
mension are a, b, c, d, e, respectively. Suppose that after sorting the values in ascending
order, we get b, c, a, e, d. Then their sums can be listed as b+ c, b+ a, b+ e, b+ d, c+
a, c+ e, c+d, a+ e, a+d, e+d. For ease of discussion, in the following we shall refer
to these values as pairs of sums. If we encrypt the results for these pairs of sums using
the same key as E(P), an attacker can get the ordering of plaintexts. Therefore, he may
possibly know b+ e ≤ c+ a, and then infer that e− a ≤ c− b. In this way, besides the
order, the distribution of values in plaintext tuples is also leaked.

However, according to the security model in this work, except the order of tuples
in some dimensions, the cloud should not be able to infer the content of the tuples.

b+c b+a b+e b+d

c+a c+e c+d

a+e a+d

e+d

Sorted

data:

 b

 c

 a

 e

 d

Sum:
b+c b+a b+e b+d

c+a c+e

c+d

a+e

a+d e+d< < <

<

< < <

<

Key2

Key1

Fig. 4: A novel encryption scheme for pairs of tuples

Therefore, we have to avoid leaking the distribution of data by adopting different keys
in ORE. Intuitively, an ideal method is to encrypt each pair of sums using a different
key, as it is not required to perform comparison among any pair of pα[j], pβ [j] accord-
ing to Algorithm 2. However, the increased number of keys will further introduce key
management and storage problems. We propose a novel method to address this prob-
lem. As shown in Fig. 4, b, c, a, e, d are the sorted values for five tuples in P on a
particular dimension. According to Algorithm 2, these values should be encrypted us-
ing the same key as comparisons over their ciphertext are required. As a result, given
that Enc(b), . . . ,Enc(d) are encrypted using the same key under ORE, any adversary
can easily infer that b+ c < b+ a < b+ e < b+ d regardless that b+ c, . . . , b+ d are
encrypted with different keys or not. Therefore, it is not beneficial to use multiple keys
for such a group of sums.

Definition 5 (Order-Obvious Class). Given the order of n elements, whose exact val-
ues are unknown, if the order of two summations over paired elements can be inferred,
we call them Order-Obvious. All the n(n−1)/2 paired summations can be divided into
several disjoint subsets accordingly, such that all the summations in each subset are
Order-Obvious. We refer to each subset as an Order-Obvious Class (abbrev. OOC).

Generally, we can find all OOCs, which is classified using the solid lines in Fig. 4.
The relations for sums in the same OOC (e.g., line) can be inferred easily purely from
E(P). In light of that, we can use the same key to encrypt the sums in the same OOC,
and adopt different keys across OOCs. In this way, any adversary cannot get additional
information over the ciphertexts besides the order, and we can effectively minimize the
number of keys. In particular, the minimum number of keys, denoted as κ, (e.g., the
number of lines in Fig. 4) must satisfy the following theorem.

Theorem 1. In order to satisfy the predefined security model, the minimum number of
encryption keys in a dimension should be κ = d 2∗n−34 e.4

Remark. Through the above strategy, we have minimized the required number of en-
cryption keys. In spite of that, κ is still linear to n, which may introduce key manage-
ment burden if n is very large. To address this, we suggest the following implementa-
tions. For each row in Fig. 4, we assign it a random Idi. The data owner only needs to
store one master key mk and a series of random Idi. Then, keyi for encrypting each
row is generated by mk⊕ Idi. In this way, we can effectively generate κ different keys
based on mk.

4 The proof for all theories can be found in our Technical Report [25]

Raw Entries Order

b

c

a

e

d

1

2

3

4

5

H
ash

 Fu
n

ctio
n

b+d

b+a a+d

b+c b+e c+d e+d

c+e

c+a a+e

d

c

b e

a dORE.Encry

Storage

Fig. 5: The complete ciphertext storage structure

Accessing the pairs of sums. As required by Algorithm 2, in order to compare tα[j]
and tβ [j], it is always required to retrieve the ciphertext of pα[j] + pβ [j]. Therefore, it
is necessary to build a map between the elements of E(P) with the corresponding sums
in E(Φ). That is, we need to build an index that maps Enc(pα[j]) and Enc(pβ [j]) to
Enc(pα[j] + pβ [j]). To this end, we present an index based on hash function. Formally,
we define a hash function as h : N2 → N, where N denote the set of natural num-
bers. The hash function h should satisfy the following property, ∀x1, y1, x2, y2 ∈ N,
h(x1, y1) = h(x2, y2) if and only if x1 = x2 and y1 = y2.

Assume the indices for Enc(pα[j]) and Enc(pβ [j]) in E(P) are denoted as α and
β, respectively. Then the index of Enc(pα[j] + pβ [j]) in E(Φ) can be easily acquired
as h(α, β). Fig. 5 presents an example for the hash function. There are five encrypted
values in E(P), namely a, . . . , e. The hash function in this example is simply designed
as a regular traversal order for the corresponding sums. In fact, any hash function that
satisfies the aforementioned property can be adopted here.
Indexing the pairs of sums. Additionally, as all the pairs of sums within a particular
OOC are encrypted by ORE using the same key, we need to exploit additional index
structures for efficient retrieval of corresponding entries for these pairs of sums. There-
fore, we also design an index scheme for management of these ORE encrypted pairs of
sums. In SCALE, we adopt AVL-Tree based structure to construct the indexing structure,
as it provides excellent efficiency when querying for a particular range. Specifically, it
is possible for us to build an AVL-Tree to index all these encrypted sums in the same
OOC. Notably, each AVL-Tree is rooted at the median of each OOC and all the nodes
in an AVL-Tree are the corresponding ciphertexts for pairs of sums in the same OOC.

For instance, given the records in Fig. 4, there are two OOCs. We shall build two
different AVL-Trees for indexing the corresponding ciphertexts for each OOC, respec-
tively. That is, the first OOC centered at b + d corresponds to an AVL-Tree rooted at
Enc(b+ d); another OOC centered at c+ e corresponds to another AVL-Tree rooted at
Enc(c+ e) (as shown in Fig. 5).

In fact, data structures other than AVL-Tree can also be adopted to index the ORE
ciphertexts for each OOC. We select AVL-Tree as the default setting in SCALE as it
provides the best query response time among alternative choices.

Algorithm 3 Dataset Encryption
Require: The dataset P
Ensure: The ciphertexts setsE(P),E(Φ)

1: generate d+ d 2∗n−3
4 e ∗ d keys with ORE.Setup as keys[]

2: for p ∈ P and j in 1, . . . , d do
3: Enc(p[j])← ORE.Encrypt(keys[j], p[j])
4: let Enc(p) = {Enc(p[1]), . . . , Enc(p[d])} and add Enc(p) toE(P)
5: end for
6: letm = 1
7: for j in 1, . . . , d do
8: Λ = (p(1)[j], . . . , p(n)[j])← sort p1[j], . . . , pn[j] in ascending order
9: while Λ is not empty do
10: for i in 2, . . . , len(Λ) do
11: add ORE.Encrypt(keys[d+m], p(1)[j] + p(i)[j]) toE(Φ)
12: end for
13: for i in 2, . . . , len(Λ)− 1 do
14: add ORE.Encrypt(keys[d+m], p(n)[j] + p(i)[j]) toE(Φ)
15: end for
16: remove the first and last elements in Λ, letm = m+ 1
17: end while
18: end for
19: return E(P),E(Φ)

Algorithm 4 Query Request Encryption
Require: The query data q, keys from data owner keys[]
Ensure: The ciphertexts Enc(q), Enc(2q)
1: for j in 1, . . . , d do
2: Enc(q[j])← ORE.Encrypt(keys[j], q[j])

3: form in 1, . . . , d 2∗n−3
4 e do

4: let key_num = d+ (j − 1) ∗ d 2∗n−3
4 e+m

5: Enc(2qm[j])← ORE.Encrypt(keys[key_num], 2q[j])
6: end for
7: end for
8: return Enc(q), Enc(2q)

Database encryption. We have now all the ammunitions in place to demonstrate the
entire process of encrypting the database (Algorithm 3). First, the data owner generates
d + d 2∗n−34 e ∗ d keys (Line 1), and for each column (i.e., attribute) in P we encrypt
the entries using the same key (Lines 3-5), resulting in E(P). Then, the data owner
sorts the entries (Line 8) in each column (i.e., attribute) and computes the sums for
pairs of entries in each dimension. Afterwards, the sums are then encrypted using the
corresponding keys as shown in Fig. 4 (Lines 9-17), resulting in E(Φ). Finally, the data
owner sends E(P), E(Φ) to the cloud server.

Besides, the data owner also creates a hash function h that maps each pair of ele-
ments in E(P) and the corresponding sums in E(Φ), and sends h to the cloud server. It
is now possible for the cloud to quickly locate the ciphertext of the corresponding sums
for each pair (pα[j], pβ [j]).

4.2 Query Processing

A data user needs to register their information to the Data owner and securely get the
keys. Then the query user encrypts the request according to Algorithm 4 before sending
it to the cloud server.

Algorithm 5 Secure Skyline Query Algorithm
Require: The ciphertext for datasetE(P) andE(Φ), query request Enc(q) and Enc(2q)
Ensure: The encrypted result set of skyline points S
1: for i in 1, . . . , n do
2: if S is empty then
3: add Enc(pi) to S
4: else
5: flag_cur ← True
6: for each Enc(pj) ∈ S do
7: form in 1, . . . , d do
8: flag[m] ←SecureCompare(Enc(pi[m]), Enc(pj [m]), Enc(q[m]), Enc(pi[m] + pj [m]),

Enc(2q[m]))
9: end for
10: if ∀m, flag[m] ≥ 0, and ∃k such that flag[k] > 0 then
11: flag_cur ← False
12: else if ∀m, flag[m] ≤ 0, and ∃k such that flag[k] < 0 then
13: delete Enc(pj) from S

14: end if
15: end for
16: if flag_cur is True then
17: add Enc(pi) to S
18: end if
19: end if
20: end for
21: return S

As shown in Algorithm 4, user encrypts each dimension of the query tuple using
corresponding keys (Line 2) and encrypts the doubled entries for the query tuple using
other keys (Lines 4-5). Finally, the user sends Enc(q), Enc(2q) to the cloud server. As
mentioned in Algorithm 1, given an encrypted query q as shown Algorithm 4, the cloud
server needs to perform comparisons and computations over encrypted data. Accord-
ing to the approach shown in Fig. 3, the cloud server can perform skyline query via
the comparison relationship with encrypted tuples, encrypted query request, encrypted
sums, and encrypted doubled request. As a result, the process described in Algorithm 1
can be now performed in ciphertext without decryption, which is shown in Algorithm
5. To illustrate the entire protocol, we provide a running example in the following.

Example 1. Assuming that P contains five tuples, whose entries in dimension 1 are
sorted as 7, 13, 21, 32, 53. For simplicity, hereby we show only one dimension. Ac-
cording to Algorithm 3, we shall first compute the sums for all pairs of values, e.g.,
7 + 13 = 20, 7 + 21 = 28, 7 + 32 = 39, 7 + 53 = 60, 13 + 21 = 34, 13 + 32 = 45,
13+53 = 66, 21+32 = 53, 21+53 = 74, 32+53 = 85. As shown in Theorem 1, the
number of encryption keys required for these sums can be calculated as d 2∗5−34 e = 2.
Therefore, we use two keys to encrypt the above sums, resulting in Enc1(20), Enc1(28),
. . . , Enc1(85) and Enc2(34),Enc2(45),Enc2(53).

Besides, we also need to use another key to encrypt the original tuples, e.g., Enc3(7),
Enc3(13), . . . ,Enc3(53). Suppose that a user submits a query with q[1] = 23. Then q
and 2q need to be encrypted according to our scheme, resulting in Enc1(46),Enc2(46),
Enc3(23). These ciphertexts are then sent to the cloud server. The cloud server com-
pares ciphertexts one by one according to the protocol. Through ORE.Compare (Defi-
nition 4.1) and Algorithm 2, the cloud server can easily determine that Enc3(32) dom-
inates Enc3(53) following the case shown in Fig. 3a. Similarly, Enc3(21) dominates
Enc3(7) and Enc3(13). In the case shown in Fig. 3b, Enc3(21) dominates Enc3(32)

because ORE.Compare(Enc2(53),Enc2(46)) = 1. Algorithm 5 will iteratively repeat
this process for all dimensions and remaining tuples.
4.3 Security Analysis

The presented SCALE framework is constructed based on ORE scheme proposed in [16],
which is secure with leakage function LBLK .

Lemma 1. The ORE scheme is secure with leakage function LBLK assuming that the
adopted pseudo random function (PRF) is secure and the adopted hash functions are
modeled as random oracles. Here, LBLK(m1, . . . ,mt) = {(i, j, BLK(mi,mj))|1 ≤
i < j ≤ t} and BLK(mi,mj) = (ORE.Compare(mi,mj), inddiff(mi,mj)), in
which inddiff is the first differing block function that is the first index i ∈ [n] such that
xi = xj for all j < i and xi 6= xj . (The proof of this lemma is in Appendix 4.1 in [16])

In order to formally prove the security of SCALE, we extend L-adaptively-secure model
for keyword searching scheme as shown in Definition 3.

Theorem 2. Let the adopted PRF in ORE is secure. The presented SCALE framework
is L-adaptively-secure in the (programmable) random oracle model, where the leakage
function collection L = (LEncrypt,LQuery,LInsert,LDelete) is defined as follows,

LEncrypt = LBLK(∪dk=1X
(n)
k),LQuery = LBLK(∪dk=1X

(n)′

k),

LInsert = LBLK(∪dk=1X
(n+1)
k),LDelete = LBLK(∪dk=1X

(n)
k)

where X(n)
k = ∪(d

2∗n−3
4 e)

t=1 (Y kt), X
(n)′

k = ∪(d
2∗n−3

4 e)
t=1 (Y kt ∪ Enct(q) ∪ Enct(2q)) and

Y kt = {Enc(pt[k] + pj [k])|t < j < n − t + 1} ∪ {Enc(pj [k] + p(n−t+1)[k])|t < j <
n− t+ 1}.

The advantage for any probabilistic polynomial-time adversary is,

|Pr[GameR,A(λ) = 1]− Pr[GameS,A(λ) = 1]|
≤ negl(λ) = d · (neglORE(λ) + (2n− 1)poly(λ)/2λ).

4.4 Complexity Analysis

In the encryption phase, the plaintext data from the data owner can be sorted and en-
crypted in advance. We need O(d + d 2∗n−34 e) encryption operations every time when
a user submits a query following Algorithm 4.

During the querying phase, our scheme replaces the original plaintext subtraction
and comparison operations with a limited number of comparisons over ciphertext. The
time taken for encryption and ciphertext comparisons is only affected by the block size
in ORE, key length in AES, and plaintext length. Therefore, the main logic for dynamic
skyline query processing is unchanged. Hence, the complexity for query processing in
our scheme is consistent with that of [6], i.e., O(n2) for the worst case.

5 Experimental Study

In this section, we evaluate the performance and scalability of SCALE under different
parameter settings over four datasets, including both real-world and synthetic ones. We
also compare our model with another baseline, namely BSSP [17], which is the only
solution for secure dynamic skyline query.

1000.0 3000.0 5000.0 7000.0 9000.0
number of tuples n

100

101

102
ti
m
e(
se

co
nd

s)

BSSP
SCALE

(a) CORR

1000.0 3000.0 5000.0 7000.0 9000.0
number of tuples n

100

101

102

ti
m
e(
se

co
nd

s)

BSSP
SCALE

(b) ANTI

1000.0 3000.0 5000.0 7000.0 9000.0
number of tuples n

100

101

102

ti
m
e(
se

co
nd

s)

BSSP
SCALE

(c) INDE

500.0 1000.0 1500.0 2000.0 2500.0
number of tuples n

10−1

100

101

ti
m
e(
se

co
nd

s)

BSSP
SCALE

(d) NBA

Fig. 6: Response time by varying n (with d = 3, block = 16,K = 256)

5.1 Experiment Settings

All algorithms are implemented in C, and tested on the platform with a 2.7GHz CPU,
8GB memory running MacOS. We use both synthetic and real-world datasets in our
experiments. In particular, we generated independent (INDE), correlated (CORR), and
anti-correlated (ANTI) datasets following the seminal work in [6]. In line with [17], we
also adopt a dataset that contains 2500 NBA players who are league leaders of playoffs5.
Each player is associated with six attributes that measure the player’s performance:
Points, Offensive Rebounds, Defensive Rebounds, Assists, Steals, and Blocks.

5.2 Performance Results

In this subsection, we evaluate our protocols by varying the number of tuples (n), the
number of dimensions (d), the ORE block setting, and the length of key (K).
Varying the number of tuples. Fig. 6 shows the time cost by varying the number of
tuples, namely n, on the four datasets. In this group of experiments, we fix the number
of dimensions, ORE block size and key length as 3, 16 and 256, respectively. We ob-
serve that for all datasets, the time cost increases almost linearly with respect to n. This
phenomenon is consistent with our complexity study in Section 4.4. Notably, for the
real-world dataset (i.e., NBA), the query response time is less than 0.2 seconds, which
is efficient enough in practice. Compared to the state-of-the-art [17], SCALE is more
than 3 orders of magnitude faster. In the following, we shall fix n = 2500 and focus on
evaluating the effects of the three parameters in our scheme.
Impact of d. Fig. 7a shows the time cost for different d on the four datasets, where we
fix the ORE block size and key length as 16 and 256, respectively. For all datasets, as
d increases from 2 to 6, the response time in all four datasets increases almost expo-
nentially as well. This fact is consistent with the ordinary dynamic skyline querying in
plaintext. This is because an increase in d leads to more comparison operations for the
decision of dynamic dominance criteria.
Impact of ORE block. Encrypting plaintext based on block cipher, different block sizes
may take different time. Fig. 7b plots the time cost by varying the block sizes used in
the ORE scheme, where d and K are fixed as 3 and 256, respectively. As mentioned
in [16], this ORE scheme leaks the first block of δ-bits that differs, therefore, increasing
the block size brings higher security. Observe that the response time increases slightly
with respect to the size of ORE block. That is, higher security level in ORE has to
sacrifice some response time.

5 https://stats.nba.com/alltime-leaders/?SeasonType=Playoffs.

2 3 4 5 6

number of dimensions d

10-2

10-1

100

101

102

ti
m
e
(s
e
c
o
n
d
s
)

CORR

ANTI

INDE

NBA

(a) Effect of d (with block =
16,K = 256)

4 8 12 16

number of ORE block

10-1

100

ti
m
e
(s
e
c
o
n
d
s
)

CORR

ANTI

INDE

NBA

(b) Effect of block size (with
d = 3,K = 256)

128 256 384 512

number of key size K

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

ti
m
e
(s
e
c
o
n
d
s
)

CORR

ANTI

INDE

NBA

(c) Effect of key length (with
block = 16, d = 3)

Fig. 7: The effects of different parameters (n = 2500)

Impact of K. Fig. 7c shows the time cost by varying the lengths for the keys in the ORE
scheme. This ORE scheme uses AES as the building block, therefore, increasing the
encryption key size brings in higher security. Similar to that of block size, the response
time also increases linearly with respect to the size of encryption keys. Comparing
Fig. 7c against 7b, we find the following phenomenons. First, increasing the security
level for ORE will definitely sacrifice some efficiency. Second, the key length in AES
exhibits more significant impact on the efficiency comparing to that of ORE block size.

6 Conclusions

In this paper, we have presented a new framework called SCALE to address the secure
dynamic skyline query problem in the cloud platform. A distinguishing feature of our
framework is the conversion of the requirement of both subtraction and comparison
operations to only comparisons. As a result, we are able to use ORE to realize dynamic
domination protocol over ciphertext. Based on this feature, we built SCALE on top of
BNL. In fact, our framework can be easily adapted to other plaintext dynamic skyline
query models. We theoretically show that the proposed scheme is secure under our
system model, and is efficient enough for practical applications. Moreover, there is
only one interaction between a user and the cloud, which minimizes the communication
cost and corresponding threats. Experimental study over both synthetic and real-world
datasets demonstrates that SCALE improves the efficiency by at least three orders of
magnitude compared to the state-of-the-art method. As part of our future work, we
plan to further enhance the security of our scheme and explore how the scheme can be
adapted to support other variations of skyline query.

Acknowledgments

This work is supported by National Natural Science Foundation of China (No. 61672408,
61972309, 61702403, 61976168) and National Engineering Laboratory (China) for
Public Safety Risk Perception and Control by Big Data (PSRPC). Sourav S Bhowmick
is partially funded by Huawei grant M4062170.

References

1. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for numeric data.
In: SIGMOD. pp. 563–574. ACM (2004)

2. Alrifai, M., Skoutas, D., Risse, T.: Selecting skyline services for qos-based web service com-
position. In: WWW. pp. 11–20 (2010)

3. Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric encryption.
In: EUROCRYPT. pp. 224–241 (2009)

4. Boldyreva, A., Chenette, N., O’Neill, A.: Order-preserving encryption revisited: Improved
security analysis and alternative solutions. In: CRYPTO. pp. 578–595 (2011)

5. Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman, J.: Semantically
secure order-revealing encryption: Multi-input functional encryption without obfuscation.
In: EUROCRYPT. pp. 563–594 (2015)

6. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE. pp. 421–430
(2001)

7. Bothe, S., Cuzzocrea, A., Karras, P., Vlachou, A.: Skyline query processing over encrypted
data: An attribute-order-preserving-free approach. In: PSBD@CIKM. pp. 37–43 (2014)

8. Chatterjee, S., Das, M.P.L.: Property preserving symmetric encryption revisited. In: ASI-
ACRYPT. pp. 658–682 (2015)

9. Chen, W., Liu, M., Zhang, R., Zhang, Y., Liu, S.: Secure outsourced skyline query processing
via untrusted cloud service providers. In: INFOCOM. pp. 1–9 (2016)

10. Chenette, N., Lewi, K., Weis, S.A., Wu, D.J.: Practical order-revealing encryption with lim-
ited leakage. In: FSE. pp. 474–493 (2016)

11. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: ICDE. pp. 717–
719 (2003)

12. Dellis, E., Seeger, B.: Efficient computation of reverse skyline queries. In: VLDB. pp. 291–
302 (2007)

13. Gentry, C.: A fully homomorphic encryption scheme. Stanford University (2009)
14. Kriegel, H., Renz, M., Schubert, M.: Route skyline queries: A multi-preference path planning

approach. In: ICDE. pp. 261–272 (2010)
15. Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors. J. ACM

22(4), 469–476 (1975)
16. Lewi, K., Wu, D.J.: Order-revealing encryption: New constructions, applications, and lower

bounds. In: CCS. pp. 1167–1178 (2016)
17. Liu, J., Yang, J., Xiong, L., Pei, J.: Secure skyline queries on cloud platform. In: ICDE. pp.

633–644 (2017)
18. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: EU-

ROCRYPT. pp. 223–238 (1999)
19. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm for skyline

queries. In: SIGMOD. pp. 467–478 (2003)
20. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in database sys-

tems. ACM Trans. Database Syst. 30(1), 41–82 (2005)
21. Park, Y., Min, J., Shim, K.: Efficient processing of skyline queries using mapreduce. IEEE

Trans. Knowl. Data Eng. 29(5), 1031–1044 (2017)
22. Popa, R.A., Li, F.H., Zeldovich, N.: An ideal-security protocol for order-preserving encod-

ing. In: SP. pp. 463–477 (2013)
23. Preparata, F.P., Shamos, M.I.: Computational Geometry - An Introduction. Springer (1985)
24. Sun, W., Zhang, N., Lou, W., Hou, Y.T.: When gene meets cloud: Enabling scalable and

efficient range query on encrypted genomic data. In: INFOCOM. pp. 1–9 (2017)
25. Wang, W., Li, H., Peng, Y., Bhowmick, S.S., Chen, P., Chen, X., Cui, J.: An efficient secure

dynamic skyline query model. arXiv:2002.07511 (2020)
26. Wang, W.C., Wang, E.T., Chen, A.L.P.: Dynamic skylines considering range queries. In:

DASFAA. pp. 235–250 (2011)
27. Zhou, X., Li, K., Zhou, Y., Li, K.: Adaptive processing for distributed skyline queries over

uncertain data. IEEE Trans. Knowl. Data Eng. 28(2), 371–384 (2016)

